077878 Al

~

0 02

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A0 0 OO

(10) International Publication Number

WO 02/077878 Al

3 October 2002 (03.10.2002) PCT

(51) International Patent Classification’: GO6F 17/30 (81)
(21) International Application Number: PCT/US02/09426
(22) International Filing Date: 26 March 2002 (26.03.2002)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data: 84)

60/278,823 26 March 2001 (26.03.2001) US

(71) Applicant (for all designated States except US): GALOIS
CONNECTIONS INC [US/US]; 3875 SW Hall Boule-
vard, Beaverton, OR 97005 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LAUNCHBURY,
John [GB/US]; 13075 SW Davies Road, Beaverton, OR
97008 (US). NORDIN, Thomas [SE/US]; 420 NW 11th
#1020, Portland, OR 97209 (US).

(74) Agent: MUNSON, Steven, J.; Stoel Rives LLP, Suite
2600, 900 SW Fifth Avenue, Portland, OR 97204-1268
(Us).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

[Continued on next page]

(54) Title: CRYPTO-POINTERS FOR SECURE DATA STORAGE

100

r “

Address A Key A

200

Data Encrypted with Key A

Crypto-pointer always points to cell encrypted with associated key

(57) Abstract: The present invention relates to pairing of a different cryptographic key with each pointer in a data structure to
form a crypto-pointer (100). The cryptographic key is used to encrypt the contents of all data stored at the physical location on
the storage device indicated by the pointer (100). Preferably the only data accessible in an unencrypted form is contained in cells
that are reachable from root-set crypto-pointers (100). Once the crypto-pointer (100) associated with a particular memory cell (200)
is deleted, normally by overwriting or explicitly zeroing the crypto-pointer (100), the contents of the memory cell (200) become
inaccessible because the data stored at that cell is in encrypted form (cipher text) and the crypto-pointer (100) that included the
cryptographic key for decrypting the cipher text has been deleted from the system.

w0 02/077878 A1 IR0 00 0O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 02/077878 PCT/US02/09426

CRYPTO-POINTERS FOR SECURE DATA STORAGE

Related Applications

[0001] This application is a continuation of U.S. Provisional Patent Application
60/278,823 filed March 26, 2001 and incorporated by reference herein.
Technical Field

[0002] The present invention relates to secure data storage and to preventing recovery

of deleted data.

Background of the Invention

[0003] One way of storing data in a computer system is to store files in a directory
structure. The directory structure normally includes a variety of information about any
files and sub-directories within the directory structure. One piece of information included
in the directory for each file or sub-directory is a directory listing that includes a field
containing the physical location, or a pointer to a physical location, on a storage device,
such as a disk drive or other non-volatile storage medium, where the file or sub-directory is
located. Deletion of a file or sub-directory from the directory typically consists of
removing only the directory listing. Once the directory listing has been deleted the system
can no longer access the file or sub-directory because it does not know the physical location
on the storage device for the file or sub-directory. However, the file or sub-directory is
usually still stored on the storage device and can be recovered through the use of well
known data recovery techniques.
[0004] One way to prevent recovery of deleted data is to explicitly zero, or overwrite,
all data at the physical location pointed to by the directory listing. However, this can be a

- cumbersome process. Particularly, if there are large amounts of data stored on the storage
device. The problem can be even more difficult in a heap data structure because it is
generally not clear when data within the structure is discarded. In a conventional heap,

data is only discarded when the data becomes inaccessible via the heap structure, i.e. an

WO 02/077878 PCT/US02/09426

access path within the heap structure no longer includes any pointers to the data.
Discarding data in this environment typically consists of deleting any pointer that includes
the physical location of the data on a storage device. The data itself is generally not
deleted. Due to the uncertainty as to when the pointers, which include the physical location
of the data, is discarded it can be difficult and cumbersome to overwrite or zero the data at
its physical location on the storage device.

Summary of the Invention

[0005] The present invention relates to hierarchical data structures employing crypto-
pointers in place of normal pointers. Crypto-pointers enable fine-grain crypto-protection by
the use of vast numbers of distinct keys within a single data structure. Crypto-pointers
solve key-management problems in terms of the data structure itself. The use of crypto-
pointers helps to ensure that data becomes unrecoverable whenever it becomes inaccessible,
i.e. data becomes unrecoverable whenever the crypto-pointer associated with the data is
deleted.

[0006] The present invention relates to the pairing of a unique cryptographic key with
each pointer in a data structure to form a crypto-pointer. The cryptographic key is used to
encrypt all data stored at the physical location on the storage device indicated by the
pointer. In accordance with the present invention, preferably the only data accessible in an
unencrypted form is a root set of crypto pointers that provide entry points into the data
structure. Once the crypto-pointer associated with a particular data cell is deleted, normally
by overwriting or explicitly zeroing the crypto-pointer, the particular data cell or cells that
were pointed to by the crypto pointer become inaccessible because the data at those cells is
in encrypted form (cipher text) and the crypto-pointer that included the cryptographic key
that could have been used to decrypt the data has been deleted from the system.

[0007] Additional aspects and advantages bf this invention will be apparent from the
following detailed description of preferred embodiments thereof, which proceeds with
reference to the accompanying drawings.

