

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2006307690 B2

(54) Title
Modulation of 11beta-hydroxysteroid dehydrogenase 1 expression for the treatment of ocular diseases

(51) International Patent Classification(s)
C12N 15/113 (2010.01)

(21) Application No: **2006307690** (22) Date of Filing: **2006.10.25**

(87) WIPO No: **WO07/049074**

(30) Priority Data

(31) Number **0521716.1** (32) Date **2005.10.25** (33) Country **GB**

(43) Publication Date: **2007.05.03**
(44) Accepted Journal Date: **2012.07.12**

(71) Applicant(s)
Sylentis S.A.

(72) Inventor(s)
Jimenez Gomez, Ma Concepcion;Yague, Angela Sesto;Jimenez Anton, Ana Isabel

(74) Agent / Attorney
Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001

(56) Related Art
**RAUZ, S. et al., ' Q J Med, 2003, vol. 96, pages 481-490
BUJALSKA, I.J. et al., 'J. Mol. Endocrinology, 2005, vol. 34, pages 675-684**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 May 2007 (03.05.2007)

PCT

(10) International Publication Number
WO 2007/049074 A3

(51) International Patent Classification:
C12N 15/11 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/GB2006/050352

(22) International Filing Date: 25 October 2006 (25.10.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0521716.1 25 October 2005 (25.10.2005) GB

(71) Applicant (for all designated States except US): SYLENTIS S.A. [ES/ES]; C/ José Abascal, 2, E-28003 Madrid (ES).

(71) Applicant (for SD only): WILLIAMS, Gareth, Owen [GB/GB]; 66-68 Hills Road, Cambridge, Cambridgeshire CB2 1LA (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JIMÉNEZ ANTÓN, Ana, Isabel [ES/ES]; C/ Perdices 17^a, Villaviciosa De Odón, E-28670 Madrid (ES). YAGUE, Angela, Sesto [ES/ES]; Andrés Mellado 85 Escalera Izq 6^oB, E-28003 Madrid (ES). JIMÉNEZ GÓMEZ, M^a, Concepción [ES/ES]; C/ Olivos 3, Villaviciosa De Odón, E-28670 Madrid (ES).

(74) Agent: MARKS & CLERK; 66-68 Hills Road, Cambridge, Cambridgeshire CB2 1LA (GB).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:
2 August 2007

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MODULATION OF 11BETA-HYDROXYSTEROID DEHYDROGENASE 1 EXPRESSION FOR THE TREATMENT OF OCULAR DISEASES

Accession number	Definition
NM_005525	Homo sapiens hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), transcript variant 1, mRNA
NM_181755	Homo sapiens hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), transcript variant 2, mRNA

(57) Abstract: The invention relates to siNA compositions and methods for the treatment of eye conditions wherein the siNA compound capable of inhibiting the expression of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD1).

WO 2007/049074 A3

Modulation of 11beta-hydroxysteroid dehydrogenase 1 expression for the treatment of ocular diseases**FIELD OF THE INVENTION**

The present invention relates to methods and compositions for the treatment and/or the prevention of eye disorders related to high levels of expression or activity of 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1); in particular but not exclusively to the treatment of glaucoma. In preferred embodiments, the invention relates to the use of RNAi technology to downregulate the expression of 11beta-HSD1.

BACKGROUND OF THE INVENTION

Glaucoma is one of the leading causes of blindness. Approximately 15% of cases of blindness world-wide result from glaucoma. The most common type, primary open-angle glaucoma, has a prevalence of 1/200 in the general population over 40 years of age. Glaucoma has been simply defined as the process of ocular tissue destruction caused by a sustained elevation of the Intra Ocular Pressure (IOP) above its normal physiological limits. Although several etiologies may be involved in the glaucoma complex, an absolute determinant in therapy selection is the amount of primary and/or induced change in pressure within the iridocorneal angle.

Current therapies include medications or surgeries aimed at lowering this pressure, although the pathophysiological mechanisms by which elevated IOP leads to neuronal damage in glaucoma are unknown. Medical suppression of an elevated IOP can be attempted using four types of drugs: (1) the aqueous humor formation suppressors (such as carbonic anhydrase inhibitors, beta-adrenergic blocking agents, and alpha2-adrenoreceptor agonists); (2) miotics (such as parasympathomimetics, including cholinergics and anticholinesterase inhibitors); (3) uveoscleral outflow enhancers; and (4) hyperosmotic agents (that

produce an osmotic pressure gradient across the blood/aqueous barrier within the ciliary epithelium). A fifth category of drugs, neuroprotection agents, is emerging as an important addition to medical therapy, including, for example, NOS inhibitors, excitatory amino acid antagonists, glutamate receptor antagonists, apoptosis inhibitors, and calcium channel blockers.

Reviews of various eye disorders and their treatments can be found in the following references: Bunce et al., 2005, Associations between the deletion polymorphism of the angiotensin 1-converting enzyme gene and ocular signs of primary open-angle glaucoma. *Graefes Arch Clin Exp Ophthalmol.*, 243(4):294; Costagliola et al., 2000, Effect of oral losartan potassium administration on intraocular pressure in normotensive and glaucomatous human subjects. *Exp Eye Res* 71(2):167; Costagliola et al., 1995, . Effect of oral captopril (SQ 14225) on intraocular pressure in man. *Eur J Ophthalmol.*, 5(1):19; Cullinane et al., 2002, Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium. *Br J Ophthalmol.*, 86(6):676; Sakaguchi et al., 2002, Chymase and angiotensin converting enzyme activities in a hamster model of glaucoma filtering surgery. *Curr Eye Res.* 24(5):325; Shah et al., 2000, Oculohypotensive effect of angiotensin-converting enzyme inhibitors in acute and chronic models of glaucoma. *J Cardiovasc Pharmacol.*, 36(2):169, and Wang et al., 2005, Effect of CS-088, an angiotensin AT1 receptor antagonist, on intraocular pressure in glaucomatous monkey eyes. *Exp Eye Res.*, 80(5):629.

RNA interference refers to the process of sequence-specific post-transcriptional gene silencing mediated by short interfering RNAs (siRNA). After the discovery of the phenomenon in plants in the early 1990s, Andy Fire and Craig Mello demonstrated that double-stranded RNA (dsRNA) specifically and selectively inhibited gene expression in an extremely efficient manner in *Caenorhabditis elegans* (Fire et al., 1998, Potent and specific genetic interference by double stranded RNA in *Caenorhabditis elegans*. *Nature*, 391:806). The sequence of the first strand (sense RNA) coincided with that of the corresponding region of the target messenger RNA (mRNA). The second strand (antisense RNA) was

complementary to the mRNA. The resulting dsRNA turned out to be several orders of magnitude more efficient than the corresponding single-stranded RNA molecules (in particular, antisense RNA).

The process of RNAi begins when the enzyme, DICER, encounters dsRNA and chops it into pieces called small-interfering RNAs (siRNA). This protein belongs to the RNase III nuclease family. A complex of proteins gathers up these RNA remains and uses their code as a guide to search out and destroy any RNAs in the cell with a matching sequence, such as target mRNA (see Bosher & Labouesse, 2000, RNA interference: genetic wand and genetic watchdog. *Nat Cell Biol*, 2000, 2(2):E31, and Akashi et al., 2001, Suppression of gene expression by RNA interference in cultured plant cells. *Antisense Nucleic Acid Drug Dev*, 11(6):359).

In attempting to utilize RNAi for gene knockdown, it was recognized that mammalian cells have developed various protective mechanisms against viral infections that could impede the use of this approach. Indeed, the presence of extremely low levels of viral dsRNA triggers an interferon response, resulting in a global non-specific suppression of translation, which in turn triggers apoptosis (Williams, 1997, Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. *Biochem Soc Trans*, 25(2):509; Gil & Esteban, 2000, Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. *Apoptosis*, 5(2):107-14).

