SPLIT HOOP WOUND RETRACTORE

An incrementally adjustable wound retractor, which provides access to a body cavity, includes an inner ring having a diameter greater than the desired diameter of the wound incision, an outer ring having an annular axis and a diameter greater than the desired diameter of the wound incision, and a flexible sleeve disposed in a generally cylindrical form between the inner and outer rings. The outer ring includes first and second circular tubes spaced apart axially with each including a lumen having a rigid, noncompliant split hoop placed therein. The outer ring may be rolled over itself and around the annular axis to retract the sleeve with sufficient force to stretch the incision to the desired diameter. A gel cap seal may be coupled to the outer ring outside of the biological body to seal the opening produced by the wound retractor between the body cavity and outside the body cavity.
SPLIT HOOP WOUND RETRACTOR

Background

This invention relates substantially to devices and other apparatuses facilitating sealed access with surgical instruments, such as a surgeon's hand, across a body wall and into a body cavity.

In several areas of surgery there exists a need to have mechanisms or devices that can seal a body cavity or space, and yet permit the introduction of surgical instruments such as guidewires, endoscopes, and even the hand of a surgeon. Typical of these areas of surgery is laparoscopic surgery that relies on surgical instruments inserted through the abdominal wall to reach an operative site within the abdominal cavity. In order to increase space around the operative site within the cavity, insufflation gases are typically introduced to inflate the cavity and elevate the abdominal wall. The pressurizing of the abdominal cavity is referred to as pneumoperitoneum. In this context, the need to seal the body cavity or space arises from the need to maintain the pneumoperitoneum even when instruments are present.

Trocars have been commonly used to provide instrument access in laparoscopic surgeries. These trocars have included elaborate seal structures having zero seals that prevent the escape of the gases in the absence of instruments, and instrument seals that prevent the escape of the gases in the presence of instruments. Unfortunately, the instrument seals have been able to accommodate only a narrow range of instrument diameters. Multiple seal pairs had to be provided where wider ranges were desired.
Some instruments, such as the hand of the surgeon, have been too large for trocar access. Under these circumstances, hand-assisted laparoscopic seals have been provided. Such devices have been large, cumbersome, and largely ineffective in providing the required sealing mechanism. Other access devices, such as Touhy-Borst seals, have been used, but only for very small diameter access such as that required by a guidewire.

Each of the prior devices suffers from drawbacks that make the device difficult or cumbersome to use. For example, a Touhy-Borst seal requires two hands to use and does not form a seal when a guidewire or other device is about to be introduced. Present trocar seals and hand-assisted seals require two valves, one forming an instrument seal in the presence of the instrument, and the other forming a zero seal in the absence of the instrument. For example, in hand-assisted devices, elaborate mechanisms have been required to seal around the surgeon's arm. When the arm is removed, a separate zero seal has been required to prevent the escape of blood or insufflation gases.

Summary

The invention is directed to a gel cap that is adapted for being coupled to a wound retractor. The wound retractor has a substantially noncompliant outer ring that is adapted for juxtaposition with an outer surface of a biological body wall and for disposition relative to an incision in the body wall. The wound retractor also includes an inner ring that is adapted for juxtaposition with an inner surface of the biological body wall and for disposition relative to the incision in the body wall. The wound retractor
further includes a sleeve that is adapted to traverse the incision in the body wall. The sleeve of the wound retractor couples the outer ring to the inner ring. The wound retractor is adapted to retract and seal the incision. The gelcap includes a cap ring and a gel pad. The cap ring includes a substantially cylindrical ring that has a first, proximal portion, a second, distal portion, and a plurality of lips at a distal end of the distal portion. Each of the lips curves radially inward from the wall of the distal portion of the cap ring and extends around a portion of the circumference of the cap ring. The gel pad, which is made of a gel material, is coupled to the cap ring and positioned at the proximal portion of the cap ring. The gel pad includes an access portion for providing a passage from external the biological body to a biological body cavity. The passage forms an instrument seal in the presence of an instrument inserted therethrough and a zero seal in the absence of an instrument inserted therethrough. The lips are configured to receive the outer ring of the wound retractor such that the outer ring is positioned between the lip and the gel pad. The gel pad is adapted to be placed in juxtaposition with the incision.

In one aspect, the proximal portion of the cap ring includes a plurality of apertures that are distributed about the circumference of the cap ring. The apertures extend through the wall of the proximal portion of the cap ring. In one aspect, the gel of the gel pad covers and fills the apertures. In another aspect, the gel in the apertures connects the gel at an outer portion of the cap ring to the gel at an inner portion of the cap ring. In another aspect, the gel of the gel cap extends into the distal portion of the cap ring. In one aspect, the distal portion of the cap ring is adapted to receive the outer
ring of the wound retractor such that the outer ring of the wound retractor embeds into
the gel pad at the distal portion of the cap ring and displaces the gel. Having the outer
ring of the wound retractor embed into the gel pad forms a seal between the gel pad
and the outer ring and sleeve of the wound retractor. In another aspect, the access
portion of the gel pad includes a plurality of intersecting dead-end slits. In another
aspect, the distal portion of the cap ring includes three lips that are substantially equally
spaced about the circumference of the distal portion of the cap ring. In another aspect,
each of the three lips extends about 60° around the circumference of the cap ring. In
another aspect, the distal portion of the cap ring includes more than three lips. The
more than three lips are substantially equally spaced about the circumference of the
distal portion of the cap ring. In another aspect, the distal portion of the cap ring
includes two lips. The two lips are substantially diametrically opposed about the
circumference of the distal portion of the cap ring. Each of the two lips extends a
sufficient distance around the circumference of the cap ring to facilitate adequate
coupling of the gel cap to the outer ring of the wound retractor. In another aspect, the
cap ring is made of a polymer. In one aspect, the polymer is polyethylene while in
another aspect the polymer is polycarbonate. In another aspect, the gel pad covers and
seals the entire opening in the cap ring. In another aspect, the gel pad is adapted to
cover substantially the entire wound opening.

