

(11) (21) (C) **2,189,360**
(86) 1996/03/06
(87) 1996/09/19
(45) 2001/02/20

(72) Kurosawa, Hideyuki, JP
(72) Hasei, Masaharu, JP
(72) Nakanouchi, Yukio, JP
(73) KABUSHIKI KAISHA RIKEN, JP
(51) Int.Cl. ⁶ G01N 27/407, G01N 27/409
(30) 1995/03/10 (78427/1995) JP
(54) **DETECTEUR DE NO_x**
(54) **NO_x SENSOR**

(57) The present invention is concerned with a NO_x sensor consisting essentially of first and second electrodes in contact with a solid electrolyte, the sensor being capable of detecting a concentration of NO_x in a gas by converting an amount of NO_x concentration into an electromotive force level between the first and second electrodes. The electromotive force linearly increases in response to an increase, in terms of a logarithm, of NO₂ concentration and linearly decreases in response to an increase, in terms of a logarithm, of NO concentration. At least the first electrode is composed of a metal oxide selected from the group consisting of Mn₂O₃, CdFe₂O₄, ZnFe₃O₄, CrFe₂O₄, Cr₂CoO₄, CdGaMnO₄ and YFeMnO₄. The NO_x sensor according to the invention has a good sensitivity without being affected by the concentration of CO₂ and can detect NO_x concentration in an exhaust gas at a temperature above 600 °C.

ABSTRACT

The present invention is concerned with a NOx sensor consisting essentially of first and second electrodes in contact with a solid electrolyte, the sensor being capable of detecting a concentration of NOx in a gas by converting an amount of NOx concentration into an electromotive force level between the first and second electrodes. The electromotive force linearly increases in response to an increase, in terms of a logarithm, of NO₂ concentration and linearly decreases in response to an increase, in terms of a logarithm, of NO concentration. At least the first electrode is composed of a metal oxide selected from the group consisting of Mn₂O₃, CdFe₂O₄, ZnFe₃O₄, CrFe₂O₄, Cr₂CoO₄, CdGaMnO₄ and YFeMnO₄. The NOx sensor according to the invention has a good sensitivity without being affected by the concentration of CO₂ and can detect NOx concentration in an exhaust gas at a temperature above 600°C.

1

SPECIFICATION

NOx Sensor

Field of the Invention

The present invention relates to a sensor to
5 detect NOx concentration in an exhaust gas generated from
combustion furnace, automobile engine, etc.

Prior Art

Continuous monitoring, feedback control of the
combustion condition based on the monitoring result or
10 the optimization of the control of the desulfurization
equipment have been examined to reduce NOx exhausted from
combustion furnace, automobile engine, etc. Therefore, a
small-sized solid and simple solid type sensor with high
sensitivity is needed to be used for the control.
15 Especially, for the feedback of the combustion condition,
a sensor which works stably in a high temperature
exhausted gas of several hundreds °C.

A semiconductor type sensor utilizing a phenomena
that the electric resistance of a gas sensor composed of
20 oxide semiconductor changes in proportion to the
concentration of NOx or a solid electrolyte sensor
measuring the electromotive force caused by the
difference in the partial pressure of a gas at each
electrodes which are formed on an ion conductive solid
25 electrode are the representative sensors being proposed up
to now.

However, there is a drawback in a semiconductor

1 type sensor that enough sensitivity can not be obtained at
a temperature above 500°C where the physical absorption
of the test gas does not occur, since it utilize the
phenomena of the change of electric resistance of the gas
5 sensor caused by the physical absorption.

On the other hand, a solid electrolyte sensor,
using AgI or RbAg₃I₅ as a solid electrolyte and an
electrode coated by silver nitrate is disclosed (The
Japanese Laid-open Patent Publication Sho61-184450).
10 This sensor is a concentration cell type, wherein Ag ion
in the nitrate migrates in the solid electrolyte by the
difference of NO_x concentration between the electrodes and
causes the electromotive force which complys with Nernst
formula and detects NO_x concentration by the measurement
15 of said electromotive force. A concentration cell type
sensor based on the same principle using NASICON
(Na, Zr, Si, PO₁₂) as a solid electrolyte and NaNO₃ as
electrodes is disclosed. (Chemistry Letters, vol.1, p.587
~ 590 (1992)) Furthermore, a concentration cell using Na
20 ion conductive β / β' alumina or β / β' alumina, in
which Na ion is replaced by Ba ion and using Ba(NO₃)₂ or
mixture of NaNO₃ and Ba(NO₃)₂ as an electrode is
disclosed in Denki Kagaku, vol.59, (1991) p.465 ~ 472.

25 In these sensors which detect NO_x concentration by
the measurement of the electromotive force which complys
with Nernst formula, nitrates or nitrites are used as an
electrode material and then the durable temperature of

1 the sensor is limited by the melting point of nitrates or
nitrites. Even when $\text{Ba}(\text{NO}_3)_2$, having the highest melting
point is used as an electrode, the durable temperature is
below 592°C ... Furthermore, due to the diliquescence
5 property of nitrates and nitrites, performance and
stability of the sensor were not enough when used in the
test gas containing water vapor.

For resolving above issues, a NOx sensor using an
oxide of 6a Group element and oxides of perovskite or
10 pseudo perovskite as an electrode material is proposed.
These sensors have a good thermal durability due to the
high melting point and decomposition temperature of the
oxides. ... However, the response of the NOx sensor of this
type is different from that of the sensor using nitrate
15 as an electrode which complies with Nernst formula and
depends on the change of electromotive force caused by
the catalytic activity of the electrode for the test gas
and oxidation reduction reactions on the electrode and
hence the performance of the sensor depends largely on the
oxides. ... For example, electrodes using oxides of
20 perovskite or pseudo perovskite structure containing Sn or
Cu respond not only to NOx but also CO_2 and there are
issues that the exact detection of NOx concentration is
not possible, since it is affected very much by the CO_2
25 concentration. And a sensor using oxides of 6a Group
element and perovskite structure containing Ti as an
electrode works well around 500 °C, but its sensitivity to

NO_x rapidly decreases above 600°C and there are issues in the reduction of resolution and accuracy of NO_x concentration.

