PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/24895
F 9/22, 9/455 Al

GOSF 9122, 9/45 (43) International Publication Date: 15 August 1996 (15.08.96)

(21) International Application Number: PCT/US96/01516 | (81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,

(22) International Filing Date: 5 February 1996 (05.02.96)

(30) Priority Data:

08/386,931 us

10 February 1995 (10.02.95)

(71) Applicant: INTEL CORPORATION [US/US]; 2200 Mission
College Boulevard, Santa Clara, CA 95052 (US).

(72) Inventors: HAMMOND, Gary, N.; 519 Sunnybrook Drive,
Campbell, CA 95008 (US). KAHN, Kevin, C.; 3324 S.W.
Sherwood Place, Portland, OR 97021 (US). ALPERT,
Donald, B.; 73 Claremont Avenue, Santa Clara, CA 95051
(US).

(74) Agents: MALLIE, Michael, J. et al. Blakely, Sokoloff,
Taylor & Zafman, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025-1026 (US).

BB, BG, BR, BY, CA, CH, CN, CZ, CZ (Utility model),
DE, DE (Utility model), DK, DK (Utility model), EE, EE
(Utility model), ES, FI, FI (Utility model), GB, GE, HU, IS,
JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, 8], SK, SK (Utility model), TJ, T™, TR, TT, UA,
UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG),
Eurasian patent (AZ, BY, KG, KZ, RU, TJ ,» TM), European
patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: METHOD AND APPARATUS FOR TRANSITIONING BETWEEN INSTRUCTION SETS IN A PROCESSOR

(57) Abstract

A data processor (104) is described. The
data processor (104) is capable of decoding and
executing a first instruction (212) of a first in-
struction set and a second instruction (213-219)
in a second instruction set wherein the first in-
struction (212) and the second instruction (213-

MASS
MEMORY STORAGE
DEVICE
102 103 BUS
100

219) originate from a single computer program
(210, 211). Alternatively, the data processor
(104) can also execute a first instruction (212)

of a first instruction set in a first instruction set

mode, receive a first interruption indication in

the first instruction set mode, service the first in- KEYBOARD PROCESSOR
terruption indication in a second instruction set INTERFACE

mode, return to the first instruction set mode, 101/ 104

receive a second interruption indication in the
first instruction set mode, and service the sec-
ond interruption indication in the first instruction set mode.

applications under the PCT.

AM
AT
AU
BB
BE
BF

BG
BJ

BR
BY
CA
CF
[o¢}

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Ctee d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary
Ireland

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/24895 PCT/US96/01516

-1-

METHOD AND APPARATUS FOR TRANSITIONING BETWEEN
INSTRUCTION SETS IN A PROCESSOR

FIELD OF THE INVENTI
The present invention relates to the field of electronic data
processing devices. More particularly, the present invention relates to

the operation of a data processor.

BA R N

Traditionally, a processor could only accept operating systems and
application programs in the instruction set for the particular processor. It
could not accept operating systems and application programs in another
instruction set. Thus, when processor architecture and instruction sets
were modified to incorporate technological advancements in a new
processor, the existing software base of operating systems and
application programs could not be utilized. New operating systems and
application programs had to be developed.

One prior processor did have the capability of accepting an
application program in one instruction set (VAX code) and also accepting
an application program in an earlier instruction set (PDP-11 code).
However, the prior processor could only accept an operating system in
one instruction set (VAX code) and could not accept an operating system
in another instruction set e.g. PDP-11 code. In addition, the prior

processor could only accept an application program entirely in one

WO 96/24895 PCT/US96/01516

2-
instruction set, VAX code or PDP-11 code, but could not accept an
application program with instructions from both instruction sets. Two
previously unrecognized problems existed with the prior processor.
First, because the prior processor could only accept an operating system
in one instruction set (VAX code), an entirely new operating system had
to be developed at a large cost. Existing functionalities of the older
operating system could not be utilized even if the technological
advancements did not provide benefits for those functions. Secondly,
because the prior processor could only accept an application program in
one instruction set or another, software developers had the difficult
choice of incurring large development costs to develop an entirely new
application program or forgo the benefits of technological advancements
offered by a new instruction set. They did not have the option of
implementing a new instruction set where justified by performance
advantages and utilizing the existing software where justified by cost
considerations.

Thus, a processor with the capability of accepting multiple
operating systems is needed. What is also needed is a processor with the
capability of accepting an application program with instructions from

multiple instruction sets.

SUMMARY OF THE INVENTION
A novel data processor is described. The data processor comprises
a bus interface unit capable of receiving a first instruction of a first

instruction set and a second instruction of a second instruction set. The

WO 96/24895 PCT/US96/01516

-3-
first instruction and the second instruction originate from a single
computer program. The data processor also comprises an internal bus
coupled to the bus interface unit capable of transmitting the first
instruction of the first instruction set and the second instruction of the
second instruction set from the bus interface unit and also comprises an
instruction unit coupled to the internal bus capable of decoding and
executing the first instruction of a first instruction set and the second
instruction of a second instruction set.

Under a first embodiment, the instruction unit comprises an
instruction cache coupled to the internal bus capable of storing the first
instruction and the second instruction, a first decoder coupled to the
instruction cache capable of decoding the first instruction of the first
instruction set, a second decoder coupled to the instruction cache capable
of decoding the second instruction of the second instruction set, a
multiplexor coupled to the first decoder and the second decoder capable
of selecting from the first decoder and the second decoder in response to
a signal, and an execution unit coupled to the multiplexor capable of
executing a selected decoded instruction from the multiplexor. The
instruction unit can further comprise an instruction set mode selector
coupled to the first decoder, the second decoder and the multiplexor
capable of transmitting the signal to the multiplexor in response to an
instruction to switch a current mode from the first decoder or the second
decoder.

Under a second embodiment, the instruction unit comprises a first

instruction cache coupled to the internal bus capable of storing the first

WO 96/24895 PCT/US96/01516

-4-

instruction, a first decoder coupled to the first instruction cache capable
of decoding the first instruction, a first execution unit coupled to the first
decoder capable of executing the first instruction, a second instruction
cache coupled to the internal bus capable of storing the second
instruction, a second decoder coupled to the second instruction cache
capable of decoding the second instruction, and a second execution unit
coupled to the second decoder capable of executing the second
instruction. The first execution unit is responsive to a signal to initiate
execution and the second execution unit is responsive to the signal to
initiate execution.

Under a third embodiment, the instruction unit comprises a
translator coupled to the internal bus capable of translating the first
instruction of the first instruction set into corresponding instructions of
the second instruction set, an instruction cache coupled to the internal
bus and coupled to the translator capable of storing the second
instruction of the second instruction set and capable of storing the
corresponding instructions of the second instruction set, and an
execution unit coupled to the instruction cache capable of executing the
second instruction of the second instruction set and capable of executing
the corresponding instructions of the second instruction set. The
instruction unit can further comprise a decoder coupled to the instruction
cache capable of decoding the second instruction of the second
instruction set and capable of decoding the corresponding instructions of
the second instruction set. The processor can further comprise a control

read only memory device storing microcode instructions. The translator

WO 96/24895 PCT/US96/01516

-5-
receives the microcode instructions to translate the first instruction of the
first instruction set into corresponding instructions of the second
instruction set.

A method for executing instructions of a computer program in a
processor is also described. The method comprises executing a first
instruction of a first instruction set, executing a first switch instruction,
switching from a first instruction set mode to a second instruction set
mode, and executing a second instruction of a second instruction set. The
method can further comprise executing a second switch instruction,
switching from the second instruction set mode to the first instruction set
mode, and executing a second instruction of the first instruction set.
Alternatively, the method can comprise executing a first instruction of a
first instruction set in a first instruction set mode, receiving a first
interruption indication in the first instruction set mode, servicing the first
interruption indication in a second instruction set mode, returning to the
first instruction set mode, receiving a second interruption indication in
the first instruction set mode, and servicing the second interruption
indication in the first instruction set mode. Servicing the first
interruption indication in a second instruction set mode can comprise
determining the first interruption, determining a descriptor entry number
for the first interruption, storing a 64 bit intercept gate associated with
the descriptor entry number wherein the intercept gate refers to a
memory address, and executing a service routine in the 64 bit instruction
set mode for the first event starting at the memory address. Servicing

said second interruption indication in the first instruction set mode can

WO 96/24895 PCT/US96/01516

-6-
comprise determining the second interruption, determining a descriptor
entry number for the second interruption, storing a descriptor gate
associated with the descriptor entry number wherein the descriptor gate
refers to a memory address, and executing a service routine in the 16 and
32 bit instruction set mode for the second event starting at the memory

address.

BRIEF DESCRIPTION OF THE DRAWI

The present invention is illustrated by way of example, and not by
way of limitation, in the figures of the accompanying drawings and in
which like reference numerals refer to similar elements and in which:

Figure 1 illustrates in block diagram form a computer system of
one embodiment of the present invention.