In 2000 dsRNA was reported to specifically inhibit 3 genes in the mouse oocyte and early embryo. Translational arrest, and thus a PKR response, was not observed as the embryos continued to develop (Wianny & Zernicka-Goetz, 2000, Specific interference with gene function by double-stranded RNA in early mouse development. *Nat Cell Biol*, 2(2):70). Research at Ribopharma AG (Kulmbach, Germany) demonstrated the functionality of RNAi in mammalian cells, using short (20-24 base pairs) dsRNA to switch off genes in human cells without initiating the acute-phase response. Similar experiments carried out by other research groups confirmed these results. (Elbashir et al., 2001, RNA

interference is mediated by 21- and 22-nucleotide RNAs. *Genes Dev.*, 15(2):188; Caplen et al., 2001, Specific inhibition of gene expression by small double stranded RNAs in invertebrate and vertebrate systems. *Proc. Natl. Acad. Sci. USA*, 98: 9742). Tested in a variety of normal and cancer human and mouse cell lines, it was determined that short hairpin RNAs (shRNA) can silence genes as efficiently as their siRNA counterparts (Paddison et al, 2002, Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. *Genes Dev.*, 16(8):948). Recently, another group of small RNAs (21-25 base pairs) was shown to mediate downregulation of gene expression. These RNAs, small temporally regulated RNAs (stRNA), regulate timing of gene expression during development in *Caenorhabditis elegans* (for review see Banerjee & Slack, Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. *Bioessays*, 2002, 24(2):119-29 and Grosshans & Slack, 2002, Micro-RNAs: small is plentiful. *J Cell Biol.*, 156(1):17).

Scientists have used RNAi in several systems, including *Caenorhabditis elegans*, *Drosophila*, trypanosomes, and other invertebrates. Several groups have recently presented the specific suppression of protein biosynthesis in different mammalian cell lines (specifically in HeLa cells) demonstrating that RNAi is a broadly applicable method for gene silencing in vitro. Based on these results, RNAi has rapidly become a well recognized tool for validating (identifying and assigning) gene function. RNAi employing short dsRNA oligonucleotides will yield an understanding of the function of genes that are only partially sequenced.

As already stated, IOP is maintained by a balance between aqueous humour (AH) production (dependent on sodium transport across a ciliary epithelial bilayer) and drainage (predominantly through the trabecular meshwork). AH is secreted into the posterior chamber of the eye flowing from the ciliary epithelium, between the iris and the lens, through the pupillary aperture, entering the anterior chamber, and finally flowing radially to the periphery, where it exits predominantly via the canal of Schlemm in the trabecular

meshwork (TM), and to a lesser extent through uveoscleral outflow routes (Davson H. The aqueous humour and intraocular pressure. In: Davson's Physiology of the Eye, 5th edn. London, Macmillan Press, 1990:3-95; Hart WM. Intraocular pressure. In: Hart WM, ed. Adler's Physiology of the Eye. St Louis, Mosby-Year Book Inc, 1992:248-267).

In peripheral epithelial tissues, sodium and water transport are regulated by corticosteroids and the 11beta-hydroxysteroid dehydrogenase (11beta-HSD) isozymes (11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1), activating cortisol from cortisone, and 11beta-hydroxysteroid dehydrogenase 2 (11beta-HSD2), inactivating cortisol to cortisone). 11beta-HSD1 is widely expressed, most notably in many glucocorticoid target tissues including liver, adipose tissue, bone, as well as lung, vasculature, ovary and the central nervous system.

11beta-HSD expression has been described in the human eye. 11beta-HSD2 is expressed in the corneal endothelium, whereas 11beta-HSD1 is more widely expressed in the trabecular meshwork, lens epithelium and corneal epithelium (Tomlinson JW. 11Beta-hydroxysteroid dehydrogenase type 1 in human disease: a novel therapeutic target. *Minerva Endocrinol.* 2005 Mar;30(1):37-46).

11beta-HSD1 but not 11beta-HSD2 has been localized in the human non-pigmented neuroepithelial cells or NPE (Rauz S, Walker EA, Shackleton CHL, Hewison M, Murray PI, Stewart PM. Expression and putative role of 11 β -hydroxysteroid dehydrogenase isozymes within the human eye. *Invest Ophthalmol Vis Sci* 2001; 42:2037-42; Suzuki T, Sasano H, Kaneko C, Ogawa S, Darnel AD, Krozowski ZS. Immunohistochemical distribution of 11 β -hydroxysteroid dehydrogenase in human eye. *Mol Cell Endocrinol* 2001; 173:121-5; Mirshahi M, Nicolas C, Mirshahi A, Hecquet C, d'Hermies F, Faure JP, et al. The mineralocorticoid hormone receptor and action in the eye. *Biochem Biophys Res Commun* 1996; 219:150-6; Stokes J, Noble J, Brett L, Phillips C, Seckl JR, O'Brien C, et al. Distribution of glucocorticoid and mineralocorticoid receptors and 11 β -hydroxysteroid dehydrogenases in human

and rat ocular tissues. *Invest Ophthalmol Vis Sci* 2000; 41:1629–38). In situ hybridization defined expression of 11beta-HSD1 in the ciliary epithelium, while RT-PCR analysis of ciliary body tissue confirmed expression of 11beta-HSD1, with additional glucocorticoid receptor and mineralocorticoid receptor (Rauz S, Cheung CM, Wood PJ, Coca-Prados M, Walker EA, Murray PI, Stewart PM. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 lowers intraocular pressure in patients with ocular hypertension. *QJM.*, 2003 Jul;96(7):481-90). The enzyme 11beta-HSD1 plays a pivotal role in determining intracellular glucocorticoid concentrations by regenerating, in a reversible reaction, active glucocorticoid (cortisol in humans, corticosterone in rats and mice) from inactive cortisone and 11- dehydrocorticosterone. A high cortisol/cortisone ratio of 14:1 has been documented in aqueous humour, consistent with this local cortisol-generating system (Rauz S, Walker EA, Shackleton CHL, Hewison M, Murray PI, Stewart PM. Expression and putative role of 11 β -hydroxysteroid dehydrogenase isozymes within the human eye. *Invest Ophthalmol Vis Sci* 2001; 42:2037–42).

Oral administration of carbenoxolone (CBX), an inhibitor of 11beta-HSD1, to volunteers in a pilot uncontrolled study, resulted in a decrease of IOP of 17.5%, suggesting that 11beta-HSD1 activity may partly regulate sodium transport across the NPE-pigmented bi-layer, and consequently aqueous humour secretion (Rauz S, Walker EA, Shackleton CHL, Hewison M, Murray PI, Stewart PM. Expression and putative role of 11 β -hydroxysteroid dehydrogenase isozymes within the human eye. *Invest Ophthalmol Vis Sci* 2001; 42:2037–42). Further, randomised, placebo-controlled studies of healthy volunteers and patients with ocular hypertension (raised IOP but no optic neuropathy) assessed the effect of CBX on IOP (Rauz S, Cheung CM, Wood PJ, Coca-Prados M, Walker EA, Murray PI, Stewart PM. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 lowers intraocular pressure in patients with ocular hypertension. *QJM.*, 2003 Jul;96(7):481-90).

The preceding is a discussion of relevant art pertaining to RNAi. The discussion is provided only for understanding of the invention that follows, and is not an admission that any of the work described is prior art to the claimed invention.

5 **SUMMARY OF THE INVENTION**

A first aspect provides use of siNA targeted to 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in the manufacture of a medicament for the treatment of an eye condition characterised by an altered intra-ocular pressure (IOP), wherein said medicament is formulated for topical administration to a corneal surface of a patient and is capable of inhibiting expression of 11beta-HSD1 in the eye of the patient.

A second aspect provides a method of treatment of an eye condition characterised by an altered IOP, the method comprising topically administering to a corneal surface of a patient in need thereof siNA targeted to 11beta-HSD1 and capable of inhibiting expression of 11beta-HSD1.

In the present invention we disclose methods and compositions for modulating the expression and/or activity of 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) by means of the use of siNA for the treatment of eye conditions.

In preferred embodiments, the eye condition is glaucoma.

Also disclosed is an isolated siNA compound comprising a sequence complementary to a nucleotide sequence selected from SEQ ID NO: 1 to SEQ ID NO: 61 or comprising a nucleotide sequences selected from the group SEQ ID NO: 62 to SEQ ID NO: 122.

Also disclosed are pharmaceutical compositions comprising siNA compounds targeted to 11beta-HSD1.

In addition to the treatment of glaucoma, the present method is also suitable for the treatment of other diseases of the anterior chamber of the eye. In particular, the method may be applied to the treatment of diseases characterised by altered aqueous formation or outflow in the eye. Examples of conditions which may be treated according to the invention include local conditions such as infections or inflammations, and general conditions such as uveitis or expression of systemic diseases. Further, certain embodiments of the invention provide treatment for diabetic retinopathy.

10 Downregulation may be effected by the use of double stranded nucleic acid moieties, named siNA or small interfering NA that are directed at interfering with the mRNA expression of 11beta-HSD1. The siNA are preferably siRNA, although modified nucleic acids or similar chemically synthesised entities are also included within the scope of the invention.

15 Also disclosed are pharmaceutical compositions for use in the treatment of eye conditions. The invention may be used within the fields of local eye treatments, of target genes involved in glaucoma pathogenesis, as well as the use of chemically synthesized entities to treat animals (including humans).

