DEMANDE DE BREVET D'INVENTION

Date de dépôt : 20.11.03.
Priorité :

Demandeur(s) : SOLVAY SA Société anonyme belge — BE.

Inventeur(s) : KRAFFT PHILIPPE, GILBEAU PATRICK, GOsselIN BENOIT et CLASSENS SARA.

Titulaire(s) :

Mandataire(s) : SOLVAY SA.

UTILISATION DE RESSOURCES RENOUVELABLES.

Utilisation de glycérol obtenu à partir de matières premières renouvelables, comme produit de départ pour la fabrication de composés organiques chlorés.
Utilisation de ressources renouvelables

La présente invention concerne l’utilisation de ressources renouvelables.

Il est connu que les ressources naturelles pétrochimiques, par exemple le pétrole ou le gaz naturel disponibles sur la terre sont limitées. Or, ces ressources sont utilisées pour la fabrication de carburants et comme produit de départ pour la fabrication d’une variété importante de composés organiques utiles tels que des monomères ou réactifs pour la fabrication de matières plastiques, par exemple, l’épichlorhydrine ou le dichloropropanol (voir par exemple Ullmann’s Encyclopedia of Industrial Chemistry, 5. ed., Vol. A9, p.539-540).

Selon des procédés connus de fabrication de dichloropropanol, on obtient généralement le produit en solution fortement diluée titrant de 5 à 15 % en poids. Il est alors particulièrement onéreux de le purifier. Par ailleurs, l’isomère majoritaire obtenu selon de tels procédés est le 2,3-dichloropropanol.

Il était souhaitable de trouver des utilisations et procédés permettant de réduire la consommation de ressources naturelles pétrochimiques, en particulier pour les utilisations précitées.

Il était aussi souhaitable de trouver des procédés permettant de réutiliser des sous-produits d’autres procédés de fabrication de manière à minimiser la quantité globale de sous-produits devant être éliminés ou détruits.

L’invention concerne dès lors l’utilisation de glycérol obtenu à partir de matières premières renouvelables comme produit de départ pour la fabrication de composés organiques.

L’utilisation selon l’invention permet d’accéder à un grand nombre de composés organiques tout en minimisant la consommation de ressources pétrolières naturelles. Le glycérol issu de matières premières renouvelables peut être utilisé de manière aisée et efficace dans des réactions de fabrication de composés organiques, en particulier de composés organiques comprenant un nombre d’atomes de carbone qui est un multiple de 3. Si nécessaire, le glycérol brut peut être épuré de manière aisée en vue de sa mise en œuvre lors de la fabrication de composés organiques.

Par « glycérol obtenu à partir de matières premières renouvelables » on entend désigner en particulier du glycérol obtenu au cours de la fabrication de biodiesel ou encore du glycérol obtenu au cours de transformations de graisses ou huiles d’origine végétale ou animale en général telles que des réactions de
saponification, de transestérification ou d’hydrolyse. Un glycérol particulièrement adapté peut être obtenu lors de la transformation de graisses animales. Un autre glycérol particulièrement adapté peut être obtenu lors de la fabrication de biodiesel.

Par opposition, le glycérol synthétique est généralement obtenu à partir de ressources pétrochimiques.

Dans l’utilisation selon l’invention, le glycérol peut être un produit brut ou un produit épuré. Lorsque le glycérol est un produit brut, il peut comprendre par exemple de l’eau et un chlorure de métal, qui est de préférence choisi parmi le NaCl, le KCl, et le sulfate de sodium. Le produit brut peut contenir également des acides gras, des esters d’acides gras tels qu’en particulier des monoglycérides ou des diglycérides, éventuellement en combinaison avec de l’eau et/ou le chlorure de métal.

Dans l’utilisation selon l’invention, le produit brut comprend généralement au moins 40% en poids de glycérol. Souvent, le produit brut comprend au moins 50% en poids de glycérol. De préférence, il comprend au moins 70% en poids de glycérol. Souvent, le produit brut comprend au plus 89% en poids de glycérol. Typiquement, il comprend au plus 85% en poids de glycérol.

Dans l’utilisation selon l’invention, le produit brut comprend généralement au moins 10% en poids d’eau ou en l’absence d’autres composés, au moins 11% en poids d’eau. Souvent, le produit brut comprend au moins 14% en poids d’eau. Dans l’utilisation selon l’invention, le produit brut comprend généralement au plus 50% en poids d’eau ou en l’absence d’autres composés, au plus 60% en poids d’eau. Souvent, le produit brut comprend au plus 30% en poids d’eau, de préférence au plus 21% en poids d’eau.

Le cas échéant, le produit brut présente généralement une teneur en chlorure de métal d’au moins 1% en poids, de préférence supérieure ou égale à environ 3% en poids. Le cas échéant, le produit brut présente généralement une teneur en chlorure de métal d’au plus 10% en poids, de préférence inférieure ou égale à environ 5% en poids.

Lorsqu’on met en œuvre dans l’utilisation selon l’invention du glycérol épuré, on l’obtient au départ du produit brut par une ou plusieurs opérations d’épuration telles qu’une distillation, une évaporation, une extraction, ou encore une opération de concentration suivie d’une opération de séparation telle qu’une décantation, une filtration ou une centrifugation. Une opération de distillation
donne de bons résultats. On peut également procéder à une opération de séchage du produit brut ou du produit issu des opérations d’épuration.

Dans l’utilisation selon l’invention, le produit épuré comprend généralement au moins 80% en poids de glycérol. De préférence, il comprend au moins 90% en poids de glycérol. Souvent, le produit épuré comprend au plus 99,9% en poids de glycérol. Il peut comprendre au plus 97% en poids de glycérol. Il peut également comprendre au plus 95% en poids de glycérol.

Dans l’utilisation selon l’invention, le produit épuré comprend généralement au moins 0,1% en poids d’eau. Dans l’utilisation selon l’invention, le produit épuré comprend généralement au plus 20% en poids de eau. Souvent, le produit épuré comprend au plus 10% en poids de eau. De préférence il comprend au plus 5% en poids d’eau. Dans une variante particulière, le produit épuré comprend au plus 3% en poids de eau.

Dans une variante de l’utilisation selon l’invention, le glycérol contient au moins un autre alcool, choisi de préférence parmi le méthanol et l’éthanol. La teneur en alcool dans le produit épuré peut être par exemple d’au moins 10 mg/kg. Généralement cette teneur est inférieure ou égale à 10% en poids. Une teneur en autre alcool inférieure ou égale à 1000 mg/kg est préférée.

