

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2020-111390
(P2020-111390A)

(43) 公開日 令和2年7月27日(2020.7.27)

(51) Int.Cl.	F 1	テーマコード (参考)
B65D 81/34 (2006.01)	B 65 D 81/34	X 3 E 0 1 3
B65D 1/00 (2006.01)	B 65 D 1/00	1 1 O 3 E 0 3 3
B32B 27/36 (2006.01)	B 32 B 27/36	4 F 1 0 0

審査請求 未請求 請求項の数 13 O L 外国語出願 (全 113 頁)

(21) 出願番号	特願2020-3447 (P2020-3447)	(71) 出願人	596099734 ミツビシ ポリエステル フィルム ジー エムビーエイチ ドイツ連邦共和国、ヴィースバーデン、D - 6 5 2 0 3 、カステレルストラッセ 4 5
(22) 出願日	令和2年1月14日 (2020.1.14)	(74) 代理人	100097928 弁理士 岡田 数彦
(31) 優先権主張番号	10 2019 200 365.6	(72) 発明者	ヘルベルト・パイファー ドイツ連邦共和国、デー- 5 5 1 2 6 マ インツ、トイリングルストラッセ、2 6
(32) 優先日	平成31年1月14日 (2019.1.14)	(72) 発明者	マーティン・イエスバーガー ドイツ連邦共和国、デー- 5 5 1 2 8 マ インツ、ウヴェバイエルストラッセ 5 9
(33) 優先権主張国・地域又は機関	ドイツ (DE)		

最終頁に続く

(54) 【発明の名称】熱成形性下部フィルムとシール性および剥離性上部フィルムとを有するポリエステルから成る包装体、その使用ならびにその製造方法

(57) 【要約】

【課題】

本発明の目的は、背景技術で挙げた用途、すなわち、ポリエステルから成り、下部フィルムの良好な熱成形性および下部フィルムに対する上部フィルムの優れたシール性および剥離性に特徴付けられる包装体を提供することである。

を提供することである。

【解決手段】

本発明は、下部フィルム (A) としての二軸延伸熱成形性ポリエステルフィルムと、下部フィルム (A) に対してヒートシール性および剥離性 (少なくとも材料が熱い状態で) を有する上部フィルム (B) としての特定の二軸延伸ポリエステルフィルムとから成る透明包装体、とりわけ真空成形用の透明包装体に関し、更に、その包装体の使用、その製造方法にも関する。

【選択図】なし

【特許請求の範囲】

【請求項 1】

下部フィルム（A）と上部フィルム（B）とから成る真空成形用透明包装体であって、下部フィルム（A）は二軸延伸熱成形性ポリエステルフィルムから成り、上部フィルム（B）は下部フィルム（A）に対してヒートシール性および剥離性を有する二軸延伸ポリエステルフィルムから成り、[I]下部フィルム（A）はジカルボン酸成分の85～94モル%がテレフタル酸誘導単位と6～15モル%がイソフタル酸誘導単位とから成る共重合ポリエステル85重量%以上から成り、下部フィルム（A）は、a)面弾性率が4500～6400N/mm²の範囲であり、b)長手方向および横方向の強度値（ d_5 値）の合計が170～220MPaの範囲であり、c)突き刺し強度F[N] > 0.35d[μm]（d=フィルム厚さ）であり、d)密度が1395kg/m³未満であり、e)ヘーズが2.0%未満および明瞭度が85%以上であり、f)厚さが50～300μmの範囲であり、[II]上部フィルム（B）は、ベース層（B'')と下部フィルム（A）に対してヒートシール性および剥離性を有する外層（B'）とを有するフィルムであり、上部フィルム（B）は、a)少なくとも1種の芳香族ジカルボン酸系単位25～95モル%と少なくとも1種の脂肪族ジカルボン酸系単位5～75モル%（ジカルボン酸誘導体のモル%の総量を100モル%とする）から成るポリエステル60重量%以上から成り、b)メジアン粒径 d_{50} が1.5～5.0μmで、外層（B'）の厚さに対する粒径 d_{50} の比が1.0を超えるような無機および/または有機粒子を10重量%以下含有し、c)外層（B'）の厚さが1.5～5.0μmであり、上部フィルム（B）は、20%未満のヘーズおよび70%以上の明瞭度を有し、それ自身のシールシーム強度（finシール）及び下部フィルム（A）に対するシールシーム強度が2～10N/15mmの範囲を有し、20～125μmの厚さを有することを特徴とする真空成形用透明包装体。
10