These and other features and advantages of the invention will become more
apparent with a discussion of embodiments in reference to the associated drawings.
Brief Description of the Drawings

FIGURE 1 is a top perspective view of a gel cap of the invention placed onto a wound retractor of the invention;

FIG. 2a illustrates an elevation view of an incrementally adjustable wound retractor in accordance with an embodiment of the invention;

FIG. 2b illustrates a perspective view of the wound retractor of FIG. 2a;

FIGS. 3a-3c illustrate the retraction of the outer ring of the wound retractor of FIG. 1 to retract an incision;

FIG. 4 depicts a plan view, in cross section, of the outer ring of the wound retractor having a split hoop in a lumen thereof;

FIG. 5 depicts an elevation view of the outer ring of the wound retractor having a split hoop in the lumen of each of the first and second circular tubes of the outer ring;

FIG. 6 depicts a perspective view of the wound retractor;

FIGS. 7a-7b illustrate different processes of forming the outer ring of the invention;

FIG. 8 illustrates the wound retractor of FIG. 1 deployed in an incision;

FIG. 9 depicts a perspective view of the wound retractor having the split hoops in the lumen of each of the first and second circular tubes of the outer ring;

FIG. 10 depicts a plan view of one of the first and second circular tubes of the outer ring with a split hoop placed therein with the split hoop and circular tube in their neutral state;
FIG. 11 depicts a plan view of one of the first and second circular tubes of the outer ring with a split hoop placed therein with the split hoop and circular tube in their expanded state;

FIG. 12 depicts a plan view of the first circular tube and split hoop and the second circular tube and split hoop with the first circular tube and split hoop in their neutral state and the second circular tube and split hoop in their expanded state being rolled around the first circular tube and split hoop

FIG. 13 is a side view of a wound retractor of the invention being inserted into a wound in a body wall with the inner ring being inserted into the wound;

FIG. 14 is a side view of the wound retractor of the invention placed in the wound in the body wall and depicting a direction for rolling the outer ring to retract the wound;

FIG. 15 is a side view of the wound retractor invention placed in the wound in the body wall with the wound retracted;

FIG. 16 is a top plan view of a cap ring portion of a gel cap of the invention configured for coupling the gel cap to the outer ring of the wound retractor;

FIG. 17 is a bottom perspective view of the cap ring of FIG. 16 depicting lips for engaging the outer ring of the wound retractor;

FIG. 18 is a top perspective view of the cap ring of FIG. 16;

FIG. 19 is a side cross-sectional view of the cap ring of FIG. 16;

FIG. 20 is a side cross-sectional view of the gel cap incorporating the cap ring of FIG. 16;

FIG. 21 is a bottom perspective view of the gel cap of FIG. 20;
FIG. 22 is a top perspective view of the gel cap of FIG. 20;

FIG. 23 is a top perspective view of the gel cap of FIG. 20 coupled to the outer ring of the wound retractor;

FIG. 24 is a partial section view of the gel cap of FIG. 20 coupled to the outer ring of the wound retractor; and

FIG. 25 is a side view of the gel cap of FIG. 20 coupled to the outer ring of the wound retractor.

Detailed Description

FIGURES 1, 2a and 2b illustrate a wound retractor 100 and gel cap 200 in accordance with an embodiment of the invention. The wound retractor 100 includes a double-tube outer ring 102, an inner ring 104, and a distensible sleeve 106 coupling the outer ring 102 to the inner ring 104. The sleeve 106 may be coupled to the outer ring 102 and the inner ring 104 by heat seal, adhesive, or other means that are well known in the art. The sleeve 106 may be made of a material that is flexible and impermeable to fluids and bacteria. The inner ring 104 may be made of materials having sufficient hardness to retain its shape after insertion of the inner ring into a body cavity 404 (FIG. 8). The materials of which the outer ring 102 is made must allow the outer ring 102 to be turned around its annular axis as further described below and illustrated in FIGS. 3a-3c. The shape of the outer ring 102 affects both its ability to grip and to provide stability during and after adjustment. The double-tube outer ring 102 includes a first circular
tube 108 and a second circular tube 110 that are separated axially and may be coupled together by a small web 112. Each of the circular tubes 108 and 110 includes a lumen.

Referring to FIGS. 4-6, a wound retractor 100 may include the double-tube outer ring 102 having a substantially noncompliant, split hoop 118 positioned in the lumen of the first circular tube 108 and a substantially noncompliant, split hoop 118 positioned in the lumen of the second circular tube 110. Each of the split hoops 118 includes a hoop having a single split 120 about its circumference with the split creating a first end 122 of the split hoop and a second end 124 of the split hoop. In its neutral position, the first and second ends 122, 124 of the respective split hoops 118 substantially abut each other.

The substantially noncompliant hoops 118 may be made of metals, such as stainless steel, piano wire heat treated to a spring temper, or other metals that produce a substantially noncompliant hoop. The substantially noncompliant hoops 118 may also be formed of rigid polymeric materials through molding, machining, and other processes that are well known in the art. The substantially noncompliant hoops 118 may also be formed of other suitable rigid materials that are well known in the art.

