一种混合动力电池 SOC 自适应控制方法

本发明涉及一种混合动力电池 SOC 自适应控制方法，通过荷电状态 SOC 区间合理划分，将再生制动回收能量补充的 SOC 与电机发电模式回收的能量区分开来，其中电机发电回收的能量只用来做效率辅助驱动，合理的控制了混合动力能量使用，优化了系统效率。
1. 一种混合动力电池 SOC 自适应控制方法，其特征在于，采用如下步骤：
（1）划分电池 SOC 工作区间；
（2）确定电机工作模式；
（3）根据 SOC 的状态所处的工作区间，分别对应并确定电机的工作模式；
（4）调整对应不同 SOC 工作区间的电机的工作模式下的电机最大使用扭矩。

2. 如权利要求 1 所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述 SOC 工作区间的划分，根据测量的电池的寿命参数 SOL 及健康参数 SOH 并查已知的表来进行自动调整。

3. 如权利要求 1 或 2 所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述电机工作模式分为四种，分别为：
(a) 性能辅助驱动模式，在该模式下，电机的输出扭矩调整为提高驾驶性能；
(b) 效率辅助驱动模式，在该模式下，电机的输出扭矩调整为提高整车效率；使发动机工作在经济油耗区域；
(c) 发电模式，在该模式下，电机保持电池 SOC 平衡，从而提供整车用电；
(d) 再生制动模式，在该模式下，电机回收整车多余的动能。

4. 如权利要求 3 所述的混合动力电池 SOC 自适应控制方法，其特征在于，步骤（1）中所述工作区间的划分中，将整车再生制动回收能量补充的 SOC 与电机发电模式回收的 SOC 区分开来，其中，电机发电回收的能量仅用来做效率辅助驱动。

5. 如权利要求 1，2，4 中任一项所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述电池 SOC 工作区间分为四个，分别为：
(A1) 区间一为禁止再生制动区，其荷电为 100%到一个第二高限；
(A2) 区间二为 SOC 较高区，其荷电为一个第二高限到 SOC 控制中心值；
(A3) 区间三为 SOC 较低区，其荷电为 SOC 中心值到一个第二低限；
(A4) 区间四为禁止辅助驱动区，其荷电为第二低限到 0%。

6. 如权利要求 5 所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述区间一（A1）的 SOC 较高，禁止电机的再生制动，仅允许电机进行辅助驱动。

7. 如权利要求 5 所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述区间二（A2）内电机可进行包括性能辅助驱动及效率辅助驱动两种电动机模式的辅助驱动，且该区间内可进行再生制动回收能量。

8. 如权利要求 5 所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述区间三（A3）内电机可进行效率辅助驱动、电机发电及再生制动回收能量，且在该区间内只能进行
效率辅助驱动。

9. 如权利要求 8 所述的混合动力电池 SOC 自适应控制方法，其特征在于，在该区间三(A3) 内由电机发电的 SOC 电量不用于进行性能辅助驱动。

10. 如权利要求 5 所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述区间四(A4) 内电池 SOC 较低，禁止电机进行辅助驱动，只允许电机进行发电及再生制动回收能量。

11. 如权利要求 2、5-10 中任一项所述的混合动力电池 SOC 自适应控制方法，其特征在于，所述电池 SOC 工作区间的划分方法为：对 SOC 限制区间值进行计算，根据电池的寿命参数 SOL 及健康参数 SOH 查表得到 SOC 使用区间降低系数 Kderate，计算得到：SOC 第一低限=SOC 中心值-第一放电深度*Kderate，SOC 第一高限=SOC 中心值+第一放电深度*Kderate，SOC 第二低限=SOC 中心值-第二放电深度*Kderate，SOC 第二高限=SOC 中心值+第二放电深度*Kderate，其中 SOC 中心值、第一放电深度及第二放电深度可标定。

12. 如权利要求 11 所述的混合动力电池 SOC 自适应控制方法，其特征在于，当电池 SOC 大于 SOC 中心值，则辅助驱动最大允许扭矩=电机最大允许扭矩，进行辅助驱动自适应控制；当 SOC 小于 SOC 中心值，再生制动最大允许扭矩=电机最小允许扭矩，进行再生制动自适应控制。
一种混合动力电池 SOC 自适应控制方法

技术领域

本发明属于混合动力 SOC 控制领域，具体涉及一种混合动力电池 SOC 自适应控制方法。

背景技术

随着目前全球变暖现象日趋严重，以及越来越紧张的石油供需矛盾，“环保和节能”、“人、车、自然完美和谐”早已经成为汽车界的公共话题。

混合动力汽车将电机和发动机驱动系统合理地组合在一起，充分发挥电机驱动的优势来弥补发动机驱动的弱点，使发动机保持在最佳工况工作，能够实现发动机怠速停机、辅助驱动以及再生制动能量回收等功能，但混合动力控制的能量管理是混合动力控制的难点。即现有技术中存在混合动力控制中电池SOC管理困难的技术问题。