20 **DESCRIPTION OF THE DRAWINGS**

Figure 1 shows GenBank Accession Numbers corresponding to the two alternative transcripts of 11beta-HSD.

25 Figure 2 shows short fragments of the target gene sequence chosen as the target sequences of the siNA of the invention.

Figure 3 displays shows siNA molecules of the invention.

30 Figure 4 shows maximum effect of two siRNAs on the reduction of IOP in normotensive New Zealand rabbits. The values represent the mean of the

8a

percentage of IOP reduction over the control (contralateral eye with vehicle alone) and their standard error (SD). The siRNAs used are 11HSD/01: CCACAUCAACGCUUCUdTdT (SEQ ID 133; rabbit sequence homologous to human SEQ ID N° 100) and 11HSD/02: CGUCAAUGUAUCAAAUCACUdTdT (SEQ ID 134; rabbit sequence with best score and with no corresponding disclosed human sequence).

Figure 5 shows in vivo effect of siRNA 11HSD/02 on the reduction of IOP in normotensive New Zealand rabbit across de time. Four consecutive applications of 265 ug of siRNA produced a decrease on IOP of 20.34 over control. In contrast, a scramble siRNA had not any effect on IOP levels.

Each value represents the mean of the percentage of IOP reduction over the control (contralateral eye with vehicle alone) in four different animals.

DETAILED DESCRIPTION OF THE INVENTION

In a first aspect, the invention relates to the use of siNA in the manufacture of a medicament for the treatment of an eye condition, wherein said siNA is capable of inhibiting expression of 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1).

The term inhibiting as used according to the invention encompasses downregulation of 11beta-HSD1. In one embodiment, the eye condition according to the invention is characterised by an altered intra-ocular pressure (IOP) in the patient. In another embodiment, the eye condition is selected from the group comprising glaucoma, infection, inflammation, uveitis, and expression of systemic diseases. The eye condition may be selected from glaucoma or diabetic retinopathy. According to the invention, target gene expression may be inhibited in the eye of the patient.

In one embodiment, the siNA according to the invention is siRNA. Preferably, the siRNA is dsRNA.

Although the mechanisms for RNAi remain unknown, the steps required to generate the specific dsRNA oligonucleotides are clear. It has been shown that dsRNA duplex strands that are 21-26 nucleotides in length work most effectively in producing RNA interference. Accordingly, in one embodiment, the siNA of the invention is of 21-26 nucleotides in length. However, the length of the siNA compound according to the invention is not limited. Selecting the right homologous region within the gene is also important. Factors such as the distance from start codon, the G/C content and the location of adenosine dimers are important when considering the generation of dsRNA for RNAi. One

consequence of this, however, is that one may need to test several different sequences for the most efficient RNAi and this may become costly.

In 1999, Tuschl et al. (Targeted mRNA degradation by double-stranded RNA in vitro. *Genes Dev.*, 1999; 13(24):3191-7) deciphered the silencing effect of siRNAs showing that their efficiency is a function of the length of the duplex, the length of the 3'-end overhangs, and the sequence in these overhangs. Based on this founder work, Eurogentec recommends that the target mRNA region, and hence the sequence of the siRNA duplex, should be chosen using the following guidelines:

Since RNAi relies on the establishment of complex protein interactions, it is obvious that the mRNA target should be devoid of unrelated bound factors. In this context, both the 5' and 3' untranslated regions (UTRs) and regions close to the start codon should be avoided as they may be richer in regulatory protein binding sites. The sequence of the siRNA is therefore selected as follows:

In the mRNA sequence, a region located 50 to 100 nt downstream of the AUG start codon or upstream of stop codon is selected.

In this region, the following sequences are searched for: AA(N19), CA(N19). The G/C percentage for each identified sequence is calculated. Ideally, the G/C content is 50 % but it must less than 70 % and greater than 30 %.

Preferably, sequences containing following repetitions are avoided: AAA, CCC, GGG, TTT, AAAA, CCCC, GGGG, TTTT.

An accessibility prediction according to the secondary structure of the mRNA is carried out as well. A BLAST is also performed (i.e. NCBI ESTs database) with the nucleotide sequence fitting best the previous criteria to ensure that only one gene will be inactivated.

In order to maximize the result's interpretation, the following precautions should be taken when using siRNAs:

- Always test the sense and antisense single strands in separate experiments.

- Try a scramble siRNA duplex. This should have the same nucleotide composition as your siRNA but lack significant sequence homology to any other gene (including yours).
- If possible, knock-down the same gene with two independent siRNA duplexes to control the specificity of the silencing process.

Practically, each of the selected genes is introduced as a nucleotide sequence in a prediction program that takes into account all the variables described above for the design of optimal oligonucleotides. This program scans any mRNA nucleotide sequence for regions susceptible to be targeted by siRNAs. The output of this analysis is a score of possible siRNA oligonucleotides. The highest scores are used to design double stranded RNA oligonucleotides (typically 21 bp long, although other lengths are also possible) that are typically made by chemical synthesis.

The nucleotides according to the invention may comprise one or more modified oligonucleotides. The one or more modifications are aimed at increasing stability or availability of the siRNA. Examples of suitable modifications are described in the publications referenced below, each of which is incorporated herein by reference. Examples of such modifications according to the invention include, but are not limited to, phosphorothioate internucleotide linkages, 2'-O-methyl ribonucleotides, 2'-deoxy-fluoro ribonucleotides, 2'-deoxy ribonucleotides, "universal base" nucleotides, 5-C-methyl nucleotides, and inverted deoxyabasic residue incorporation, chemical cross linking between the two complementary strands of an siRNA and chemical modification of a 3' terminus of a strand of an siRNA, internal modifications, for example, sugar modifications, nucleobase modifications and/or backbone modifications. 2'-fluoro modified ribonucleotides and 2'-deoxy ribonucleotide.

Studies show that replacing the 3'-terminal nucleotide overhanging segments of a 21-mer siRNA duplex having two -nucleotide 3'-overhangs with deoxyribonucleotides does not have an adverse effect on RNAi activity. Replacing up to four nucleotides on each end of the siRNA with

12

deoxyribonucleotides has been reported to be well tolerated, whereas complete substitution with deoxyribonucleotides results in no RNAi activity (Elbashir 2001). In addition, Elbashir et al. also report that substitution of siRNA with 2'-O-methyl nucleotides completely abolishes RNAi activity.

Affinity modified nucleosides as described in WO2005/044976 may be used. This publication describes oligonucleotides comprising nucleosides modified so as to have increased or decreased affinity for their complementary nucleotide in the target mRNA and/or in the complementary siNA strand.

GB2406568 describes alternative modified oligonucleotides chemically modified to provide improved resistance to degradation or improved uptake. Examples of such modifications include phosphorothioate internucleotide linkages, 2'-O-methyl ribonucleotides, 2'-deoxy-fluoro ribonucleotides, 2'-deoxy ribonucleotides, "universal base" nucleotides, 5-C-methyl nucleotides, and inverted deoxyabasic residue incorporation.

WO2004/029212 describes oligonucleotides modified to enhance the stability of the siRNA or to increase targeting efficiency. Modifications include chemical cross-linking between the two complementary strands of an siRNA and chemical modification of a 3' terminus of a strand of an siRNA. Preferred modifications are internal modifications, for example, sugar modifications, nucleobase modifications and/or backbone modifications. 2'-fluoro modified ribonucleotides and 2'-deoxy ribonucleotides are described.

WO2005/040537 further recites modified oligonucleotides which may be used in the invention.

As well as making use of dsNA and modified dsNA, the present invention may use short hairpin NA (shNA); the two strands of the siNA molecule may be connected by a linker region, which may be a nucleotide linker or a non-nucleotide linker.

In addition to siNA according to the invention which is complementary to the sequence in the mRNA target region, degenerate siNA sequences may be used to target homologous regions according to the invention. Degenerate siNA sequences can be designed according to methods known to the skilled person. For example, WO2005/045037 describes the design of siNA molecules to target such homologous sequences, for example by incorporating non-canonical base pairs, for example mismatches and/or wobble base pairs, that can provide additional target sequences. In instances where mismatches are identified, non-canonical base pairs (for example, mismatches and/or wobble bases) can be used to generate siNA molecules that target more than one gene sequence. In a non-limiting example, non-canonical base pairs such as UU and CC base pairs are used to generate siNA molecules that are capable of targeting sequences for differing targets that share sequence homology. As such, one advantage of using siNAs of the invention is that a single siNA can be designed to include nucleic acid sequence that is complementary to the nucleotide sequence that is conserved between homologous genes. In this approach, a single siNA can be used to inhibit expression of more than one gene instead of using more than one siNA molecule to target different genes.