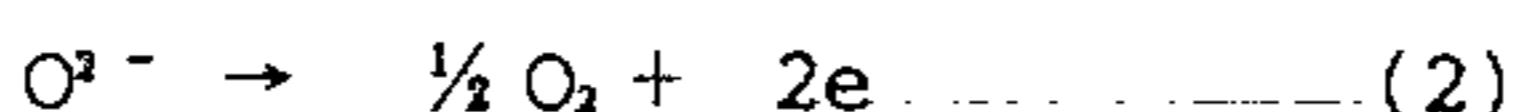
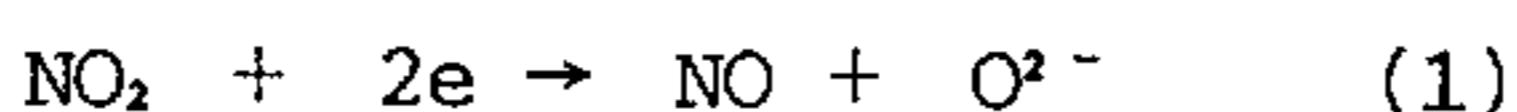
Disclosure of the Present Invention

5 It is an object of the present invention to provide a NO_x sensor which does not respond to CO₂ and has a good sensitivity to NO_x at a temperature above 600°C.

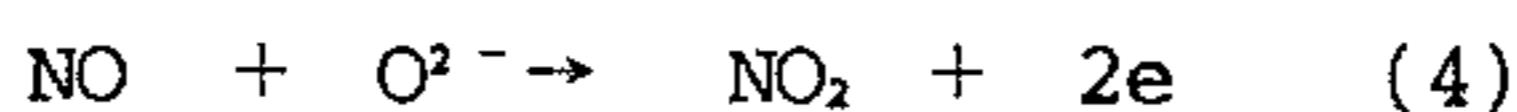
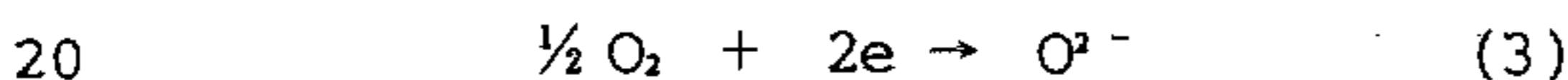
In accordance with the present invention, there is provided a NO_x sensor consisting essentially of first and 10 second electrodes in contact with a solid electrolyte, the sensor being capable of detecting a concentration of NO_x in a gas by converting an amount of NO_x concentration into an electromotive force level between the first and second electrodes. The electromotive force linearly 15 increases in response to an increase, in terms of a logarithm, of NO₂ concentration and linearly decreases in response to an increase, in terms of a logarithm, of NO concentration. At least the first electrode is composed of a metal oxide selected from the group consisting of 20 Mn₂O₃, CdFe₂O₄, ZnFe₃O₄, CrFe₂O₄, Cr₂CoO₄, CdGaMnO₄ and YFeMnO₄.

In a more concrete form of the NO_x sensor of the present invention, zirconia (ZrO₂-M₂O₃ or ZrO₂-MO, M is Yb, Cd, Nd, Ca, Y, Mg, Hf) bismuth oxide (Bi₂O₃-M₂O₃ or MO 25 or M₂O₅, M is Y, Gd, Nb, W, Sr, Ba) and ceria oxide (CeO₂-M₂O₃ or MO₂, M is Y, Sm) are used as a solid electrolyte. A solid electrolyte can be either a separation wall structure which separates the test gas to be detected of NO_x concentration from the constant atmospheric gas such 30 as air, a plate or rod shape. In case a solid electrolyte is a separation wall structure, the first and second electrode are placed on each surface of the wall and in

1 the case that a solid electrolyte is not a separation wall
structure, the first and second electrodes are placed at
any place on the solid electrolyte.



5 The first electrode to be formed on an electrolyte
is composed either of oxides of Mn, Fe, Co and Ni or a
substance containing said oxide. Furthermore, the first
electrode is composed either of hybridized oxides
expressed by ABO_3 , AB_2O_4 , A_2BO_4 and ACB_4 or a substance
containing said hybridized oxides. Here, B is an element
10 selected from 7a or 8a Group and A and C are elements
selected from 2A, 3A, 4A, 5A, 6A, 8, 1B, 2B, 3B, 4B, 5B
Group and lanthanide. A part of A and C element of the
hybrid oxides can be replaced by an element having
similar ion radius or an element with same or close in
15 valency and furthermore a part of B of said hybrid oxides
can be replaced by an element having similar ion radius
or an element with same or close in valency. The oxygen
content expressed by the chemical formula can be a
stoichiometric value including a non-integral number
20 caused by the oxygen deficiency. These hybrid oxides can
be a mixture of a single oxide of the element composing of
hybrid oxides so far as hybrid oxides are the main
component. If required, an electric collector composed of
rare metals such as Pt, Au, Pd, Ir, Rh, Ru or its alloy
25 as an electro-conductive material can be formed to keep
electrical connection.

1 The first electrode of an oxide or a hybrid oxide
is formed on a solid electrolyte by coating using screen
printing, etc., and sintering and also it can be formed
by physical deposition method such as vacuum deposition,
5 lasor ablation, ion beam deposition and ionplating method
and chemical deposition method such as chemical vapour
phase deposition and plasma chemical vapour phase
deposition.



10 The second electrode is composed of a substance
comprising rare metals, such as Pt, Ag, Au, Pd, Ir, Rh and
Ru, its alloy, electro-conductive ceramics, for example,
oxides of perovskite structure expressed by ABO_3 , such as
 $LaCoO_3$, $LaNiO_3$, $LaFeO_3$, wherein a part of A or B site can
be replaced by an element such as Sr, an oxide having a
15 structure of K_2NiF_4 and a substance which can be an oxygen
electrode such as La_2CuO_4 or a substance which can give a
definite chemical potential to oxygen. However, in a
sensor wherein both the first and second electrode are
exposed in the test gas, it is required that the change of
20 the electrical potential caused at the first electrode
should not be cancelled by the change of the electrical
potential caused by the second electrode and it is
preferred that it is composed of a material which does
not cause a change of electrical potential for NO and NO_2 ,
25 or a material which cause a change of electrical potential
in an opposite direction to that caused at the first
electrode.