As shown in FIGS. 7a-7b, the outer ring 102 may be formed by transforming an extruded elastomeric double-tube into a circular ring by placing the split hoops 118 (FIGS. 4-6) into the first and second circular tubes 108, 110. This is accomplished by inserting one of the first and second ends 122, 124 of one of the hoops 118 into the lumen of the first circular tube 108 and one of the first and second ends of the other hoop 118 into the lumen of the second circular tube 110. The split hoops 118 are
continually fed into the lumens until substantially each of the entire hoops 118 is within
the respective circular tubes 108, 110. The extruded elastomeric tube 102 takes on the
circular shape of the split hoops 118 placed in the lumens of the first and second
circular tubes 108, 110.

It is appreciated that the outer ring 102 can be designed in various configurations
and sizes to achieve various retraction rates and/or to conform to different body
surfaces. The lumens of the first and second circular tubes 108, 110 may have cross-
sections of different geometries, such as circular, oval, triangular, rectangular, any
geometric shape with multiple sides, etc. The split hoops 118 may also have cross-
sections of different geometries, such as circular, rectangular, oval, triangular, any
geometric shape with multiple sides, etc. Advantages of the above embodiments of the
invention include improved retraction adjustability and stability.

With continued reference to FIGS. 4-6 and with reference to FIGS. 7a, 7b and 8-
12, with each of the first and second circular tubes 108, 110 including a split hoop 118,
it is not necessary to provide means for a first end portion 126 and a second end portion
128 of the split hoop to overlap each other when rolling the sleeve 106 around the outer
ring 102. Since the split hoop 118 in the each of the first and second circular tubes 108,
110 has substantially abutting first and second ends 122, 124 and no means are
provided for the first and second end portions 126, 128 of the split hoops to overlap
each other, each of the split hoops 118 functions as an axle about which the outer ring
102 may turn for half a rotation, or 180°. More particularly, the first circular tube 108
may be rolled outside the second circular tube 110 with the circumference of the split
hoop 118 in the first circular tube expanding to clear the split hoop 118 in the second circular tube. Then the second circular tube 110 may be rolled outside the first circular tube 108 with the circumference of the split hoop 118 in the second circular tube expanding to clear the split hoop 118 in the first circular tube (see FIG. 12). These steps may be repeated until the wound 400 is retracted to the desired degree.

FIGS. 3a-3c and FIG. 8 illustrate the retraction and adjustment of the outer ring 102 to fit an incision. In accordance with the invention, the wound retractor 100 is axially adjustable in increments. In particular, the upper end of the sleeve 106 can be wrapped around the outer ring 102 so as to tightly seal the sides or edges of the incision 400. The unique shape of the outer ring 102 provides for an easy snap action when rolled about itself. The outer ring 102 also provides for incremental shortening of the sleeve 106 and for stability after installation.

FIGS. 8 and 13-15 illustrate a process of installing the wound retractor 100 in a wound opening 400. An incision 400 in the shape of a slit is first made in a body wall of a patient, such as the abdominal wall 402. The inner ring 104 is compressed and the inner ring and sleeve 106 are then manually inserted into the body cavity 404 through the incision 400 with the outer ring 102 remaining external the body cavity 404. Once the inner ring 104 is within the body cavity 404, it expands around the inner surface of the incision 400 so as to be generally parallel to the outer surface of the abdominal wall 402. The sleeve 106 provides a working channel from outside the body cavity 404 to inside the body cavity.
The outer ring 102 initially rests above the abdominal wall 402 around the wound opening 400. Since the upper end of the sleeve 106 is coupled to the outer ring 102, the sleeve 106 can be drawn upwards and radially outward or inward, thereby drawing the inner ring 104 tightly against the inner surface of the abdominal wall 402. Moreover, the intermediate portion of the sleeve 106 is drawn tightly against the sides and edges of the wound opening 400, thereby retracting the adjacent tissue and producing a tightly sealed opening to the body cavity 404. The sleeve 106 contacts the entire surface of the wound 400 and protectively covers and seals it from contamination and infection. Depending on the size and depth of the incision 400, the user can roll up the sleeve 106 by gripping the double-tube outer ring 102 and turning it in a direction 130, as also illustrated in FIGS. 3a-3c, until the sleeve 106 abuts the outer edge of the wound opening 400. The inner ring 104 is adapted for juxtaposition with the inner surface of the abdominal wall 402 and the outer ring 102 is adapted for juxtaposition with the outer surface of the abdominal wall. Both the inner ring 104 and the outer ring 102 are adapted for disposition relative to the incision 400 in the abdominal wall 402. The sleeve 106 is adapted to traverse the incision 400 in the abdominal wall 402.

An advantage of the wound retractor 100 of the present invention is it provides for an easier, faster and higher retraction rate than that known in the prior art, thereby resulting in less traumatic effects to the patient. Another advantage of the wound retractor 100 of the present invention is it provides tactile gripping and incremental rolling of the sleeve 106 about the outer ring 102. In comparison to retractors of the prior art, the substantially noncompliant hoops 118 in the lumens of the outer ring 102
provide greater strength, which in turn provides better retraction. The substantially noncompliant hoops 118 control the shape of the wound opening 400, rather than the wound opening controlling the shape of the wound retractor 100. In this manner, the wound retractor 100 of the present invention provides better isolation, protection, and sealing of the wound 400.

After surgery, the wound retractor 100 may be retrieved by grabbing the inner ring 104 and the sleeve 106 and pulling them through the wound opening 400. The use of the sleeve 106 and the ease of retracting the outer ring 102 provide higher compression between the inner and outer rings. As a result, the wound retractor 100 of the invention provides incremental adjustability to fit a wide range of incision sizes and isolates and protects the wound from bacterial infection as diseased body parts and contaminated instruments are passed through the wound.