Figure 2 illustrates an application program executed by a
processor of a second embodiment of the present invention.

Figure 3 illustrates in block diagram form a processor of a third
embodiment of the present invention.

Figure 4 illustrates in block diagram form a processor of a fourth
embodiment of the present invention.

Figure 5 illustrates in block diagram form a processor of a fifth
embodiment of the present invention.

Figure 6 illustrates in block diagram form a processor of a sixth
embodiment of the present invention.

Figure 7 illustrates in block diagram form a processor of a seventh

embodiment of the present invention.

WO 96/24895 PCT/US96/01516

DETAILED DESCRIPTION

A novel data processor capable of transitioning between
instruction sets is described. In the following detailed description
numerous specific details are set forth in order to provide a thorough
understanding of the present invention. However, it will be understood
by those skilled in the art that the present invention may be practiced
without these specific details. In other instances well known methods,
procedures, components, and circuits have not been described in detail so
as not to obscure the present invention.

Some portions of the detailed descriptions which follow are
presented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These algorithmic
descriptions and representations are the means used by those skilled in
the data processing arts to most effectively convey the substance of their
work to others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading to a desired
result. The steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the
form of electrical or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters, terms,
numbers, or the like. It should be borne in mind, however, that all of

these and similar terms are to be associated with the appropriate physical

WO 96/24895 PCT/US96/01516

-8-

quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the following
discussions, it is appreciated that throughout the present invention,
discussions utilizing terms such as "processing” or "computing” or
“calculating” or "determining” or "displaying" or the like, refer to the
action and processes of a computer system, or similar electronic
computing device, that manipulates and transforms data represented as
physical (electronic) quantities within the computer system'’s registers
and memories into other data similarly represented as physical quantities
within the computer system memories or registers or other such
information storage, transmission or display devices.

Figure 1 illustrates in block diagram form a computer system of
one embodiment of the present invention. The computer system
comprises bus 100, keyboard interface 101, external memory 102, mass
storage device 103 and processor 104. Bus 100 can be a single bus or a
combination of multiple buses. As an example, bus 100 can comprise an
Industry Standard Architecture (ISA) bus, an Extended Industry
Standard Architecture (EISA) bus, a system bus, a X-Bus, PS/2 bus, a
Peripheral Components Interconnect (PCI) bus, a Personal Computer
Memory Card International Association (PCMCIA) bus or other buses.
Bus 100 can also comprise combinations of any buses. Bus 100 provides
communication links between components in the computer system.
Keyboard controller 101 can be a dedicated device or can reside in
another device such as a bus controller or other controller. Keyboard

controller 101 allows coupling of a keyboard to the computer system and

WO 96/24895 PCT/US96/01516

-9-

transmits signals from a keyboard to the computer system. External
memory 102 can comprise a dynamic random access memory (DRAM)
device, a static random access memory (SRAM) device, or other memory
devices. External memory 102 stores information from mass storage
device 103 and processor 104 for use by processor 104. Mass storage
device 103 can be a hard disk drive, a floppy disk drive, a CD-ROM
device, or a flash memory device. Mass storage device 104 provides
information to external memory 102. Processor 104 can be a
microprocessor and is capable of decoding and executing a computer
program such as an application program or operating system with
instructions from multiple instruction sets.

Figure 2 illustrates a computer program executed by a processor of
a second embodiment of the present invention. The computer program
comprises instructions 210 of a first instruction set and instructions 211 of
a second instruction set. The first instruction set can be an instruction set
for a complex instruction set computing (CISC) processor or an
instruction set for a reduced instruction set computing (RISC) processor.
The first instruction set can also be a 16 and 32 bit instruction set or a 64
bit instruction set. The second instruction set is an instruction set
different from the first instruction set. It can be a RISC instruction set or a
CISC instruction set. It can also be a 64 bit instruction set or a 16 and 32
bit instruction set. It will be appreciated that the first and the second
instruction sets can be instruction sets of other types.

Instructions 210 comprises switch instruction 212. Processor 104

decodes and executes individual instructions of instructions 210. The

WO 96/24895 PCT/US96/01516

-10-

individual instructions of instruction 210 come from the first instruction
set. Thus, processor 104 decodes and executes the individual instructions
in the first instruction set mode. When processor 104 decodes and
executes switch instruction 212, processor 104 switches from the first
instruction set mode to the second instruction set mode. In this example,
switch instruction 212 is a jmpx followed by a value. This value can be
converted by processor 104 to an address which indicates the location of
the next instruction for decoding an execution by processor 104. In this
example, the address is 4,000. The processor then decodes and executes
instructions beginning at address 4,000 which also marks the beginning
of instructions 211.

Instructions 211 comprises of individual instructions of the second
instruction set. Having already switched to the second instruction set
mode, processor 104 proceeds to decode and execute instructions of the
second instruction set. When processor 104 decodes and executes move
from instruction 213, processor 104 writes a value in a specified register
of the first instruction set to a specified register of the second instruction
set. The term x86 used in following description refers to the Intél
Architecture developed by Intel Corporation.

The x86mf instruction instructs processor 104 to move a value in a
specified x86 integer register to a specified 64 bit integer register.
Processor 104 then performs operations using the value in the 64 bit
integer register. When processor 104 decodes and executes move to
instruction 214, processor 104 loads a value in a specified register of the

second instruction set to a specified register of the first instruction set.

WO 96/24895 PCT/US96/01516

-11-

The x86mt instruction instructs processor 104 to load a value from a
specified 64 bit integer register to a specified x86 integer register. When
processor 104 decodes and executes x86smf instruction 215, processor 104
loads a value from a specified x86 segment selector or descriptor register
to a specified 64 bit integer register. Processor 104 then performs
operations using the value from the specified x86 segment selector or
descriptor register. When processor 104 decodes and executes x86smt
instruction 216, processor 104 loads a value from a specified 64 bit integer
register to a specified x86 segment selector or descriptor register. When
processor 104 decodes and executes x86fmf instruction 217, processor 104
loads a value from a specified x86 floating point register, floating point
control, status or exception register to a specified floating point register
for the second instruction set. Processor 104 then performs operations
using the value from the specified floating point register, floating point
control, status or exception register. When processor 104 decodes and
executes x86fmt instruction 218, processor 104 loads a value from a
specified floating point register of the second instruction set to a specified
x86 floating point register, floating point control, status or exception
register. When processor 104 decodes and executes switch instruction
219, it switches to the first instruction set mode and executes instructions
beginning from a specified address.

In this example, switch instruction 219 is x86jmp and the specified
address is 1011. Table 1 summarizes the processor instructions that can
be accepted by processor 104. The specific instructions in Table 1 an their

features are detailed for illustrative purposes only. It will be appreciated

WO 96/24895 PCT/US96/01516

-12-

that other instructions which incorporate certain features of the present

invention can also be utilized.

WO 96/24895

PCT/US96/01516

-13-

TABLEI

EVRET

Format:
Description:

Exceptions:

Event Return

evret

The EVRET Iinstruction is used to return from event handlers. It also
can be used to dispatch processing at lower privilege levels. EVRET
restores the target execution environment contained in XIP1 and
XPCR1 into XIP and XPCR. EVRET is a privileged instruction.

EVRET ensures:

1) all changes to XPCR and the TLB that affect the fetching of
instructions from the instruction stream are visible by the next
instruction boundary;

2) all changes to XPCR and the TLB that affect the actual execution of
an instruction are visible by the next instruction boundary;

3) and all changes to operand resources (those resources within the
processor that can be input operands to subsequent instructions) are
visible by the next instruction boundary. ‘

EVRET ensures all previous instructions are completed. EVRET also
ensures subsequent instructions fetching and execution uses the
updated values of XPCR and the TLB. Note: EVRET does not perform
a memory fence operation nor is full serialization performed like the
SRLZ instruction.

On x86 compatible implementations, EVRET returns control to either
the x86-ISA or 64-bit ISA as specified by XPCR1.ISA. If control is
resumed in the x86 ISA, and the target XIP exceeds the CS Limit, a x86
GPFault is reported on the target x86 ISA instruction. If XPCR1.d86i
or XPCR.d86r is set the EVRET is completed and a Disabled x86 ISA
or Disabled x86 Register fault is generated on the target instruction.

Similarly, if control is being resumed in the 64-bit ISA and XPCR1.dxi
is set, EVRET is completed and a Disabled 64-bit ISA fault is
generated on the target instruction.

Note: 64-bit event delivery and EVRET do not save or restore the
previous value of CS. It is software's responsibility to save/restore CS
if it is modified within the event handler.