1 In an electromotive force type sensor, wherein a
pair of electrodes is formed on a solid electrolyte and
the difference of the electrical potential caused by the
difference in the chemical potential of the electrodes,
5 the first electrode which works as a detecting electrode,
reacts with the test gas existing on the surface of the
electrode and as a result, the difference in the
electrical potential is caused by the change of the
chemical potential of the ion conductive carrier of a
10 solid electrolyte to the chemical potential of the other
electrode, which complys with the Nernst formula.
However, the change of the electromotive force in the
present invention does not comply with the Nernst
formula, because the number of the electrons obtained
15 from the slope of the dependency of the electromotive
force on the concentration and temperature are not
integral numbers. In a NO_x sensor according to the
present invention, the change of the electromotive force
is different for NO₂ and NO. The electromotive force
20 increases depending on the increase of the concentration
of NO₂ and decreases depending on the increase of NO
concentration. Judging from the change of the
electromotive force corresponding to the change of the
concentration of the test gas, it is thought that the
25 reduction reaction of the test gas occurs on the
electrode when the electromotive force increases and
oxydation reaction occurs on the electrode when the

1 electromotive force decreases. Furthermore, the dependency of the electromotive force on the concentration of NO_x is different in the presence and absence of oxygen, wherein the slope of the dependency of the
5 electromotive force on NO_x concentration in the presence of oxygen is larger than that in the absence of oxygen; that is oxygen is involved in the electrode reaction. Namely the response of the sensor according to the present invention is obtained by the following reactions.
10 On the first electrode, an electrochemical reaction between oxygen and NO_x is concomitantly occurs and the change of the electromotive force is caused by the hybrid electropotential of the local battery formed on the first electrode. Namely, a hybrid electric potential is caused
15 for NO₂ by the following reactions on the first electrode

and a hybrid electric potential is caused for NO by the following reactions on the first electrode

To obtain the electromotive force by the hybrid electric potential, it is necessary that the two reactions occur concomitantly on the electrode either for NO₂ and NO and the hybrid electric potential can not be obtained; if it is active for a reaction and not active for another reaction. Since the NO_x sensor according to the present

1 invention is composed of an oxide of 7a or 8 Group
element, which is used as an oxygen electrode in a fuel
battery or oxygen sensor and hybrid oxides containing 7a
or 8 Group element, it is possible to act as an oxygen
electrode and has an enough activity for the reactions of
5 (2) and (4). Furthermore, oxides of 7a and 8 Group
element and hybrid oxides containing 7a and 8 Group
element also have a high catalytic activity for NOx and
are active for the reactions of (1) and (2). Namely,
10 since it is active both for oxygen and NOx, the change of
the electromotive force is obtained by the hybrid
electric potential caused by the electrochemical reaction
between oxygen and NOx which occurs concomitantly on the
first electrode and occurs also at 600°C, and hence a good
15 performance is obtained. On the other hand, it is
thought that a hybrid electric potential is caused for CO₂
gas by the same reaction for NO₂. However, the catalytic
activity of the electrode according to the present
invention is low for CO₂ and electro-chemical reaction
20 between oxygen and CO₂ does not occur concomitantly on
the first electrode and hence it does not respond to CO₂

Brief Explanation of the Figure

Fig. 1 is a cross section of an example of a NOx
sensor according to the present invention.

25 Fig. 2 is a figure showing the dependency of the
change of the electromotive force on NOx concentration in
an example of a NOx sensor according to the present

1 invention.

5 Fig. 3 is a figure showing the dependency of the change of the electromotive force on the NO_x concentration in an example of a NO_x sensor according to the present invention.

Fig. 4 is a figure showing the dependency of the change of the electromotive force on the CO_x concentration.

10 Fig. 5 is a figure showing the dependency of the change of the electromotive force on the NO_x sensor according to the present invention.

15 Fig. 6 is a figure showing the dependency of the change of the electromotive force on NO_x concentration in an example of a NO_x sensor according to the present invention.

Fig. 7 is a figure showing the dependency of the change of the electromotive force on NO_x concentration in an example of a NO_x sensor according to the present invention.

20 Preferred Embodiment of the Present Invention

Example 1

Fig. 1 shows a cross section of a NO_x sensor in an example according to the present invention. A solid electrolyte 1 can be any oxygen ion conductive material, however, in view of thermal stability and resistance, zirconia, wholly or partially stabilized by yttria, calcia or magnecia, etc. is preferred. In this example,

1 zirconia stabilized by 8 mol% of yttria was used. On one
surface of a plate solid electrolyte, the first electrode
2 and second electrode 3 are placed. The first electrode
2 is composed of oxides of 7a or 8a Group element. The
5 first electrode was prepared by sputtering using oxide as
a target. After preparation of a film by sputtering,
heat treatment was conducted for 1 hr at 900°C in the
air. The second electrode 3 is composed of an electrode
which does not respond to NO_x and Pt is used in this
10 case. The first electrode 2 and the second electrode 3 is
a so called gas electrode and formed as a porous
electrode. An electric collector 4 of Pt is placed on the
first electrode 2 and the cable 5 and 6 of the second
electrode 3 is connected with the measurement circuit.

15 The change of the electromotive force at the
introduction of 100ppm of NO₂ and 500ppm of NO taking the
value of the electromotive force under the atmospheric
circumstance of 4% oxygen at 600°C as a standard is shown
in Table 1. The NO_x sensor, whichever oxides are used,
20 responds to NO₂, resulting in the increase of the
electromotive force and to NO in the decrease of the
electromotive force. Among oxides, the sensor using Co as
the first electrode showed the highest sensitivity.
Figs. 2 and 3 show the dependency of the electromotive
25 force of a NO_x sensor using oxides of Co as the first
electrode on NO_x concentration. Fig. 4 shows the
dependency of the electromotive force of a NO_x sensor

1 using oxides of Co as the first electrode on CO,
 concentration at 600°C . The sensor does not respond to
 CO₂ and the electromotive force does not change even when
 CO₂ concentration changes. The dependency of the
 5 electromotive force on NO_x concentration and the response
 characteristic to CO₂ were same for the sensor using other
 oxides shown in this example.

Table 1

10 The Change of the Electromotive Force
 corresponding to 100ppm NO₂ and 500ppm NO

15 Electrode Material	The Change of the Electromotive Force (mV)	
	100ppm NO ₂	500ppm NO
Mn ₂ O ₃	16.9	-10.5
Fe ₂ O ₃	28.7	-11.5
20 Co ₃ O ₄	64.3	-38.1
NiO	43.8	-10.1

Example 2

25 A NO_x sensor was prepared using hybrid oxides
 expressed by the same method as explained in Example 1.
 Hybrid oxides expressed by ABO₃ used as the first

1 electrode were prepared by sintering a mixture of a
single oxide of each element composing of hybrid oxides.
It was confirmed by the X-ray diffraction that these
hybrid oxides are composed of a single phase or a mixed
5 phase of oxides of either A or B. The change of
electromotive force at the introducing of 100ppm of NO₂
and 500ppm of NO taking the value of the electromotive
force under the atmospheric circumstance of 4% oxygen at
600 °C as a standard is shown in Table 2. A NO_x sensor
10 using hybrid oxides expressed by ABO₃ as the first
electrode responds to NO₂ resulting in the increase of
the electromotive force and to NO in the decrease of the electromotive
force and the change of the electromotive
force to the concentration of NO₂ and NO was proportional
15 to the logarism of the concentration. Furthermore, any
of the sensors did not respond to CO₂. Fig. 5 shows the
dependency of the electromotive force of a NO_x sensor at
600 °C on NO_x concentration.