Referring to FIGS. 16-25, the gel cap 200 includes a cap ring 202 that couples to the outer ring 102 of the wound retractor 100 and a gel pad 204 coupled to the cap ring. The gel pad 204 is made of a gel material and includes an access portion 206 or passage through the gel for providing a passage from external the body to the body cavity 404. In one aspect, the access portion 206 may include a plurality of intersecting dead-end slits 228, 230. The access portion 206 forms an instrument seal in the presence of an instrument, such as the arm of a surgeon, inserted therethrough and a zero seal in the absence of an instrument inserted therethrough.

To combine the gel pad 204 with the cap ring 202, the cap ring may be placed into a mold that includes the shape of the desired gel pad and the uncured gel is added
to the mold. In one aspect, the cap ring 202 includes a substantially cylindrical ring 208 having a first, proximal portion 210, a second, distal portion 212 and a longitudinal axis 214 extending through the proximal and distal portions. The gel pad 204 is positioned at the proximal portion 210 of the cap ring 202. The proximal portion 210 of the cap ring 202 may include a plurality of apertures 216 distributed about the circumference of the cap ring. The apertures 216 may extend through the wall of the proximal portion 210 of the cap ring 202. Sufficient gel may be added to the mold to cover and fill the apertures 216. When adding uncured gel into the mold, the gel flows through the apertures 216 and remains in the apertures. Also, for reasons that will be described below, sufficient gel may be added to the mold to extend into the distal portion 212 of the cap ring 202. When the gel pad 204 is cured, the gel in the apertures 216 connects the gel at the outer portion 218 of the cap ring 202 to the gel at the inner portion 220 of the cap ring, thus forming a mechanical lock between the gel and the cap ring. Alternatively, as will be described below, a separately formed gel slug 204 may be coupled to the inner surface of the proximal portion 210 of the cap ring 202.

The distal portion 212 of the cap ring 202 is substantially cylindrical and is configured to receive the outer ring 102 of the wound retractor 100. In one aspect, the distal portion 212 of the cap ring 202 includes a plurality of lips 222 at the distal end 224 thereof. The lips 222 curve radially inwardly from the wall 226 of the distal portion 212 of the cap ring 202 and extend around a portion of the circumference of the cap ring. In one aspect, there are three lips 222 that are substantially equally spaced about the circumference of the distal portion 212 of the cap ring 202. Each of the three lips 222
may extend about 60° around of the circumference of the cap ring 202, however, the lips may extend longer or shorter distances around the circumference of the cap ring. Also, there may be more than three lips 222 with each lip extending a shorter distance around the circumference of the cap ring 202 and the more than three lips being substantially equally spaced about the circumference of the distal portion of the cap ring. In another aspect, there may be two lips 222 that are substantially diametrically opposed about the circumference of the distal portion of the cap ring with each of the lips extending a sufficient distance around the circumference of the cap ring 202 to facilitate adequate coupling of the gel cap 200 to the outer ring 102 of the wound retractor 100. The lips 222 are configured to receive the distal-most circular tube 108, 110 of the outer ring 102 of the wound retractor 100 such that the outer ring is positioned between the lips 222 and the gel pad 204. More particularly, when the outer ring 102 of the wound retractor 100 is received by the distal portion 212 of the cap ring 202, the outer ring of the wound retractor embeds into the gel pad 204 at the distal portion 212 of the cap ring 202 and displaces the gel, thereby forming a seal between the gel pad and the outer ring and sleeve 106 of the wound retractor. This places the gel pad 204 in juxtaposition with the incision 400.

In use, the wound retractor 100 is first used to retract the incision in the body wall of a patient, as described above. The gel cap 200 is brought to the outer ring 102 of the wound retractor 100 at an angle, with one of the lip portions 222 of the cap ring 202 toward the patient. The lip portion 222 of the cap ring that is toward the patient is slid under the distal-most circular tube 108, 110 of the outer ring 102, between the outer ring
and the patient, and then the remainder of the gel cap 200 is swung onto the outer ring with the remaining lip portions snapping into place under the distal-most circular tube. In an alternative aspect, the gel cap 200 may be brought to the outer ring 102 substantially parallel to the outer ring and the lip portions 222 snapped into place under the distal-most circular tube 108, 110 of the outer ring 102 at the same time.

The gel cap 200 with the plurality of lips 222 on the cap ring 202 is best suited for use with wound retractors 100 having an outer ring 102 that is substantially rigid and noncompliant. If the outer ring 102 of the wound retractor 100 were not rigid, the outer ring would tend to pull out of the gel cap 200, thereby compromising the seal between the gel pad 204 and the wound retractor and potentially resulting in deflation of the insufflated body cavity.

The cap ring 202 in one aspect includes a polymer, e.g., polyethylene (PE). In one aspect, the polyethylene is a low density polyethylene (LDPE) or high density polyethylene (HDPE), or ultra high molecular weight polyethylene (UHMWPE). In one aspect, the cap ring 202 may be made of a polymer, such as polycarbonate and may be fabricated by methods including injection molding.

The gel pad 204 may be coupled to, attached to, formed or integrated with the cap ring 202 so that a gas-tight conduit is formed between the cap ring and the sleeve 106. The gel pad 204 covers and seals the entire opening in the cap ring 202. Additionally, the gel pad 204 is adapted to cover substantially the entire wound 400 opening. As stated above, in one aspect the gel pad includes a plurality of intersecting dead-end slits 228, 230 that form an access portion or passage through the gel pad.
204. Unlike foam rubber or other similar types of elastic materials, the gel pad 204 provides a gas tight seal around a variety of shapes and sizes of hands or instruments inserted therethrough.