L’utilisation selon l’invention s’applique en particulier à la fabrication de composés organiques comprenant un nombre d’atomes de carbone qui est un multiple de 3. Dans un premier mode de réalisation préféré, le composé organique comprend 3 atomes de carbone. Dans un deuxième mode de réalisation préféré, les composés organiques comprennent 6, 9, 12, 15 ou 18 atomes de carbone, de préférence 6, 9 ou 12 atomes de carbone.

L’utilisation selon l’invention s’applique également en particulier à la fabrication de composés organiques oxygénés comprenant de préférence un nombre d’atomes de carbone tel que décrit ci-avant.

L’utilisation selon l’invention s’applique de manière particulièrement préférée à la fabrication de composés chlorés tels que le dichloropropanol et l’épichlorohydrine. De manière surprenante, l’utilisation selon l’invention permet d’accéder de manière économique à ces composés au départ de ressources renouvelables.

L’invention concerne dès lors aussi un procédé de fabrication d’un composé organique comprenant l’utilisation selon l’invention.

L’invention concerne dès lors aussi en particulier un procédé de fabrication d’un composé organique chloré, selon lequel on utilise, conformément à
l'utilisation selon l'invention, du glycérol obtenu à partir de matières premières renouvelables et on met ledit glycérol en contact avec au moins un agent de chloration. Il est entendu que les procédés de fabrication décrits ci-après peuvent également être mis en œuvre avec du glycérol en général et ne sont pas limités à la mise en œuvre préférée de glycérol obtenu à partir de matières premières renouvelables.

Dans le procédé de fabrication d'un composé organique chloré selon l'invention l'agent de chloration peut être un agent de chloration oxydative ou substitutive. Un agent de chloration substitutive est préféré.

Parmi les agents de chloration oxydative, citons en particulier le chlore.

Parmi les agents de chloration substitutive, citons en particulier un agent de chloration comprenant du chlorure d'hydrogène.

Cet agent de chloration est particulièrement avantageux, puisqu'il est souvent obtenu comme sous-produit en synthèse organique de chloration, d'élimination ou de substitution, ou encore par combustion. La présente invention permet une valorisation de ce sous-produit.

Dans une première variante, l'agent de chloration est du chlorure d'hydrogène substantiellement anhydre.

Cette variante est particulièrement avantageuse lorsque la fabrication est installée sur un même site avec une fabrication de chlorure d'hydrogène, par exemple une fabrication de chlorure de vinyle ou du 4,4-Methylenediphenyl diisocyanate (MDI) qui fournit du chlorure d'hydrogène comme sous-produit.

Dans une deuxième variante, l'agent de chloration est une solution aqueuse de chlorure d'hydrogène. Dans ce cas, la teneur de la solution en chlorure d'hydrogène est généralement d'au moins 15% en poids. De préférence, cette teneur est supérieure ou égale à 20% en poids. Dans ce cas, la teneur de la solution en chlorure d'hydrogène est généralement d'au plus 37% en poids.

Cet aspect particulier permet la valorisation d'acide chlorhydrique de basse qualité, issu par exemple de la pyrolyse de composés organiques chlorés ou ayant été utilisé pour le décapage de métaux.

Dans un aspect particulier, on utilise de l'acide chlorhydrique concentré, comprenant généralement de 28 à 37% en poids de chlorure d'hydrogène comme source primaire de l'agent de chloration et on sépare ledit acide chlorhydrique concentré, par exemple par évaporation, en au moins deux fractions, la première étant constituée essentiellement de chlorure d'hydrogène anhydre et la deuxième comprenant du chlorure d'hydrogène et de l'eau dans des proportions dans
lesquelles ils forment un azéotrope, ledit azéotrope étant constitué, à une
pression de 101,3 kPa de 19 à 25% de chlorure d’hydrogène, et de 75 à 81% en
poids d’eau, en particulier d’environ 20% en poids de chlorure d’hydrogène et
d’environ 80% d’eau.

Cet aspect particulier permet l’utilisation d’un agent de chloration
transportable de manière aisé et en permettant un contrôle efficace de la
teneur en eau dans le milieu réactionnel, en particulier lorsque la réaction entre le
glycérol et l’agent de chloration est effectuée en plusieurs étapes.

Le procédé de fabrication d’un composé organique chloré selon l’invention
est généralement effectué dans un réacteur réalisé en, ou recouvert de, matériaux
résistants dans les conditions de la réaction aux agents de chloration, en
particulier au chlorure d’hydrogène.

À titre de matériau approprié, on peut citer par exemple l’acier émaillé. Les
polymères peuvent également être utilisés Parmi les polymères, les polyéthylènes
tels que le polypropylène et en particulier les polymères fluorés tels que le
polyéthylène de fluoroéthylène, le polyfluorure-de-vinylidène et le
poly(perfluoropropylyléthyl) et les polymères comprenant du soufre tels que
les polysulfones ou polysulfides, en particulier aromatiques conviennent bien.

Les revêtements au moyen de résines peuvent utilement être utilisés, parmi
celles-ci les résines époxydes ou les résines phénoliques conviennent
particulièrement bien.

Certains métaux ou leurs alliages peuvent aussi convenir. Citons en
particulier le tantale, le titane, le cuivre, l’or et l’argent, le nickel et le
molybdène, en particulier des alliages contenant du nickel et du molybdène. Ils
peuvent être utilisés soit dans la masse, soit sous forme de clade ou encore par un
procédé de recouvrement quelconque.

On peut également mettre en œuvre des céramiques ou métallocéramiques
ainsi que des matériaux réfractaires.

Pour certaines pièces particulières, par exemple des échangeurs de chaleur,
le graphite, imprégné ou non est particulièrement bien adapté.

Dans le procédé de fabrication d’un composé organique chloré selon
l’invention, on peut effectuer la réaction entre le glycérol et l’agent de chloration
en la présence ou en l’absence de catalyseur. On préfère effectuer la réaction en
présence d’un catalyseur approprié.