1

Table 2

The Change of the Electromotive Force
 corresponding to 100ppm NO₂ and 500ppm NO

5

10

15

20

Electrode Material	The Change of the Electromotive Force (mV)	
	100ppm NO ₂	500ppm NO
MgMnO ₃	37.4	-18.2
SrMnO ₃	66.1	-11.4
CaMnO ₃	30.5	-14.5
BaMnO ₃	43.6	-12.8
YMnO ₃	25.3	-11.8
CrMnO ₃	32.2	-10.0
CoMnO ₃	36.8	-17.4
NiMnO ₃	52.4	-25.7
AgMnO ₃	32.1	-13.5
ZnMnO ₃	57.5	-35.6
LaMnO ₃	44.8	-25.7
NdMnO ₃	35.4	-18.7
SmMnO ₃	39.0	-10.7
(YSr)MnO ₃	22.6	-10.5
GaFeO ₃	21.8	- 9.2
LaFeO ₃	49.3	-19.8
LaCoO ₃	45.2	-20.1
LaNiO ₃	22.4	-11.2
SrNiO ₃	28.6	-10.9

Example 3

25

A NO_x sensor was prepared using hybrid oxides expressed by AB₂O₄ as the first electrode by the same method as shown in Example 2. The change of the electromotive

1 force at the introduction of 100ppm of NO_2 and 500ppm of
NO taking the value of the electromotive force under the
atmospheric circumstance of 4% oxygen at 600 °C as a
standard is shown in Table 3. In this example, it was
5 also confirmed that the sensor responds NO_2 resulting in
the increase of the electromotive force and to NO in the
decrease of the electromotive force and the change of the
electromotive force to the concentration of NO_2 and NO
was proportional to the logarism of the concentration.
10 Any sensor did not responds to CO_2 at the first electrode.
In Fig. 6, the dependency of the electromotive force of
a NO_x sensor using CdMn_2O_4 as the first electrode on NO_x
concentration at 600°C is shown.

1

Table 3

The Change of the Electromotive Force
corresponding to 100ppm NO₂ and 500ppm NO

5

10

15

20

Electrode Material	The Change of the Electromotive Force (mV)	
	100ppm NO ₂	500ppm NO
MgMn ₂ O ₄	35.5	-16.1
TiMn ₂ O ₄	25.4	-11.8
CrMn ₂ O ₄	28.2	-17.1
CoMn ₂ O ₄	29.7	-15.9
CdMn ₂ O ₄	47.9	-30.6
(CdAl)Mn ₂ O ₄	46.8	-25.6
(CdAl)(MnCr) ₂ O ₄	10.8	-19.4
CdFe ₂ O ₄	18.0	-10.2
ZnFe ₂ O ₄	34.5	-18.6
CrFe ₂ O ₄	26.7	-12.3

Example 4

A NO_x sensor was prepared using hybrid oxides expressed by A₂BO₄ as the first electrode by the same method as explained in Example 2 and the change of the electromotive force at the introduction of 100ppm of NO₂ and 500ppm of NO taking the value of the electromotive

1 force under the atmospheric circumstance of 4% oxygen at
 600 °C as a standard is shown in Table 4. In this
 example, it was also confirmed that the sensor responds
 to the NO₂, resulting in the increase of the electromotive
 5 force and to NO in the decrease of the electromotive force
 and the change of the electromotive force to the
 concentration of NO₂, and NO was proportional to the
 logarism of the concentration. In Fig. 7, the dependency
 of the change of electromotive force at 600°C of a NO_x
 10 sensor using La₂MnO₄ as the first electrode is shown.

Table 4

The Change of the Electromotive Force
 corresponding to 100ppm NO₂ and 500ppm NO

Electrode Material	The Change of the Electromotive Force (mV)	
	100ppm NO ₂	500ppm NO
Ca ₂ MnO ₄	33.1	-14.1
Mg ₂ MnO ₄	29.5	-12.2
Fe ₂ MnO ₄	33.8	-14.0
Ni ₂ MnO ₄	56.7	-10.2
Zn ₂ MnO ₄	50.0	-17.6
Al ₂ MnO ₄	28.6	-11.9
Sb ₂ MnO ₄	58.2	-10.4
La ₂ MnO ₄	44.8	-25.7
Cr ₂ CoO ₄	55.1	-18.8

1 Example 5

A NO_x sensor was prepared using hybrid oxides expressed by ABCO₄ as the first electrode by the same method as explained in Example 1 and the change of the electromotive force at the introduction of 100ppm of NO₂ and 500ppm of NO taking the value of the electromotive force under the atmospheric circumstance of 4% oxygen at 600 °C as a standard is shown in Table 5.

In this example it was also confirmed that the sensor responds to NO₂ resulting in the increase of the electromotive force and to NO in the decrease of the electromotive force and the change of the electromotive force to the concentration of NO₂ and NO was proportional to the logarism of the concentration. Either of the electrodes did not respond to CO₂.

Table 5

The Change of the Electromotive Force

corresponding to 100ppm NO₂ and 500ppm NO

Electrode Material	The Change of the Electromotive Force (mV)	
	100ppm NO ₂	500ppm NO
CdGaMnO ₄	44.7	-26.3
YFeMnO ₄	40.3	-16.6

1

Possible Utilization of the Invention
in the Industry

Since oxides or hybrid oxides which have no catalytic activity for CO₂ are used as the electrode material, it is possible to detect NOx concentration correctly without being affected by the fluctuation of CO₂ concentration. Furthermore, those oxides or hybrid oxides are active both for oxygen and NOx and hence the sensor looks at a temperature above 600 °C and detects NOx concentration with high accuracy.

10

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A NO_x sensor consisting essentially of first and second electrodes in contact with a solid electrolyte, said sensor being capable of detecting a concentration of NO_x in a gas by converting an amount of NO_x concentration into an electromotive force level between the first and second electrodes, wherein the electromotive force linearly increases in response to an increase, in terms of a logarithm, of NO₂ concentration and linearly decreases in response to an increase, in terms of a logarithm, of NO concentration, and wherein at least said first electrode is composed of a metal oxide selected from the group consisting of Mn₂O₃, CdFe₂O₄, ZnFe₃O₄, CrFe₂O₄, Cr₂CoO₄, CdGaMnO₄ and YFeMnO₄.
2. The NO_x sensor of claim 1, wherein said second electrode is composed of a metal selected from the group consisting of Pt, Ag, Au, Pd, Ir, Rh and Ru, an alloy of said metal or an electroconductive ceramic.