【請求項 2】

下部フィルム（A）及び/又はベース層（B'')が1種以上のラジカル捕捉剤を含有する請求項1に記載の透明包装体。

【請求項 3】

ラジカル捕捉剤がフェノール系酸化防止剤から選択され、好ましくはペントエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]及び1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン)から成る群より選択される請求項2に記載の透明包装体。
30

【請求項 4】

外層（B'）を構成するポリエステルが、ジカルボキシレートの総量を基準として25～95モル%のテレフタレート、0～25モル%のイソフタレート、5～75モル%のセバケート及び0～50モル%のアジペートから成るジカルボキシレートと、アルキレンの総量を基準として30モル%を超えるエチレン又はブチレンから成るアルキレンとから成る請求項1～3の何れかに記載の透明包装体。

【請求項 5】

外層（B'）物理的に混合可能なポリエステルI及びIIから、好ましくは物理的に混合可能なポリエステルI、II及びIIIから製造される請求項1～4の何れかに記載の透明包装体。
40

【請求項 6】

ポリエステルIが、ジカルボキシレートの総量を基準として60～100モル%のテレフタレート及び0～40モル%のイソフタレート（ジカルボン酸の総量を100モル%）と、アルキレンの総量を基準として50モル%を超えるエチレン単位とから成る請求項5に記載の透明包装体。

【請求項 7】

ポリエステルIIが、ジカルボキシレートの総量を基準として20～70モル%のセバケート、0～50モル%のアジペート、10～80モル%のテレフタレート及び0～30
50

モル%のイソフタレート(ジカルボン酸の総量を100モル%)と、アルキレンの総量を基準として30モル%を超えるエチレン又はブチレン請求項5又は6に記載の透明包装体。

【請求項8】

ポリエステルIIIが、ジカルボキシレートの総量を基準として80～98モル%のテレフタレート及び2～20モル%のイソフタレート(ジカルボン酸の総量を100モル%)と、アルキレンの総量を基準として50モル%を超えるエチレン単位とから成る請求項5～7の何れかに記載の透明包装体。

【請求項9】

外層(B')中のポリエステルIの含有量が10～60重量%である請求項5～8の何れかに記載の透明包装体。

10

【請求項10】

外層(B')中のポリエステルIIの含有量が20～70重量%である請求項5～9の何れかに記載の透明包装体。

【請求項11】

外層(B')中のポリエステルIIIの含有量が0～15重量%である請求項5～10の何れかに記載の透明包装体。

20

【請求項12】

請求項1～11の何れかに記載の真空成形用透明包装体の製造方法であって、下部フィルムは、押出(層(A)の製造)または共押出を行い、70～100の温度(ロールの加熱温度は60～110)で2.0：1～4.0：1の延伸比で長手方向延伸し、70～120の温度(フィルム温度：60～110)で2.2：1～3.8：1の延伸比で横方向延伸して下部フィルム(A)の二軸延伸を行い、175～220で5～25秒間熱固定を行なうことによって製造し、上部フィルム(B)は、フラット・フィルムダイを介して個々の層(B'、B''、存在する場合はB''')に対応する溶融体の共押出を行い、得られたフィルムを1つ以上の引取りロールで引取って固化を行い、逐次二軸延伸を行い、フィルムの根知固定を行なうことによって製造することを特徴とする真空成形用透明包装体の製造方法。

20

【請求項13】

請求項1～11の何れかに記載の真空成形用透明包装体のトレーとして、特に肉、魚、鶏肉またはサンドイッチ、バーガー又はラップなどの乾燥(インスタント)食品のトレーとしての使用。