Brief Description of the Drawings

[0008] Fig. 1 is a block diagram depicting the logical structure of a crypto-pointer.
[0009] Fig. 2 is a block diagram depicting the association of the crypto-pointer of Fig.
1 with encrypted data stored in memory at a location indicated by an address field of the

crypto-pointer.

WO 02/077878 PCT/US02/09426

[0010] Fig. 3 is a block diagram depicting how a crypto-pointer A enables access to
data associated with crypto-pointers B and C.

[0011] Fig. 4 is a block diagram of a simple data structure with three access points,
each of which is associated with a plain text version of a different crypto-pointer.

[0012] Fig. 5 shows the data structure of Fig. 4 after the plain text version of crypto-
pointer C has been deleted.

[0013] Fig. 6 shows the data structure of Fig. 5 after the plain text version of crypto-
pointer A has been deleted.

[0014] Fig. 7 is a flow chart depicting a method of using crypto-pointers.

[0015] Fig. 8 is a block diagram depicting a data structure using crypto-pointers to limit
access to portions of the data structure based on the point of entry into the data structure.

Detailed Description of Preferred Embodiments

[0016] A heap is a collection of cells within a portion of memory, where the cells may
contain data, pointers (which are memory addresses to other cells), or a combination of
both. In a normal heap structure, blocks of memory in one or more storage devices are
allocated and freed in an arbitrary manner. The heap structure typically includes a set of (
root pointers. Each of the root pointers includes information about a memory block within
the heap structure including the physical location of the memory block on a storage device.
The root pointer provide entry points into the heap structure. The memory blocks pointed
to by the root pointers can include data, additional pointers, or both. - In that way the heap
structure can take on a tree structure, or a graph structure. A memory block is freed when
no other memory blocks accessible from one of the entry points includes a pointer to that
memory block. At that point, a garbage collector can identify that the memory block is no
longer needed and the memory block can be allocated for storage of new data. However,
until new data is written to a particular memory block the old data stored at that physical
location is preserved and can be accessed via known data recovery techniques.

[0017] In accordance with the present invention a secure data structure can be formed
by using “crypto-pointers” instead of normal pointers. A crypto-pointer includes an
address, much like a normal pointer, which indicates the physical location on a non-volatile
storage device where data has been, or will be, stored. In a crypto-pointer the address is
paired with a cryptographic key. Fig. 1 is a block diagram depicting a crypto-pointer 100

in accordance with the present invention. With reference to Fig. 1, an address A is paired

3

WO 02/077878 PCT/US02/09426

with an encryption Key A to form crypto-pointer 100. Crypto-pointer 100 is a single
logical entity and should preferably always be manipulated or handled as a single entity.
[0018] Fig. 2 is a block diagram depicting the association between crypto-pointer 100
and data stored in a memory cell 200 on a storage device (not shown). The physical
location of memory cell 200 on the storage device corresponds to the location indicated by
address A. With reference to Fig. 2, data to be stored at memory cell 200 is always
encrypted using encryption key A and an appropriate encryption algorithm to form a
cipher-text version of the data. The cipher-text version of the data is then stored at memory
cell 200. In order to access a plain text version of the data stored at memory cell 200 the
cipher-text version of the data must be decrypted using encryption Key A and an
appropriate decryption algorithm.

[0019] Ensuring that only cipher-text versions of data are stored in memory cells on a
storage device has implications for allocating, updating, and reading the data stored in a
memory cell. First, whenever a new memory cell is allocated, the address is recorded, a
new random encryption key is generated, and the random encryption key is associated with
the address to form a new crypto-pointer. The new random encryption key is used to
encrypt all initial contents of the new memory cell. Second, whenever the memory cell
content needs to be updated, the random encryption key of the crypto-pointer is used to
encrypt the new content (whether data, other crypto-pointers, or a combination of both),
and the memory cell is overwritten with the updated encrypted information. Conversely,
whenever the memory cell pointed to by the crypto-pointer is to be read, the random
cryptographic key is used to decrypt the data stored at the address, also called the cipher-
text, thus revealing the plain text data stored at the address. Whatever information this cell
contains (again, whether data or other crypto-pointers), becomes known only after
decryption.

[0020] In a preferred embodiment each memory cell has its own unique encryption key
as shown in Fig. 3. With reference to Fig. 3, the plain text version of the data stored at
memory cell 200 can only be accessed by decrypting the stored cipher-text using encryption
key A and an appropriate decryption algorithm. The plain text contents include data 300,
crypto-pointer 302 and crypto pointer 304. Crypto pointer 302 comprises an Address B
and an encryption Key B and is associated with a memory cell 306. Crypto pointer 304

comprises an Address C and an encryption Key C and is associated with a memory cell —

4

WO 02/077878 PCT/US02/09426

308. By associating each memory cell with its own crypto-pointer a user can only access
the plain text version of data stored at a memory cell if the user has the appropriate crypto-
pointer for that memory cell.

[0021] If the memory cell is small enough, the key itself may be used directly for
encryption and decryption by combining it with the cell contents using an exclusive-OR
operation. Preferably, however, a stream cipher should be used to generate a stream of bits
long enough for encrypting the data to be stored at the memory cell. Depending on the
performance requirements of a particular application, the cryptographic operations may be
implemented in either software, or hardware, or a combination of both. The ideal size of
any encryption keys will depend on the desired security constraints for the application. In
the most sensitive applications, a block-cipher method such as Rijndael or RC6 may be
desirable.