2189360

1/4

FIG. 1

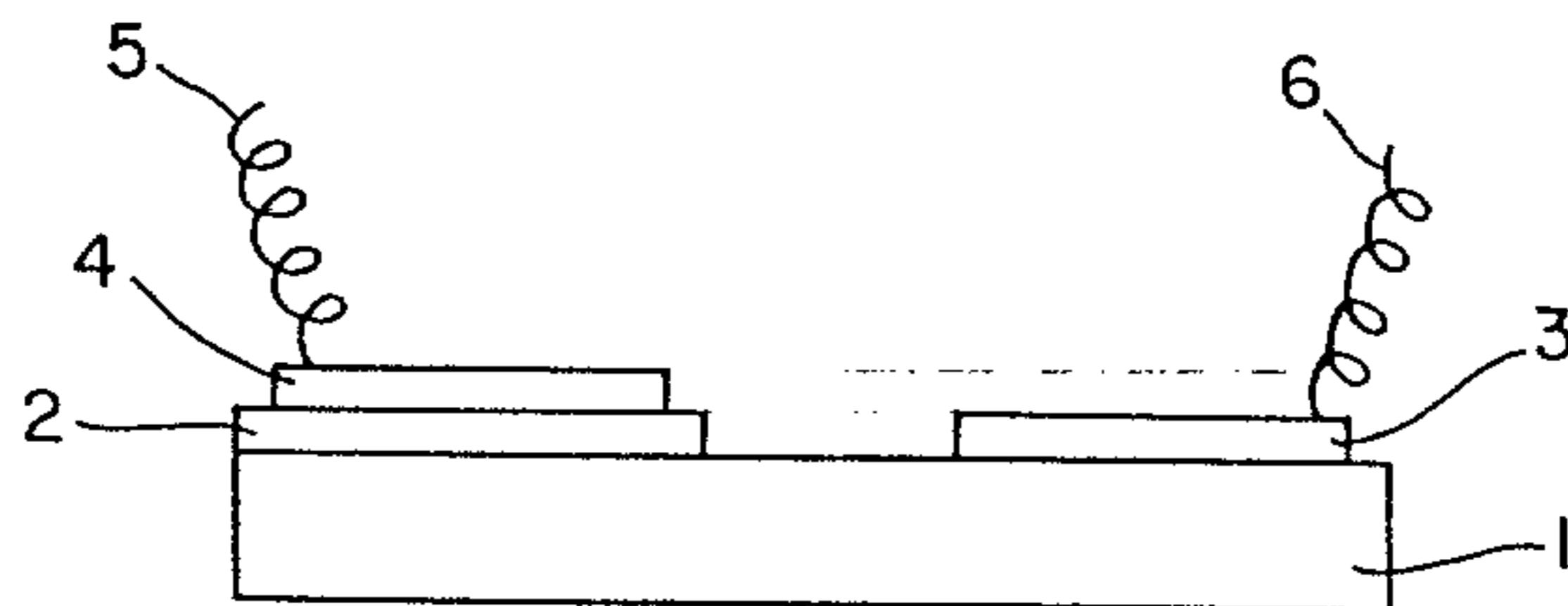
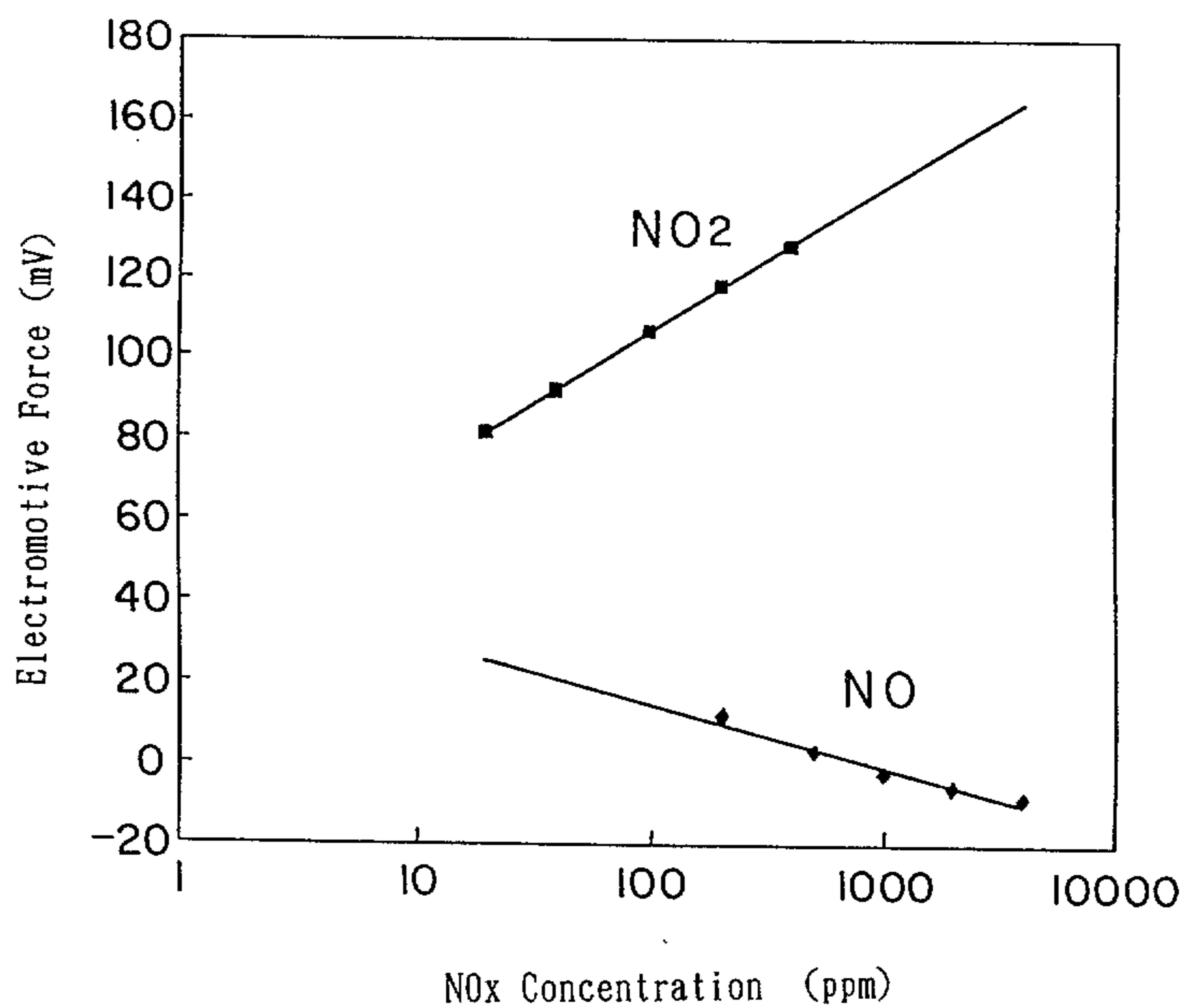