Preferred siNA molecules of the invention are double stranded. A siNA molecule of the invention may comprise blunt ends, that is, ends that do not include any overhanging nucleotides. In one embodiment, a siNA molecule of the invention can comprise one or more blunt ends. In preferred embodiments, the siNA molecules have 3' overhangs. siNA molecules of the invention may comprise duplex nucleic acid molecules with 3' overhangs of n nucleotides ($5 \geq n \geq 1$). Elbashir (2001) shows that 21-nucleotide siRNA duplexes are most active when containing 3'-terminal dinucleotide overhangs.

Candidate oligonucleotides are further filtered for interspecies sequence conservation in order to facilitate the transition from animal to human clinical studies. In preferred embodiments of the invention, conserved oligonucleotides are used; this allows a single oligonucleotide sequence to be used in both animal models and human clinical trials.

The present invention may comprise the administration of one or more species of siNA molecule simultaneously. These one or more species may be selected to target the same or different mRNA species. Preferably, the siNA is targeted to a sequence selected from SEQ ID 1 to SEQ ID 61 or to a sequence comprising SEQ ID 1 to SEQ ID 61.

GenBank Accession Numbers corresponding to the two alternative transcripts of 11beta-HSD are displayed in Table 1. The present invention allows individual targeting of each transcript form. Thus, in one embodiment, the siNA is targeted to a splice form of 11beta-HSD as displayed in Table 1

Selected oligonucleotide sequences against which RNAi is directed are shown in Table 2. Displayed sequences are the DNA sequences targeted by the siNA. Therefore, the invention makes use of NA duplexes with sequences complementary to the indicated DNA sequences.

The sequences shown in Table 2 are not limiting. Target DNA need not necessarily be preceded by AA or CA. Further, target DNA could be constituted by sequences included in Table 2 flanked by any contiguous sequence.

In another aspect, the invention relates to a method of treatment of an eye condition, comprising administering siNA wherein said siNA is capable of inhibiting expression of 11beta-HSD1. The siNA is defined according to the disclosure.

The invention also relates to a method of inhibiting the expression of 11beta-HSD1 comprising administering a siNA compound capable of inhibiting expression of 11beta-HSD1. The siNA is defined according to the disclosure.

The invention relates to an isolated siNA compound targeted to 11beta-HSD1 wherein the siNA compound comprises a sequence complementary to a nucleotide sequence selected from SEQ ID 1 to SEQ ID 61. The siNA compound may in one embodiment comprise a nucleotide sequences selected from the group SEQ ID NO:

62 to SEQ ID NO: 122. In particular, the invention relates to an isolated siNA molecule comprising a sequence complementary to a nucleotide sequence selected from SEQ ID 1 to SEQ ID 61 or SEQ ID NOs: 62 to 122 for use as a medicament.

5 The invention relates to a pharmaceutical composition comprising an isolated siNA compound as described herein. In one embodiment, the pharmaceutical composition comprises an isolated siNA compound targeted to 11beta-HSD1 wherein the siNA compound comprises a sequence complementary to a nucleotide sequence selected from SEQ ID 1 to SEQ ID 61 or comprising a nucleotide sequences selected from 10 the group SEQ ID NO: 62 to SEQ ID NO: 122.

The siNA molecules of the invention and formulations or compositions thereof may be administered directly or topically (e. g., locally) to the eye as is generally known in the art. For example, a siNA molecule can comprise a delivery vehicle, including 15 liposomes, for administration to a subject. Carriers and diluents and their salts can be present in pharmaceutically acceptable formulations. Nucleic acid molecules can be administered to cells by a variety of methods known to those of skill in the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as biodegradable polymers, hydrogels, 20 cyclodextrins poly (lactic-co-glycolic) acid (PLGA) and PLCA microspheres, biodegradable nanocapsules, and bioadhesive microspheres, or by proteinaceous vectors. In another embodiment, the nucleic acid molecules of the invention can also be formulated or complexed with polyethyleneimine and derivatives thereof, such as polyethyleneimine- polyethyleneglycol-N-acetylgalactosamine (PEI-PEG-GAL) or 25 polyethyleneimine- polyethyleneglycol-tri-N-acetylgalactosamine (PEI-PEG-triGAL) derivatives.

A siNA molecule of the invention may be complexed with membrane disruptive agents and/or a cationic lipid or helper lipid molecule.

Delivery systems which may be used with the invention include, for example, aqueous and non aqueous gels, creams, multiple emulsions, microemulsions, liposomes, ointments, aqueous and non aqueous solutions, lotions, aerosols, hydrocarbon bases and powders, and can contain excipients such as solubilizers, permeation enhancers (e. g., fatty acids, fatty acid esters, fatty alcohols and amino acids), and hydrophilic polymers (e. g. , polycarbophil and polyvinylpyrrolidone). In one embodiment, the pharmaceutically acceptable carrier is a liposome or a transdermal enhancer.

A pharmaceutical formulation of the invention is in a form suitable for administration, e.g., systemic or local administration, into a cell or subject, including for example a human. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Other factors are known in the art, and include considerations such as toxicity and forms that prevent the composition or formulation from exerting its effect.

The present invention also includes compositions prepared for storage or administration that include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art. For example, preservatives, stabilizers, dyes and flavouring agents can be provided. These include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. In addition, antioxidants and suspending agents can be used.

A pharmaceutically effective dose is that dose required to prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state. The pharmaceutically effective dose depends on the type of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal

under consideration, concurrent medication, and other factors that those skilled in the medical arts will recognize.

Generally, an amount between 0.1mg/kg and 100 mg/kg body weight/day of active ingredients is administered.

The formulations of the invention can be administered in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and/or vehicles. Formulations can be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use can be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more such sweetening agents, flavouring agents, colouring agents or preservative agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets.

These excipients can be, for example, inert diluents; such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets can be uncoated or they can be coated by known techniques. In some cases such coatings can be prepared by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate can be employed.

Formulations for oral use can also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example,

calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions contain the active materials in a mixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropyl- methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents can be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions can also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more colouring agents, one or more flavouring agents, and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions can be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions can contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents and flavouring agents can be added to provide palatable oral preparations. These compositions can be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more

preservatives. Suitable dispersing or wetting agents or suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavouring and colouring agents, can also be present.

Pharmaceutical compositions of the invention can also be in the form of oil-in-water emulsions. The oily phase can be a vegetable oil or a mineral oil or mixtures of these. Suitable emulsifying agents can be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions can also contain sweetening and flavouring agents.

Syrups and elixirs can be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol, glucose or sucrose. Such formulations can also contain a demulcent, a preservative and flavouring and colouring agents. The pharmaceutical compositions can be in the form of a sterile injectable aqueous or oleaginous suspension.

This suspension can be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents that have been mentioned above.

A sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3- butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The nucleic acid molecules of the invention can also be administered in the form of suppositories, e. g. for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols.

Nucleic acid molecules of the invention can be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anaesthetics, preservatives and buffering agents can be dissolved in the vehicle.

It is understood that the specific dose level for any particular subject depends upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

For administration to non-human animals, the composition can also be added to the animal feed or drinking water. It can be convenient to formulate the animal feed and drinking water compositions so that the animal takes in a therapeutically appropriate quantity of the composition along with its diet. It can also be convenient to present the composition as a premix for addition to the feed or drinking water.

The nucleic acid molecules of the present invention can also be administered to a subject in combination with other therapeutic compounds to increase the overall therapeutic effect. The use of multiple compounds to treat an indication can increase the beneficial effects while reducing the presence of side effects.

Alternatively, certain siNA molecules of the invention can be expressed within cells from eukaryotic promoters. Recombinant vectors capable of expressing

the siNA molecules can be delivered and persist in target cells. Alternatively, vectors can be used that provide for transient expression of nucleic acid molecules. Such vectors can be repeatedly administered as necessary. Once expressed, the siNA molecule interacts with the target mRNA and generates an RNAi response. Delivery of siNA molecule expressing vectors can be systemic, such as by intravenous or intra-muscular administration, by administration to target cells ex-planted from a subject followed by reintroduction into the subject, or by any other means that would allow for introduction into the desired target cell.

