A flexible trampoline board includes compartments for receiving stiffening elements and weights to more closely approximate the response and feel of a wakeboard, skateboard or snowboard.
This invention generally relates to trampoline boards, and more particularly, to a trampoline board with stiffening elements and weights to more closely approximate the response and feel of another board, such as a wakeboard, skateboard or snowboard.

BACKGROUND

The use of boards on a trampoline is gaining popularity as a method for training for other board sports. For example, people wishing to improve snowboarding or wakeboarding skills may use a trampoline board. Some trampoline boards are typically comprised of soft sided board-like structures that will not damage the trampoline or injure the user. Occasionally, conventional boards (e.g., snowboards, skateboards and wakeboards) are used with or without soft coverings for protection.

Unfortunately, each of the foregoing approaches suffers shortcomings. Many conventional foam trampoline boards lack sufficient rigidity to provide a realistic training experience. In use, the board floats around, which interferes with training. Conventional foam boards also lack appropriate weight to provide a realistic training experience. Thus, airborne maneuvering of the training board does not realistically simulate the feel of maneuvering a snowboard, wakeboard or skateboard.

When conventional boards (e.g., snowboards, skateboards and wakeboards) are used on trampolines, they do not flex sufficiently to conform to the trampoline surface during jumps. Additionally, even if the edges of the board may be covered, the hard surface of the board poses a risk to users.

In view of the foregoing state of the art, it would be an advancement in the art to provide a soft flexible board for use on a trampoline, which is simple in design and manufacture and includes stiffeners and weights for providing a realistic training experience. It would also be an advancement in the art to provide variable stiffening and weight elements. The invention is directed to overcoming one or more of the problems and achieving one or more of the objectives as set forth above.

SUMMARY OF THE INVENTION

To overcome problems as set forth above, in one aspect of the invention a flexible foam board with compartments for receiving stiffening elements and weights is provided. The stiffening elements may be removable or fixed. The stiffening elements may be comprised of a material such as plastic or fiberglass and configured to provide a desired quantum of flexibility and rigidity to the board.

In another aspect of the invention a flexible foam board with compartments for receiving weights is provided. The weight elements may be integrated with stiffening elements or may be separate elements. The weight elements may be comprised of any dense material configured to provide a desired quantum of weight to the board. The compartments for receiving the weights may be located at various positions to achieve a desired weight distribution.

In yet another aspect of the invention a protective cover may be applied to the board.

In yet another aspect of the invention laterally adjustable and pivotal foot bindings may be applied to the board.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects, objects, features and advantages of the invention will become better understood with reference to the following description, appended claims, and accompanying drawings, where:

FIG. 1 is a top plan view of an exemplary board according to principles of the invention;

FIG. 2 is a side perspective view of an exemplary board in a flexed position according to principles of the invention; and

FIG. 3 is a side perspective view of an exemplary board according to principles of the invention.

Those skilled in the art will appreciate that the invention is not limited to the exemplary embodiments depicted in the figures or the shapes, relative sizes, proportions or materials shown in the figures.

DETAILED DESCRIPTION

Referring to FIGS. 1 and 2, a flexible foam board with compartments or other means for receiving or openly engaging stiffening elements is provided. The stiffening elements may be removable or fixed. The stiffening elements may be comprised of a material such as plastic or fiberglass and configured to provide a desired quantum of flexibility and rigidity to the board. In a preferred implementation, stiffness is adjustable. For example, the board may be made stiffer for larger users and more flexible for lighter users. In a preferred embodiment, the stiffening elements, e.g., fiberglass strips, do not run to the board ends, leaving the ends soft and flexible for safety.