In one aspect, the gel material from which the gel pad 204 is made is an elastomeric gel. Some such gels have been described in U.S. Patent Application No. 10/381,220, filed March 20, 2003, the disclosure of which is hereby incorporated by reference as if set forth in full herein. The gel can be prepared by mixing a triblock copolymer with a solvent for the midblocks. The endblocks are typically thermoplastic materials such as styrene and the midblocks are thermoset elastomers such as isoprene or butadiene, e.g., Styrene-Ethylene-Butylene-Styrene (SEBS). In one aspect, the solvent used is mineral oil. Upon heating this mixture or slurry, the midblocks are dissolved into the mineral oil and a network of the insoluble endblocks forms. The resulting network has enhanced elastomeric properties over the parent copolymer. In one aspect, the triblock copolymer used is KRATON G1651, which has a styrene to rubber ratio of 33/67. Once formed, the gel is substantially permanent and, by the nature of the endblocks, processable as thermoplastic elastomers henceforward. The mixture or slurry has a minimum temperature at which it becomes a gel, i.e., the minimum gelling temperature (MGT). This temperature, in one aspect, corresponds to the glass transition temperature of the thermoplastic endblock plus a few degrees. For example, the MGT for the mixture of KRATON G1651 and mineral oil is about 120° C.

When the slurry reaches the MGT and the transformation to a gel state takes place, the gel becomes more transparent, thereby providing means for visually confirming when
the transformation of the slurry to the gel state is substantially complete and that the gel may be cooled. In addition to triblocks, there are also diblock versions of the materials that may be used where Styrene is present at only one end of the formula, for example, Styrene-Ethylene/Butylene (SEB).

For a given mass of slurry to form into a complete gel, the entire mass of the slurry is heated to the MGT and remains heated at the MGT for sufficient time for the end blocks to form a matrix of interconnections. The slurry will continue to form into gel at temperatures above the MGT until the slurry/gel reaches temperatures at which the components within the slurry/gel begin to decompose or oxidize. For example, when the slurry/gel is heated at temperatures above 250° C, the mineral oil in the slurry/gel will begin to be volatile and oxidize. Oxidizing may cause the gel to turn brown and become oily.

The speed at which a given volume of slurry forms a gel is dependant on the speed with which the entire mass of slurry reaches the MGT. Also, with the application of temperatures higher than the MGT, this speed is further enhanced as the end block networks distribute and form more rapidly.

The various base formulas may also be alloyed with one another to achieve a variety of intermediate properties. For example, KRATON G1701X is a seventy percent (70%) SEB thirty percent (30%) SEBS mixture with an overall Styrene to rubber ratio of 28/72. It can be appreciated that an almost infinite number of combinations, alloys, and Styrene to rubber ratios can be formulated, each capable of providing advantages to a
particular embodiment of the invention. These advantages will typically include low
durometer, high elongation, and good tear strength.

It is contemplated that the gel material may also include silicone, soft urethanes
and even harder plastics that might provide the desired sealing qualities with the
addition of a foaming agent. The silicone material may be of the types currently used
for electronic encapsulation. The harder plastics may include PVC, Isoprene, KRATON
neat, and other KRATON/oil mixtures. In the KRATON/oil mixture, oils such as
vegetable oils, petroleum oils and silicone oils may be substituted for the mineral oil.

Any of the gel materials contemplated could be modified to achieve different
properties such as enhanced lubricity, appearance, and wound protection. Additives
may be incorporated directly into the gel or applied as a surface treatment. Other
compounds may be added to the gel to modify its physical properties or to assist in
subsequent modification of the surface by providing bonding sites or a surface charge.
Additionally, oil based colorants may be added to the slurry to create gels of different
colors.

In one aspect, the mixture/slurry used with the various embodiments of the cap
rings that are described herein are composed of about ninety percent (90%) by weight
of mineral oil and about ten percent (10%) by weight of KRATON G1651. From a
thermodynamic standpoint, this mixture behaves similar to mineral oil. Mineral oil has a
considerable heat capacity and, therefore, at about 130° C it can take three (3) or four
(4) hours to heat a pound of the slurry sufficiently to form a homogeneous gel. Once
formed, the gel can be cooled as quickly as practical with no apparent deleterious
effects on the gel. This cooling, in one aspect, is accomplished with cold-water immersion. In another aspect, the gel may be air-cooled. Those familiar with the art will recognize that other cooling techniques that are well known in the art may be employed and are contemplated as within the scope of the present invention.

Many of the properties of the KRATON/oil mixture will vary with adjustments in the weight ratio of the components. In general, the greater the percentage of mineral oil the less firm the mixture; the greater the percentage of KRATON, the more firm the mixture. If the resultant gel is too soft it can lead to excessive tenting or doming of the gel cap during surgery when a patient's abdominal cavity is insufflated. Excessive tenting or doming may cause the slits 228, 230 to open, providing a leak path. Additionally, if the gel is too soft it might not provide an adequate seal. However, the gel should be sufficiently soft to be comfortable for the surgeon while simultaneously providing good sealing both in the presence of an instrument and in the absence of an instrument.

If the slurry is permitted to sit for a prolonged period of time, the copolymer, such as KRATON, and the solvent, such as mineral oil, may separate. The slurry may be mixed, such as with high shear blades, to make the slurry more homogeneous. However, mixing the slurry may introduce or add air to the slurry. To remove air from the slurry, the slurry may be degassed. In one aspect, the slurry may be degassed in a vacuum, such as within a vacuum chamber. In one aspect, the applied vacuum may be 0.79 meters (29.9 inches) of mercury, or about one (1.0) atmosphere. The slurry may be stirred while the slurry is under vacuum to facilitate removal of the air. During
degassing within a vacuum, the slurry typically expands, then bubbles, and then reduces in volume. The vacuum may be discontinued when the bubbling substantially ceases. Degassing the slurry in a vacuum chamber reduces the volume of the slurry by about ten percent (10%). Degassing the slurry helps reduce the potential of the finished gel to oxidize.