Examples

Obtaining siRNA duplexes

RNAs are preferably chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional DNA/RNA synthesizer. Substitution of one or both strands of a siRNA duplex by 2'-deoxy or 2'-O-methyl oligoribonucleotides abolishes silencing in fly extract (Elbashir et al. 2001). In mammalian cells, however, it seems possible to substitute the sense siRNA by a 2'-O-methyl oligoribonucleotide (Ge et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A., 2003; 100(5):2718-23).

Most conveniently, siRNAs are obtained from commercial RNA oligo synthesis suppliers, which sell RNA-synthesis products of different quality and costs. In general, 21-nt RNAs are not too difficult to synthesize and are readily provided in a quality suitable for RNAi.

Suppliers of RNA synthesis reagents include Proligo (Hamburg, Germany), Dharmacon Research (Lafayette, CO, USA), Glen Research (Sterling, VA, USA), ChemGenes (Ashland, MA, USA), and Cruachem (Glasgow, UK), Qiagen (Germany), Ambion (USA) and Invitrogen (Scotland). The previous

custom RNA synthesis companies are entitled to provide siRNAs with a license for target validation. In particular, our siRNA suppliers are Ambion, Dharmacon and Invitrogen, companies that offer the traditional custom chemical synthesis service for siRNA, and supply the siRNA with HPLC purification and delivered in dry form along with RNase-free water. A central web-based resource for RNAi and siRNA methodologies, along with links to additional siRNA related products and services, can be found on the website of above-mentioned suppliers.

An annealing step is necessary when working with single-stranded RNA molecules. It is critical that all handling steps be conducted under sterile, RNase free conditions. To anneal the RNAs, the oligos must first be quantified by UV absorption at 260 nanometres (nm). The following protocol based on Elbashir et al. (2001) is then used for annealing:

- Separately aliquot and dilute each RNA oligo to a concentration of 50 μ M.
- Combine 30 μ l of each RNA oligo solution and 15 μ l of 5X annealing buffer. Final buffer concentration is: 100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, 2 mM magnesium acetate. Final volume is 75 μ l.
- Incubate the solution for 1 minute at 90 °C, centrifuge the tube for 15 seconds, let sit for 1 hour at 37 °C, then use at ambient temperature. The solution can be stored frozen at -20 °C and freeze-thawed up to 5 times. The final concentration of siRNA duplex is usually 20 μ M.

Alternatively, already annealed dsRNAs may be purchased from the suppliers.

Chemically modified nucleic acids may also be used. For example, an overview of the types of modification which may be used is given in WO03/070744, the contents of which are incorporated herein by reference. Particular attention is drawn to pages 11 to 21 of this publication. Other possible modifications are as described above. The skilled person will be aware of other types of chemical modification which may be incorporated into RNA molecules.

“In vitro” system

To check the specificity of the siRNA interference, different cell cultures that express the target genes such as non-pigmented ciliary epithelium cells NPE, ciliary epithelium cells OMDC, or embryonic kidney cells HEK293, are employed. Alternatively, cell bladder carcinoma cell line T-24, lung carcinoma cell line A549 or human embryonic keratinocytes HEK are used.

The cells are incubated with the corresponding siRNA duplexes, and analysis of the downregulation of expression of the target gene is carried out. For linking siRNA knockdown to specific phenotypes in cultured cells, it is necessary to demonstrate the reduction of targeted protein or at least demonstrate the reduction of the targeted mRNA.

mRNA levels of the target gene are quantitated by real-time quantitative PCR (RT-PCR). Further, the protein levels can be determined in a variety of ways well known in the art, such as Western blot analysis with specific antibodies to the different target allow direct monitoring of the reduction of targeted protein.

Transfection of siRNA duplexes

Several examples of techniques well known in the art are as follows: We can perform a single transfection of siRNA duplex using a cationic lipid, such as RNAiFect Transfection Reagent (Qiagen) and Lipofectamine 2000 Reagent (Invitrogen) and assay for silencing 24, 48 and 72 hours after transfection.

A typical transfection protocol can be performed as follows: For one well of a 6-well plate, we transfect using 100nM as final concentration of siRNA. Following RNAiFect protocol, we seed, the day before transfection, $2-4 \times 10^5$ cells per well in 3ml of an appropriate growth medium, containing DMEM, 10% serum, antibiotics and glutamine, and incubate cells under normal growth conditions (37°C and 5% CO₂). On the day of transfection, cells have to be at 30-50% confluence. We dilute 15ul of 20uM siRNA duplex (corresponding to 100 nM final concentration) in 85ul of Buffer EC-R, to give a final volume of 100ul, and mix by vortexing. For complex formation, we add 19 ul of RNAiFect Transfection

Reagent to the diluted siRNA and mix by pipetting or vortexing. After incubating the samples for 10-15 minutes at room temperature to allow formation of transfection complexes, we add the complexes drop-wise onto the cells with 2.9 ml of fresh growth medium low in antibiotics. After swirling the plates to ensure uniform distribution of the transfection complexes, we incubate the cells under their normal growth conditions. The day after, the complexes are removed and fresh and complete growth medium is added. To monitor gene silencing, cells are collected at 24, 48 and 72 hours post-transfection. The Lipofectamine 2000 Reagent protocol is quite similar. The day before transfection, we seed 2-4 x 10⁵ cells per well in 3ml of an appropriate growth medium, containing DMEM, 10% serum, antibiotics and glutamine, and incubate cells under normal growth conditions (37°C and 5% CO₂). On the day of transfection, cells have to be at 30-50% confluence. We dilute 12.5ul of 20uM siRNA duplex (corresponding to 100 nM final concentration) in 250ul of DMEM, to give a final volume of 262.5ul, and mix. Also, 6ul of Lipofectamine 2000 is diluted in 250ul of DMEM and mixed. After a 5 minutes incubation at room temperature, the diluted oligomer and the diluted Lipofectamine are combined to allow complex formation during a 20 minutes incubation at room temperature. Afterwards, we add the complexes drop-wise onto the cells with 2 ml of fresh growth medium low in antibiotics and mix gently by rocking the plate back and forth, to ensure uniform distribution of the transfection complexes. We incubate the cells under their normal growth conditions and the day after, the complexes are removed and fresh and complete growth medium is added. To monitor gene silencing, cells are collected at 24, 48 and 72 hours post-transfection.

The efficiency of transfection may depend on the cell type, but also on the passage number and the confluence of the cells. The time and the manner of formation of siRNA-liposome complexes (e.g. inversion versus vortexing) are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful silencing. Good transfection is a non-trivial issue and needs to be carefully examined for each new cell line to be used. Transfection efficiency may be tested transfecting reporter genes, for example a CMV-driven EGFP-

expression plasmid (e.g. from Clontech) or a B-Gal expression plasmid, and then assessed by phase contrast and/or fluorescence microscopy the next day.

Testing of siRNA duplexes

Depending on the abundance and the life time (or turnover) of the targeted protein, a knock-down phenotype may become apparent after 1 to 3 days, or even later. In cases where no phenotype is observed, depletion of the protein may be observed by immunofluorescence or Western blotting.

After transfections, total RNA fractions extracted from cells are pre-treated with DNase I and used for reverse transcribed using a random primer. PCR is amplified with a specific primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control. Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable protein may exist in the cell. Alternatively, RealTime PCR amplification can be used to test in a more precise way the mRNA decrease or disappearance. Real-time reverse-transcriptase (RT) PCR quantitates the initial amount of the template most specifically, sensitively and reproducibly. Real-time PCR monitors the fluorescence emitted during the reaction as an indicator of amplicon production during each PCR cycle. This signal increases in direct proportion to the amount of PCR product in a reaction. By recording the amount of fluorescence emission at each cycle, it is possible to monitor the PCR reaction during exponential phase where the first significant increase in the amount of PCR product correlates to the initial amount of target template.

To verify the interference pattern of the differentially expressing genes identified in the cell cultures, qRT-PCR is performed according to the manufacturer protocol. For quantitative RT-PCR (qRT-PCR), approximately 250 ng of total RNA is used for reverse transcription followed by PCR amplification with specific primers for each gene in reaction mixture containing Master SYBR Green I. Basic PCR conditions comprised an initial step of 30 minutes at 91°C,

followed by 40 cycles of 5 s at 95°C, 10 s at 62°C and 15 s at 72°C. Specific primer sequences corresponding to each target gene are used. Quantification of b-actin mRNA is used as a control for data normalization. Relative gene expression comparisons work best when the gene expression of the chosen endogenous/internal control is more abundant and remains constant, in proportion to total RNA, among the samples. By using an invariant endogenous control as an active reference, quantitation of an mRNA target can be normalised for differences in the amount of total RNA added to each reaction.