[0022] If an additional reference to a cell is required, it can be produced only by
copying an existing crypto-pointer (both the address and the cryptographic key fields are
copied). Simply generating a regular pointer (computing the address of a memory cell by
pointer arithmetic for example), will allow only the encrypted contents of that cell to be
accessed. Because it lacks the associated cryptographic key, the generated regular pointer
does not allow a user to obtain a plain text version of the contents of the memory cell.
[0023] Whenever a crypto-pointer is discarded, both the address and the cryptographic
key are physically overwritten. Overwriting in this sense is typically accomplished by
either zeroing both fields, the address and the cryptographic key, if the crypto-pointer is
being set to nil, or by overwriting both fields with another crypto-pointer.

[0024] Heap structures, as mentioned above, typically use a root-set to define any entry
points into the structure. Similarly, a secure heap utilizing the present invention has a root
set consisting of one or more crypto-pointers, which are maintained in an unencrypted form
(in contrast to any crypto-pointers that may be embedded within the heap). The heap can be
traversed starting from any one of these root crypto-pointers by successively retrieving keys
and decrypting cells at each step within the heap as shown in Fig. 4. In this way, transitive
access to the contents of all descendant cells is possible. With reference to Fig. 4, the root
set of crypto-pointers includes crypto-pointer 100, crypto-pointer 302, and crypto-pointer
304. A user that begins traversing the data structure with crypto-pointer 100, of the root

set, can gain access to the data associated with crypto-pointer 302 and crypto-pointer 304

5

WO 02/077878 PCT/US02/09426

because the plain text version of the data associated with crypto-pointer 100 includes, as
discussed above, a plain text copy of both crypto-pointer 302 and crypto pointer 304. A
user that begins traversing the data structure with crypto-pointer 302 of the root set of
crypto-pointers can only gain access to a plain text version of the encrypted data associated
with crypto-pointer 302, which is stored at memory cell 306. Likewise, a user that begins
traversing the data structure with crypto-pointer 304, of the root set of crypto-pointers, can
only gain access to the plain text version of the encrypted data associated with crypto-
pointer 304, which is stored at memory cell 308.

[0025] It is often the case that a cell in the heap is connected to the root-set by many
access paths. As crypto-pointers in these access paths are duplicated, the number of
alternative access paths to any given cell may increase. Conversely, as crypto-pointers are
deleted the number of possible access paths decreases, though the cell may still remain
accessible

[0026] Fig. 5 shows the data structure of Fig. 4 after crypto-pointer 304, of the root set
of crypto-pointers, has been deleted. With reference to Fig. 5, the plain text data
associated with crypto-pointer 304 is now only accessible to a user who begins traversing
the data structure with crypto-pointer 100, because the root set version of crypto-pointer
304 is no longer available. The access paths to the data associated with crypto-pointer 302
remain unchanged from Fig. 4.

[0027] Ultimately, deletion of crypto-pointers may eliminate all access paths, causing a
cell to become disconnected from the root-set. Once this happens, no plain text version of
its associated cryptographic key exists, nor can a plain text version of the associated
cryptographic key be obtained, short of breaking the cryptography. Therefore, the contents
of the cell can no longer be decrypted, short of breaking the encryption algorithm or
performing a brute force search of the key space. Fig. 6 show the data structure of Fig. 5
after crypto-pointer 100 has been deleted from the root set of crypto-pointers. With
reference to Fig. 6, the data associated with crypto-pointer 304 is no longer available
because the data structure no longer includes a path through which a user can access the
data that was associated with crypto-pointer 304. Once crypto-pointer 100 was deleted the
encrypted data associated with crypto-pointer 100 became inaccessible because encryption
key A was no longer available. As a result a plain text version of crypto-pointer 304 can

no longer be obtained from the encrypted data associated with crypto-pointer 100 and a user

6

WO 02/077878 PCT/US02/09426

is left with no way to access encryption key C and no Way to decrypt the encrypted data
stored at memory cell 308. Likewise, a user can no longer access data 300 that was stored
at memory cell 200 because the user no longer has access to encryption key A. However,
the data stored at memory cell 306 is still accessible because the root set still includes a
plain text version of crypto-pointer 302 giving the user access to encryption key B which
can be used with an appropriate encryption algorithm to generate a plain text version of the
data stored at memory cell 306.