Privileged Instruction Fault, GPFault, Disabled x86 ISA fault, Disabled
64-bit ISA fault, Disabled x86 Register fault, Reserved field fault

WO 96/24895

PCT/US96/01516

-14-

x86JMP

Format:

Description:

Exceptions:

Jump and Change to x86 ISA

x86jmp rell7

x86jmp isrcl

The processor switches execution to the x86 instruction set, and
executes the next instruction at the target address. The relative form
computes the target address in the 64-bit ISA relative to the current
XIP and Code Segment base, i.e. XIP=XIP +rel17*4 -CS_base. Note
that the target instruction pointer is converted into the effective
address space. rell7 is sign extended and multiplied by four. The
target XIP is truncated to 32-bits.

The register form performs a far control transfer by loading the code
segment specified by the 16-bit selector in isrc1 [47:32] and the 32-bit
offset specified in iscr1 [31:0]. If EFLAGS.VMB86 is set the processor
shifts the 16-bit selector left by 4-bits to load the CS base. If
EFLAGS.VMB86 is zero the processor loads the CS descriptor for the
LDT/GDT and performs segmentation protection checks. The
target XIP is truncated to 32-bits.

X86JMP can be performed at any privilege level and does not
change the privilege level of the processor.

If the target XIP exceeds the CS limit, a x86 GPFault is reported on
the target instruction. CS segment protection faults are reported on
the target instruction. Gate descriptors are not allowed and result in
a GPFault on the target instruction. If XPCR.d86i or XPCR.d86r is
set the instruction is nullified and a Disabled x86 ISA fault or
Disabled x86 Register fault is generated on the X86JMP instruction.
If Jump Breakpoints are enabled a Jump Debug trap is taken after
the instruction completes.

On 64-bit only subset implementations, X86]JMP causes a reserved
opcode fault.

Disabled x86 ISA Fault, Disabled x86 Register Fault, GPFault,
Reserved Opcode Fault, Debug Jump Breakpoint

WO 96/24895 PCT/US96/01516

-15-

x86MT Move to x86 Register

Format: x86mt isrc2, dest

Description: The x86 32-bit integer register specified by dest is loaded
from the 64-bit extension integer register isrc2. Transfers
to the x86 32-bit integer registers are truncated from the
low order 32-bits of isrc2. x86 16-bit and 8-bit sub-
registers (AX, AL, etc.) cannot be accessed separately.

If x86 registers are disabled to XPCR.d86r, a Disabled
x86 register fault is generated. Accesses to reserved
registers results in a reserved opcode fault. On 64-bit
only subset implementations X86MT causes a reserved
opcode fault.

Exceptions: Disabled x86 register fault,
Privilege Instruction fault
Reserved Opcode fault.

x86MF Move from x86 Register
Format: x86mf src2, idest

Description: The x86 32-bit integer register specified by src2 is written
into the 64-bit extension integer register idest. The
destination register is zero extended to 64-bits. x86 8-bit
and 16-bit sub-registers (AX, AL, etc.) cannot be
separately accessed.

If x86 registers are disabled by XPCR.d86r, a Disabled
x86 register fault is generated. Accesses to reserved
registers results in a reserved opcode fault. On 64-bit
only subset implementations X86MF results in a
reserved opcode fault.

Exceptions: Disabled x86 register fault,
Reserved Opcode Fault.

WO 96/24895

PCT/US96/01516

-16-

x86SMT

Format:

Description:

Exceptions:

Move to x86 Segment Register
x86smt isrc2, dest

The x86 64-bit segment selector or descriptor register
specified by dest is loaded from the 64-bit extension
integer register isrc2. Transfers are truncated to the
destination register size.

This instruction can only be executed in kernel mode
else a privilege instruction fault results.

If x86 registers are disabled by XPCR.d86r a Disabled
x86 register fault is generated. Accesses to reserved
registers results in a reserved opcode fault. On 64-bit
only subset implementations X86SMT results in a
reserved opcode fault.

Disabled x86 register fault, Privileged Instruction fault,
Reserved Opcode fault.

x86SMF

Format:

Description:

Exceptions:

Move from x86 Segment Register
x86smf src2, idest

The x86 64-bit segment selector or descriptor register
specified by src2 is loaded into the 64-bit extension
integer register idest. Transfers are zero extended from
16 or 32-bits to 64-bits.

If x86 registers are disabled by XPCR.d86r, a Disabled
x86 register fault is generated. Accesses to reserved
registers results in a reserved opcode fault. On 64-bit
only subset implementations x86SMF results in a
reserved opcode fault.

Disabled x86 register fault, Reserved Opcode fault.

WO 96/24895

PCT/US96/01516

-17-

x86FMT

Format:

Description:

Exceptions:

Floating Point Move to x86 Register
x86fmt fsrc2, dest

The x86 80-bit floating point register or 32/16-bit
floating point control, status or exception register
specified by dest is loaded from the extension floating
point register fsrc2. Dest is an absolute register id, not
stack relative.

Transfers from the extension 80-bit floating point
registers to the x86 floating point stack are converted to
the x86 80-bit floating point format. Software must first
issue FNORM on the extension register to normalize any
unnormalized single or double precisions subnormals
before the transfer is performed.

Transfers to the 16/32-bit floating point control, status
and exception registers are truncated from the low order
32/16-bits of the significand of fsrc2.

If x86 floating point registers are disabled by XPCR.d86f,
a Disabled x86 floating point register fault is generated.
If the extension floating point registers are disabled by
XPCR.dxf then a Disabled Floating Point fault is
generated.

Accesses to reserved registers results in a reserved
opcode fault. On 64-bit only subset implementations
x86FMT yields a reserved field fault.

Disabled Floating Point Fault, Disabled x86 Floating
Point register fault,
Reserved Opcode Fault.

WO 96/24895 PCT/US96/01516

-18-

x86FMF Floating Point Move from x86 Register

Format: x86fmf src2, fdest

Description: The x86 80-bit floating point register or 32/16-bit
floating point control, status or exception register
specified by src2 is loaded into the 80-bit extension
floating point register fdest. Src2 is an absolute register
id, not stack relative.

Data transferred from the x86 80-bit floating point stack
to the extension registers are converted to the extension
register format.

Transfers from the 16/32-bit floating point control,
status or exception registers are zero extended to 64-bits
and then written into the significand of fdest. The sign-
exponent field of fdest is written with zeros.

If x86 floating point registers are disabled by XPCR.d86f,
a Disabled x86 floating point register fault is generated.
If the extension floating point registers are disabled by
XPCR.dxf a Disabled Floating Point fault is generated.

Accesses to reserved registers results in a reserved
opcode fault. On 64-bit only implementations, X86FMF
yields a Reserved Opcode Fault.

Exceptions: Disabled Floating Point fault, Disabled x86 Floating
point register fault, Reserved Opcode Fault.

WO 96/24895

PCT/US96/01516

-19-

JMPX

Format:

Description:

Exceptions:

Jump and Change to 64-bit ISA
jmpx rel32/16
jmpx r/m32/16
The processor jumps and execution begins at the target
instruction in the 64-bit ISA. There are two forms;
register/memory indirect and relative.

The relative form computes the target address in the 64-
bit ISA relative to the current XIP and Code segment
base, i.e. XIP=XIP+rel32/16 + CS_base. Note that the
target instruction pointer is converted in the linear
address space. The target XIP is truncated to 32-bits.

The indirect form reads a register or memory location
specified by r/m32/16 and sets the linear target
instruction pointer to that value. The target XIP is
truncated to 32-bits.

JMPX can be performed at any privilege level and does
not change the privilege level of the processor. JMPX
ensures all outstanding x86 floating point operations
have completed.

If XPCR.dxi is set, the instruction is nullified and a
Disabled 64-bit ISA fault is generated. If 64-bit
extensions are disabled, JMPX is an illegal x86 ISA
opcode. If Jump Breakpoints are enabled, a Jump Debug
trap is taken after the instructions completes.

Disabled 64-bit ISA fault, Illegal Opcode Fault, Debug
Jump Breakpoint.

WO 96/24895

PCT/US96/01516

-20-

IRET

Format:
Description:

Exceptions:

Interrupt Return
iret
If 64-bit extensions are enabled, IRET returns control to either the
x86-ISA or 64-bit ISA as specified by XPCR.ISA in the stack frame
before IRET is executed. IRET uses the extended x86 stack frame
shown below.

l@— Old ESP

Decreasing XPCR[63:32]
Addresses

XPCR[31:16]| CS*

XIP[31:0]

* 4— New ESP

While 64-bit extensions are enabled, IRET performs as specified in
the P5 PRM, with the following modifications:

1) XPCR[63:16] is popped in place of EFLAGS. XPCR[15:2] is left
unmodified.

2) XPCRJ[1:0] is set to the target CPL of the original environment, i.e.
the lower 2-bits of the popped CS selector.

3) XIP[31:0] is popped in place of EIP. XIP[63:32] is set to zero.

If control is resumed in the x86 ISA, and the target XIP exceeds the
CS limit, a x86 GPFault is reported on the IRET instruction. If the
new XPCR.d86i or XPCR.d86r is set, IRET is nullified and a
Disabled x86 ISA fault or Disabled x86 Register fault is generated.