Animal studies

The New Zealand rabbit is the gold standard in experimental platforms designed to study IOP. It is easy to handle and it has a big eye, similar in size to the human organ. In addition, present equipment to measure IOP is not suited to use in animals with small eyes such as mice or rats. Finally, rabbits have an IOP (around 23 mm Hg) that can be brought down to up to 40% its value using local commercial hypotensive medication. Thus, although it is possible to generate rabbit glaucoma models (for example, surgically blocking episclerotic veins or artificially occluding the trabecular meshwork), we have used normotensive rabbits since, in our hands, the pharmacological decrease in IOP can be easily and reproducibly measured.

Experimental protocol

Normotensive New Zealand White rabbits (males, 2–3 kg) were used. The animals were kept in individual cages with free access to food and water. They were submitted to artificial 12 hours light/darkness cycles, to avoid uncontrolled circadian oscillations of IOP. Animal handling and treatment were carried out in accordance with the European Communities Council Directive (86/609/EEC) and the statement of the Association for Research in Vision and Ophthalmology on the Use of Animals in Ophthalmic and Vision Research.

The drugs were typically administered by instilling a small volume (typically 40 μ L) on the corneal surface. Contralateral eyes were treated with the vehicle alone and could be used as controls in each experiment lest there is a sympathy phenomenon with the other eye. Multiple experiments in the same animal should be abolished.

IOP measurements were done using a contact tonometer (TONOPEN XL, Mentor, Norwell, Massachusetts). The TonoPen tonometer is very convenient due to its reliability and small size. Measurements with this instrument were performed delicately applying the tonometer's sensor to the corneal surface. This device has been shown to be the tonometer of choice for measuring intraocular pressures within the range of 3 to 30 mm Hg in rabbits (Abrams et al. Comparison of three tonometers for measuring intraocular pressure in rabbits. *Invest Ophthalmol Vis Sci.* 1996 Apr;37(5):940-4.). All measurements fell within this interval: the mean baseline value of intraocular pressure was 17.0 \pm 0.39 mm Hg (n = 100). Because IOP changes from the night to day, all the experiments were performed at the same time to allow IOP more stable and permit an objective comparison with vehicle treatment. In order to avoid distress to the animal, rabbits were topically anesthetized (oxibuprocaine/tetracaine, 0.4%/1%, in a saline solution (1/4 v:v). The solution was applied (10 μ l) to the cornea before each measurement of intraocular pressure was made. siRNA or saline was applied topically to the cornea in volumes of 40 μ l.

The standard protocol for the siRNA application in rabbit was as follows. Doses of siRNA in saline solution (0.9% w/v) to a final volume of 40ul, were applied to one eye each day during four consecutive days. The opposite eye was taken as a control and 40 μ l of sterile saline (0.9% w/v) were instilled on it, at the same time points. The IOP was measured before each application and at 2h, 4h and 6h following the instillation, during 10 days. Maximum responses were observed between second and third day. To compare the effect of siRNA with other hypotensive compounds, Xalatan (latanoprost 0.005%) and Trustop (Dorzolamide 2%) were assayed and IOP measured in the same conditions.

Rabbits were treated based on the standard protocol described above. These experiments demonstrated the maximum effect of two siRNAs on the reduction of IOP in normotensive New Zealand rabbits. The values in figure 4 represent the mean of the percentage of IOP reduction over the control (contralateral eye with vehicle alone) and their standard error (SD). The siRNAs used are 11HSD/01: CCACAUCAACGCUUCUdTdT (SEQ ID 133; rabbit sequence homologous to human SEQ ID N° 100) and 11HSD/02: CGUCAAUGUAUCAAAUCACUdTdT (SEQ ID 134; rabbit sequence with best score and with no corresponding disclosed human sequence).

The results also show in vivo effect of siRNA 11HSD/02 on the reduction of IOP in normotensive New Zealand rabbit across de time (figure 5). Four consecutive applications of 265 ug of siRNA produced a decrease on IOP of 20.34 over control. In contrast, a scramble siRNA had not any effect on IOP levels. Each value represents the mean of the percentage of IOP reduction over the control (contralateral eye with vehicle alone) in four different animals.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

CLAIMS:

1. Use of siNA targeted to 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in the manufacture of a medicament for the treatment of an eye condition characterised by an altered intra-ocular pressure (IOP), wherein said medicament is formulated for topical administration to a corneal surface of a patient and is capable of inhibiting expression of 11beta-HSD1 in the eye of the patient.

5 2. The use of claim 1 wherein the eye condition is selected from the group comprising glaucoma, infection, inflammation, uveitis, diabetic retinopathy, and expression of systemic diseases.

10 3. The use of any preceding claim wherein the eye condition is glaucoma.

15 4. The use of any preceding claim wherein the siNA is siRNA.

5 5. The use of any preceding claim wherein the siNA comprises one or more modified oligonucleotides.

20 6. The use of any preceding claim wherein a plurality of species of siNA is used.

7. The use of any preceding claim wherein the siNA is targeted to a sequence selected from SFQ ID NO: 1 to SFQ ID NO: 61, or to a sequence comprising SEQ ID NO: 1 to SEQ ID NO: 61.

25 8. The use of any preceding claim wherein the siNA comprises a nucleotide sequence selected from SEQ ID NO: 62 to SEQ ID NO: 122.

9. The use of claim 8 wherein the siNA comprises a 3' overhang.

30 10. A method of treatment of an eye condition characterised by an altered IOP, the method comprising topically administering to a corneal surface of a patient in

need thereof siNA targeted to 11beta-HSD1 and capable of inhibiting expression of 11beta-HSD1.

11. The use of claim 1 or the method of claim 10, substantially as hereinbefore 5 described with reference to the examples and figures.

Figure 1

Accession number	Definition
NM_005525	Homo sapiens hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), transcript variant 1, mRNA
NM_181755	Homo sapiens hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), transcript variant 2, mRNA

Figure 2

Hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1)	
SEQ ID 1	AAAATATCTCCTCCCCATT
SEQ ID 2	AAATATCTCCTCCCCATTTC
SEQ ID 3	AATATCTCCTCCCCATTCT
SEQ ID 4	ATATCTCCTCCCCATTCTG
SEQ ID 5	TATCTCCTCCCCATTCTGG
SEQ ID 6	ACGAGGAATTCA GACCAGA
SEQ ID 7	CGAGGAATTCA GACCAGAG
SEQ ID 8	TTCAGACCAGAGATGCTCC
SEQ ID 9	GGAAAGAAAGTGATTGTCA
SEQ ID 10	AGAAAGTGATTGTCA CAGGG
SEQ ID 11	GAAAGTGATTGTCA CAGAGGG
SEQ ID 12	AGTGATTGTCA CAGGGGCC
SEQ ID 13	GTGATTGTCA CAGGGGCCA
SEQ ID 14	AGGGATCGGAAGAGAGATG
SEQ ID 15	GGGATCGGAAGAGAGATGG
SEQ ID 16	GAGAGATGGCTTATCATCT
SEQ ID 17	GATGGGAGCCCATGTGGTG
SEQ ID 18	AAGAAACTCTACAGAAGGT
SEQ ID 19	AGAAACTCTACAGAAGGTG