30

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、二軸延伸熱成形性ポリエステルフィルムから成る下部フィルムと、二軸延伸ヒートシール性および剥離性ポリエステルフィルムから成る上部フィルムとから成る透明包装体に関する。熱成形性下部フィルムは、例えば、肉、魚または鶏肉などの食品を入れるのに使用される。上部フィルムは下部フィルムを覆い、後の加熱手段により密閉シールされる。包装体は、例えばオーブン、電子レンジ又はコンパクトグリル内の高温での調理に使用した際に自己放出性(自己放出性/自動開放性)の特徴を有する。調理後に穏やかな力で上部フィルムは下部フィルムから剥離させることが出来る。本発明は、更に包装体の使用およびその製造方法に関する。

40

【背景技術】

【0002】

特に肉、魚、鶏肉およびサンドイッチ、バーガー、ラップ等のインスタント食品において、例えばa-PET又は変性b-PET等の熱成形性ポリエステルから真空成形により製造された透明トレーが使用され、食品を入れた後に、トレーの端部にフィルムをヒートシールして密閉される。そのような包装体における食品の提供は清潔で衛生的であるとみなされ、それ故人気がある。

50

【0003】

例えば、Multivac 機械を使用する真空成形プロセスは、肉、魚、鶏肉用の衛生的な包装体を製造する費用効果に優れる方法である。完成された包装体は、通常以下の方法で製造される。下部フィルムと呼ばれるトレー製造用フィルムが装置のフロント部分に把持される。1つ以上の真空室で、加熱および真空を使用してフィルムは所望の深さに熱成形される。先行技術（例えば欧州特許第1697129B1号明細書）には、例えば、ポリエチレン及びポリアミドから成る積層体を使用して約70mmまでの深さが達成できる（図3の仕様を参照）。次いで、多くの場合手によって食品をトレー中に配置する。他のロールより、上部フィルムと呼ばれる蓋フィルムがトレーに導入され、加熱および圧力によってその外周にしっかりとシールされる。この過程は、多くの場合、再度包装全体に適用されるように真空下で行われる。次いで、個々の包装体に分割され、例えば包装体の印刷やラベリング等の後操作が行われる。

10

【0004】

ある食品は、例えば、85℃を超える水浴中に6時間以下処理することにより調理済みとなる。包装体は（調理済みか調理済みでないか）は冷凍され、市場に供される。消費者は包装体を解凍し、220℃以下の温度で、所定時間オーブン内で調理する。調理時間は、基本的に包装体のサイズにより（包装体中の食品の質量に対応する）、約30分～2時間である。これに関し、密閉された包装体を予備加熱されたオーブン中に配置し（クックイン）、理想的には5～10分でシールシームにおいて自動的に開放される（ここでは自己放出性と呼ぶ）。

20

【0005】

自己放出性は、機能性向上や設計変更において新たな包装体の発展における基本的な特徴である。包装体中の水蒸気の圧力増大の結果としてのシールシームの自動開放は、包装体から水蒸気を放出させ、使用者が好むように食品がカリッと茶色く仕上がる。調理時間が終了すると、上部フィルムをまだ熱いトレーから一体化して剥離し、包装体の内容物を消費に使用する。

【0006】

熱成形性ポリエチレンから成る透明トレーと同じくポリエチレンから成る上部フィルムとのヒートシールは、シール温度120～220℃で行われる。このプロセスは、シール時間を3秒以下に限定することにより費用効果に優れる。下部および上部フィルムのシール方法は種々ある。本発明の場合、下部フィルム及び上部フィルムの両方のフィルムがポリエチレンポリマー（＝PET単独または単独材料包装体）から成り、上部フィルムはシール性および剥離性変性体である。

30

【0007】

2つのフィルムから製造される本発明の包装体は、調理中に所望の自己放出性を示す。自己放出性は、下部フィルムに適切となるような上部フィルムのシール特性を調節することによって達成できる。

【0008】

包装体の2つのフィルムにおいて、特にヘーズ、明瞭度およびグロスの光学的特性の厳密な要求が市場にある。包装体の内容物の良好な視認性（食品の大きさ）のため、包装体のヘーズは<20%で、包装体の明瞭度は>70%でなければいけない。包装体は、更に視覚的に魅力があるように意図される。このため、包装体のグロス値が高いことが望ましい。