[0028] Fig. 7 is a flow chart showing a method of using crypto-pointers to create a
secure data structure. With reference to Fig. 7, a computer system, or user, obtains a first
address of a first memory cell in the data structure. The first address is then associated
with a first cryptographic key to form a first crypto-pointer. The cryptographic key can be
of any length deemed appropriate for the sensitivity of the data to be stored in the data
structure. When the system, or user, receives a first block of data to be stored at the first
memory cell it encrypts the first block of data using the first encryption key, and an
appropriate encryption algorithm, prior to storing the first block of data at the first memory
cell. In order to access a plain text version of the first block of data, the system must use |
the first crypto pointer to access the first memory cell. The system retrieves the enérypted
first block of data using the first address and decrypts the encrypted first block of data
using the first encryption key and an appropriate encryption algorithm. When the first
block of data is no longer needed, then the system deletes the first crypto pointer,
preferably by either setting both the address and key fields to zero or by overwriting the
first crypto-pointer with a new crypto pointer having a new address and a new
cryptographic key. Once the first crypto-pointer has been deleted in this manner the
encrypted first block of data can not be accessed by the system. In addition, the first block
of data cannot be recovered using data recovery techniques because those techniques would
only recover the encrypted version of the first block of data. In order to have access to a
plain text version of the first block of data one would need to break the encryption scheme.
[0029] Taking this to a more complex example, if a memory cell X (not shown) is
disconnected from a root set of pointers (not shown), then any other memory cell (not
shown) which, when decrypted has a plain text crypto-pointer pointing to memory cell X
must also be disconnected from the data structure (not shown), such that there are only

encrypted versions of the crypto-pointer pointing to memory cell X stored on the system

7

WO 02/077878 PCT/US02/09426

and there are no paths in the data structure through which a user may obtain a plain-text
version of the crypto-pointer pointing to memory cell X. Even though encrypted versions
of crypto-pointers pointing to memory cell X may remain in memory, those encrypted
versions of crypto-pointers pointing to memory cell X can not be decrypted, so the
encryption key to decrypt the data stored at memory cell X can not be recovered unless the
encryption scheme is broken. In effect, any memory cell whose corresponding crypto-
pointer has been deleted from the heap appears to be random noise to known data recovery
techniques.

[0030] The contents of a normal computer storage disk (hard disk drive, floppy disk,
CD, DVD, etc.) are nﬁrmally arranged as a directory tree. A directory of this type can be
viewed as a memory cell that contains a directory listing for each object (file or sub-
directory) “within” the directory. The directory listing for an object includes information
about the object such as the object’s physical location on the storage disk plus other
information particular to the object itself. The physical location of the object cdrresponds
to a normal pointer, as discussed above, and plays a similar role. Deletion of an object
normally consists only of removal of the object’s directory listing from the directory. With
deletion in this manner, the objecf itself is still stored at the physical location on the storage
disk that was pointed to by the directory listing and can be recovered by well known data
recovery techniques.

[0031] The contents of a computer storage disk can be made secure by modifying the
organization of information on the storage disk such that all directory pointers (i.e.
information about each object’s physical location on a storage device) are replaced with
crypto-pointers, as described above. In accordance with a presently preferred embodiment
of the invention all data stored at the physical location on the computer storage disk pointed
to by the address field of a particular crypto-pointer is encrypted with the encryption key
field of that particular crypto-pointer. In this way, when the directory listing for an object,
a program or subdirectory, is deleted and overwritten the data stored at the physical
location on the computer storage disk pointed to by the crypto-pointer associated with the
directory listing for the object is rendered unrecoverable because the key to decrypt the data
is not available to the system. Unlike in other approaches, there is preferably no master

key for the disk that would reveal all the (current and old) data it may contain. Unless the

WO 02/077878 PCT/US02/09426

encryption is broken, only data accessible by an existing path in the directory structure can
be decrypted.

[0032] To gain access to the contents of the file-store, a user must have access to a
plain text version of a root crypto-pointer. Preferably the root crypto-pointer should be
treated with a level of care similar to that used for normal cryptographic keys. Preferably
the root crypto-pointer will only be distributed according to a known certificated key-
management process.

[0033] Because file deletion within a crypto-pointer computer storage system is
permanent, this form of organizing disk storage should be used with caution and preferably
only in situations where accidental deletion of files is unlikely to occur, or where backup
copies of deleted directory listings are maintained for some period of time. A preferred
way to minimize unintentional deletion is to copy all deleted directories into a trash
directory, while deleting the actual directory entry. Deleted listings would then remain in
the trash directory for a period of time, thus allowing users an opportunity to recover
unintentionally deleted files. Preferably users would need to manually empty their trash
directory, at which point the user should be advised that non-reversible deletion is about to
occur. Alternatively, the trash directory could be set to automatically empty itself of
deleted directory listings on a periodic basis.

[0034] In addition, in order to maintain the unrecoverability of files whose directory
listing has been deleted, symbolic links, such as shortcuts or aliases, must preferably not be
implemented as crypto-pointers. If symbolic links were implemented as crypto-pointers
then the existence of a symbolic link to a file whose directory listing has been deleted
would maintain a decryption path for the otherwise deleted files. To address this concern,
symbolic links should be represented as a path description that a file manager application
uses to traverse the directory hierarchy, starting from the root set of pointers for the disk.
Of course, if hard links across the directory hierarchy are to be permitted by design, then
the directory structure becomes a graph rather than a tree, and deletion occurs only when a
file is no longer accessible from a root entry point into the disk.

[0035] The organizational structure described above provides an additional benefit when
distributing a large body of information (whether program source-code, object-code,
business documents, data, or families of task-specific cryptographic keys etc.) to a variety

of users who may need access to different portions of the information. The body of

9

WO 02/077878 PCT/US02/09426

information can be graph-structured according to an appropriate information-release policy,
laid out on a DVD (or CD), and distributed widely. Access to portions of the information
graph is enabled by providing each individual user with the relevant crypto-pointer that
unlocks the information they are permitted to see, and therefore, to all the descendent
information also. The desired access policy is embodied in the graph structure. With
suitable care in the design of that structure, each user would need only one single entry
point into the graph. Any portion of the DVD not accessible via a users eniry point into the
graph remains cryptographically secure from that user. If a user’s permissions change
(through purchasing an upgrade, for example) then the vendor need only supply another
crypto-pointer to provide access to a previously unreadable portion of the DVD.