FIG. 2

2189360

2/4

FIG. 3

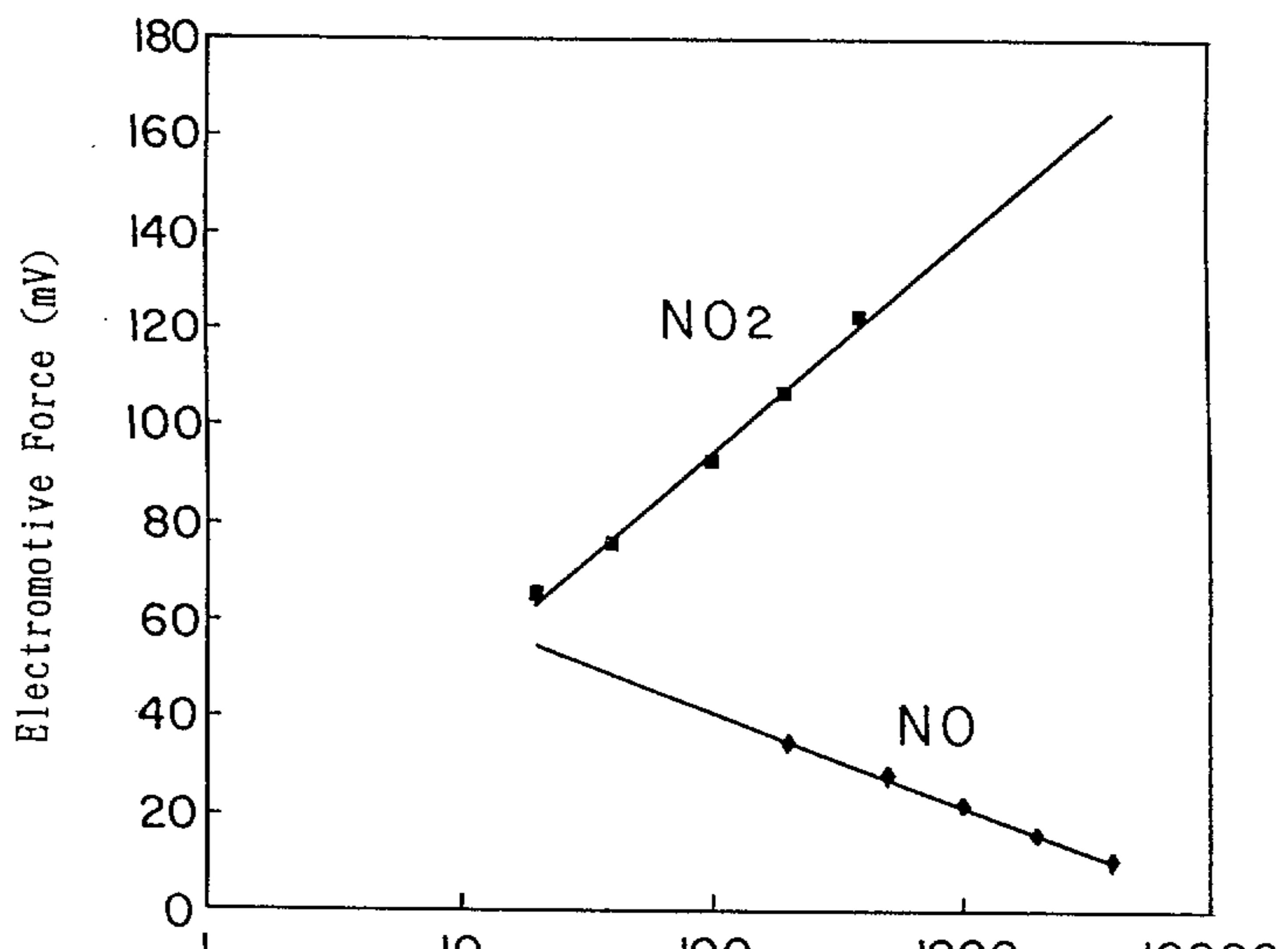