Dans ce cas, on met avantageusement en œuvre un catalyseur à base
d’acide carboxylique ou de dérivés d’acide carboxylique tels qu’un anhydride
d’acide carboxylique, un sel d’acide carboxylique ou un ester d’acide carboxylique. L’acide carboxylique dans le catalyseur comprend généralement de 1 à 20 atomes de carbone. De préférence, il comprend 1, 2, 3, 4, 5, 6, 7 ou 8 atomes de carbone. L’acide carboxylique contient de préférence plus de 4 atomes de carbone. Un acide ou dérivé d’acide présentant un point d’ébullition atmosphérique supérieur ou égal à 200°C, de préférence supérieur ou égal à 220°C convient bien. De préférence, cet acide ne forme pas d’azéotrope avec l’eau. Cette variante permet de soutirer l’eau et le composé organique chloré produit tout en conservant la quasi-totalité du catalyseur dans le milieu réactionnel et de particulièrement bonnes conversions de glycérol en produit désiré peuvent être obtenues.

Des exemples particuliers de catalyseurs sont à base d’au moins un acide carboxylique choisi parmi l’acide acétique, l’acide formique, l’acide propionique, l’acide butyrique, les acides gras et les acides carboxyliques aromatiques tels que l’acide benzoïque, éventuellement substitués.

Dans un premier mode de réalisation préféré, le catalyseur est à base d’acide acétique.

Dans un deuxième mode de réalisation préféré, le catalyseur est à base d’acide benzoïque substitué. Dans ce mode de réalisation, le cycle aromatique porte souvent au moins un substituant en position 2 ou 4. Ce substituant est avantageusement parmi les groupements capteurs mésomérique et inductif tels qu’un groupement nitro, parmi les groupements donneurs mésomérique et capteurs inductifs tel qu’un groupement hydroxy, un groupement alcoxy, tel qu’un groupement méthoxy ou les halogènes tels que le chlore et le fluor, ou un groupement amino éventuellement alkylé et parmi ceux-ci en particulier un groupement di- ou trialkylamino.

Des exemples spécifiques de catalyseurs sont choisis parmi l’acide salicylique, l’acide 4-chlorobenzoïque, l’acide 2,4-dichlorobenzoïque, l’acide 4-nitrobenzoïque et l’acide 2,4-dinitrobenzoïque.

Dans un troisième mode de réalisation préféré, le catalyseur est à base d’acide gras. L’acide octanoïque est un exemple préféré d’un tel acide.

En particulier, le deuxième et le troisième mode de réalisation préférés permettent d’obtenir un bon rendement en produit désiré et de séparer ce produit de manière aisée du milieu réactionnel et du catalyseur.

Dans le procédé selon l’invention, la réaction est généralement effectuée à une température d’au moins 20°C. Souvent cette température est d’au moins
60°C. De préférence, elle est d'au moins 80°C. Une température supérieure ou égale à environ 90°C est plus particulièrement préférée. Dans le procédé selon l'invention, la réaction est généralement effectuée à une température d'au plus 160°C. Souvent cette température est d'au plus 140°C. De préférence, elle est d'au plus 120°C.

Dans le procédé selon l'invention, la réaction est généralement effectuée à une pression d'au moins 0,3 bar. Souvent la réaction est effectuée à une pression d'au moins 0,5 bar. De préférence, cette pression est supérieure ou égale à environ 1 bar (pression atmosphérique). Dans le procédé selon l'invention, la réaction est généralement effectuée à une pression d'au plus 100 bar. Souvent, cette pression est d'au plus 20 bar. De préférence, elle est d'au plus 10 bar.

Dans un premier aspect préféré, on effectue la réaction sous un vide léger tel que décrit ci-dessus. Ceci permet en particulier d'éliminer l'eau du milieu réactionnel au fur et à mesure de sa formation ou de la progression de la réaction.

Dans un deuxième aspect préféré, on effectue la réaction sous une surpression telle que décrite ci-dessus. Ceci permet en particulier de maintenir, le cas échéant, une concentration élevée en CIH dans le réacteur et d'augmenter ainsi la vitesse de réaction.

Dans un procédé en continu, le temps de séjour, qui est le rapport entre le volume de milieu liquide dans le réacteur et le débit volumique des réactifs, est généralement supérieur ou égal à 1 heures. Avantageusement, le temps de séjour est supérieur ou égal à 5 heures. Dans un procédé en continu, le temps de séjour, qui est le rapport entre le volume de milieu liquide dans le réacteur et le débit volumique des réactifs, est généralement inférieur ou égal à 50 heures. Dans un procédé discontinu, la durée de la réaction est généralement de 1 à 20 heures.

Dans le procédé de fabrication d'un composé organique chloré selon l'invention, on obtient de préférence au moins du dichloropropanol à titre de composé organique chloré.

Par dichloropropanol, on entend généralement un mélange d'isomères constitué essentiellement de 1,3-dichloropropanol et de 2,3-dichloropropanol.

Dans le procédé de fabrication d'un composé organique chloré selon l'invention on obtient de manière surprenante une sélectivité élevée en 1,3-dichloropropanol lequel isomère est particulièrement approprié comme produit de départ pour une déshydrochloration en vue de la fabrication d'épichlorhydrine.
Dans cet aspect du procédé de fabrication d’un composé organique chloré selon l’invention, le milieu réactionnel comprend généralement de 10 à 95 % en poids de dichloropropanol. De préférence, il comprend de 50 à 90 % en poids de dichloropropanol.

Dans le procédé de fabrication d’un composé organique chloré selon l’invention, le milieu réactionnel comprend généralement de 1 à 50 % en poids d’eau. Souvent, il comprend de 1 à 15 % en poids d’eau. De préférence, il comprend au plus 10 % en poids d’eau. Une teneur en eau inférieure ou égale à environ 5 % en poids est plus particulièrement préférée.

Dans une variante, on effectue le procédé de fabrication du composé organique chloré en présence d’un solvant organique tel qu’un solvant organique chloré, un alcool approprié, une cétone, un ester ou un éther.

La quantité de composés lourds produits à la synthèse de chlorodihydroxypropane et du dichloropropanol au départ de glycérol et de chlorure d’hydrogène peut être notablement réduite par l’utilisation d’un solvant non aqueux miscible avec le glycérol et les différents produits de réactions. Des exemples particuliers de tels solvants non réactifs sont le dichloropropanol, le dioxanne, le phénol et le crésol. Le chlorodihydroxypropane est également approprié comme diluant du glycérol dans le but de produire du dichloropropanol. Un mélange de tels solvants convient également et les mélanges de chlorodihydroxypropane et de dichloropropanol sont particulièrement préférés pour la production de dichloropropanol au départ de glycérol. L’effet du solvant est particulièrement avantageux si la teneur en glycérol dans le milieu réactionnel est inférieure ou égal à 50 % massiques par rapport à la masse totale du milieu réactionnel et particulièrement bon si cette concentration est de moins de 30 %. Elle est avantageusement inférieure à 10 % poids.