[0036] Fig. 8 is a block diagram illustrating a graph data structure limiting access based
on a user’s entry point into the data structure, as described above. With reference to Fig.
8, the arrows between boxes represent an access path between the data corresponding to the
boxes that only works in the direction of the arrow, i.e. the box attached to the tail of the
arrow represents data that when decrypted includes a crypto-pointer pointing to the data that
corresponds to the box attached to the head of the arrow. An access path in this context
means that the unencrypted data corresponding to a box (representing a directory listing or
crypto-pointer) attached to the tail of the arrow includes a plain text version of a crypto-
pointer pointing to the encrypted data corresponding to a box in the graph attached to the
head of the arrow. For example, data stored in a memory cell corresponding to a box
labeled first feature includes a copy of a crypto-pointer pointing to a second feature, a sixth
feature and a special feature A. Thus when a user has access to a plain text version of the
data corresponding to first feature that user also has plain text crypto-pointers
corresponding to second feature, sixth feature, and special feature A.

[0037] With reference to Fig. 8, a first tier user has a root crypto-pointer that allows
the first tier user to access plain text crypto-pointers corresponding to a fourth feature and a
fifth feature. - Once data stored at a location pointed to by the crypto-pointer corresponding
to the fifth feature has been decrypted based on its encryption key the first tier user will be
have a plain text version of a crypto-pointer pointing to a ninth feature and a crypto-pointer
pointing to a tenth feature, as shown in Fig. 8. First tier user gains access to ninth and
tenth features because fifth feature includes, among other things, a plain text version of

crypto-pointers that correspond to ninth and tenth features. Finally, first tier user can

10

WO 02/077878 PCT/US02/09426

access a special feature D because the decrypted version of the data corresponding to the
tenth feature’s crypto-pointer includes a plain text version of a crypto-pointer corresponding
to special feature D. As shown in Fig. 8, first tier user has no access paths to first, second,
third, sixth, seventh, and eighth features. Likewise, first tier user does not have access to
special features A-C because the entry point into the data structure employed by first tier
user does not allow the first tier user to gain access to a plain text version of the crypto-
pointers associated with those features. Even if first tier user knows the physical location
on the storage disk of any inaccessible features, first tier user can not access those features
without defeating the encryption.

[0038] A second tier user on the other hand has access to third, seventh, and eighth
features, in addition to the numbered features that the first tier user can access. The second
tier user also has access to special features B and C as well as special feature D. The third
tier user in this example has complete access to all the features within the data structure.
[0039] Other examples of applications that can be secured with a data structure as
described above are as follows: Hard-disk drives with built-in clean-delete features; Hard-
disk drives, for which multiple users have root access, permitting individuals private access
to their own areas, group access to appropriate group spaces, and universal access to
common spaces for all users; Software disk-drivers (for LINUX, Windows etc.) that
implement clean-delete on standard disk drives; Software disk-drivers to enable multiple
users to maintain private space on a shared disk; DVDs and CDs with enforced
information-release policies.

[0040] Applications of crypto-pointers in heap data structures, as described above,
include programs that manipulate tree-structured or graph-structured data. This includes
heap-based implementations of object-oriented languages such as Java, or C+ +, and heap-
based implementations of functional languages, such as Haskell.

[0041] In the course of executing a Java program, regardless of whether the platform is
a smart card or a supercomputer, new objects are created all the time, and connections
between objects are maintained using traditional pointers. When an object is no longer
accessible, it remains physically in memory (along with all its internal storage) until a
garbage collector reclaims the space. Even then, depending on the design of the particular

garbage collector, the cell contents may not have been erased. Even when the physical

11

WO 02/077878 PCT/US02/09426

space that corresponded to a “deleted” object is reused some part of the “deleted object”
might remain stored in memory if the new object is smaller than the “deleted” object.
[0042] Within this context, replacing the normal pointers associated with each object
with crypto-pointers alleviates this problem. The object, including its internal storage, is
stored in an encrypted format at its physical location in the heap. Only when the object is
accessed using a copy of it’s valid crypto-pointer can the contents of the object be decrypted
into a plain text version that can be used and understood. While this might impose a
dramatic efficiency overhead if the cryptography is done in software, performing it in
hardware can make the cost reasonable.

[0043] Special care is needed to deal with an execution stack in this environment. If a
traditional stack is used, then a set of unencrypted crypto-pointers will exist in memory.
Depending on the security level of the application, this may be fine, so long as any crypto-
pointer on the top of the stack is overwritten each time the stack is popped. In more
stringent situations, the stack should be broken up into a linked list of encrypted stack
frames, each link in the list being a crypto-pointer. Example applications of crypto-pointers
in this area include the following: Secure Java, by using crypto-pointers instead of ordinary
pointers de-allocated objects will not remain accessible; Secure Java smart cards; Secure
Haskell (and other functional languages), using crypto-pointers instead of normal pointers
results in a heap in which discarded data can not be accessed without breaking the
encryption; Secure C, where pointer arithmetic works within the context of a defined array
structure only (the key is a fixed function of the base key and the increment), but pointer
arithmetic fails to produce the correct key if the structure is overrun; Graph-algorithms,
where the data is sensitive, and the graph evolves over time, deleting the pointer to portions
of information as those portions become unneeded results in the discarded data being
inaccessible unless the encryption is broken.