Similarly, if control is resumed in the 64-bit ISA and the new
XPCR.dxi is set, IRET is nullified and a Disabled 64-bit ISA fault is
generated.

IRET serializes instruction execution.

Disabled 64-bit ISA fault, Disabled x86 ISA fault, Disabled x86
Register fault, GPFault.

WO 96/24895 PCT/US96/01516

-21-

In this embodiment, the processor has two separate sets of
registers, one set for the first instruction set mode and one set for the
second instruction set mode. The x86mt, x86mf, x86smt, x86smf, x86fmt
and x86fmf instructions are used to instruct the processor to transfer
values between the two sets of registers. Under an alternative
embodiment, the processor only has one set of registers that is used for
both the first instruction set mode and the second instruction set mode.
In this situation with one set of registers, the x86mt, x86mf, x86smt,
x86smf, x86fmt and x86fmf instructions would not be used.

Under a second embodiment of the present invention, processor
104 can accept an operating system that is in the first instruction set or in
the second instruction set. In this example, the first instruction set is x86
code and the second instruction set is 64 bit code. The term x86 code
refers to the instruction set utilized by the Intel Architecture family of
microprocessors e.g. 8086, 80286, 80386, 80486 and Pentium
microprocessors manufactured by Intel Corporation. An example of an
operating system in x86 code is MS-DOS. When processor 104 is initially
turned on, processor 104 begins in the first instruction set mode and can
accept an operating system of the first instruction set. If an operating
system of the first instruction set such as MS-DOS is utilized, processor
104 remains in the first instruction set mode. On the other hand, if an
operating system of the second instruction set is utilized, the operating
system will have a jmpx processor instruction. Upon receipt of the jmpx

instruction, processor 104 switches to the second instruction set mode.

WO 96/24895 PCT/US96/01516

-22-
Processor 104 then executes the rest of the operating system in the second
instruction set mode.

In this embodiment, processor 104 can also operate from an
operating system with instructions from both the first instruction set and
the second instruction set. Processor 104 can execute instructions from
the first instruction set using the first instruction set mode and can also
execute instructions from the second instruction set using the second
instruction set mode. The switch from the first instruction set mode to
the second instruction set mode and the switch from the second
instruction set mode to the first instruction set mode can occur without
rebooting processor 104 and the rest of the computer system.

When processor 104 is initially powered up, processor 104 can
operate from either an operating system in the first instruction set or an
operating system in the second operating system. Processor 104 can also
operate from a single unified operating system which has instructions
from the first instruction set and the second instruction set. Processor 104
can then execute an application program of the first instruction set.
While executing an application program of the first instruction set,
processor 104 can receive an event indication. The event can be an
exception, machine check or interrupt. After receiving the event
indication, processor 104 determines the nature of the particular event.
Processor 104 determines the nature of the particular event by requesting
the identification of the device creating the event from a programmable
interrupt controller in the computer system. Each device has an event

line and a number associated with it. Processor 104 then determines a

WO 96/24895 PCT/US96/01516

-23-
descriptor entry number for the particular event. In a x86 operating
system or an operating system having some x86 operating system
features along with portions of the operating system in the second
instruction set, the descriptor entry number is determined by requesting
the information from the programmable interrupt controller. The
programmable interrupt controller adds the three-bit binary value of the
highest active bit in the interrupt service routine register to the base
address stored in an initialization command word register. Processor 104
receives the descriptor entry number and determines the actual start
memory address for the event by multiplying the descriptor event
number by four. Processor 104 then retrieves the gate at the start
memory address from a descriptor table and executes the instructions in
the gate or the instructions referred to by the gate.

In an operating system having some x86 operating system features
along with portions of the operating system in the second instruction set,
the gate may have a 64 bit intercept. If the gate has a 64 bit intercept, the
64 bit intercept will include a jmpx processor instruction along with
instructions of the second instruction set or a special bit pattern to switch
to the second instruction set mode. Alternatively, the jmpx instruction
and the operating system instructions of the second set or the special bit
pattern can be located elsewhere in memory with an address reference in
the 64 bit intercept gate. The jmpx instruction causes processor 104 to
switch to the second instruction set mode. The special bit pattern also
causes processor 104 to switch to the second instruction set mode.

Processor 104 then executes instructions of the second instruction set in

WO 96/24895 PCT/US96/01516

-24-

the 64 bit intercept. The instructions of the second instruction set in the
64 bit intercept is an event handling routine for the event which in turn,
comprises a portion of operating system in the second instruction set. In
this manner, processor 104 switches from the portion of the operating
system in the first instruction set to the portion of the operating system in
the second instruction set and switches from the first instruction set mode
to the second instruction set mode. At the end of the event handling
routine, processor 104 receives an evret instruction. The evret instruction
returns processor 104 from the event handling routine to the application
program and restores the target execution environment.

On the other hand, if the gate does not have a 64 bit intercept and
is an x86 gate instead, processor 104 remains in the first instruction set
mode and does not switch to the second instruction set mode. The gate
in this case, does not cause a switch to the second instruction set mode.

A x86 interrupt, call or task switch mechanism is used.

Processor 104 can also execute an application program of the
second instruction set. While executing this application program,
processor 104 can receive an event indication as in the previous example.
The event can be an exception, machine check or interrupt. After
receiving the event indication, processor 104 determines the source of the
particular event. Processor 104 determines the source of the particular
event by requesting the identification of the device creating the event
from a programmable interrupt controller in the computer system. Each
device has an event line and a number associated with it. Processor 104

then determines a descriptor entry number for the particular event.

WO 96/24895 PCT/US96/01516

-25-

The descriptor entry number can be determined by requesting the
information from the programmable interrupt controller. The
programmable interrupt controller adds the three-bit binary value of the
highest active bit in the interrupt service routine register to the base
address stored in an initialization command word register. The
programmable interrupt controller also transmits information indicating
the nature of the particular event. The information which is stored by
processor 104 in a control register or a plurality of control registers in
processor 104. Processor 104 receives the descriptor entry number and
determines the actual start memory address of the handler selector for
the event by multiplying the descriptor event number by four. Processor
104 then retrieves the handler selector at the start memory address from a
descriptor table and executes the instructions in the handler selector. In
executing the instructions in the handler selector, processor 104 retrieves
a value or a plurality of values from one or more control registers in
processor 104 which indicate the nature of the particular event. From the
value or plurality of values, processor 104 determines the actual start
memory address of the handler for the particular event. Processor 104
then retrieves the handler at the start memory address and executes the
instructions in the handler or the instructions referred to by the handler.
Processor 104 executes the instructions in the second instruction set
mode.

Figure 3 illustrates in block diagram form a processor of a third
embodiment of the present invention. Under this embodiment, processor

104 comprises instruction cache 320, demultiplexor 321, x86 decoder 322,

WO 96/24895 PCT/US96/01516

-26-
64 bit decoder 323, multiplexor 324, instruction set mode selector 325,
execution unit 326, register 327 and register 328. Instruction cache 320 is
coupled to external memory and receives instructions from external
memory. The instructions can be instructions of the first instruction set
or instructions of the second instruction set. Instruction cache 320 stores
the instructions until they are decoded and executed. At the appropriate
time for decoding an instruction, an individual instruction in instruction
cache 320 is transmitted through demultiplexor 321. Demultiplexor 321
selects either x86 decoder 322 for decoding of the instruction from
instruction cache 320 in the first instruction set mode or selects 64 bit
decoder 323 for decoding of the instruction from instruction 320 in the
second instruction set mode. The selection of demultiplexor 321 is based
on the signal received by demultiplexor 321 from instruction set mode
selector 325. A first signal from instruction set mode selector 325 causes
demultiplexor 321 to select x86 decoder 322 and the first instruction set
mode. A second signal from instruction set mode selector 325 causes
demultiplexor 321 to select 64 bit decoder 323 and the second instruction
set mode. When processor 104 initially powers up, processor 104 can
power up in the first instruction set mode or the second instruction set
mode depending on the initialization procedures. An initial value is
transmitted to instruction set mode selector 325 and instruction set mode
selector 325 in turn transmits the first signal or the second signal in
response to the value.

In this example, processor 104 powers up in the first instruction set

mode. Thus, demultiplexor 321 initially receives a first signal from

WO 96/24895 PCT/US96/01516

-27.

instruction set mode selector 325 and selects x86 decoder 322.
Instructions transmitted from instruction cache 320 through
demultiplexor 321 is decoded by x86 decoder 322. The instruction is then
transmitted to multiplexor 324. Like demultiplexor 321, multiplexor 324
is also controlled by instruction set mode selector 325. When multiplexor
324 receives a first signal from instruction set mode selector 325,
multiplexor 324 selects x86 decoder 322 as its input. On the other hand,
when multiplexor 324 receives a second signal from instruction set mode
selector 325, multiplexor 324 selects 64 bit decoder 323 as its input.