Dans cette variante, la teneur en solvant dans le milieu réactionnel est généralement de 10 à 95 % en poids, de préférence de 30 à 80% en poids.

Dans une autre variante du procédé de fabrication de composé organique chloré selon l’invention, on effectue un stripping à la vapeur, en particulier à la vapeur d’eau. Dans ce cas, on peut obtenir une fraction contenant de 1 à 5, de préférence de 2 à 3 mol/l de composé organique chloré, en particulier de dichloropropanol.

Dans une variante préférée, on effectue un soutirage continu ou périodique d’une fraction comprenant au moins de l’eau et du composé organique chloré, en
particulier du dichloropropanol. Ladite fraction peut également contenir du chlorure d’hydrogène. De préférence, la fraction est soutirée en continu au fur et à mesure de la formation de ses constituants. La fraction obtenue peut être soumise ultérieurement à une opération de décantation.

Le dichloropropanol, en particulier le 1,3-dichloropropanol forme un azéotrope et/ou pseudoazéotrope avec l’eau et le chlorure d’hydrogène. L’invention concerne aussi cette composition azéotropique ou pseudo-azéotropique.

Dans cet aspect du procédé de fabrication d’un composé organique chloré selon l’invention, on récupère généralement au moins une fraction comprenant de 50 à 95 % en poids de dichloropropanol et au plus de 50 % en poids d’eau. De préférence, cette fraction comprend de 75 à 99,9 %, souvent de 75 à 99% en poids de dichloropropanol et de 0,01 à 25 %, souvent de 1 à 25% en poids d’eau.

La récupération est de préférence effectuée par distillation ou évaporation.

On peut recycler d’autres fractions obtenues lors de cette étape, comprenant par exemple du monochloropropandiol, et éventuellement du glycérol et du catalyseur, vers la réaction avec l’agent de chloration. On peut séparer en outre au moins une fraction contenant des sous-produits lourds de la réaction, tels que des polyglycérides chlorés, qui peuvent être détruites ou éventuellement être mises en œuvre dans un procédé de fabrication de polyglycérides, par exemple par déchloration.

La distillation ou évaporation est généralement effectuée à une température d’au moins 20°C. Souvent cette température est d’au moins 60°C. De préférence elle est d’au moins 70°C. La distillation ou évaporation est généralement effectuée à une température d’au plus 180°C. De préférence cette température est d’au plus 140°C.

La distillation ou évaporation est généralement effectuée à une pression supérieure à 0,001 bar. De préférence, cette pression est supérieure ou égale à environ 0,003 bar. La distillation ou évaporation est généralement effectuée à une pression d’au plus 1 bar. Souvent, cette pression est d’au plus 0,5 bar. De préférence, elle est d’au plus 0,2 bar.

L’opération de distillation ou évaporation peut être effectuée soit au moyen de colonnes à distiller, soit au moyen d’évaporateurs, d’évaporateurs à film ou encore d’évaporateurs à film raclé. Les fractions valorisables des résidus peuvent être séparées de ceux-ci avantageusement au moyen d’un évaporateur à film raclé avec condenseur intérieur ou extérieur.
Dans une variante particulière, on effectue la fabrication de dichloropropanol selon un procédé comprenant :
 (a) une première étape de réaction dans laquelle on met en contact du glycérol avec l’agent de chloration de manière à obtenir une fraction de produits comprenant au moins du chloropropandiol ;
 (b) on soumet éventuellement au moins une partie de la fraction de produits à une opération de séchage ;
 (c) on introduit au moins une partie de la fraction de produits éventuellement séchée dans une deuxième étape de réaction dans laquelle on fait réagir au moins une partie du chloropropandiol avec de l’agent de chloration.

Les étapes (a) et (c) dans cette variante sont de préférence effectuées dans des conditions et avec les préférences telles que décrites plus haut pour le procédé de fabrication de composé organique chloré selon l’invention. Toutefois on préfère effectuer la réaction de l’étape (a) en présence d’eau en une concentration allant de préférence de 20 à 80% en poids par rapport au poids total du milieu réactionnel.

L’étape (b) peut être réalisée, par exemple, par une opération de stripping dans au moins un des réacteurs des étapes (a) ou (c) ou au moyen d’un évaporateur placé sur une conduite de recirculation extérieure au réacteur.

Suivant une autre variante préférée, l’eau est éliminée par une technique membranaire.

Le procédé de fabrication de composé organique, en particulier de dichloropropanol selon l’invention peut être effectué, par exemple dans des réacteurs en cascade, dans au moins une colonne à plateaux ou dans au moins une colonne à bulles ou d’un assemblage de tels réacteurs.

Les réacteurs peuvent être utilement du type agité soit au moyen d’une agitation interne, soit au moyen d’une conduite de recirculation extérieure au réacteur.

Lorsque, dans le procédé selon l’invention, on chauffe le milieu réactionnel, le chauffage peut être obtenu par exemple au moyen d’une double enveloppe ou au moyen d’un échangeur de chaleur interne. De manière préférée, le chauffage est obtenu au moyen d’un échangeur de chaleur sur conduite de recirculation extérieure au réacteur.

Lorsqu’on met en œuvre du CIH anhydre, on préfère diriger un flux liquide comprenant le glycérol à contre-courant par rapport au flux de CIH. Lorsqu’on opère en plusieurs réacteurs on procède avantageusement à un
séchage du CIH entre deux réacteurs, par exemple par adsorption sur un solide approprié, tel que le tamis moléculaire ou par osmose inverse à travers une membrane appropriée.

Ce mode particulier de réalisation du procédé selon l’invention permet d’obtenir de manière particulièrement économique du dichloropropanol concentré présentant souvent une teneur en dichloropropanol supérieure ou égale à 90% en poids par rapport au poids total du dichloropropanol. On peut obtenir par cette voie le 1,3 dichloropropanol à titre d’isomère majoritaire avec une pureté isomérique supérieure à 80 %.

Dans un aspect de réalisation particulier de la présente invention, lorsqu’on obtient du dichloropropanol dans le procédé de fabrication de composé organique chloré selon l’invention on peut soumettre une partie de ce dichloropropanol à une opération de déshydrochloration en présence d’au moins un autre alcool, plus particulièrement en présence de polyols, comme par exemple du bis-phénol A, de manière à obtenir des résines dites époxy ou des monomères utilisables de celles-ci. L’isomère majoritaire du procédé de fabrication de dichloropropanol selon l’invention, le 1,3 dichloropropanol convient particulièrement bien à cette opération puisqu’il permet de conserver une structure linéaire au polyère ou monomère ainsi obtenu. Ceci n’est pas le cas de l’isomère 2,3 obtenu majoritairement par les procédés industriels actuels.