[0044] In addition, crypto-pointers may be used in an Internet, intranet, or any network
context where resources are shared. In a network environment a crypto-pointer will have
the same fields as described above, an address field and a key field. In this context the
address field corresponds to a Uniform Resource Locator (URL) or other scheme for
locating or identifying network resources. The key field, as above, is a cryptographic key
used to encrypt and decrypt the infofmation pointed to by the address field. For example,

the key is used to decrypt the web page or ftp file after download, and the key would also

12

WO 02/077878 PCT/US02/09426

be used to encrypt information prior to uploading that information to the address. This
provides users with a way to store sensitive data in a distributed environment when the
network is untrusted, and also when the storage nodes are untrusted. The storage nodes
only store encrypted information, and in a preferred embodiment the storage nodes do not
receive a decryption key. Moreover, once the crypto-pointer is deleted, such as removing
and physically overwriting the URL crypto-pointer from all network machines that had a
copy, an untrusted storage node will have nothing to gain by maintaining a copy of the
encrypted page in the hope that the key will be compromised because the encryption key for
that page is unrecoverable.

[0045] As far as the network is concerned, the only plain text visible to potential
network snoopers are hyperlinks; all other traffic is encrypted. Possession of a hyperlink is
equivalent to possession of a pointer address without the corresponding encryption key.
Thus, the use of crypto-URLs (URLs paired with cryptographic keys, used in the manner
described above) provides a viable technique for securing sensitive data stored in a
networked environment, including data such as health and financial records. The sensitive
data is maintained in a heap-structured manner, and as a result any individual piece of
sensitive data can only be accessed by following the official structure of the database. A
user attempting to access the sensitive information will normally also have to satisfy
whatever additional authorization mechanisms that an administrator chooses to impose on
the database structure. Preferably, the database structure is implemented with no “back
doors” through which an unauthorized user can access the sensitive information.

[0046] A similar technique can be implemented on a smaller scale, such as a single
computer. With proper management of a root set of crypto-pointers, a set of heap traversal
procedures can be implemented so that unencrypted crypto-pointers do not leave the on-
chip registers of the central processing unit. In this way, a secure heap can be suitable for
situations in which the internal security of a computer questionable.

[0047] In an alternative implementation of the present invention crypto-pointers are
combined with regular pointers to build a mixed data structure. In this embodiment,
portions of the data structure are stored in plain text format and the directory listing for
these unsecured portions of the data structure includes only a pointer to the physical
location of the data. While, other portions of the data structure are implemented using

crypto-pointers such that the corresponding data is stored in encrypted format and the

13

WO 02/077878 PCT/US02/09426

directory listings corresponding to the data stored in encrypted format include crypto-
pointers corresponding to the encrypted data. In this context, regular URLSs can be
included in secure web pages, and may be followed in the usual way. Preferably, the
unsecured portions of the mixed data structure should not contain plain text crypto-pointers
because the data to which they point would then also be public, and the cryptography would
provide no additional security.

[0048] Other examples of applications that can be secured with a data structure as
described above are as follows: Distributed storage of sensitive information on untrusted
hosts; Individualized record access for financial or health records, wherein by providing an
additional authorization key in the encrypted page, a user who has a key to access a record
(and hence can decrypt it) can also gain access to the authorization key to enable
information update; Manipulation of secure data in machines vulnerable to physical
probing.

[0049] It will be obvious to those having skill in the art that many changes may be made
to the details of the above-described embodiments of this invention without departing from
the underlying principles thereof. The scope of the present invention should, therefore, be

determined only by the following claims.

14

WO 02/077878 PCT/US02/09426

Claims

1. In a hierarchical digital data structure comprising a plurality of memory cells, a
method of preventing recovery of deleted data comprising the steps of:

obtaining a first address of a first memory cell in the data structure;

providing a first cryptographic key;

associating the first éddress and the first cryptographic key with one another so as to
form a first logical entity defining a first crypto-pointer to the first memory cell;

encrypting first data using the first cryptographic key to form first cipher-data;

storing the first cipher-data data in the first memory cell; and

when the first data is no longer needed, deleting the first crypto-pointer, thereby
rendering the first data unrecoverable at the moment it becomes inaccessible.

2. The method of preventing recovery of deleted data according to claim 1 wherein
said deleting the first crypto-pointer comprises physically overwriting both the first address
and the first cryptographic key.

3. The method of preventing recovery of deleted data according to claim 1 wherein
said deleting the first crypto-pointer comprises physically overwriting both the first address
and the first cryptographic key by zeroing both fields.