After multiplexor 324, the instruction is then transmitted to
execution unit 326. Execution unit 326 executes the decoded instruction.
Execution unit 326 can receive instructions from x86 decoder 322 or 64 bit
decoder 323. Execution unit 326 is also coupled to register 327 which
store values when processor 104 is in the first instruction set mode.
Execution unit 326 is also coupled to register 328 which stores values
when processor 104 is in the second instruction set mode. Thus, in
response to a x86mf, x86smf, or x86fmf instruction, execution unit 326 can
retrieve values from register 327 for use while executing processor
instructions of the second instruction set. Likewise, in response to a
x86mt, x86smt or x86fmt instruction, execution unit 326 can also store
values into register 327. When x86 decoder 322 decodes a jmpx
instruction, x86 decoder 322 sends a switch instruction to instruction set
mode selector 325. In response to this signal, instruction set mode
selector 325 transmits a second signal to demultiplexor 321 and

multiplexor 324. This second signal causes demultiplexor 321 to transmit

WO 96/24895 PCT/US96/01516

-28-

instructions from instruction cache 320 to 64 bit decoder 323. The second
signal also causes multiplexor 324 to select as its input 64 bit decoder 323.
Instructions from 64 bit decoder 323 are transmitted through multiplexor
324 to execution unit 326. When 64 bit decoder 323 decodes a x86jmp
instruction, 64 bit decoder 323 transmits a switch signal to instruction set
mode selector 325. In response to this signal, instruction set mode
selector 325 transmits a first signal to demultiplexor 321 and multiplexor
324. The first signal causes demultiplexor 321 to select x86 decoder 322
and causes multiplexor 324 to select x86 decoder 322 as its input. In this
manner, processor 104 returns back to the first instruction set mode.

Processor 104 can further comprise a jmpx disable register. The
jmpx disable register is coupled to x86 decoder 322 or instruction set
mode selector 325. When the jmpx disable register is set, the jmpx
instruction is nullified and a jmpx instruction results in a disabled 64 bit
ISA fault. Processor 104 does not switch to the second instruction set
mode in response to a jmpx instruction. Likewise, processor 104 can
further comprise a x86jmp disable register. The x86jmp disable register is
coupled to 64 bit decoder 323 or instruction set mode selector 325. When
the x86jmp disable register is set, the x86jmp instruction is nullified and a
x86jmp instruction results in a disabled x86 ISA fault. Processor 104 does
not switch to the first instruction set mode in response to a x86jmp
instruction.

Alternatively, register 327 stores values when processor 104 is in
the first instruction set mode and also stores values when processor 104 is

in the second instruction set mode. In this case, register 327 performs the

WO 96/24895 PCT/US96/01516

-29-

functions of register 328 and register 328 is eliminated or incorporated
into register 327. Thus, because one set of registers is being used, the
x86mt, x86mf, x86smt, x86smf, x86fmt and x86fmf instructions would not
be used.

Figure 4 illustrates in block diagram form a processor of a fourth
embodiment of the present invention. Under this embodiment, processor
104 comprises instruction set mode selector state machine 430, instruction
cache 432, decoder 433, execution unit 434, register 435, instruction cache
436, decoder 437, execution unit 438, and register 439. State machine 430
receives instructions from external memory. State machine 430 selects
either instruction cache 432 or instruction cache 436 based upon the
signal received from execution unit 434 or execution unit 438. When
execution unit 438 transmits a first signal to state machine 430, state
machine 430 selects instruction cache 432 and transmits instructions from
memory to instruction cache 432. Processor 104 decodes and executes
instructions in the first instruction set mode. When execution unit 436
transmits a second signal to state machine 430, state machine 430 selects
instruction cache 436 and transmits instructions from memory to
instruction cache 436. Here, processor 104 decodes and executes
instructions in the second instruction set mode.

Like the third embodiment, when processor 104 powers up, it can
power up in the first instruction set mode or the second instruction set
mode depending on the initialization procedures. If processor 104
powers up in the first instruction set mode, a first signal is initially sent

from execution unit 438 to state machine 430. On the other hand, if

WO 96/24895 PCT/US96/01516

-30-
processor 104 powers up in the second instruction set mode, a second
signal is transmitted from execution unit 434 to state machine 430.

In this embodiment, processor 104 powers up in the first
instruction set mode. Thus, an initial value is transmitted to execution
unit 438 causing execution unit 438 to transmit a first signal to state
machine 430. Instructions from external memory is transmitted through
state machine 430 to instruction cache 432. Instruction cache 432 stores
instructions of the first instruction set until the instructions are decoded
and executed by processor 104. At the appropriate time, individual
instructions are transmitted from instruction cache 432 to decoder 433.
Decoder 433 decodes instructions from instruction cache 432. The
instructions from instruction cache 432 are instructions of the first
instruction set. After the decoding of instructions of the first instruction
set, execution unit 434 executes the instructions. Execution unit 434 is
coupled to register 435 and stores values in register 435.

When execution unit 434 executes a jmpx instruction, execution
unit 434 sends a second signal to state machine 430. In response to the
second signal, state machine 430 selects instruction cache 436 as the
destination for following individual instructions. The subsequent
individual instructions are instructions of the second instruction set.
Instruction cache 436 stores the individual instructions from external
memory. At the appropriate time, decoder 437 retrieves individual
instructions from instruction cache 436 and decodes the instructions.
Execution unit 438 then executes the decoded instructions from decoder

437 in the second instruction set mode. Execution unit 438 is coupled to

WO 96/24895 PCT/US96/01516

-31-

register 439 and stores values in register 439. Execution unit 438 is also
coupled to execution unit 434 which is in turn coupled to register 435.
Thus, in response to a x86mf, x86smf, or x86fmf instruction, execution
unit 438 can retrieve values from register 435 for use while executing
processor instructions of the second instruction set. Likewise, in
response to a x86mt, x86smt or x86fmt instruction, execution unit 438 can
also store values into register 435. When execution unit 438 executes a
x86jmp instruction, it sends a first signal to state machine 430. In
response to the first signal, state machine 430 then selects instruction
cache 432 for subsequent instructions from external memory. In this
manner, processor 104 can switch back to the first instruction set mode.

. Processor 104 can further comprise a jmpx disable register. The
jmpx disable register is coupled to execution unit 434. When the jmpx
disable register is set, the jmpx instruction is nullified and a jmpx
instruction results in a disabled 64 bit ISA fault. Processor 104 does not
switch to the second instruction set mode in response to a jmpx
instruction. Likewise, processor 104 can further comprise a x86jmp
disable register. The x86jmp disable register is coupled to execution unit
438. When the x86jmp disable register is set, the x86jmp instruction is
nullified and a x86jmp instruction results in a disabled x86 ISA fault.
Processor 104 does not switch to the first instruction set mode in response
to a x86jmp instruction.

Alternatively, register 435 is coupled to both execution unit 434
and execution unit 438. Register 435 stores values when processor 104 is

in the first instruction set mode and also stores values when processor

WO 96/24895 PCT/US96/01516

-32-

104 is in the second instruction set mode. In this case, register 435
performs the functions of register 439 and register 439 is eliminated or
incorporated into register 435. Thus, because one set of registers is being
used, the x86mt, x86mf, x86smt, x86smf, x86fmt and x86fmf instructions
would not be used.

Figure 5 illustrates in block diagram form a processor of a fifth
embodiment of the present invention. Under this embodiment, processor
104 comprises demultiplexor 540, translator 541, instruction cache 542,
decoder 543, execution unit 544, register 545 and register 546.
Demultiplexor 540 is coupled to external memory and receives
instructions from external memory. The instructions can be instructions
of the first instruction set or instructions of the second instruction set.
Demultiplexor 540 selects either translator 541 for translating the
instructions from external memory into instructions of the second
instruction set or selects instruction cache 542 for storing the instructions
from external memory until they are decoded and executed. The
selection of demultiplexor 540 is based on the signal received by
demultiplexor 540 from decoder 543. The first signal from decoder 543
causes demultiplexor 540 to select translator 541 and the first instruction
set mode. A second signal from decoder 543 causes demultiplexor 540 to
select instruction cache 542 and the second instruction set mode. When
processor 104 initially powers up, processor 104 can power up in the first
instruction set mode or the second instruction set mode depending on the
initialization procedures. An initial value is transmitted to decoder 543

and decoder 543 in turn transmits the first signal or the second signal in

WO 96/24895 PCT/US96/01516

-33-

response to the value. In this example, processor 104 powers up in the
first instruction set mode. Thus, demultiplexor 540 initially receives a
first signal from decoder 543 and selects translator 541. Instructions
transmitted from external memory through demultiplexor 540 is
translated into instructions of the second instruction set by translator 541.
Translator 541 comprises circuitry for translating instructions of the first
instruction set into instructions of the second instruction set. The
translated instructions are then transmitted to instruction cache 542.
Instruction cache 542 stores the instructions until they are decoded and
executed. At the appropriate time for decoding instructions, instructions
in instruction cache 542 are transmitted to decoder 543 for decoding of
instructions from instruction cache 542. The instructions from instruction
cache 542 are instructions of the second instruction set. After decoding,
instructions of the second instruction set are transmitted to execution unit
544. Execution unit 544 executes the decoded instruction from decoder
543. Execution unit 544 is also coupled to register 545 which stores
values when processor 104 is in the first instruction set mode. Execution
unit 544 is also coupled to register 546 which stores values when
processor 104 is in the second instruction set mode. Thus, in response to
a x86mf, x86smf, or x86fmf instruction, execution unit 544 can retrieve
values from register 545 used while executing processor instructions of
the second instruction set. Likewise, in response to a x86mt, x86smt or
x86fmt instruction, execution unit 544 can also store values into register

545.