Degassing the slurry tends to make the resultant gel firmer. A degassed slurry composed of about 91.6% by weight of mineral oil and about 8.4% by weight of KRATON G1651, an eleven-to-one ratio, results in a gel having about the same firmness as a gel made from a slurry that is not degassed and that is composed of about ninety percent (90%) by weight of mineral oil and about ten percent (10%) by weight of KRATON G1651, a nine-to-one ratio.

Mineral oil is of a lighter density than KRATON and the two components will separate after mixing, with the lighter mineral oil rising to the top of the container. This separation may occur when attempting to form static slurry into gel over a period of several hours. The separation can cause the resulting gel to have a higher concentration of mineral oil at the top and a lower concentration at the bottom, e.g., a non-homogeneous gel. The speed of separation is a function of the depth or head height of the slurry being heated. The mass of slurry combined with the head height, the temperature at which the gel sets and the speed with which the energy can be transferred to the gel, factor into the determination or result of homogeneous gel versus a non-homogeneous gel.
The gel pad or gel cap in various aspects of the present invention may be gamma sterilized. The relative or comparative simplicity of qualifying the sterilization process, for example of gamma versus ethylene oxide, of the gel pad and the device with the gel pad is desirable. However, under gamma sterilization large bubbles can form in the gel pad causing potential cosmetic or aesthetic issues in the sterilized devices. The bubbles are more than ninety-nine percent (99%) room air, so removal of the dissolved air in the slurry is performed prior to forming the slurry into gel. For example, the slurry may be degassed via vacuum, as described above, and turned into gel by heat. Bubbles may still form in the gel during gamma sterilization but disappear in a period of about twenty-four (24) to seventy-two (72) hours. In one aspect, the percentage of dissolved gas in the mineral oil at room temperature is about ten percent (10%). The removal of the air in the gel has an additional effect of making the gel firmer. This however is counterbalanced by the softening effect on the gel caused by gamma radiation during gamma sterilization.

If the gel pad is to be gamma sterilized, the gel may include about ninety percent (90%) mineral oil by weight and about ten percent (10%) KRATON by weight. As stated above, degassing the slurry has the effect of making the gel firmer. However, the gamma radiation softens the gel to substantially the same firmness as a gel having about ninety percent (90%) mineral oil by weight and about ten percent (10%) KRATON by weight that is not degassed and gamma sterilized.

In one aspect, cyanoacrylate, e.g., SUPERGLUE or KRAZY GLUE, may be used to bond or otherwise couple or attach the gel pad 204 to the cap ring 202. The glue
may attach to either the rubber or styrene component of the tri-block and the bond is frequently stronger than the gel material itself. In another aspect, a solvent may be used to dissolve the plasties in the cap ring and the polystyrene in the gel. The solution of solvent is applied to the gel pad and cap ring in either a spray or dip form. In effect, the solution melts both the plastic of the cap ring as well as the polystyrene in the gel pad to allow a chemical bond to form between the two, which remains when the solvent evaporates.

 Polyethylene can be dissolved in mineral oil and then applied to the gel pad. The mineral oil will not evaporate but will over time absorb into the gel pad and impart a polyethylene layer on the gel pad that may have some beneficial properties.

 In one aspect, the gel pad 204 is cast into a DYNAFLEX or KRATON polymer support structure, e.g., the cap ring 202. By using KRATON polymer or a similar material in the cap ring, ring adhesion between the gel pad 204 and the cap ring 202 can be achieved. The polystyrene in the gel is identified as achieving adhesion with polyphenylene oxide (PPO), polystyrene and other polymers.

 In the casting process the gel pad 204 and the cap ring 202 are heated to a temperature above about 130° C and held at that temperature for several hours, e.g., about three (3) to four (4) hours. The temperature used is not sufficient to deform the cap ring 202.

 As stated above, in one aspect the cap ring 202 includes a polymer, e.g., polyethylene (PE). The gel includes mineral oil. PE has a higher molecular weight than mineral oil. PE is dissolved by mineral oil at high temperatures. As such, as the PE
and the mineral oil in the gel pad 204 intermix as both are heated to and held at temperatures above about 130° C, a bond between the PE and gel pad is formed.

In one aspect, the cap ring 202 includes polycarbonate. The polycarbonate of the cap ring 202 does not form bonds with the gel pad 204 at 130° C. However, by raising the temperature to about 150° C for a few minutes during casting, bonding occurs between the gel pad 204 and the cap ring 202. As such, heating the gel pad 204 and cap ring 202 to temperatures at which both the polystyrene of the gel and the polycarbonate are simultaneously beyond their melt points allow bonds to form between the gel pad and the cap ring. Alternatively, the gel pad 204 and cap ring 202 may be heated to near or at the glass transition temperature of the polycarbonate cap ring to form the bond between the gel pad and the cap ring.

In one aspect, casting the gel pad 204 into the cap ring 202 to form a gel cap 200 includes placing the cap ring into a mold cavity of a casting mold. The mold cavity may include support for the annular walls of the cap ring 202. The mold may be made of aluminum, copper, brass, or other mold material having good heat dissipation properties. However, those familiar with the art will recognize that other mold materials having lower heat dissipation properties will produce acceptable parts and these are contemplated as within the scope of the present invention as well.