40

【0009】

更に、小売店への輸送や貯蔵中にダメージが無いように、包装体の高い耐突刺性が要求される。

【0010】

熱成形性下部フィルムおよびシール性上部フィルムから成る包装体は知られている。

【0011】

特許文献1には、熱成形性フィルム層（a）、構造フィルム層（b）、ヒートシール性

50

層(c)及び任意のバリア層(d)から成る熱成形性フィルム積層体が記載されている。構造フィルム層(b)は熱成形性フィルム層(a)の第1表面に隣接し、ヒートシール性層(c)はその反対側面に隣接し、第2表面はすなわち包装体の内側を向いている。熱成形性フィルム層(a)は80重量%以上のポリエチレンテレフタレートから成るポリマー組成物から成る。構造フィルム層(b)は数多くのポリマーから成ることが出来、好ましくはポリアミドである。ヒートシール性層(c)もまた数多くの異なるポリマーから成ることが出来、好ましくは非晶ポリエステルである。積層体は上述の用途には好適であるが、熱成形性および耐突刺し性に改良が必要であり、特にヘーズ、明瞭度およびグロス等の光学的性質に改良が必要である。

【0012】

10

特許文献2は、本発明の上述の工程から成る魚または肉の包装方法が記載されている。(i)熱成形性ポリマー容器フィルム(=下部フィルム)及びポリマー製蓋フィルム(=上部フィルム)を提供する。容器フィルムは単層のポリエステル基材またはポリアミド基材から成り、蓋フィルムは好ましくはポリエステルポリマーから成る。容器フィルム及び蓋フィルムの2つの表面の少なくとも1つはヒートシール性である。(ii)容器フィルムに上げられた外周位置と下げられた中央位置とを熱成形性によって提供する。(iii)容器フィルムの内部(=第1の)表面に肉または魚を配置する。(iv)蓋フィルムの内部(=第1の)表面が容器フィルムの内部表面に向き合うように、肉または魚の位置位置の上に蓋フィルムを配置する。(v)容器フィルムの第1表面の外周部分と蓋フィルムの第1表面とを接触させて、ヒートシール結合を形成する。(vi)任意に包装された肉または魚の冷凍を行う。この方法は上述の用途に適しているが、特許文献2に詳述されたフィルムは、熱成形性および耐突刺し性に改良が必要であり、光学的性質(ヘーズ、明瞭度およびグロス)の改良が必要である。

20

【0013】

特許文献3には、熱成形性フィルムから成るトレーと蓋フィルムとから成り、ポリエステルから成るリサイクル可能な包装体が記載されている。この出願には2つの実施態様がある。実施態様1[07]は、延伸ポリエチレンテレフタレートフィルムと、塗布により当該フィルムに塗布形成されたポリエステル共重合体から成るヒートシール性塗布層とから形成されるトレーである。蓋フィルムは、非晶ポリエチレンテレフタレート、延伸ポリエチレンテレフタレート、結晶性ポリエチレンテレフタレート又はリサイクルされたポリエチレンテレフタレートから形成される単層フィルム(=モノフィルム)である。実施態様2[08]は、延伸ポリエチレンテレフタレートフィルムと、塗布により当該フィルム上に塗布形成されたポリエステル共重合体から成るヒートシール性塗布層とから成る蓋フィルムである。トレーは、ポリエチレンテレフタレート非晶ポリエチレンテレフタレート、延伸ポリエチレンテレフタレート、結晶性ポリエチレンテレフタレート又はリサイクルされたポリエチレンテレフタレートから形成されるモノフィルムである。この出願は、トレー又は蓋フィルムに使用できる市販の入手可能なフィルムの例に言及している。しかしながら、この出願には記載されたフィルムの製造に関する処方やプロセスに関する記載がない。