4. The method of preventing recovery of deleted data of claim 1 further
comprising:

obtaining a second address of a second memory cell in the data structure;,

providing a second cryptographic key different from the first cryptographic key;

associating the second address and the second cryptographic key with one another so
as to form a second logical entity defining a second crypto-pointer to the second memory
cell;

encrypting second data using the second cryptographic key to form second cipher-
data;

storing the second cipher-data in the second memory cell; and

i when the second data is no longer needed, deleting the second crypto-pointer,
thereby rendering the second data unrecoverable at the moment it becomes inaccessible.

5. The method of preventing recovery of deleted data of claim 1 further comprising

creating an additional reference to the first memory cell by copying the first crypto-pointer.

15

WO 02/077878 PCT/US02/09426

6. The method of preventing recovery of deleted data of claim 1 wherein the data
structure comprises a heap structure in a non-volatile storage device.

7. The method of preventing recovery of deleted data of claim 1 wherein the data
structure comprises a file directory.

8. A crypto-pointer logical entity for use in secure digital data storage consisting
of: v

an address field that points to a corresponding cell in a digital data structure; and

a cryptographic key associated with the address field for encrypting data to be stored
in the corresponding cell.

9. The crypto-pointer entity of claim 8 wherein the data structure is a file directory
stored on a non-volatile storage medium.

10. The crypto-pointer entity of claim 8 wherein the data structure is a heap
structure stored on a computer readable storage medium.

11. A crypto-pointer logical entity for use in secure digital data storage comprising:

an address field that points to a corresponding physical location available for
storing digital data; '

a cryptographic key associated with the address field for encrypting data to
be stored at the corresponding physical location.

12. The crypto-pointer entity of claim 11 wherein the corresponding physical
location is a memory cell in a computer readable storage medium and the address field is a
pointer to the memory cell.

13. The crypto-pointer entity of claim 11 wherein the corresponding physical
location is a resource attached to a network and the address field is a uniform resource
locator.

14. A secure method of digital data storage comprising the steps of:

allocating a first cell in a digital memory system,;

recording a first address corresponding to the first cell;

generating a first random key associated with the first address;

encrypting first data for storage in the first cell using the first random key;
allocating a second cell in the digital memory system;

recording a second address corresponding to the second cell;

generating a second random key associated with the second address; and

16

WO 02/077878 PCT/US02/09426

encrypting second data for storage in the second cell using the second
random key.

15. A secure method of digital data storage according to claim 14 and further
comprising updating the first memory cell contents by:

obtaining new data for storage in the first cell;
encrypting the new data using the first random key; and
overwriting the first cell contents with the encrypted new data.

16. A secure method of digital data storage according to claim 14 further
comprising:

reading the first cell contents by retrieving the encrypted first data and decrypting
the retrieved encrypted first data first using the first random keyy; and

reading the second cell contents by retrieving the encrypted second data and
decrypting retrieved encrypted second data using the second random key.

17. A secure method of digital data storage according to claim 14 wherein said
encrypting the first data for storage in the first cell using the first random key comprises a .
Boolean exclusive-OR (XOR) operation.

18. A secure method of digital data storage according to claim 14 wherein said
encrypting the first data for storage in the first cell using the first random key comprises
using the first random key in conjunction with a predetermined encryption algorithm to
encrypt the first data, thereby producing a cipher-text version of the first data.

19. A secure method of digital data storage according to claim 14 wherein the
encryption operation is implemented in software.

20. A secure method of digital data storage according to claim 14 wherein the
encryption operation is implemented in hardware.

21. A secure memory structure comprising:

a root set of pointers that provide at least one entrance point into the memory
structure, wherein the root set of pointers includes a first crypto-pointer

a first crypt-pointer in the root set of pointers having a first encryption key and a
first address, the first address corresponding to a first memory cell in the memory
structure, wherein all data stored at the first address is encrypted with the first encryption

key.

17

WO 02/077878 PCT/US02/09426

22. A secure memory structure according to claim 21 wherein the root set of
pointers includes a second crypto-pointer, having a second crypto-pointer and a second
address corresponding to a second memory cell in the memory structure, wherein ail data
stored at the second address is encrypted with the second encryption key.

23. A secure memory structure according to claim 22 wherein the root set of
pointers are distributed according to a key authentication scheme.

24. A secure memory structure according to claim 23 wherein the memory
structure comprises a memory heap.

25. A secure memory structure according to claim 23 wherein the memory
structure comprises a graph data structure.

26. A secure memory structure according to claim 23 wherein the memory
structure comprises a directory tree structure.

27. A secure heap logical entity for use in secure digital data storage
comprising:

a plurality of memory cells within a memory storage device;

a first crypto-pointer having a first address and a first cryptographic key and
associated with one of the plurality of memory cells, such that information stored at the
associated memory cell is encrypted with the first cryptographic key before it is stored at
the memory cell.

28. A method of accessing encrypted data in a secure heap data structure
comprising:

maintaining a root set of pointers in an unencrypted form outside of the secure heap;

within the root set of pointers, providing a first crypto-pointer associated with a first
memory cell in the secure heap data structure, the first crypto pointer having a first address
and a first key; and |

accessing the encrypted data stored at the first memory cell by decrypting the data
using the first key.

29. A method of accessing encrypted data in a secure heap data structure acéording
to claim 28 wherein, the decrypted data includes a second crypto-pointer associated with a
second memory cell in the secure heap data structure, the second crypto-pointer having a
second address and a second key, further comprising accessing the encrypted data stored at

the second memory cell by decrypting the data using the second key.