发明内容

本发明目的在于对混合动力电池 SOC 工作区间合理划分，实现混合动力电池 SOC 对电机工作模式及工作扭矩的限制。

通过荷电状态 SOC 区间合理划分，将再生制动回收能量补充的 SOC 与电机发电模式回收的能量区分开来，其中电机发电回收的能量只用来做效率辅助驱动，合理的控制了混合动力能量使用，优化了系统效率；根据电池的寿命参数 SOL（state of life）及健康参数 SOH（state of health）查表自动调整 SOC 区间划分；根据电池 SOC 量值自动更新电机辅助驱动最大允许扭矩及电机再生制动最大允许扭矩，确保电池 SOC 工作区间在合理使用区间。

具体技术方案如下：

一种混合动力电池 SOC 自适应控制方法，采用如下步骤：

（1）划分电池 SOC 工作区间；
（2）确定电机工作模式；
（3）根据 SOC 的状态所处的工作区间，分别对应并确定电机的工作模式；
（4）调整对应不同 SOC 工作区间的电机的工作模式下的电机最大使用扭矩。

所述 SOC 工作区间的划分，其根据测定的电池的寿命参数 SOL 及健康参数 SOH 并查已知的表来进行自动调整。

所述电机工作模式分为四种，分别为：

（a）性能辅助驱动模式，在该模式下，电机的输出扭矩调整为提高驾驶性能；
(b) 效率辅助驱动模式，在该模式下，电机的输出扭矩调整为提高整车效率，使发动机工作在经济油耗区域；
(c) 发电模式，在该模式下，电机保持电池 SOC 平衡，从而提供整车用电；
(d) 再生制动模式，在该模式下，电机回收整车多余的动能。

步骤（1）中所述工作区间的划分中，将整车再生制动回收能量补充的 SOC 与电机发电模式回收的 SOC 区分开来，其中，电机发电回收的能量仅用来做效率辅助驱动。

所述电池 SOC 工作区间分为四个，分别为：
(A1) 区间一为禁止再生制动区，其荷电为 100% 到一个第二高限；
(A2) 区间二为 SOC 较高区，其荷电为一个第二高限到 SOC 控制中心值；
(A3) 区间三为 SOC 较低区，其荷电为 SOC 中心值到一个第二低限；
(A4) 区间四为禁止辅助驱动区，其荷电为第二低限到 0%。

所述区间一（A1）的 SOC 高，禁止电机的再生制动，仅允许电机进行辅助驱动。

所述区间二（A2）内电机可进行包括性能辅助驱动及效率辅助驱动两种电动模式的辅助驱动，且该区间内可进行再生制动回收能量。

所述区间三（A3）内电机可进行效率辅助驱动、电机发电及再生制动回收能量，且在该区间内只能进行效率辅助驱动。

在该区间三（A3）内由电机发电的 SOC 电量不用于进行性能辅助驱动。

所述区间四（A4）内电池 SOC 低，禁止电机进行辅助驱动，只允许电机进行发电及再生制动回收能量。

所述电池 SOC 工作区间的划分方法为：对 SOC 限制区间值限值进行计算，根据电池的寿命参数 SOL 及健康参数 SOH 查表得到 SOC 使用区间降低系数 kderate，计算得到：SOC 第一低限 = SOC 中心值 - 第一放电深度 * kderate，SOC 第一高限 = SOC 中心值 + 第一放电深度 * kderate，SOC 第二低限 = SOC 中心值 - 第二放电深度 * kderate，SOC 第二高限 = SOC 中心值 + 第二放电深度 * kderate，其中 SOC 中心值、第一放电深度及第二放电深度可标定。

当电池 SOC 大于 SOC 中心值，则辅助驱动最大允许扭矩 = 电机最大允许扭矩，进行辅助驱动自适应控制；当 SOC 小于 SOC 中心值，再生制动最大允许扭矩 = 电机最小允许扭矩，进行再生制动自适应控制。