30

【先行技術文献】

40

【特許文献】

【0014】

【特許文献1】欧州特許第1697129号明細書

【特許文献2】欧州特許第1945512号明細書

【特許文献3】国際公開第2018/004558号パンフレット

【発明の概要】

【発明が解決しようとする課題】

【0015】

本発明の目的は、上記で挙げた用途、すなわち、ポリエステルから成り、下部フィルムの良好な熱成形性および下部フィルムに対する上部フィルムの優れたシール性および剥離

50

性に特徴付けられる包装体を提供することである。包装体は、更に優れた自己放出性および優れた光学的性質を有するように意図される。先行技術のフィルムの欠点を克服するように、特に以下の点／性質を特徴とするように意図される。

【0016】

下部フィルムは、市場で得られる肉、鶏肉、魚の切り身やサンドイッチ等の乾燥食品の所望の包装デザインにおける包装体として問題無く使用できるのに十分良好な熱成形性を有することを意図する。下部フィルムは、市場の要求（図3の仕様を参照）に従い、70 mmの深絞り成形が可能なように意図される。

【0017】

更に、2つのフィルムは非常に良好な機械的特性を有するように、特に下部フィルムは非常に良好な機械的特性を有するように意図される。本用途において、下部フィルムの特に重要な機械的特性は耐突刺し性である。包装体の輸送中および貯蔵中のダメージを避けることが出来る十分高い耐突刺し性を意図する。下部フィルムと上部フィルムとの包装体のシールは、とりわけ水浴中での予備調理（水浴温度が85までで、水浴中の時間は時間まで）にシールシームが開放すること無く耐えられるように意図される。

【0018】

包装体は、例えば、通常のオープン内で220までの調理中に、自己放出性を有するように意図される。自己放出性は、理想的には、オープン内で約5～15分経過後に生じるよう意図される。

【0019】

包装体は、上部フィルムの下部フィルムに対する優れたシール性および剥離性の特徴を有することが意図される。包装体は、汚れた表面、例えば肉汁で汚染されたトレーの周辺を介して（シール部分の少なくとも相当の範囲は拭き取りで除去されるが）のシール後であっても、確実に密閉され、例えば、輸送中の揺れなどでも開封しないことが望ましい。シール強度は、約2～10N/15mm（フィルム片幅）の範囲が意図される。調理後、上部フィルムは、まだ熱い状態で、上部フィルム中に引裂きや引裂きの増長が無く下部フィルムから剥離できる。

【0020】

包装体は輝かしい光学的性質に特徴付けられることを意図される。これは、包装体の両フィルムのヘーズ、特に明瞭度に関してである。両フィルムのヘーズは20%未満であり、両フィルムの明瞭度は70%を超えることが望ましい。消費者の要望は、商品の購入の際に内容物が明確に詳細に見ることが出来る事である。包装体は、グロスが最大となることにより視覚的に魅力的であるように意図される。

【0021】

更なる要求として、包装体は調理過程において、例えば調理中のフィルムの結晶化によって白く曇ることなく、耐え得ることである。

【0022】

包装体は、更に良好なバリア特性、特に酸素や水蒸気に関する良好なバリア特性を有するように意図される。従来技術で製造された従来の二軸延伸P E T フィルムの透過率値（例えば、<http://www.bfr.bund.de/cm/343/barrierewirkung-ausgewaehlter-kunststoffmaterialien-gegen-die-migration-von-mineraloelfraktionen-in-lebensmittel.pdf>を参照）と比較して、それを超えてはならず、また、せいぜいわずかに超える程度（<5%）でなければならない。厚さ100μmのP E T フィルムの透過率値（熱成形されてないもの）は、OTR=12cm³/ (mm² · d · bar)で、W V T R = 2 g / (m² · d)である。

【0023】

包装体の2つの透明フィルム（耐ブロッキング剤の濃度は以下を参照）は、良好な巻取り特性および良好な加工特性を有するように意図される。巻取中および巻戻し中に個々のフィルム層がお互いに付着することは、例え温度が例えれば50又は60に上昇しても許

10

20

30

40

50

されない。個々のフィルム層の間での付着の増加は、フィルムの巻戻しを困難にしたり不可能にしたりする。包装体の製造は費用効率に優れるように意図される。これは、工業用の従来の製造方法が下部フィルム及び上部フィルムの製造に使用できることを意味する。