18

WO 02/077878 PCT/US02/09426

1/5

100

Address A Key A

Figure 1. Structure of crypto-pointer

FIG. 1

100

| | |

Address A Key A /

L

D Data Encrypted with Key A

Figure 2. Crypto-pointer always points to cell encrypted with associated key

FIG. 2

WO 02/077878 PCT/US02/09426

2/5

100 200
302 304
300
l Address—A_] Key A I
p{ Address B Key B Data Address C Key C
| | | | poresse [ke |
Data Encrypted with
Key C
Data Encrypted with
Key B
Figure 3. Each step in a chain of crypto-pointers uses a separate key. 308
100 T e
bddress A ‘ Key A » _._l. ___l
302) Address B Key B Data Address C Key C
- [pasesse | [e |
LAddress B ‘ KeyB I /
Data Encrypted with
Key C
304
\A
I_Add' ess C , Key C ' Data Encrypted with
Key B

\ 306

Figure 4. Decrypting cell contents with Key A reveals subsequent crypto-pointers

FIG. 4

WO 02/077878 PCT/US02/09426

3/5

100 200

—
|Add,ess AT kn] l l

3
02 — bLAddress B I Key B Data | Address C J Key C J 208
l Address B l Key B J /
Daia Encrypted with
Key C
Data Encrypted with
Key B
306
Figure 5. Discarding crypto-pointer C still permits indirect access to the C structure, via A again
200
302 304
l 300
302 — | »I Address B [Key B , Data J Address C r Key C ’ o
mdress BJ Key BT /
' Data Encrypted with
Key C
Data Encrypted with
Key B

\ 306

Figure 6. Discarding crypto-pointer A makes Data and the C structure forever inaccessible

FIG. 6

WO 02/077878 PCT/US02/09426

4/5

Obtaining a first address of a first cell in a data
structure, obtaining a first cryptographic key, and
associating the first address with the first cryptographic
key to form a crypto-pointer

Receiving a first block of data
that is to be stored at the first
cell in the data structure

Encrypting the first block of data
based on the first encryption
key and an appropriate
encryption algorithm

Retrieving the first block of data using
the first crypto pointer by retrieving the
encrypted first data based on from the Storing the encrypted first
first address, and decrypting the block of data at the first cell
encrypted first data using the first of the data structure
encryption key and an approptiate

decryption algorithm

Deleting the first crypto-pointer by

physically overwriting the the first

address and the first cryptographic key or

1| setting the value of both the first address
and the first cryptographic key to zero,
thereby rendering the encrypted data

stored at the first address unrecoverable

because the key to decrypt the encrypted

first data is no longer available

Fig. 7

PCT/US02/09426

WO 02/077878

S/5

‘Bi

A

g eunjead [eadg «— |

O ainiee jeadg

g ainjea, |eloadg |«

1 7/ 2injead jepads

ainjesd Yuay oineed YWIN |+ aimesd YUbig le—| 2inesq YUaAdg |« alnjesa UXIS
F Y A
b
®L3HW®& C.ﬂ._& e aimesd yunody Tll_ll alniea4 U.:r_n_.. ainjea4 puodag |« oinjes sl
ﬁ 2 4 Y
A
A A
Josf Jall 184 J8sM 181 puooeg 19s) JoLL PAYL

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/09426

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 17/30
US CL 713/190

According to International Patent Classification (IPC) or to both nationai classification and IPC

B. FIELDS SEARCHED

U.S. : 713/190;707/9,101;380/30

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

“A™ document defining the general state of the art which is not considered to be
of particular relevance

“L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P™ document published prior to the international filing date but later than the
priority date claimed

“E” earlier application or patent published on or after the international filing date

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X.E US 2002/0073326 Al (FONTIIN) 13 June 2002 (13.06.2002), abstract, pg. 1, paragraph 1,3-6,8-12,14-29
- 10, pg. 2, paragraph 22,23, pg.3, paragraph 29, pg.3,claims 1-7, 11. | seeeeeemeen
Y 2,7,13
Y US 4,698,617 A (BAUER) 06 October 1987 (06.10.1987), abstarct, column 1, lines 61-67, 2,7,13
column 2, lines 60-67column 3, lines 11-54, column 6, lines 45-62 (Tables 1 and 2).
Y US 5,058,164 A (ELMER et al) 15 October 1991 (15.10.1991), the entire document. 1-29
Y US 5,563,945 A (GERCEKCI) 08 October 1996 (08.10.1996), the entire document. 1-29
[:l Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents: “T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

X" document of particular relevance: the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

Y document of particular relevance: the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents. such combination
being obvious to a person skilled in the art

“&" document member of the {same patent family

Date of the actual completion of the international search

27 June 2002 (27.06.2002)

Date of mailing of the international search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

_ %4@ ”H E?E}f’m
Authorized offi¢

,
Gail O Hayesm

UL
Telephone No. (703)¥405-4274

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US(02/09426

Continuation of B. FIELDS SEARCHED Item 3:
WEST, DIALOG, ProQuest, Dogpile. Search terms: storege device, pointer or link or address, encryption and addressed based key, file
system and address location,eberyption, encipher and file system

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