附图说明
图 1 为混合动力电池 SOC 区间划分示意图
图 2 为混合动力电池 SOC 自适应控制流程图
具体实施方式
下面根据附图对本发明进行详细描述，其为本发明多种实施方式中的一种优选实施例。
为了方便电池 SOC 能量管理，本实施例将电机工作模式分为四种：
性能辅助驱动模式：目的是提高驾驶性能，使 1.3 升发动机具有 1.6 升发动机的驾驶性。
效率辅助驱动模式：目的是提高整车效率，尽量使发动机工作在经济油耗区域。
发电模式：目的保持大电池 SOC 平衡，提供整车上电。
再生制动模式：目的是回收整车多余的动能。
如图一所示，一般混合动力控制将电池 SOC 四个工作区间：
区间一、100%到第二高限为禁止再生制动区，在该区间 SOC 很高，所以会禁止电机的再生制动，只允许电机进行辅助驱动；
区间二、第二高限到 SOC 控制中心值为 SOC 较高区，在该区域电机可以进行辅助驱动，
包括性能辅助驱动及效率辅助驱动两种电动模式，同时为了尽可能多回收能量，在该区域已经可以进行再生制动回收能量；
区间三、SOC 中心值到第二低限为 SOC 较低区，在该区域电机可以进行效率辅助驱动、
电机发电及再生制动回收能量，由于在该区域的 SOC 电量多数是由电机发电补充的，所以不
会使用该能量进行性能辅助驱动，以防止电机发电→补充 SOC→电机性能辅助驱动→消耗
SOC，即电机发的电量又用来性能辅助驱动，能量二次转换降低能量使用效率，因此在该区域
只进行效率辅助驱动；
区间四、第二低限到 0%的 SOC 区间为禁止辅助驱动区，在该区域电池 SOC 已经很低，所
以会禁止电机进行辅助驱动，只允许电机进行发电及再生制动回收能量。
正常情况下电池 SOC 都会被控制在第二低限及第二高限之间，以防止电池过冲或过放降
低电池性能及使用寿命。只有新电池刚刚使用时才会出现工作在禁止再生制动区或禁止辅助
驱动区。
如图二所示。
首先对 SOC 限制区间值限值进行计算：
根据电池状态参数 SOH 及 SOL 查表得到 SOC 使用区间降低系数 Kderate。
SOC 第一低限=SOC 中心值-第一放电深度*Kderate
SOC 第一高限=SOC 中心值+第一放电深度*Kderate
SOC 第二低限= SOC 中心值-第二放电深度*Kderate
SOC 第二高限= SOC 中心值+第二放电深度*Kderate
其中 SOC 中心值、第一放电深度及第二放电深度可标定。
如果电池 SOC 大于 SOC 中心值，则辅助驱动最大允许扭矩=电机最大允许扭矩，然后进行辅
辅助驱动自适应控制。如果SOC小于SOC中心值，再生制动最大允许扭矩=电机最小允许扭矩，然后进再生制动自适应控制。

辅助驱动自适应控制：

SOC<SOC 第二低限（硬低限，约 40%）或者油门开度<65% 则输出 Kmot 为 0.2；
如果上述条件均不满足，SOC>SOC 第一低限（软低限，约 50%）并且油门开度>70%，则输出 Kmot 为 1，否则继续输出 Kmot 为 0.2（0.2 为一标定值）；

MotNormalisedSOC= (SOC 中心值- SOC 实际值) / (SOC 中心值- (SOC 第一低限- SOC 第二低限)* Kmot)

根据 MotNormalisedSOC 查表得到归一化的驱动扭矩系数 KMot_Normalised_Torque。

归一化驱动扭矩最大值= Tmax*KMot_Normalised_Torque

再生制动自适应控制：

SOC>SOC 第二高限（硬高限，约 80%）或无刹车，则输出 Kreg 为 0.2（0.2 为一标定值）；
如果上述条件均不满足，有刹车信号，则输出 Kreg 为 1；

RegNormalisedSOC= (SOC 实际值-SOC 中心值) / ((SOC 第二高限- SOC 第一高限)*Kreg+ SOC 第一高限- SOC 中心值)

根据 RegNormalisedSOC 查表得到归一化的再生制动扭矩系数 KReg_Normalised_Torque。

归一化再生制动扭矩最小值= Tmin*K Reg_Normalised_Torque

本发明通过 SOC 区间合理划分，将再生制动回收能量补充的 SOC 与电机发电模式回收的能量区分开来，其中电机发电回收的能量只用来做效率辅助驱动，合理的控制了混合动力能量使用，优化了系统效率；根据电池的寿命参数 SOL（state of life）及健康参数 SOH（state of health）查表自动调整 SOC 区间划分；根据电池 SOC 量值自动更新电机辅助驱动最大允许扭矩及电机再生制动最大允许扭矩，确保电池 SOC 工作区间在合理使用区间。

上面结合附图对本发明进行了示例性描述，显然本发明具体实现并不受上述方式的限制，只要采用了本发明的方法构思和技术方案进行的各种改进，或未经改进直接应用于其它场合的，均在本发明的保护范围之内。
图 1