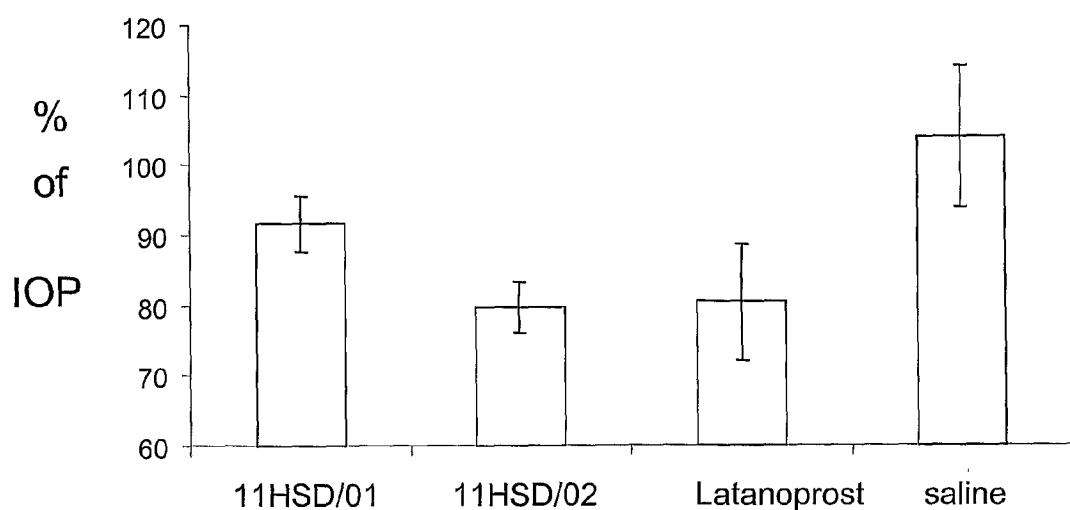
SEQ ID 20	GAAACTCTACAGAAGGTGG	
SEQ ID 21	ACTCTACAGAAGGTGGTAT	
SEQ ID 22	CTCTACAGAAGGTGGTATC	
SEQ ID 23	GGTGGTATCCCCTGCCTG	
SEQ ID 24	GACATGACCTTCGCAGAGC	
SEQ ID 25	TTTGTGCCCCAAGCAGGAA	
SEQ ID 26	GCAGGAAAGCTCATGGGAG	
SEQ ID 27	AGCTCATGGGAGGACTAGA	
SEQ ID 28	GCTCATGGGAGGACTAGAC	
SEQ ID 29	CCACATCACCAACACTTCT	
SEQ ID 30	AAGCATGGAAGTCAACTTC	
SEQ ID 31	AGCATGGAAGTCAACTTCC	
SEQ ID 32	GCATGGAAGTCAACTTCCT	
SEQ ID 33	GTCAACTTCCTCAGTTACG	
SEQ ID 34	CTTCCTCAGTTACGTGGTC	
SEQ ID 35	GCAGAGCAATGGAAGCATT	
SEQ ID 36	TGGAAGCATTGTTGTCGTC	
SEQ ID 37	GCATTGTTGTCGTCTCCTC	
SEQ ID 38	AGTGGCTTATCCAATGGTT	
SEQ ID 39	GTGGCTTATCCAATGGTTG	
SEQ ID 40	TGGTTGCTGCCTATTCTGC	
SEQ ID 41	GCAAGTTGCTTGGATGG	

4/10

SEQ ID 42	GTTTGCTTGGATGGGTTCTT
SEQ ID 43	AGGAATATTCACTGTCCAGG
SEQ ID 44	GGAATATTCACTGTCCAGG
SEQ ID 45	TATTCACTGTCCAGGGTCA
SEQ ID 46	TGTATCAATCACTCTCTGT
SEQ ID 47	TCACTCTGTGTTCTTGG
SEQ ID 48	ACAGCCATGAAGGCAGTTT
SEQ ID 49	CAGCCATGAAGGCAGTTTC
SEQ ID 50	GGCAGTTCTGGGATAGTC
SEQ ID 51	GCAGCTCCAAAGGAGGAAT
SEQ ID 52	AGGAGGAATGTGCCCTGGA
SEQ ID 53	GGAGGAATGTGCCCTGGAG
SEQ ID 54	TGTGCCCTGGAGATCATCA
SEQ ID 55	GAACTGTATTATGACAGCT
SEQ ID 56	GTGTATTATGACAGCTCAC
SEQ ID 57	ATCCATGCAGGAAGATCCT
SEQ ID 58	TCCATGCAGGAAGATCCTG
SEQ ID 59	GATCCTGGAATTCTCTAC
SEQ ID 60	TTTCTCTACTCAACGAGCT
SEQ ID 61	CGAGCTATAATATGGACAG

Figure 3

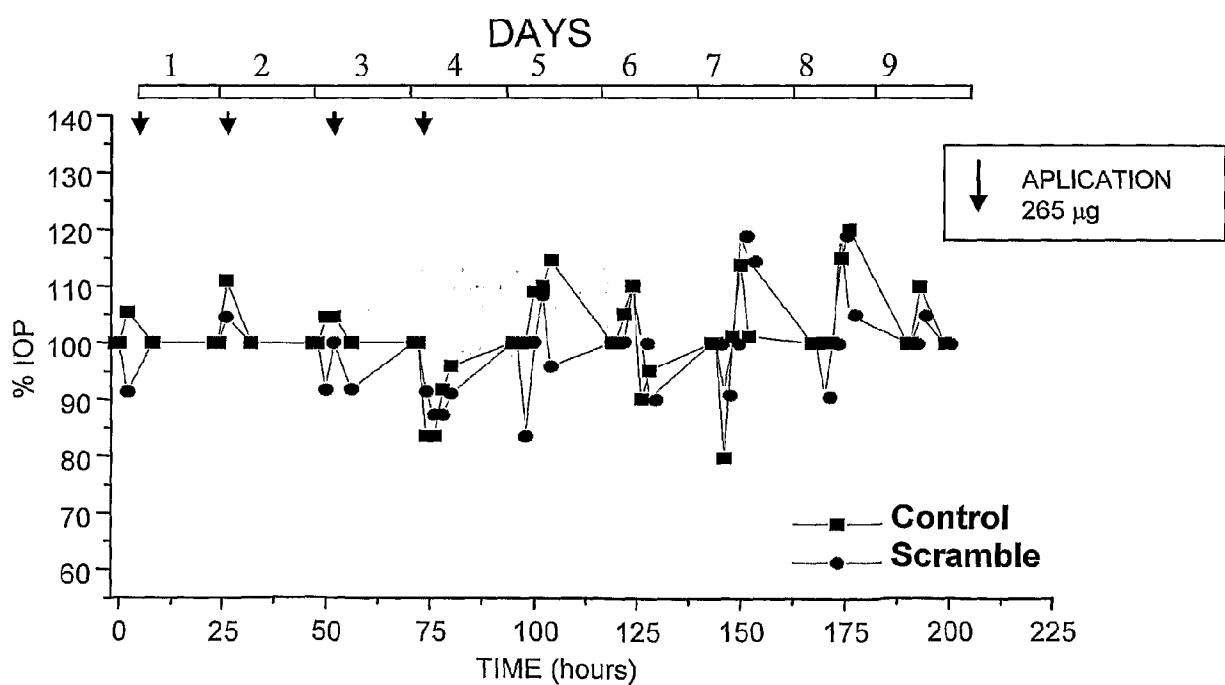
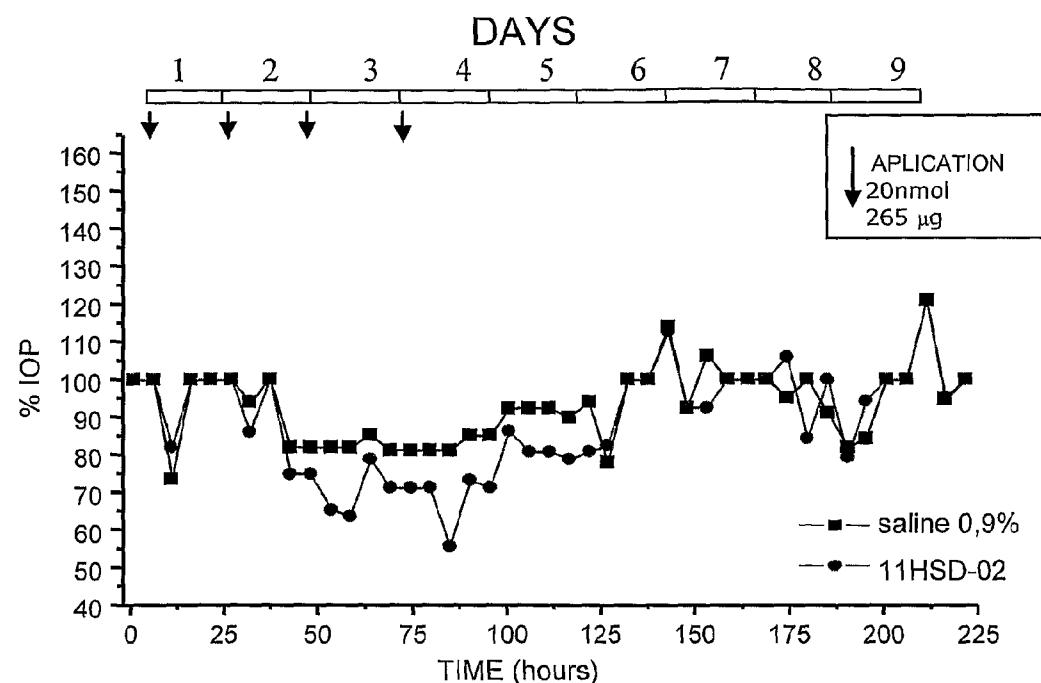
Hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1)	
SEQ ID 62	5' AAAATATCTCCTCCCCATT 3' 3' UUUUAUAGAGGAGGGGUAA 5' 5' AAATATCTCCTCCCCATTC 3' 3' UUUUAUAGAGGAGGGGUAAAG 5' 5' AATATCTCCTCCCCATTCT 3' 3' UUAUAGAGGAGGGGUAAAGA 5' 5' ATATCTCCTCCCCATTCTG 3' 3' UAUAGAGGAGGGGUAAAGAC 5' 5' TATCTCCTCCCCATTCTGG 3' 3' AUAGAGGAGGGGUAAAGACC 5' 5' ACGAGGAATTCAAGACCAGA 3' 3' UGCUCCUUAAGUCUGGUCU 5' 5' CGAGGAATTCAAGACCAGAG 3' 3' GCUCCUUAAGUCUGGUCUC 5' 5' TTCAGACCAGAGATGCTCC 3' 3' AAGUCUGGUCUCUACGAGG 5' 5' GGAAAGAAAGTGATTGTCA 3' 3' CCUUUCUUUCACUAACAGU 5' 5' AGAAAGTGATTGTACACAGG 3' 3' UCUUUCACUAACAGUGUCC 5' 5' GAAAGTGATTGTACACAGGG 3' 3' CUUUCACUAACAGUGUCCC 5' 5' AGTGATTGTACAGGGGCC 3' 3' UCACUAACAGUGUCCCCGG 5' 5' GTGATTGTACAGGGGCCA 3' 3' CACUAACAGUGUCCCCGGU 5' 5' AGGGATCGGAAGAGAGATG 3' 3' UCCCUAGCCUUCUCUAC 5'
SEQ ID 63	
SEQ ID 64	
SEQ ID 65	
SEQ ID 66	
SEQ ID 67	
SEQ ID 68	
SEQ ID 69	
SEQ ID 70	
SEQ ID 71	
SEQ ID 72	
SEQ ID 73	
SEQ ID 74	
SEQ ID 75	