【課題を解決するための手段】

【0024】

上記課題は以下の真空成形用透明包装体によって達成される。この包装体は、二軸延伸熱成形性ポリエステルフィルムから成る下部フィルム(A)と、下部フィルム(A)に対してヒートシール性および剥離性を有する二軸延伸ポリエステルフィルムから成る上部フィルム(B)とから成る。

【0025】

[I] 下部フィルム(A)はジカルボン酸成分の85~94モル%がテレフタル酸誘導単位と6~15モル%がイソフタル酸誘導単位とから成る共重合ポリエステル85重量%以上から成り、更に下部フィルム(A)は、以下の特性を有する。

- a) 面弾性率が4500~6400 N/mm²の範囲である。
- b) 長手方向および横方向の強度値(d_5 値)の合計が170~220 MPaの範囲である。
- c) 突き刺し強度F[N] > 0.35d[μm] (d = フィルム厚さ)である。
- d) 密度が1395 kg/m³未満である。
- e) ヘーズが2.0%未満および明瞭度が85%以上である。
- f) 厚さが50~300 μmの範囲である。

【0026】

[II] 上部フィルム(B)は、ベース層(B')と下部フィルム(A)に対してヒートシール性および剥離性を有する外層(B')とを有するフィルムであり、更に上部フィルム(B)は、以下の特性を有する。

a) 少なくとも1種の芳香族ジカルボン酸系単位25~95モル%と少なくとも1種の脂肪族ジカルボン酸系単位5~75モル% (ジカルボン酸誘導体のモル%の総量を100モル%とする)から成るポリエステル60重量%以上から成る。

b) メジアン粒径 d_{50} が1.5~5.0 μmで、外層(B')の厚さに対する粒径 d_{50} の比が1.0を超えるような無機および/または有機粒子を10重量%以下含有する。

c) 外層(B')の厚さが1.5~5.0 μmであり、上部フィルム(B)は、20%未満のヘーズおよび70%以上の明瞭度を有し、それ自身のシールシーム強度(finsiel)及び下部フィルム(A)に対するシールシーム強度が2~10 N/15 mmの範囲を有し、20~125 μmの厚さを有する。

【0027】

特に断りのない限り、上記および下記において、重量%の記載は、そのデータが規定されている関連する各系のそれぞれの層の重量を参照することとする。

【発明の効果】

【0028】

本発明の上記フィルムは、上記の目的を達成できる。

【図面の簡単な説明】

【0029】

【図1】図1は、剥離角度180°における引張歪み試験装置を使用した剥離試験を示す図である。

【図2】図2は、図1に示す装置を使用した剥離試験における引張歪み挙動を示す。

【図3】図3は、実施例における評価試験に使用したトレーの仕様を示す。

【発明を実施するための形態】

【0030】

(I) 下部フィルム(A) (=熱成形性ポリエステルフィルム)

本発明の包装体は、透明二軸延伸単層ポリエステルフィルム(A)又は透明二軸延伸多

10

20

30

40

50

層共押出ポリエスチルフィルム(例えばA' A' A'')から成る熱成形性下部フィルム(A)を有する。

【0031】

共重合ポリエスチル:

下部フィルム(A)は熱可塑性共重合ポリエスチル85重量%以上から成る。本発明において、この共重合ポリエスチルは、テレフタル酸誘導単位85~94モル%のジカルボン酸成分と、イソフタル酸誘導単位6~15モル%のジカルボン酸成分から成る。好ましくは、フィルムは、テレフタル酸誘導単位86~93モル%のジカルボン酸と、イソフタル酸誘導単位7~14モル%のジカルボン酸成分とから成る共重合ポリエスチルから成る。本発明において、熱可塑性共重合ポリエスチルのジオールとしてエチレングリコールが好ましい。