L’invention concerne aussi l’utilisation d’un dichloropropanol contenant au moins 50% en poids de 1,3-dichloropropanol par rapport à la totalité du dichloropropanol comme produit de départ pour la fabrication de composés organiques tels qu’en particulier l’épichlorhydrine ou des résines époxy. Dans cette utilisation, la teneur en 1,3-dichloropropanol est souvent supérieure ou égale à 75% en poids par rapport à la totalité du dichloropropanol. De préférence, cette teneur est supérieure ou égale à 80% en poids. De bons résultats ont été obtenus avec un dichloropropanol contenant au plus environ 99% en poids, voire au plus environ 95% en poids de 1,3-dichloropropanol par rapport à la totalité du dichloropropanol. On peut également mettre en œuvre du dichloropropanol constitué essentiellement de 1,3-dichloropropanol.

Dans un mode de réalisation particulier, lorsqu’on obtient du dichloropropanol dans le procédé de fabrication de composé organique chloré selon l’invention on soumet de préférence ultérieurement au moins une partie de ce dichloropropanol à une opération de déshydrochloration de manière à obtenir de l’épichlorhydrine.
Les procédés de fabrication d'épichlorhydrine généralement utilisés, par exemple au départ de chlorure d'allyle, produisent de l'épichlorhydrine contenant des impuretés organiques chlorées, telles que par exemple le trichloropropane, le trichloropropène, ou le 2-chloroprop-2-ène-1-ol, impuretés qui présentent des inconvénients lors de la mise en œuvre de l'épichlorhydrine dans certaines qualités de résines époxy. Ce genre d’impuretés est présent, le cas échéant, en concentration fortement réduite dans l’épichlorhydrine obtenue selon l’invention. Le procédé selon l’invention permet donc une fabrication d’épichlorhydrine de pureté élevée et contenant moins d’impuretés gênantes.

Nous avons constaté que le 1,3-dichloropropanol pouvant être obtenu majoritairement selon l’invention possédait une réactivité lors d’une réaction de déshydrochloration en particulier une déshydrochloration basique plus grande que son isomère le 2,3-dichloropropanol obtenu majoritairement par les procédés industriels actuels. Cet aspect permet d’améliorer la sélectivité de l’opération de déshydrochloration en réduisant le temps de séjour des espèces dans le milieu de synthèse.

Par ailleurs, le procédé selon l’invention permet de réduire le volume des effluents aqueux d’une fabrication d’épichlorhydrine ainsi que de minimiser la teneur de ces effluents en sous-produits organochlorés tels que par exemple des éthers chlorés.

Le 1,3-dichloro-propan-2-ol est étonnamment peu réactif avec l’épichlorhydrine et ne donne pas lieu à la formation d’une quantité significative de sous-produits organochlorés lors de la synthèse d’épichlorhydrine.

L’utilisation de 1,3-dichloropropanol purifié, en particulier présentant les teneurs en 1,3-dichloropropanol spécifiées plus haut, dans une synthèse d’épichlorhydrine permet d’améliorer davantage la qualité des effluents de fabrication en réduisant de manière dramatique la formation d’impuretés chlorés.

Suivant un mode de réalisation particulier, on réalise la fabrication de l’épichlorhydrine dans un milieu réactionnel aqueux, alimenté avec de 1 à 30 % en poids de dichloropropanol par rapport à la totalité de l’alimentation.

Suivant un autre mode de réalisation, préféré, le milieu réactionnel du procédé de fabrication d’épichlorhydrine selon l’invention est alimenté avec de 30 à 90 % poids de dichloropropanol par rapport à la totalité de l’alimentation. Dans cette dernière variante, le milieu réactionnel est souvent alimenté avec de 60 à 90 % poids de dichloropropanol, de manière préférée de 65 à 80 % poids.
On peut également avantageusement effectuer une alimentation avec de 30 à 65% en poids de dichloropropanol par rapport à la totalité de l’alimentation. Ce mode de réalisation permet en particulier une réduction considérable des rejets en eaux du procédé.

Dans une autre variante particulière du procédé de fabrication d’épichlorhydrine selon l’invention, le dichloropropanol est mis en œuvre en excès par rapport à la base ce qui permet d’améliorer le rendement. Dans ce cas, on met généralement en œuvre au moins 1,1 équivalents de dichloropropanol par équivalent de base. Souvent, on met en œuvre au moins 1,5 équivalents de dichloropropanol par équivalent de base. De préférence, on met en œuvre au moins 2 équivalents de dichloropropanol par équivalent de base. Dans ce cas, on met généralement en œuvre au plus 5 équivalents de dichloropropanol par équivalent de base.

D’autres réactifs alimentés dans le procédé de fabrication d’épichlorhydrine selon l’invention sont choisis de préférence parmi des solutions aqueuses, en particulier des solutions concentrées d’au moins une base choisie de préférence parmi le NaOH et le Ca(OH)₂. La teneur en base dans la solution ou le slurry est ce cas généralement d’au moins 10% en poids de préférence d’au moins 20% en poids. Cette teneur est généralement inférieure ou égale à 60% en poids Une teneur d’environ 50% en poids convient bien.

L’alimentation peut également contenir un solvant organique tel qu’une cétone ou un éther, par exemple la méthyléthylcétone.

On peut effectuer une alimentation unique ou, de préférence une alimentation étagée, par exemple à deux ou trois points d’alimentation.

Le milieu dans ce mode de réalisation réactionnel peut être un milieu monophasique ou, en particulier lorsqu’on met en œuvre un solvant organique, un milieu biphasique.

Dans une variante particulière, on effectue une alimentation au moins partielle en eau récupérée éventuellement du procédé de fabrication de dichloropropanol décrit plus haut. On peut par exemple mettre en œuvre cette eau pour générer de la solution ou du slurry de base.

Dans le procédé de fabrication d’épichlorhydrine selon l’invention, la réaction est généralement effectuée à une température d’au moins 0°C. Souvent cette température est d’au moins 20°C. De préférence elle est d’au moins 30°C.

Dans le procédé de fabrication d’épichlorhydrine selon l’invention, la réaction est généralement effectuée à une température d’au plus 140°C. De préférence
elle est d’au plus 120°C. Dans une première variante particulière, la température est de 25 à 50°C. Dans une deuxième variante particulière, la température est de 60 à 100°C.