	6/10
SEQ ID 76	5' GGGATCGGAAGAGAGATGG 3' 3' CCCUAGCCUUCUCUUCACC 5' 5' GAGAGATGGCTTATCATCT 3' 3' CUCUCUACCGAAUAGUAGA 5' 5' GATGGGAGCCCAGTGTGGTG 3' 3' CUACCCUCGGGUACACCCAC 5' 5' AAGAAAACTCTACAGAAAGGT 3' 3' UUCUUUUGAGAUGUCUUCCA 5' 5' AGAAAACTCTACAGAAAGGTG 3' 3' UCUUUGAGAUGUCUUCACAC 5' 5' GAAAACTCTACAGAAAGGTGG 3' 3' CUUUGAGAUGUCUUCACCAC 5' 5' ACTCTACAGAAAGGTGGTAT 3' 3' UGAGAUGUCUUCACCAUA 5' 5' CTCTACAGAAAGGTGGTATC 3' 3' GAGAUGUCUUCACCAUAG 5' 5' GGTGGTATCCCCTGCCTG 3' 3' CCACCAUAGGGUGACGGAC 5' 5' GACATGACCTTCGCAGAGC 3' 3' CUGUACUGGAAGCGUCUCG 5' 5' TTTGTTGCCAACAGCAGGAA 3' 3' AAACAACGGGUUCGUCCUU 5' 5' GCAGGAAAGCTCATGGGAG 3' 3' CGUCCUUUCGAGUACCCUC 5' 5' AGCTCATGGGAGGACTAGA 3' 3' UCGAGUACCCUCCUGAUCU 5' 5' GCTCATGGGAGGACTAGAC 3' 3' CGAGUACCCUCCUGAUCUG 5' 5' CCACATCACCAACACTTCT 3' 3' GGUGUAGUGGUUGUGAAGA 5' 5' AAGCATGGAAGTCAACTTC 3' 3' UUCGUACCUUCAGUUGAAG 5' 5' AGCATGGAAGTCAACTTCC 3'
SEQ ID 77	
SEQ ID 78	
SEQ ID 79	
SEQ ID 90	
SEQ ID 91	
SEQ ID 92	
SEQ ID 93	
SEQ ID 94	
SEQ ID 95	
SEQ ID 96	
SEQ ID 97	
SEQ ID 98	
SEQ ID 99	
SEQ ID 100	
SEQ ID 101	
SEQ ID 102	

	7/10
SEQ ID 103	 3' UCGUACCUUCAGUUGAAGG 5' 5' GCATGGAAGTCAACTTCCT 3'
SEQ ID 104	3' CGUACCUUCAGUUGAAGGA 5' 5' GTCAACTTCCTCAGTTACG 3'
SEQ ID 105	3' CAGUUGAAGGAGUCAAUGC 5' 5' CTTCCTCAGTTACGTGGTC 3'
SEQ ID 106	3' GAAGGAGUCAAUGCACAG 5' 5' GCAGAGCAATGGAAGCATT 3'
SEQ ID 107	3' CGUCUCGUUACCUUCGUAA 5' 5' TGGAAAGCATTGTTGTCGTC 3'
SEQ ID 108	3' ACCUUCGUAACAAACAGCAG 5' 5' GCATTGTTGTCGTCTCCTC 3'
SEQ ID 109	3' CGUAACAAACAGCAGAGGAG 5' 5' AGTGGCTTATCCAATGGTT 3'
SEQ ID 110	3' UCACCGAAUAGGUUACCAA 5' 5' GTGGCTTATCCAATGGTTG 3'
SEQ ID 111	3' CACCGAAUAGGUUACCAAC 5' 5' TGGTTGCTGCCTATTCTGC 3'
SEQ ID 112	3' ACCAACGACGGAAAGACG 5' 5' GCAAGTTGCTTGGATGGATGG 3'
SEQ ID 113	3' CGUJCAAACGAAACCUACC 5' 5' GTTGCTTGGATGGGTTG 3'
SEQ ID 114	3' CAAACGAAACCUACCCAAG 5' 5' AGGAATATTCACTGTCCAG 3'
SEQ ID 115	3' UCCUUUAAGUCACAGGUC 5' 5' GGAATATTCACTGTCCAGG 3'
SEQ ID 116	3' CCUUAUAAGUCACAGGUCC 5' 5' TATTCACTGTCCAGGGTCA 3'
SEQ ID 117	3' AUAAGUCACAGGUCCAGU 5' 5' TGTATCAATCACTCTCTGT 3'
SEQ ID 118	3' ACAUAGUUAGUGAGAGACA 5' 5' TCACTCTCTGTGTTCTTGG 3'

	8/10
SEQ ID 119	3' AGUGAGAGACACAAGAAC 5' 5' ACAGCCATGAAGGCAGTTT 3' 3' UGUCGGUACUUCCGUCAAA 5' 5' CAGCCATGAAGGCAGTTTC 3' 3' GUCGGUACUUCCGUCAAAG 5' 5' GGCAGTTCTGGGATAAGTC 3' 3' CCGUCAAAGACCCUAUCAG 5' 5' GCAGCTCCAAGGAGGAAT 3' 3' CGUCGAGGUUUCCUCCUUA 5' 5' AGGAGGAATGTGCCCTGGA 3' 3' UCCUCCUUACACGGGACCU 5' 5' GGAGGAATGTGCCCTGGAG 3' 3' CCUCCUUACACGGGACCU 5' 5' TGTGCCCTGGAGATCATCA 3' 3' ACACGGGACCUCUAGUAGU 5' 5' GAAGTGTATTATGACAGCT 3' 3' CUUCACAUAAUACUGUCGA 5' 5' GTGTATTATGACAGCTCAC 3' 3' CACAUAAUACUGUCGAGUG 5' 5' ATCCATGCAGGAAGATCCT 3' 3' UAGGUACGUCCUUCUAGGA 5' 5' TCCATGCAGGAAGATCCTG 3' 3' AGGUACGUCCUUCUAGGAC 5' 5' GATCCTGGAATTCTCTAC 3' 3' CUAGGACCUAAAGAGAUG 5' 5' TTTCTCTACTCAACGAGCT 3' 3' AAAGAGAUGAGUUGCUCGA 5' 5' CGAGCTATAATATGGACAG 3' 3' GCUCGAUAAUAUACCUGUC 5'
SEQ ID 120	
SEQ ID 121	
SEQ ID 122	
SEQ ID 123	
SEQ ID 124	
SEQ ID 125	
SEQ ID 126	
SEQ ID 127	
SEQ ID 128	
SEQ ID 129	
SEQ ID 130	
SEQ ID 131	
SEQ ID 132	

9/10



Figure 4.

	Media	SD
11HSD/01	91,6	3,88
11HSD/02	79,66	3,66
xalatan	80,34	8,32
saline	103,87	10,11

10/10

Figure 5