Compartments for receiving (i.e., openly engaging) weight elements may also be provided in the foam board. The weight elements may be integrated with stiffening elements or may be separate elements. The weight elements may be comprised of any dense material (i.e., of greater density than the board) configured to provide a desired weight to the board. The compartments for receiving the weights may be located at various positions to achieve a desired weight distribution. Thus, in a preferred embodiment, the board is weight adjustable to better match a preferred "swing weight" of the board in the air. Therefore, the board approximates the actual feel of a wake snow or skate board, making it a realistic training tool.
[0018] The tip and tail may be either arched up to provide a “kicktail” or level and planar as shown in the Figures. The top may have bindings 120, 125. However, if the top does not have bindings 120, 125 it may be covered in foam and neoprene ribbed surface for grip. The board may be sized comparable to a conventional wakeboard, skateboard or snowboard, or other boards.

[0019] The soft foam provides safety, and is flexible with the bounce of the trampoline. The surface is compatible with gym shoes or bare feet and perfectly mimics a recreational boarding experience on a trampoline for safe practice.

[0020] Any conventional bindings 120, 125 may be adapted to the board. By way of example and not limitation, the binding system may incorporate stance adjustment wherein the distance between a user’s feet can be changed to match a user’s preferences. Bindings 120, 125 may also be configured to pivot on a base attached to the board to match a user’s preferred stance. The binding base 121, as shown in FIG. 3, is preferably lightweight plastic lined with soft foam rubber for comfort. An adjustable strap 123 with a foam cushion 122, interlocks with a clasp 124, to holds the user’s foot in place. The bindings 120, 125 may also be rubber foam lined for comfort and grip.

[0021] The board 100 may be wrapped and sealed with a jacket, such as a Lycra fabric as found in modern wakeboard 100 lifejackets. The covering makes the board 100 tear resistant and gives it a unique look and feel.

[0022] The board 100 may be shaped like a small wakeboard 100 (i.e., oblong and slightly oval). The flexibility allows the board 100 to conform to the concave shape of a trampoline surface during use. It is a safe and forgiving tool useful for coaches and students to develop “air and board awareness” before taking their tricks to the snow, pavement or water.

[0023] The rider, or person using the board 100, is attached via adjustable foot straps 123. The portion 122 of the foot straps in contact with rider’s foot may be wrapped with a thin layer of wetsuit foam rubber covered with soft Lycra fabric for comfort. The “Foot bed” may be a raised and reinforced area on the board 100, which may also have a rubber non-skid traction pad for keeping the rider’s foot securely in place during use.

[0024] The board 100 itself may be comprised of a soft flexible molded foam such as found in a gymnastics floor mats. In an exemplary embodiment, three strips of fiberglass may be sandwiched and molded into the core of the board 100 to add to the flex dynamics or rebound off the bounced trampoline. Alternatively, as discussed above, the strips may be inserted in compartments, sleeves or other enclosures in the board 100. Illustratively, the strips may run lengthwise to within 7″ of the tip and tail and are situated evenly width-wise on the board 100. The board 100 may be foam molded as one piece and then rubber dipped to seal and protect the foam core. After dipping, bindings 120, 125 are mounted and secured to board 100. The exemplary board 100 may be 42″ long, 1″ thick and 16″ wide at the center, tapering to 9¼″ at each end. However, other shapes, dimensions and configurations also come within the scope of the invention. The board 100 may be symmetrical in shape and meant to mimic the outline of a wakeboard, skateboard or snowboard.

[0025] While the invention has been described in terms of various embodiments, implementations and examples, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims including equivalents thereof. The foregoing is considered as illustrative only of the principles of the invention. Variations and modifications may be affected within the scope and spirit of the invention.

What is claimed is:

1. A trampoline board comprised of a flexible body with at least one stiffening element operably engaged by the flexible body, and a pair of weight elements operably engaged by the flexible body, said stiffening element being adapted to provide a determined stiffness to the trampoline board, and said weight elements being adapted to provide a determined overall weight to the board, said flexible body having a top surface and a bottom surface.

2. A trampoline board as in claim 1 wherein the at least one stiffening element includes a pair of parallel stiffening elements.

3. A trampoline board as in claim 2, further comprising a pair of foot bindings attached to the top surface of the flexible body an operably configured to securely receive a user’s feet during use.

* * * * *