Dans le procédé de fabrication d’épichlorhydrine selon l’invention, il est particulièrement avantageux de récupérer au moins partiellement de l’eau éventuellement présente à l’issue de la déshydrochloration, par exemple par évaporation ou par osmose inverse. Cette récupération décrite ci-après peut également être mise en œuvre dans des autres procédés de déshydrochloration notamment dans les procédés utilisant une solution ou un slurry de base.

Par cette opération de récupération, on peut obtenir une fraction aqueuse enrichie en sels, en particulier en NaCl et une fraction riche en eau. La fraction enrichie en sels peut être récupérée et utilisée, éventuellement après une étape d’épuration appropriée, par exemple dans une installation d’électrolyse pour fabriquer du chlore ou elle peut être introduite dans un traitement éventuellement oxydatif destiné à réduire sa teneur en composés organiques éventuellement présents et éliminée de l’installation. On peut également effectuer une évaporation à sec et, de préférence, éliminer le sel récupéré sous forme solide. La fraction riche en eau peut être utilisée de manière avantageuse pour fabriquer, le cas échéant, la solution aqueuse ou le slurry de base pour mise en œuvre dans le procédé de fabrication d’épichlorhydrine selon l’invention.

Dans un aspect particulier on élimine ou récupère, lors de l’opération de déshydrochloration, du NaCl en une quantité n’excédant pas 5, souvent pas 2, de préférence pas 1,2 mais généralement d’au moins 1 mole de NaCl par mole d’épichlorhydrine fabriqué. Souvent, le NaCl est éliminé de manière substantiellement exclusive lors de l’étape de déshydrochloration.

L’invention concerne aussi un procédé de fabrication de polyglycéride, selon lequel on utilise, conformément à l’utilisation selon l’invention, du glycérol obtenu à partir de matière première renouvelable comme produit de départ et on met ledit glycérol de préférence en contact avec au moins un agent de condensation ou avec de l’épichlorhydrine en présence d’une base. Des conditions appropriées pour cette dernière réaction sont décrites dans les brevets US 4960953 et US 5041688 au nom de la Demanderesse.

L’agent de condensation peut être un agent acide ou basique. Eventuellement on peut mettre en œuvre un catalyseur solide de condensation.
Dans le procédé de fabrication de polyglycérine selon l’invention on met de préférence en œuvre de l’épichlorohydrine issu du procédé de fabrication d’épichlorhydrine selon l’invention décrit plus haut.

L’invention concerne aussi un procédé de fabrication de biodiesel et d’un composé organique, selon lequel

(a) on soumet une huile végétale à une réaction de transestérification avec un alcool autre que le glycérol, de préférence le méthanol ou l’éthanol, de manière à récupérer au moins du biodiesel et un produit brut comprenant du glycérol ;

(b) on soumet éventuellement le produit brut à une opération d’épuration telle qu’une distillation ;

(c) on soumet du glycérol formé à l’étape (a) au procédé de fabrication d’un composé organique selon l’invention.

Dans une première variante du procédé de fabrication de biodiesel et d’un composé organique selon l’invention, au moins les étapes (a) et (c) sont effectuées sur un même site de production.

Dans une deuxième variante du procédé de fabrication de biodiesel et d’un composé organique selon l’invention, les étapes (a) et (c) sont effectuées sur des sites de production différents. L’étape (c) est avantagéeusement située à proximité d’une source de chlore ou de chlorure d’hydrogène.

La figure 1 montre un schéma particulier d’installation utilisable pour mettre en œuvre le procédé de fabrication de composé organique chloré selon l’invention. Cette installation comporte 3 réacteurs. Le premier réacteur est alimenté en glycérol et en catalyseur (flux 1 sur le schéma). Le pied liquide de ce premier réacteur alimente le second, puis le second le troisième. Le C1H gazeux est alimenté dans le 3ème réacteur (flux 5 sur le schéma), le dégazage de ce dernier alimente en phase liquide le 2ème réacteur dont le dégazage de celui-ci alimente lui-même le premier réacteur. Dans chaque réacteur, l’eau formée par la réaction est éliminée au fur et à mesure de sa production avec le dégazage des réacteurs. La totalité de l’eau sort donc par le dégazage du premier réacteur.
Des températures et temps de séjour particulièrement préférés sont indiqués sur le schéma.

Le dégazage du premier réacteur passe par une colonne dont le résidu est renvoyé dans ce dernier. En tête de colonne sort l’eau débarrassée de son acide.

Le dichloropropanol accompagnant par azéotropie l’eau est séparé de celle-ci par décantation et est recyclé au second réacteur (flux 2).

Le dichloropropanol, le catalyseur et les lourds sortant du 3ème réacteur sont ensuite séparés par distillation le dichloropropanol en tête, le catalyseur et les lourds en pied. La colonne fonctionne de manière préférée sous vide de 0,1 bar.

L’alimentation de la colonne peut être filtrée de manière à éliminer des particules solides éventuellement présents dans du glycérol brut.

Les lourds du 3ème réacteur peuvent être ou non recyclés au premier réacteur.

Les exemples ci-après entendent illustrer l’invention sans toutefois la limiter.

Exemple 1

Un mélange de 453 g de glycérol (4.92 mol) et de 29.5 g d’acide acétique glacial (0.49 mol) a été chauffé à 110°C sous agitation pendant 20 minutes. On y a insufflé ensuite du chlorure d’hydrogène anhydre selon un débit programmé de 5.2 mol/h pendant 2h, 3.8 mol/h pendant 100 min et finalement 1.3 mol/h pendant 317 min. Au total 23.6 mol de chlorure d’hydrogène ont été introduites. L’analyse du mélange réactionnel en fin d’essai figure dans le tableau 1. Le taux de conversion du glycérol était de 99.1 % et la sélectivité en lourds rapportée au glycérol (diglycéride et diglycéride chlorée) rapportée au glycérol s’élève à 0.4 %.