The mold cavity having the cap ring 202 is filled with the slurry such that the slurry is in contact with the cap ring. To facilitate filling voids in the mold cavity with the slurry, the slurry may be preheated, for example, to about 52° C (125° F). Preheating the slurry to a temperature below the MGT reduces the viscosity of the slurry and allows
the slurry to flow more easily. As stated above, the slurry may have been degassed in a vacuum. The slurry may be degassed again within the mold after the mold cavity is filled to remove air that may have been introduced during the filling of the mold cavity and to facilitate flow of the slurry into voids in the mold. Heat is applied to the mold having the cap ring 202 and the slurry, such as in an oven, until the slurry attains a temperature of about 150° C. As stated above, the slurry turns into gel at about 120° C, however, at about 150° C, the gel can bond to a polycarbonate cap ring 202. Depending on the material used to fabricate the cap ring 202, bonding may take place at temperatures other than about 150° C. If the cap ring 202 is fabricated of a material having a lower melting point than 120° C, then the gel pad 204, such as a gel slug 204, may be molded separately and then bonded to the cap ring. The slits 228, 230 may be molded into the gel pad 204 through the use of an insert in the form of the slit in the mold.

Once the temperature of the gel pad 204 reaches about 150° C, the gel cap 200 may be cooled, such as by air-cooling, cold-water immersion, or other cooling means that are well known in the art. At 150° C the gel pad is soft and if it were distorted during cooling it would set with the distortion included. To reduce the likelihood of distorting the gel pad 204, the gel cap 200 may be cooled within the mold. Cooling times may vary based on parameters including size and configuration of the mold, quantity of gel, temperature and quantity of cooling medium, cooling medium properties and the mold material. As an example, the cooling time may be about two (2) hours if cooling in air and about fifteen (15) minutes if cooling in water. Whether cooling with air
or water, the final properties of the gel are substantially the same. The gel cap 200 is
typically cooled to about ambient room temperature, but may be cooled to lower
temperatures. If the gel cap 200 is cooled to the freezing point of the gel, about 0° C,
then the gel will freeze and become hard. This may be beneficial for other means of
coupling the gel pad 204 to the cap ring 202, such as with a secondary operation. The
gel cap 200 may be removed from the mold at any time after the gel has set.

When removed from the mold, the gel pad 204 typically has a tacky surface. The
gel cap 200 may be coated with a powder, such as cornstarch, to substantially reduce
or eliminate the tackiness of the cured gel pad 204.

As stated above, in another aspect, the gel pad 204 may be molded separately
from the cap ring 202 and coupled to the cap ring by a secondary operation, such as by
bonding. In one aspect, the gel pad 204 may be molded into a gel slug 204 having an
outer perimeter smaller than the inner cylindrical wall of the cap ring 202 and to a height
higher that the height of the cap ring. Since the gel pad 204 is being molded separate
from the cap ring 202, the slurry only needs to be heated until it reaches about 120° C
and completes the transformation from slurry into gel and the gel becomes substantially
transparent. The gel slug 204 may then be placed within the inner cylindrical wall of the
cap ring 202. The gel slug 204 may be cooled and/or frozen prior to placing it within the
inner cylindrical wall of the cap ring 202. The gel slug 204 may be coupled to the cap
ring 202 through compression molding with the gel slug being compressed longitudinally
so that the outer perimeter of the gel slug expands and compresses against the inner
cylindrical wall of the cap ring. The gel slug 204 and cap ring 202 are heated to a
sufficient temperature for the polystyrene of the gel and the polymer of the cap ring to form bonds between the gel and the cap ring. Molding the gel slug 204 separately from the cap ring 202 and heat bonding the gel slug to the cap ring at a later time is especially useful when the cap ring is made of a material that has a lower melting temperature than the MGT. In such situations, the gel slug 204 can be molded first and heat bonded to the cap ring 202 without melting the cap ring.

An advantage associated with the modified surgical access device is it enables a surgeon to quickly retract and protectively line an abdominal wall incision while being able to easily accommodate variations in abdominal wall thickness between patients. In addition, the device effectively seals around the interior and exterior of the incision, and allows a sealing cap to be coupled to the device to seal the abdominal cavity and to enable a laparoscopic procedure to be performed.

Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. For these reasons, the above description should not be construed as limiting the invention, but should be interpreted as merely exemplary of the embodiments.
CLAIMS

1. A gel cap adapted for being coupled to a wound retractor, the wound retractor having a substantially noncompliant outer ring adapted for juxtaposition with an outer surface of a biological body wall and for disposition relative to an incision in the body wall, an inner ring adapted for juxtaposition with an inner surface of the biological body wall and for disposition relative to the incision in the body wall, and a sleeve adapted to traverse the incision in the body wall, the sleeve coupling the outer ring to the inner ring, the wound retractor being adapted to retract and seal the incision, the gelcap comprising:

 a cap ring including a substantially cylindrical ring having,

 a first, proximal portion,

 a second, distal portion, and

 a plurality of lips at a distal end of the distal portion of the cap ring, each of the lips curving radially inward from the wall of the distal portion of the cap ring and extending around a portion of the circumference of the cap ring; and

 a gel pad made of a gel material, the gel pad being coupled to the cap ring and positioned at the proximal portion of the cap ring, the gel pad including an access portion for providing a passage from external the body to a body cavity, the passage forming an instrument seal in the presence of an instrument inserted therethrough and a zero seal in the absence of an instrument inserted therethrough,

 wherein, the lips are configured to receive the outer ring of the wound retractor such that the outer ring is positioned between the lip and the gel pad, and

 the gel pad being adapted to be placed in juxtaposition with the incision.
2. The gel cap of Claim 1, the proximal portion of the cap ring including a plurality of apertures distributed about the circumference of the cap ring, the apertures extending through the wall of the proximal portion of the cap ring.