WO 96/24895 PCT/US96/01516

-34-

When decoder 543 decodes a jmpx instruction, decoder 543 sends
a second signal to demultiplexor 540. The second signal causes
demultiplexor 540 to select instruction cache 542 and to transmit
instructions from external memory to instruction cache 542. In this
manner, processor 104 switches to the second instruction set mode.
When decoder 543 decodes a x86jmp instruction, decoder 543 transmits a
first signal to demultiplexor 540. In response to the first signal,
demultiplexor 540 selects translator 541 and transmits instructions from
external memory to translator 541. In this manner, processor 104 can
return back to the first instruction set mode.

Processor 104 can further comprise a jmpx disable register. The
jmpx disable register is coupled to decoder 543. When the jmpx disable
register is set, the jmpx instruction is nullified and a jmpx instruction
results in a disabled 64 bit ISA fault. Processor 104 does not switch to the
second instruction set mode in response to a jmpx instruction. Likewise,
processor 104 can further comprise a x86jmp disable register. The x86jmp
disable register is coupled to decoder 543. When the x86jmp disable
register is set, the x86jmp instruction is nullified and a x86jmp instruction
results in a disabled x86 ISA fault. Processor 104 does not switch to the
first instruction set mode in response to a x86jmp instruction.

Alternatively, register 545 stores values when processor 104 is in
the first instruction set mode and also stores values when processor 104 is
in the second instruction set mode. In this case, register 545 performs the
functions of register 546 and register 546 is eliminated or incorporated

into register 545. Thus, because one set of registers is being used, the

WO 96/24895 PCT/US96/01516

-35-

x86mt, x86mf, x86smt, x86smf, x86fmt and x86fmf instructions would not
be used.

Figure 6 illustrates in block diagram form a processor of a sixth
embodiment of the present invention. The processor of the sixth
embodiment is similar to the processor of the fifth embodiment with the
following exceptions. Instruction cache 642 is coupled to external
memory. Demultiplexor 640 is coupled to instruction cache 642.
Translator 641 and decoder 643 are coupled to demultiplexor 640.
Decoder 643 is also coupled to translator 641. Execution unit 644 is
coupled to decoder 643. Register 645 and register 646 are coupled to
execution unit 644.

Instruction cache 642 receives instructions from external memory.
The instructions can be instructions of the first instruction set or
instructions of the second instruction set. Demultiplexor 640 receives
instructions from instruction cache 642. Demultiplexor 640 selects either
translator 641 for translating the instructions from instruction cache 642
into instructions of the second instruction set or selects decoder 643 for
decoding the instructions from instruction éache 642. The selection of
demultiplexor 640 is based on the signal received by demultiplexor 640
from decoder 643. The first signal from decoder 643 causes
demultiplexor 640 to select translator 641 and the first instruction set
mode. A second signal from decoder 643 causes demultiplexor 640 to
select decoder 643 and the second instruction set mode. When processor
104 initially powers up, processor 104 can power up in the first

instruction set mode or the second instruction set mode depending on the

WO 96/24895 PCT/US96/01516

-36-

initialization procedures. An initial value is transmitted to decoder 643
and decoder 643 in turn transmits the first signal or the second signal in
response to the value. In this example, processor 104 powers up in the
first instruction set mode. Thus, demultiplexor 640 initially receives a
first signal from decoder 643 and selects translator 641. Instructions
transmitted from instruction cache 642 through demultiplexor 640 is
translated into instructions of the second instruction set by translator 641.
Translator 641 comprises circuitry for translating instructions of the first
instruction set into instructions of the second instruction set. The
translated instructions are then transmitted to decoder 643. After
decoding, instructions of the second instruction set are transmitted to
execution unit 644. Execution unit 644 executes the decoded instruction
from decoder 643. Execution unit 644 is also coupled to register 645
which stores values when processor 104 is in the first instruction set
mode. Execution unit 644 is also coupled to register 646 which stores
values when processor 104 is in the second instruction set mode. Thus, in
response to a x86mf, x86smf, or x86fmf instruction, execution unit 644 can
retrieve values from register 645 used while executing processor
instructions of the second instruction set. Likewise, in response to a
x86mt, x86smt or x86fmt instruction, execution unit 644 can also store
values into register 645.

When decoder 643 decodes a jmpx instruction, decoder 643 sends
a second signal to demultiplexor 640. The second signal causes
demultiplexor 640 to select decoder 643 and to transmit instructions from

instruction cache 642 to decoder 643. In this manner, processor 104

WO 96/24895 PCT/US96/01516

-37-

switches to the second instruction set mode. When decoder 643 decodes
a x86jmp instruction, decoder 643 transmits a first signal to demultiplexor
640. In response to the first signal, demultiplexor 640 selects translator
641 and transmits instructions from instruction cache 642 to translator
641. In this manner, processor 104 can return back to the first instruction
set mode.

Processor 104 can further comprise a jmpx disable register. The
jmpx disable register is coupled to decoder 643. When the Jmpx disable
register is set, the jmpx instruction is nullified and a jmpx instruction
results in a disabled 64 bit ISA fault. Processor 104 does not switch to the
second instruction set mode in response to a jmpx instruction. Likewise,
processor 104 can further comprise a x86jmp disable register. The x86jmp
disable register is coupled to decoder 643. When the x86jmp disable
register is set, the x86jmp instruction is nullified and a x86jmp instruction
results in a disabled x86 ISA fault. Processor 104 does not switch to the
first instruction set mode in response to a x86jmp instruction.

Alternatively, register 645 stores values when processor 104 is in
the first instruction set mode and also stores values when processor 104 is
in the second instruction set mode. In this case, register 645 performs the
functions of register 646 and register 646 is eliminated or incorporated
into register 645. Thus, because one set of registers is being used, the
x86mt, x86mf, x86smt, x86smf, x86fmt and x86fmf instructions would not
be used.

Figure 7 illustrates in block diagram form a processor of a seventh

embodiment of the present invention. The processor of the seventh

WO 96/24895 PCT/US96/01516

-38-

embodiment is similar to the processor of the sixth embodiment with the
following exceptions. Instruction cache 742 is coupled to external
memory. Demultiplexor 740 is coupled to instruction cache 742.
Translator 741 and decoder 743 are coupled to demultiplexor 740.
Execution unit 744 is coupled to decoder 743 and translator 741. Register
745 and register 746 are coupled to execution unit 744.

Instruction cache 742 receives instructions from external memory.
The instructions can be instructions of the first instruction set or
instructions of the second instruction set. Demultiplexor 740 receives
instructions from instruction cache 742. Demultiplexor 740 selects either
translator 741 for translating and decoding the instructions from
instruction cache 742 or selects decoder 743 for decoding the instructions
from instruction cache 742. The selection of demultiplexor 740 is based
on the signal received by demultiplexor 740 from decoder 743 and
translator 741. The first signal from decoder 743 causes demultiplexor
740 to select translator 741 and the first instruction set mode. A second
signal from translator 741 causes demultiplexor 740 to select decoder 743
and the second instruction set mode. When processor 104 initially
powers up, processor 104 can power up in the first instruction set mode
or the second instruction set mode depending on the initialization
procedures. An initial value is transmitted to decoder 743 and translator
741. Decoder 743 or translator 741 in turn transmits the first signal or the
second signal in response to the value. In this example, processor 104
powers up in the first instruction set mode. Thus, demultiplexor 740

initially receives a first signal from decoder 743 and selects translator 741.

WO 96/24895 PCT/US96/01516

-39-

Instructions transmitted from instruction cache 742 through
demultiplexor 740 is translated and decoded by translator 741.

Translator 741 comprises circuitry for translating and decoding
instructions of the first instruction set. The translated and decoded
instructions are then transmitted to execution unit 744 which executes the
decoded instructions. Execution unit 744 is also coupled to register 745
which stores values when processor 104 is in the first instruction set
mode. Execution unit 744 is also coupled to register 746 which stores
values when processor 104 is in the second instruction set mode. Thus, in
response to a x86mf, x86smf, or x86fmf instruction, execution unit 744 can
retrieve values from register 745 used while executing processor
instructions of the second instruction set. Likewise, in response to a
x86mt, x86smt or x86fmt instruction, execution unit 744 can also store
values into register 745.