Exemple 2

Un mélange de 110 g de glycérol (1.20 mol), de 257 g de 1-chloro-2,3-dihydroxypropane (2.32 mol) et de 21 g d’acide acétique glacial (0.35 mol) a été chauffé à 110°C sous agitation pendant 20 minutes. On y a insufflé ensuite du chlorure d’hydrogène anhydre selon un débit successivement réglé à 4.76 mol/h pendant 26 min, 2.04 mol/h pendant 71 min, 0.62 mol/h pendant 4 h et finalement 0.3 mol/h pendant 10 h. Au total 10.0 mol de chlorure d’hydrogène ont été introduites. L’analyse du mélange réactionnel en fin d’essai figure dans le tableau 1. Le taux de conversion du glycérol était de 99.5 % et la sélectivité en lourds (diglycéride et diglycéride chlorée) était à 0.03 %.
Tableau 1

<table>
<thead>
<tr>
<th></th>
<th>Essai 1 (g/kg)</th>
<th>Essai 2 (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycérol</td>
<td>4,6</td>
<td>0</td>
</tr>
<tr>
<td>1-chloro-2,3-dihydroxy-propane</td>
<td>166</td>
<td>55</td>
</tr>
<tr>
<td>2-chloro-1,3-dihydroxy-propane</td>
<td>40</td>
<td>6,6</td>
</tr>
<tr>
<td>1,3-dichloropropan-2-ol</td>
<td>475</td>
<td>711</td>
</tr>
<tr>
<td>2,3-dichloropropan-1-ol</td>
<td>11</td>
<td>20,8</td>
</tr>
<tr>
<td>diglycéine</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>diglycéine monochlorée</td>
<td>3</td>
<td>0,4</td>
</tr>
<tr>
<td>Acide acétique</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Acétates organiques</td>
<td>43</td>
<td>29,5</td>
</tr>
<tr>
<td>Eau</td>
<td>178</td>
<td>121</td>
</tr>
<tr>
<td>Acide chlorhydrique</td>
<td>58,8</td>
<td>57,7</td>
</tr>
</tbody>
</table>
REVENDICATIONS

1 - Procédé de fabrication de composés organiques comprenant

(a) une première étape dans laquelle on produit du glycérol au départ de matières premières renouvelables et

(b) une deuxième étape dans laquelle on produit des composés organiques au départ de glycérol obtenu dans la première étape.

2 - Procédé selon la revendication 1, dans lequel le glycérol mis en œuvre lors de la deuxième étape est un produit brut comprenant en outre de l’eau et un chlorure de métal, de préférence choisi parmi le NaCl et le KCl.

3 - Procédé selon la revendication 2, dans lequel le produit brut comprend de 40 à 89% en poids de glycérol, de 10 à 50% en poids d’eau et de 1 à 10% en poids de NaCl.

4 - Procédé selon la revendication 1, dans lequel le glycérol mis en œuvre lors de la deuxième étape est un produit épuré.

5 - Procédé selon la revendication 4, dans lequel le produit brut comprend de 80 à 95% en poids de glycérol et de 5 à 20% en poids d’eau.

6 - Procédé selon l’une quelconque des revendications 1 à 5, dans lequel le glycérol est d’origine animale ou a été obtenu lors de la fabrication de biodiesel.

7 - Procédé de fabrication selon l’une quelconque des revendications 1 à 6 dans lequel on met à l’étape (b) le glycérol en contact avec au moins un agent de chloration et on obtient un composé organique chloré.

8 - Procédé selon la revendication 7, dans lequel l’agent de chloration comprend du chlorure d’hydrogène.

9 - Procédé selon la revendication 8, dans lequel l’agent de chloration est de l’acide chlorhydrique présentant une concentration en chlorure d’hydrogène supérieure ou égale à 19% poids, de préférence supérieure ou égale à 25 % poids, de manière particulièrement préférée supérieure ou égale à 30% poids.
10 - Procédé selon la revendication 8 ou 9, dans lequel on utilise de l’acide chlorhydrique concentré comme source primaire de l’agent de chloration et on sépare ledit acide chlorhydrique concentré en au moins deux fractions, la première étant constituée essentiellement de chlorure d’hydrogène anhydre et la deuxième comprenant du chlorure d’hydrogène et de l’eau dans des proportions dans lesquelles ils forment un azéotrope.

11 - Procédé selon l’une quelconque des revendications 8 à 10, dans lequel on met en œuvre un acide carboxylique, un anhydride d’acide carboxylique, un sel d’acide carboxylique ou un ester d’acide carboxylique présentant de préférence un point d’ébullition atmosphérique supérieur à 200°C à titre de catalyseur.

12 - Procédé selon l’une quelconque des revendications 8 à 11, dans lequel la réaction est effectuée en présence d’un solvant organique.

13 - Procédé selon la revendication 12 dans lequel le solvant comprend du chloropropanediol et/ou du dichloropropanol.

14 - Procédé selon l’une quelconque des revendications 7 à 13 dans lequel on maintient une concentration en eau dans le milieu réactionnel inférieure ou égale à 10% en poids.

15 - Procédé selon l’une quelconque des revendications 7 à 14, dans lequel on obtient au moins du dichloropropanol à titre de composé organique chloré.

16 - Procédé selon la revendication 15, dans lequel on récupère au moins une fraction comprenant de 50 à 99,9 % de dichloropropanol et moins de 50 % d’eau.

17 - Procédé selon la revendication 16, dans lequel la récupération est effectuée par distillation ou par évaporation.

18 - Procédé selon la revendication 16 ou 17, dans lequel on récupère en outre au moins une fraction contenant des sous-produits lourds de la réaction que l’on recycle éventuellement au moins partiellement vers la réaction avec l’agent de chloration.
19 - Procédé selon l’une quelconque des revendications 7 à 18, dans lequel la réaction est effectuée dans un réacteur réalisé en matériaux résistants à l’agent de chloruration dans les conditions de la réaction, choisi parmi l’acier émaillé, les polymères, les revêtements au moyen de résines, les métaux ou leurs alliages les céramiques, les métallocéramiques et les matériaux réfractaires.

20 - Procédé de fabrication d’épichlorhydrine dans lequel

(a) on produit du dichloropropanol selon le procédé de l’une quelconque des revendications 15 à 19 ;

(b) on soumet au moins une partie du dichloropropanol obtenu à une opération de déshydrochloration.

21 - Procédé selon la revendication 20, dans lequel le milieu réactionnel de l’étape (b) est alimenté avec de 30 à 90% en poids de dichloropropanol par rapport à la totalité de l’alimentation.

22 - Procédé selon la revendication 21, dans lequel le milieu réactionnel de l’étape (b) est alimenté avec de 60 à 90 %, de manière préférée de 65 à 80 % en poids de dichloropropanol par rapport à la totalité de l’alimentation.