10

【0032】

下部フィルム(A)の0~15重量%は、他のポリマー/ポリマー画分および/または他の基質から成ることが出来、ここで他のポリマー/ポリマー画分は、他の芳香族および/または脂肪族ジカルボン酸ならびにジオールからそれぞれ誘導される。下部フィルム(A)の熱可塑性ポリエスチルとして、上記のホモ及び/又は共重合体の混合物あるいはブレンドが使用できる。

【0033】

他の好適な芳香族ジカルボン酸としては、テレフタル酸、フラン-2,5-ジカルボン酸(FDCA)、ビフェニル-4,4'-ジカルボン酸、ナフタレンジカルボン酸(例えば、ナフタレン-1,4-又は1,6-ジカルボン酸、ナフタレン-2,6-ジカルボン酸)、ビフェニル- x , x' -ジカルボン酸(特に、ビフェニル-4,4'-ジカルボン酸)、ジフェニルアセチレン- x , x' -ジカルボン酸(特に、ジフェニルアセチレン-4,4'-ジカルボン酸)およびスチルベン- x , x' -ジカルボン酸が挙げられる。脂環式ジカルボン酸としては、シクロヘキサンジカルボン酸(特に、シクロヘキサン-1,4-ジカルボン酸)が挙げられる。脂肪族ジカルボン酸としては、アルカン部位が直鎖又は分岐鎖であるC₃-C₁₉アルカン二酸が特に好適である。

20

【0034】

ポリエスチルを形成するための他の好適な脂肪族ジオールとしては、例えば、ジエチレングリコール、トリエチレングリコール、一般式HO-(CH₂)_n-OHで表される脂肪族グリコール(式中、nは、3~6の整数を示す;特に、プロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール及びヘキサン-1,6-ジオール等)および炭素数6以下の分岐鎖脂肪族ジオールが挙げられる。他の好適な芳香族ジオールとしては、例えば、式HO-C₆H₄-X-C₆H₄-OHで表される芳香族ジオール(式中Xは、-CH₂-、-C(CH₃)₂-、-C(CF₃)₂-、-O-、-S-又は-SO₂-)が挙げられる。

30

【0035】

二軸延伸ポリエスチルフィルムの所望の良好な機械的特性、特に所望の良好な熱成形性は、テレフタル酸誘導単位およびイソフタル酸誘導単位に基づく本発明の比率を選択することによって達成される。イソフタル酸誘導単位に基づくジカルボン酸の割合が6重量%未満の場合、フィルムの所望の良好な熱成形性を達成することは不可能である。一方、比率が15重量%を超えると、以下に記載の製造方法による下部フィルム(A)の信頼性ある製造が出来なくなる。イソフタル酸誘導単位に基づく成分をこのように高い比率で有するフィルムは、製造中に、フィルムそれ自身あるいは長手方向延伸中のロール又は横方向延伸の終了付近の機械の端のフィルムが出て行く場所のロールに付着する傾向が非常に強くなる。

40

【0036】

ポリエスチルはエスチル交換反応法で製造できる。この方法は、ジカルボン酸エスチルとジオールを出発原料とし、通常のエスチル交換反応触媒、例えば亜鉛塩やカルシウム塩を使用して反応させる。中間体を公知の重縮合触媒、例えば三酸化アンチモン又はゲルマ

50

ニウム化合物の存在下で重縮合させる。また、重縮合触媒の存在下、直接エステル化法によっても好適に製造できる。この場合、ジカルボン酸とジオールとで直接反応を行う。

【0037】

酸化チタンまたはゲルマニウム化合物の存在下で中間体を重縮合させること、或いは酸化チタンまたはゲルマニウム化合物などの重縮合触媒の存在下で直接エステル化を行うことが特に好ましい。二軸延伸ポリエステルフィルムは、それゆえアンチモンを含まない。特に好ましい態様は、所望の製品がアンチモンを含まない二軸延伸ポリエステルフィルムであり、それゆえフィルムが食品に直接接する包装材用途に使用できる。