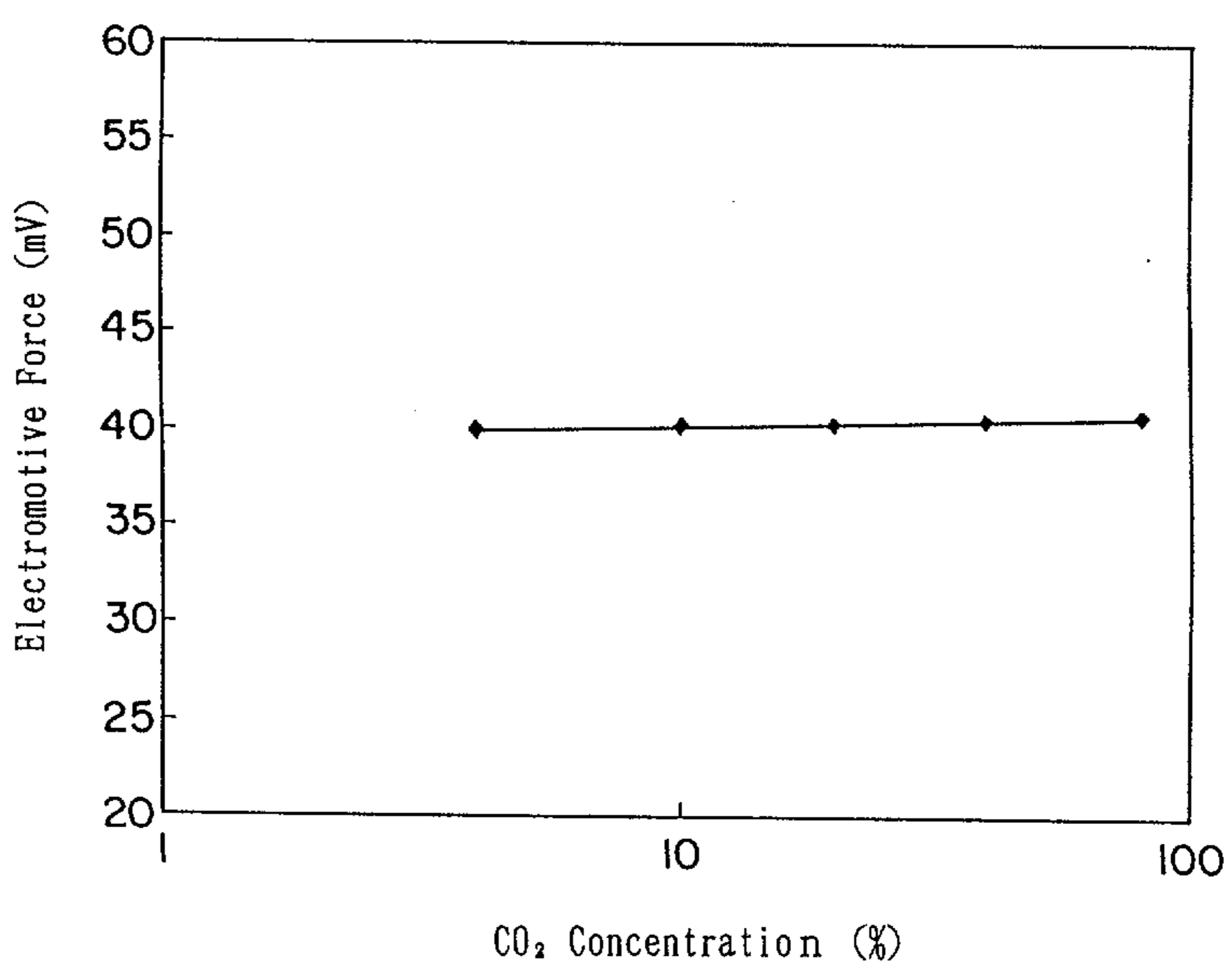
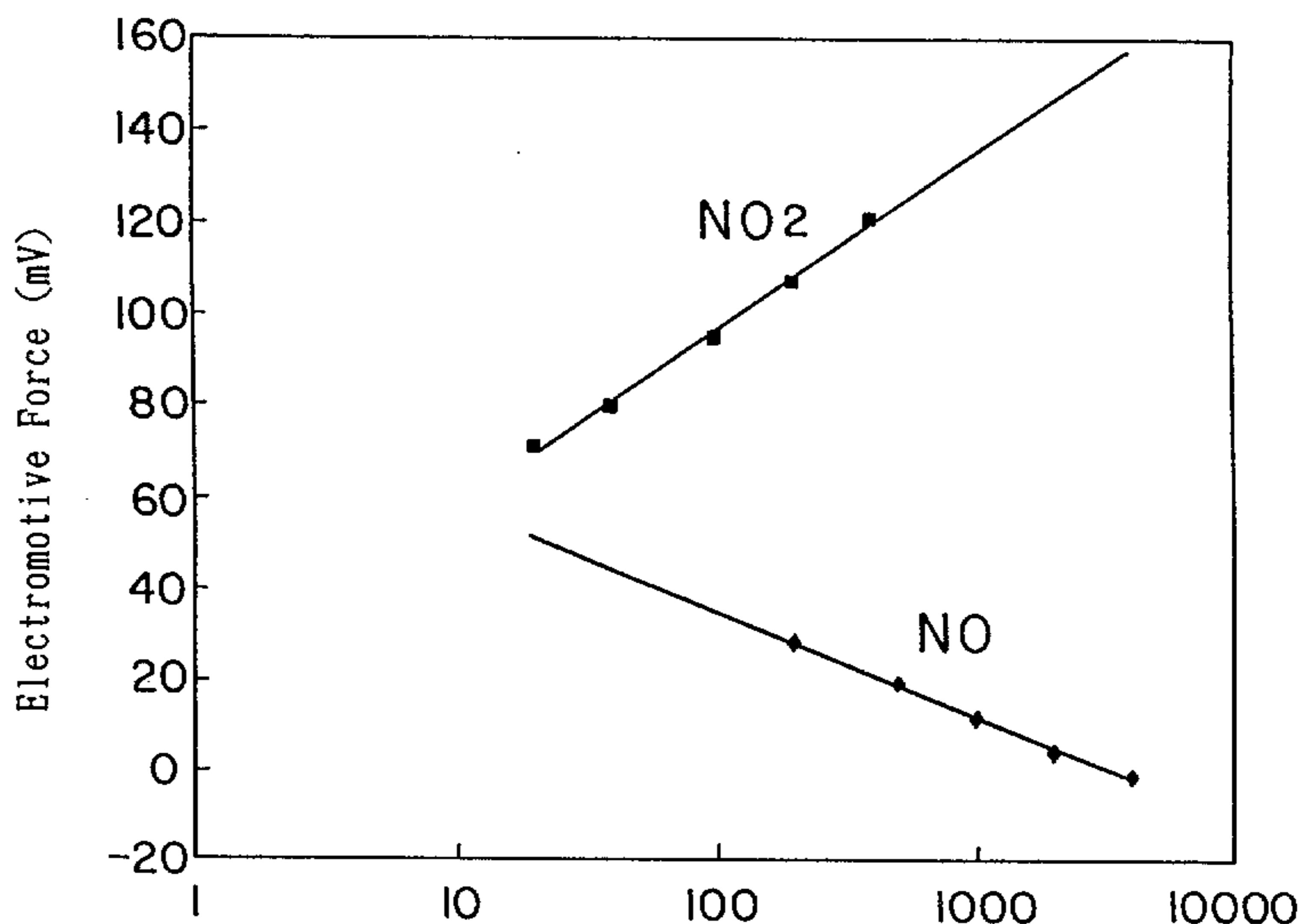