23 - Procédé selon la revendication 20, dans lequel le milieu réactionnel de l’étape (b) est alimenté avec de 1 à 30 % en poids de dichloropropanol par rapport à la totalité de l’alimentation.

24 - Procédé selon l’une quelconque des revendications 20 à 23 dans lequel le dichloropropanol alimenté à l’étape (b) contient au moins 50% en poids de 1,3-dichloropropanol par rapport à la totalité du dichloropropanol alimenté.

25 - Procédé selon l’une quelconque des revendications 20 à 24, dans lequel on élimine, lors de l’opération de déshydrochloration, du NaCl en une quantité n’excédant pas 1,2 mole de NaCl par mole d’épichlorhydrine fabriqué.

26 - Procédé selon la revendication 25, dans lequel le NaCl est éliminé de manière substantiellement exclusive lors de l’étape de déshydrochloration.

27 - Procédé selon l’une quelconque des revendications 19 à 26 dans lequel on récupère à l’issue de l’étape (a) au moins une fraction comprenant de l’eau et on utilise au moins une partie de cette fraction à l’étape (b).
28 - Procédé de fabrication selon l'une quelconque des revendications 1 à 6 dans lequel à l'étape (b) on met en contact le glycérol avec au moins un agent de condensation ou avec de l'épichlorohydrine, éventuellement en présence d'une base, et on obtient de la polyglycérine.

29 - Procédé selon la revendication 28, dans lequel on met en œuvre de l'épichlorohydrine issu du procédé selon l'une quelconque des revendications 20 à 27 à titre de produit de départ.

30 - Procédé de fabrication de résines époxy dans lequel on met en œuvre de l'épichlorohydrine issu du procédé selon une des revendications 20 à 27 à titre de produit de départ.

31 - Procédé de fabrication de résines époxy dans lequel on met en œuvre du dichloropropanol contenant au moins 50% en poids de 1,3-dichloropropanol par rapport à la totalité du dichloropropanol à titre de produit de départ.

32 - Procédé de fabrication selon la revendication 31 dans lequel on met en œuvre du dichloropropanol issu du procédé selon l'une quelconque des revendications 15 à 18.

33 - Procédé de fabrication selon l'une quelconque des revendications 1 à 30 ou 32 dans lequel

(a) on soumet une huile végétale à une réaction de transestérification avec un alcool autre que le glycérol, de préférence le méthanol ou l'éthanol, de manière à récupérer au moins du biodiesel et un produit brut comprenant du glycérol ;

(b) on soumet éventuellement le produit brut comprenant du glycérol à une opération d'épuration telle qu'une distillation ;

34 - Procédé selon la revendication 33, dans lequel au moins les étapes de fabrication de glycérol et de production du composé organique sont effectuées sur un même site de production.

35 - Procédé selon la revendication 33, dans lequel les étapes de fabrication de glycérol et de production du composé organique sont effectuées sur des sites de production différents.
Fig. 1
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB N14767A (FAIRBROTHER HENRY) 1-35</td>
<td>C07D303/08</td>
</tr>
<tr>
<td>A</td>
<td>US 4 973 763 A (JAKOBSON GERALD ET AL) 28,29</td>
<td>C07C31/36, C07C31/33, C08659/04, C08665/34</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 518 765 A (ORGANISATION NATIONALE INTERPR) 16 décembre 1992 (1992-12-16) 1-6,28, 29,33-35</td>
<td>XXX</td>
</tr>
<tr>
<td>X</td>
<td>US 2 144 612 A (LYMAN HEINDEL ROY ET AL) 1,2,4, 6-19, 33-35</td>
<td>XXX</td>
</tr>
<tr>
<td>A</td>
<td>GB 799 567 A (SOLVAY) 20-27</td>
<td>XXX</td>
</tr>
<tr>
<td>A</td>
<td>GB 679 536 A (DEVOE & RAYNOLEDS COMPANY INC) 17 septembre 1952 (1952-09-17) 20,28,29</td>
<td>C07C, C07D</td>
</tr>
<tr>
<td>A</td>
<td>US 4 634 784 A (ISHIOKA RYOJI ET AL) 20-27</td>
<td>XXX</td>
</tr>
<tr>
<td>A</td>
<td>GB 984 633 A (ELECTRO CHIMIE METAL) 3 mars 1965 (1965-03-03) 30,31</td>
<td>XXX</td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
- C07C
- C07D

Date d'achèvement de la recherche: 9 novembre 2004
Examinateur: Bedel, C
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF À LA DEMANDE DE BREVET FRANÇAIS NO. FR 0313625 FA 648246

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 09-11-2004
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 191314767 A</td>
<td>08-01-1914</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 4973763 A</td>
<td>27-11-1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td></td>
<td>116280 T</td>
<td>15-01-1995</td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td>69201016 D1</td>
<td>09-02-1995</td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td>69201016 T2</td>
<td>18-05-1995</td>
</tr>
<tr>
<td>EP</td>
<td></td>
<td>0518765 A1</td>
<td>16-12-1992</td>
</tr>
<tr>
<td>ES</td>
<td></td>
<td>2065759 T3</td>
<td>16-02-1995</td>
</tr>
<tr>
<td>US 2144612 A</td>
<td>24-01-1939</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>GB 799567 A</td>
<td>13-08-1958</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>GB 679536 A</td>
<td>17-09-1952</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td></td>
<td>4056833 B</td>
<td>09-09-1992</td>
</tr>
<tr>
<td>JP</td>
<td></td>
<td>60258171 A</td>
<td>20-12-1985</td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td>3520019 A1</td>
<td>09-01-1986</td>
</tr>
<tr>
<td>FR</td>
<td></td>
<td>2565229 A1</td>
<td>06-12-1985</td>
</tr>
<tr>
<td>KR</td>
<td></td>
<td>9004927 B1</td>
<td>12-07-1990</td>
</tr>
<tr>
<td>NL</td>
<td></td>
<td>8591547 A</td>
<td>02-01-1986</td>
</tr>
<tr>
<td>GB 984633 A</td>
<td>03-03-1965</td>
<td>FR 1279331 A</td>
<td>22-12-1961</td>
</tr>
<tr>
<td>BE</td>
<td></td>
<td>609333 A</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td>1520741 A1</td>
<td>12-02-1970</td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td>1768955 B1</td>
<td>31-05-1972</td>
</tr>
<tr>
<td>LU</td>
<td></td>
<td>40705 A1</td>
<td>11-12-1961</td>
</tr>
<tr>
<td>NL</td>
<td></td>
<td>270751 A</td>
<td></td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82