3. The gel cap of Claim 2, wherein the gel of the gel pad covers and fills the apertures.

4. The gel cap of Claim 3, the gel in the apertures connecting the gel at an outer portion of the cap ring to the gel at an inner portion of the cap ring.

5. The gel cap of Claim 1, the gel of the gel cap extending into the distal portion of the cap ring.

6. The gel cap of Claim 5, wherein the distal portion of the cap ring is adapted to receive the outer ring of the wound retractor such that the outer ring of the wound retractor embeds into the gel pad at the distal portion of the cap ring and displaces the gel, thereby forming a seal between the gel pad and the outer ring and sleeve of the wound retractor.

7. The gel cap of Claim 1, the access portion of the gel pad including a plurality of intersecting dead-end slits.
8. The gel cap of Claim 1, the distal portion of the cap ring including three lips, the three lips being substantially equally spaced about the circumference of the distal portion of the cap ring.

9. The gel cap of Claim 8, each of the three lips extending about 60° around the circumference of the cap ring.

10. The gel cap of Claim 1, the distal portion of the cap ring including more than three lips, the more than three lips being substantially equally spaced about the circumference of the distal portion of the cap ring.

11. The gel cap of Claim 1, the distal portion of the cap ring including two lips, the two lips being substantially diametrically opposed about the circumference of the distal portion of the cap ring and each of the two lips extending a sufficient distance around the circumference of the cap ring to facilitate adequate coupling of the gel cap to the outer ring of the wound retractor.

12. The gel cap of Claim 1, the cap ring being made of a polymer.

13. The gel cap of Claim 12, the cap ring being made of polyethylene.

14. The gel cap of Claim 12, the cap ring being made of polycarbonate.
15. The gel cap of Claim 1, wherein the gel pad covers and seals the entire opening in the cap ring.

16. The gel cap of Claim 1, wherein the gel pad is adapted to cover substantially the entire wound opening.

17. A gel cap adapted for being coupled to a wound retractor, the wound retractor having a substantially noncompliant outer ring adapted for juxtaposition with an outer surface of a biological body wall and for disposition relative to an incision in the body wall, an inner ring adapted for juxtaposition with an inner surface of the biological body wall and for disposition relative to the incision in the body wall, and a sleeve adapted to traverse the incision in the body wall, the sleeve coupling the outer ring to the inner ring, the wound retractor being adapted to retract and seal the incision, the gelcap comprising:

- a cap ring including a substantially cylindrical ring having, a first, proximal portion,
- a second, distal portion, and
- a plurality of lips at a distal end of the distal portion of the cap ring, each of the lips curving radially inward from the wall of the distal portion of the cap ring and extending around a portion of the circumference of the cap ring; and
- a gel pad made of a gel material, the gel pad being coupled to the cap ring and positioned at the proximal portion of the cap ring and extending into the distal portion of the cap ring, the gel pad including an access portion for providing a passage from
external the body to a body cavity, the passage forming an instrument seal in the
presence of an instrument inserted therethrough and a zero seal in the absence of an
instrument inserted therethrough,

wherein, the lips are configured to receive the outer ring of the wound retractor
such that the outer ring is positioned between the lip and the gel pad,

the distal portion of the cap ring is adapted to receive the outer ring of the wound
retractor such that the outer ring of the wound retractor embeds into the gel pad at the
distal portion of the cap ring and displaces the gel, thereby forming a seal between the
gel pad and the outer ring and sleeve of the wound retractor, and

the gel pad being adapted to be placed in juxtaposition with the incision.

18. The gel cap of Claim 17, the proximal portion of the cap ring including a
plurality of apertures distributed about the circumference of the cap ring, the apertures
extending through the wall of the proximal portion of the cap ring.

19. The gel cap of Claim 18, wherein the gel of the gel pad fills and covers the
apertures.

20. The gel cap of Claim 19, the gel in the apertures connecting the gel at an
outer portion of the cap ring to the gel at an inner portion of the cap ring.

21. The gel cap of Claim 17, the access portion of the gel pad including a
plurality of intersecting dead-end slits.
22. The gel cap of Claim 17, the distal portion of the cap ring including three lips, the three lips being substantially equally spaced about the circumference of the distal portion of the cap ring.

23. The gel cap of Claim 22, each of the three lips extending about 60° around the circumference of the cap ring.

24. The gel cap of Claim 17, the cap ring being made of polycarbonate.
FIG. 13

FIG. 14

FIG. 15
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER

INV. A61B17/34

According to International Patent Classification (IPC) or its national classification and IPC:

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Electronic data base consulted during the international search (name of data base and where practical search terms used):

EPO-Internal

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

D

Further documents are listed in the continuation of Box C.

X See patent family annex

Date of the actual completion of the international search

19 January 2007

Date of mailing of the international search report

26/01/2007

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2 NL- 2280 HV Rijswijk

Tel (+31-70) 340-2040, Tx 31 651 epo nl

Fax (+31-70) 340-3016

Authorized officer

Compos, Fabien
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2005148823 A1</td>
<td>07-07-2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2004127772 A1</td>
<td>01-07-2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 03103548 A1</td>
<td>18-12-2003</td>
<td>CA 2488118 A1</td>
<td>18-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1534201 A1</td>
<td>01-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005534354 T</td>
<td>17-11-2005</td>
</tr>
</tbody>
</table>