FIG. 4

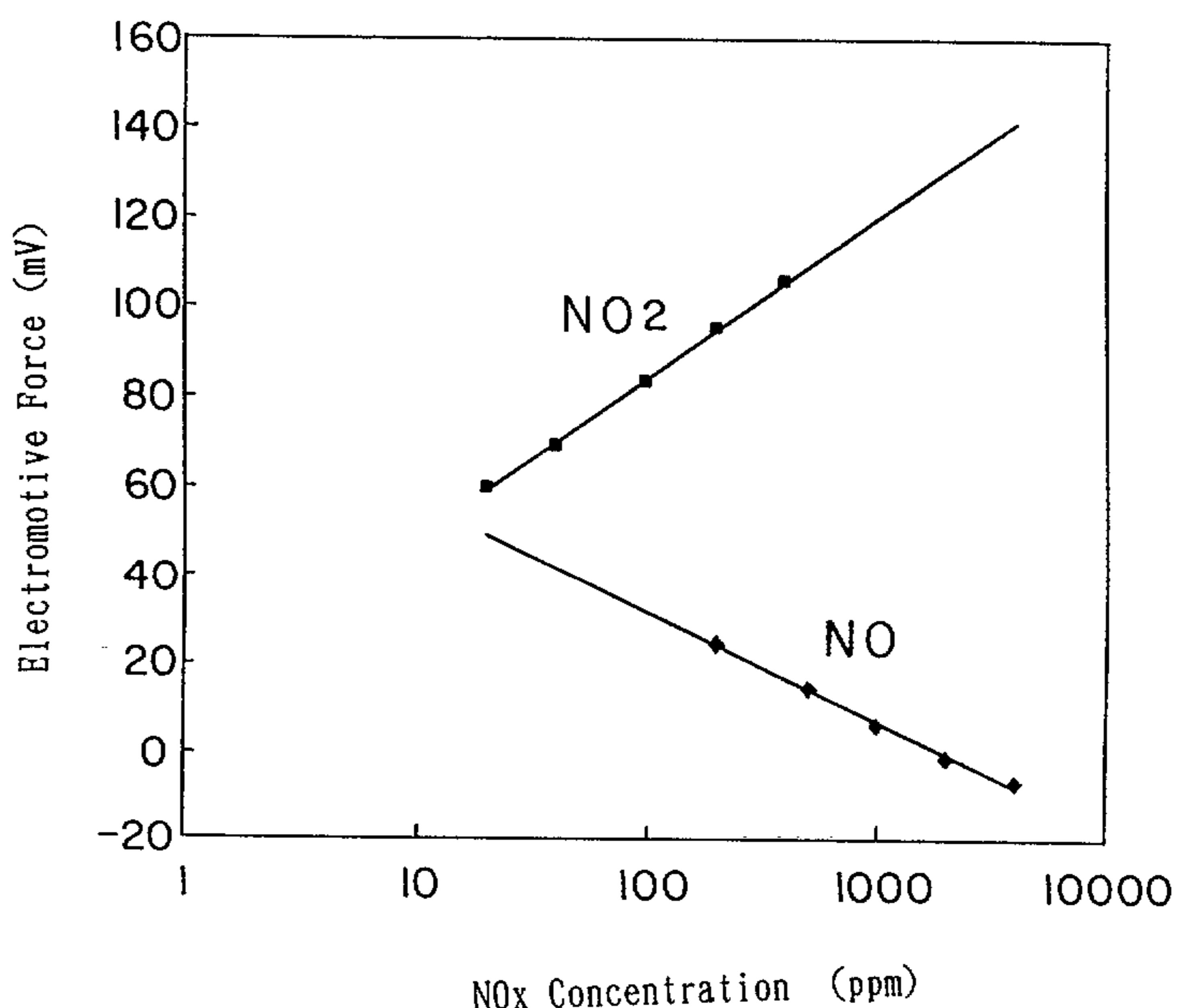

NO_x Concentration (ppm)

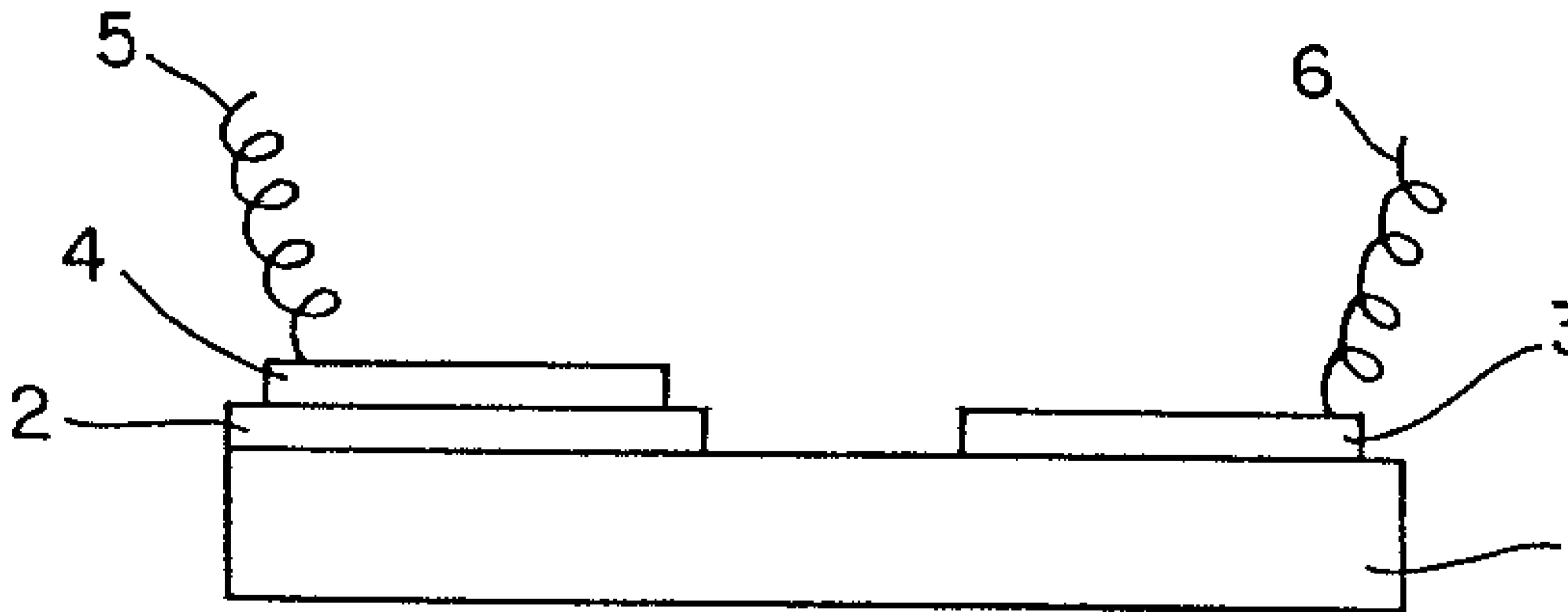
2189360

3/4

F I G. 5

F I G. 6


NO_x Concentration (ppm)



2189360

4/4

FIG. 7