When trnaslator 741 receives a jmpx instruction, translator 741
sends a second signal to demultiplexor 740. The second signal causes
demultiplexor 740 to select decoder 743 and to transmit instructions from
instruction cache 742 to decoder 743. In this manner, processor 104
switches to the second instruction set mode. When decoder 743 decodes
a x86jmp instruction, decoder 743 transmits a first signal to demultiplexor
740. In response to the first signal, demultiplexor 740 selects translator
741 and transmits instructions from instruction cache 742 to translator
741. In this manner, processor 104 can return back to the first instruction

set mode.

WO 96/24895 PCT/US96/01516

-40-

Processor 104 can further comprise a jmpx disable register. The
jmpx disable register is coupled to translator 741. When the jmpx disable
register is set, the jmpx instruction is nullified and a jmpx instruction
results in a disabled 64 bit ISA fault. Processor 104 does not switch to the
second instruction set mode in response to a jmpx instruction. Likewise,
processor 104 can further comprise a x86jmp disable register. The x86jmp
disable register is coupled to decoder 743. When the x86jmp disable
register is set, the x86jmp instruction is nullified and a x86jmp instruction
results in a disabled x86 ISA fault. Processor 104 does not switch to the
first instruction set mode in response to a x86jmp instruction.

Alternatively, register 745 stores values when processor 104 is in
the first instruction set mode and also stores values when processor 104 is
in the second instruction set mode. In this case, register 745 performs the
functions of register 746 and register 746 is eliminated or incorporated
into register 745. Thus, because one set of registers is being used, the
x86mt, x86mf, x86smt, x86smf, x86fmt and x86fmf instructions would not
be used.

In the foregoing description, the invention is described with
reference to specific exemplary embodiments thereof. It will, however,
be evident that various modifications and changes may be made thereto
without departing from the broader spirit and scope of the invention as
set forth in the appended claims. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than a restrictive

sense.

WO 96/24895 PCT/US96/01516

-41-

Whereas many alterations and modifications of the present
invention will be comprehended by a person skilled in the art after
having read the foregoing description, it is to be understood that the
particular embodiments shown and described by way of illustration are
in no way intended to be considered limiting. Therefore, references to
details of particular embodiments are not intended to limit the scope of
the claims, which in themselves recite only those features regarded as

essential to the invention.

Thus, a method and apparatus for transitioning between

instruction sets in a processor has been described.

WO 96/24895 PCT/US96/01516

-42-
IN THE CLAIMS

What is claimed is:

1. A data processor comprising:

a bus interface unit capable of receiving a first instruction of a first
instruction set and a second instruction of a second instruction set,
wherein said first instruction and said second instruction originate from a
single computer program;

an internal bus coupled to said bus interface unit capable of
transmitting said first instruction of said first instruction set and said
second instruction of said second instruction set from said bus interface
unit; and

an instruction unit coupled to said internal bus capable of
decoding and executing said first instruction of a first instruction set and

said second instruction of a second instruction set.

2. The processor of claim 1 wherein said first instruction set is a
complex instruction set and said second instruction set is a reduced

instruction set.
3. The processor of claim 1 wherein said first instruction set is a 16
and 32 bit instruction set and said second instruction set is a 64 bit

instruction set.

4. The processor of claim 1 wherein said instruction unit comprises:

WO 96/24895 PCT/US96/01516

-43-

an instruction cache coupled to said internal bus capable of storing
said first instruction and said second instruction;

a first decoder coupled to said instruction cache capable of
decoding said first instruction of said first instruction set;

a second decoder coupled to said instruction cache capable of
decoding said second instruction of said second instruction set;

a multiplexor coupled to said first decoder and said second
decoder capable of selecting from said first decoder and said second
decoder in response to a signal; and

an execution unit coupled to said multiplexor capable of executing

a selected decoded instruction from said multiplexor.

5. The processor of claim 4 wherein said instruction unit further
comprises:

an instruction set mode selector coupled to said first decoder, said
second decoder and said multiplexor capable of transmitting said signal
to said multiplexor in response to an instruction to switch a current mode

from said first decoder or said second decoder.

6. The processor of claim 5 wherein said instruction unit further
comprises a demultiplexor coupled to said instruction cache capable of
selecting said first decoder or said second decoder in response to said
signal and wherein said instruction set mode selector is capable of

transmitting said signal to said demultiplexor in response to an

WO 96/24895 PCT/US96/01516

-44-

instruction to switch a current mode from said first decoder or said

second decoder.

7. The processor of claim 1 wherein said instruction unit comprises:

a first instruction cache coupled to said internal bus capable of
storing said first instruction;

a first decoder coupled to said first instruction cache capable of
decoding said first instruction;

a first execution unit coupled to said first decoder capable of
executing said first instruction, wherein said first execution unit is
responsive to a signal to initiate execution;

a second instruction cache coupled to said internal bus capable of
storing said second instruction;

a second decoder coupled to said second instruction cache capable
of decoding said second instruction; and

a second execution unit coupled to said second decoder capable of
executing said second instruction, wherein said second execution unit is

responsive to said signal to initiate execution.

8. The processor of claim 7 wherein said first execution unit
transmits to said second execution unit said signal to initiate execution in
response to a first switch instruction and wherein said first execution unit

suspends execution in response to said first switch instruction.

WO 96/24895 PCT/US96/01516

-45-
9. The processor of claim 7 wherein said second execution unit
transmits to said first execution unit said signal to initiate execution in
response to a second switch instruction and wherein said second

execution unit suspends execution in response to said second switch

instruction.

10. The processor of claim 1 wherein said instruction unit comprises:

a translator coupled to said internal bus capable of translating said
first instruction of said first instruction set into corresponding
instructions of said second instruction set;

an instruction cache coupled to said internal bus and coupled to
said translator capable of storing said second instruction of said second
instruction set and capable of storing said corresponding instructions of
said second instruction set; and

an execution unit coupled to said instruction cache capable of
executing said second instruction of said second instruction set and
capable of executing said corresponding instructions of said second

instruction set.

11. The processor of claim 10 wherein said instruction unit further
comprises:

a decoder coupled to said instruction cache capable of decoding
said second instruction of said second instruction set and capable of

decoding said corresponding instructions of said second instruction set.

WO 96/24895 PCT/US96/01516

-46-

12. The processor of claim 10 wherein said translator comprises a state

machine.

13. The processor of claim 10 wherein said translator comprises a logic

device.

14. The processor of claim 10 wherein said processor further
comprises a control read only memory device storing microcode
instructions and wherein said translator receives said microcode
instructions to translate said first instruction of said first instruction set

into corresponding instructions of said second instruction set.

15. The processor of claim 1 wherein said instruction unit comprises:

an instruction cache coupled to said internal bus and coupled to
said translator capable of storing said second instruction of said second
instruction set and capable of storing said first instruction of first
instruction set;

a translator coupled to said instruction cache capable of translating
said first instruction of said first instruction set into corresponding
instructions of said second instruction set;

a decoder coupled to said instruction cache and said translator
capable of decoding said second instruction of said second instruction set
and capable of decoding said corresponding instructions of said second

instruction set; and

WO 96/24895 PCT/US96/01516

-47-

an execution unit coupled to said decoder capable of executing
said second instruction of said second instruction set and capable of

executing said corresponding instructions of said second instruction set.

16. A computer system comprising;:

a bus providing communication links between components in said
computer system;

a keyboard controller coupled to said bus allowing coupling of a
keyboard to said computer system;

external memory coupled to said bus capable of storing
information; and

a microprocessor coupled to said external memory and said bus
capable of decoding and executing a first instruction of a first instruction
set and a second instruction of a second instruction set, wherein said first
instruction and said second instruction originate from a single computer

program.

17. The computer system of claim 16 wherein said first instruction set
is a complex instruction set and said second instruction set is a reduced

instruction set.

18. The computer system of claim 16 wherein said microprocessor
comprises:
an instruction cache capable of storing said first instruction and

said second instruction;

WO 96/24895 PCT/US96/01516

-48-

a first decoder coupled to said instruction cache capable of
decoding said first instruction of said first instruction set;

a second decoder coupled to said instruction cache capable of
decoding said second instruction of said second instruction set;

a first multiplexor coupled to said first decoder and said second
decoder capable of selecting from said first decoder and said second
decoder in response to a signal; and

an execution unit coupled to said multiplexor capable of executing

a selected instruction from said multiplexor.

19. The computer system of claim 16 wherein said microprocessor
comprises:

a first instruction cache capable of storing said first instruction;

a first decoder coupled to said first instruction cache capable of
decoding said first instruction;

a first execution unit coupled to said first decoder capable of
executing said first instruction, wherein said first execution unit is
responsive to a signal to initiate execution;

a second instruction cache capable of storing said second
instruction;

a second decoder coupled to said second instruction cache capable
of decoding said second instruction; and

a second execution unit coupled to said second decoder capable of
executing said second instruction, wherein said second execution unit is

responsive to said signal to initiate execution.

WO 96/24895 PCT/US96/01516

-49-

20. The computer system of claim 16 wherein said microprocessor
comprises:

a translator capable of translating said first instruction of said first
instruction set into corresponding instructions of said second instruction
set;

an instruction cache coupled to said translator capable of storing
said second instruction of said second instruction set and capable of
storing said corresponding instructions of said second instruction set;
and

an execution unit coupled to said instruction cache capable of
executing said second instruction of said second instruction set and
capable of executing said corresponding instructions of said second

instruction set.

21. The computer system of claim 20 wherein said microprocessor
further comprises:

a decoder coupled to said instruction cache capable of decoding
said second instruction of said second instruction set and capable of

decoding said corresponding instructions of said second instruction set.

22. Inaprocessor, a method for executing instructions of a computer
program comprising:
executing a first instruction of a first instruction set;

executing a first switch instruction;

WO 96/24895 PCT/US96/01516

-50-
switching from a first instruction set mode to a second instruction
set mode; and

executing a second instruction of a second instruction set.

23. The method of claim 22 wherein said first switch instruction is

jmpx.

24. The method of claim 22 wherein said first switch instruction is

x86jmp.

25. The method of claim 22 further comprising:

executing a second switch instruction;

switching from said second instruction set mode to said first
instruction set mode; and

executing a second instruction of said first instruction set.

26. The method of claim 22 wherein said second instruction of said
second instruction set is an instruction to move values from a register of

said first instruction set to a register of said second instruction set.

27. The method of claim 26 wherein said instruction to move values is

x86mf{.

28. The method of claim 26 wherein said instruction to move values is

x86smf.

WO 96/24895 PCT/US96/01516

-51-

29, The method of claim 26 wherein said instruction to move values is

x86fmf.

30. The method of claim 26 wherein said instruction to move values is

x86mt.

31. The method of claim 26 wherein said instruction to move values is

x86smt.

32. The method of claim 26 wherein said instruction to move values is

x86fmt.

33. Inaprocessor, a method for executing instructions of a computer
program comprising:

executing a first instruction of a first instruction set in a first
instruction set mode;

receiving a first interruption indication in said first instruction set
mode;

servicing said first interruption indication in a second instruction
set mode;

returning to said first instruction set mode;

receiving a second interruption indication in said first instruction

set mode; and

WO 96/24895 PCT/US96/01516

-52-

servicing said second interruption indication in said first

instruction set mode.

34. The method of claim 33 wherein said first instruction set mode is a
complex instruction set mode and said second instruction set mode is a

reduced instruction set mode.

35. The method of claim 33 wherein said first instruction set mode is a
reduced instruction set mode and said second instruction set mode is a

complex instruction set mode.

36. The method of claim 33 wherein said first instruction set mode is a
64 bit instruction set mode and said second instruction set mode is a 16

and 32 bit instruction set mode.

37. The method of claim 33 wherein returning to said first instruction
set mode comprises:

executing an IRET instruction.

38. The method of claim 33 wherein said first instruction set mode is a
16 and 32 bit instruction set mode and said second instruction set mode is

a 64 bit instruction set mode.

39. The method of claim 33 wherein servicing said first interruption

indication in a second instruction set mode comprises:

WO 96/24895 PCT/US96/01516

-53-

determining said first interruption;

determining a descriptor entry number for said first interruption;

storing a 64 bit intercept gate associated with said descriptor entry
number wherein said intercept gate refers to a memory address; and

executing a service routine in said 64 bit instruction set mode for

said first event starting at said memory address.

40. The method of claim 33 wherein servicing said second
interruption indication in said first instruction set mode comprises:
determining said second intérruption;
determining a descriptor entry number for said second
interruption;
storing a descriptor gate associated with said descriptor entry
number wherein said descriptor gate refers to a memory address; and
executing a service routine in said 16 and 32 bit instruction set

mode for said second event starting at said memory address.

41. The method of claim 33 wherein returning to said first instruction
set mode comprises:

executing an EVRET instruction.

42. A data processor for executing instructions of a computer program
comprising:
means for executing a first instruction of a first instruction set;

means for executing a first switch instruction;

WO 96/24895 PCT/US96/01516

-54-

means for switching from a first instruction set mode to a second
instruction set mode; and

means for executing a second instruction of a second instruction

set.

43. A data processor for executing instructions of a computer program
comprising:

means for executing a first instruction of a first instruction set in a
first instruction set mode;

means for receiving a first event indication in said first instruction
set mode;

means for servicing said first event indication in a second
instruction set mode;

means for returning to said first instruction set mode;

means for receiving a second event indication in said first
instruction set mode; and

means for servicing said second event indication in said first

instruction set mode.

PCT/US96/01516

WO 96/24895

1/7

vor
"HOSS320Hd

101

JOV4HIINI
a4yv08A3IN

004
sna

£0t
30IA30
3OVHOLS

SSYW

or

AHOW3W

I

DA

WO 96/24895 PCT/US96/01516

2/7

1000

210

. e 212
jmpx 4000

4000

216
211 Besmt

FIGURE 2

PCT/US96/01516

WO 96/24895

3/7

8t
H31S1934

1INN
NOILNO3X3

X7
H31S1934

_
_
_
[
_
|
|
[
_
| {9¢€
_
|
|
_
_
|
_
|

Tor _
HOLD313S
3QOW 135
TYNOILONYLSNI
: Toe
43402330
119 ¥9 1—
s T2
_. 2o
H3Q023Q
98X
HOSS3O0Hd

0t
3JHOVD
NOILONYLSNI

AHOW3W

PCT/US96/01516

WO 96/24895

4/7

(%7

INIHOVA
J1V1S
H010313S
3J00W 13S
TYNOILONHLSNI

(%72
H31Si934
8Ey %7 197
1NN H30003Q 3HOVD
NOILND3X3 NOILONYHLSNI
vEY (%2 [4%3
1INN H3a02%30a 3HOVD
NOILNJ3X3 NOILONYLSNI
%7
H31S193Y

HOSS300Hd

e e e e e e - e

AHOW3IW

PCT/US96/01516

WO 96/24895

2

SR

"31S1934

¥

1INN

NOILNO3X3

e
HOLVISNVHL

]

cvs

42

H31S193Y

3JHIVO

< ‘DI

NOILONHLSNI

AHOW3W

PCT/US96/01516

WO 96/24895

voT
g —
19
H31SI193Y
HOLYISNVHL
ZZ] [NZ]
LINN 4300930
NOILND3X3
(57
H3L1SI1934
HOSS300Hd

El

3HOVD
NOILONYHLSNI

—

AHOW3W

PCT/US96/01516

WO 96/24895

4315193y

142

LINN
NOILND3X3

HOLYISNVHL

SvZ
H31S1934

L 1

571
4300030

vl

 3HOVD
NOILONYLSNI

'llllllllll"lll'lu‘lllll'oll]

AHOW3W

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/01516

A. CLASSIFICATION OF SUBJECT MATTER
[PC(6) : GO6F 9/22, 9/455
US CL : 395/375, 395/800
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum docume- ‘ation searched (classification system followed by classification symbols)
US. : 395/375, 395/800

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds scarched

Electronic data base consulted during the international search (name of data base and, where practicable, scarch terms used)

APS DATABASES (USPAT, JPOABS):
searched — (first instruction set) and (second instruction set)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X | US, A, 4,839,797 (KATORI ET AL.) 13 June 1989 1,2,16
Abstract, figures 1-4(c), col. 4 line 4-et seq. ' 22,42,43
- 3,10-15
Y 17,20,21
23-41

D Further documents arc listed in the continuation of Box C. D Scc patent family annex.

hd Special gorics of cited d ™ later d bliak ‘llhh i ﬁlqd-corpnm;'y
date and 0ot in conflict with the jon but cited to und
‘A d defining the genernl of the hich i considered
wo‘:ell::o‘:ﬁl_l 8 state ast which is mot Mwwmhm
E° earlier document published om or after the intcrnational filing date X Gocumcnt of particul relevance; e chimod invention ces ‘:;
L wmﬂmm‘:zwmu)wm vh&edm-hk-dua
to establish publication asother citation or
"Y* document of ; the claimed invention cannot be
special reason (as specified) - hpl.l::l:r:lﬂm. .cq nvu o
0 dmrefa'r'u.lo-mddichuu:. use, exhibition or other combined with one or more other such documents, such combinatioa
being obvious 10 a persoa skilled in the art
P document published 0 the international date but lnter tham g ami
doc p‘zuc prioe filing & document member of the same patend amily
Date of the actual completion of the international search Date of mailing of the international search report
08 APRIL 1996 18 APR1996
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT
e 6. D.C. 20231 ROBERT B. HARRELL
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9600

Form PCT/ISA/210 (second sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