【0038】

本発明の目的を達成するために必要な他のパラメーター：

10

本発明のフィルムは、以下の式に従った面弾性率が $4500 \sim 6400 \text{ N/mm}^2$ であることによって特徴付けられる。

【0039】

$$E_{\text{area}} = (E_{MD_2} + E_{TD_2})$$

【0040】

E_{MD} は機械の長手方向に測定されたフィルムの弾性率であり、 E_{TD} は横方向に測定されたフィルムの弾性率である。この性質は、本発明の以下に示す製造方法に、本発明の以下に示すポリエステルと併せて従うことにより達成される。驚くべきことに、面弾性率が 4500 N/mm^2 未満の場合、フィルムは所望の機械的特性を有さず、本発明の上記用途には適しない。例えば、面弾性率があまりにも低いと、フィルムの巻き取り特性を十分に行なうことが出来ず、好ましくない皺が発生する。一方、面弾性率が 6400 N/mm^2 を超えると、フィルムは本発明の目的で必要とされる熱成形性が得られない。本発明において明らかになった。

20

【0041】

本発明のフィルムは、更に長手方向 (MD) 及び横方向 (TD) の強度値 (5 値) の合計が $170 \sim 220 \text{ MPa}$ の範囲であることに特徴付けられる。この性質は、本発明の以下に示す製造方法に、本発明の以下に示すポリエステルと併せて従うことにより達成される。強度値の合計が 170 MPa 未満の場合、フィルムは所望の機械的特性を有さず、本発明の用途には適しない。例えば、強度値の合計が小さ過ぎると、フィルムは熱成形機械中に満足いくように移送することが出来ず、フィルムは好ましくない歪みを生じる。他方、強度値の合計が 220 MPa を超えると、フィルムは本発明の目的で必要とされる熱成形性が得られない。

30

【0042】

本発明のフィルムは、更に密度が 1395 kg/m^3 であることにより特徴付けられる。この性質は、本発明の以下に示す製造方法に、本発明の以下に示すポリエステルと併せて従うことにより達成される。フィルムの密度が 1395 kg/m^3 を超えると、フィルムは結晶化し過ぎて本発明の目的として必要な熱成形性が可能とならない。

【0043】

下部フィルム (A) の SV 値：

40

所望の良好な機械的特性を達成するため及び所望の良好な熱成形性を達成するために、下部フィルム (A) の SV 値は特定の範囲としなければいけない。本発明において、下部フィルム (A) の SV 値は $680 \sim 1000$ の範囲、好ましくは $710 \sim 950$ の範囲、特に好ましくは $740 \sim 900$ の範囲である。それぞれのポリマー溶融体 (ベース層および外層) の SV 値の差は、100 単位以下、好ましくは 75 以下、特に好ましくは 50 以下である。

【0044】

フィルムの SV 値が 680 未満の場合、必要とされる良好なフィルムの熱成形性を達成できない (70 mm の深さの深絞り成形：図 3 に示す仕様を参照)。一方、SV 値が 1000 を超える場合、ポリエステルは粘度が高く成り過ぎ、コスト効率良く押出し出来ない。

50

【0045】

下部フィルム（A）における耐ブロッキング剤：

フィルムの加工特性を改良するために、下部フィルム（A）に粒子を入れることが好ましい。以下の条件に従うことが有利であることがわかった。

a) 粒子のメジアン粒径 d_{50} が $1.5 \sim 5.0 \mu\text{m}$ である。 d_{50} が $1.7 \sim 4.5 \mu\text{m}$ の粒子を使用することが好ましく、 d_{50} が $2.0 \sim 4.0 \mu\text{m}$ の粒子を使用することが特に好ましい。

b) 下部フィルム中の粒子の濃度は $0 \sim 0.1$ 重量% (1000 ppm) である。好ましくはフィルム中の粒子の濃度が $1.0 \times 10^{-5} \sim 0.075$ 重量%、特に好ましくは $1.1 \times 10^{-5} \sim 0.05$ 重量% である。

10

【0046】

粒径 d_{50} が $1.5 \mu\text{m}$ 未満の粒子を使用すると、フィルムの巻き取り性に好影響を及ぼさない。それ故、フィルムは、巻き取り中に好ましくない引裂きや引裂きの伝搬が生じやすくなる。粒径 d_{50} が $5.0 \mu\text{m}$ を超える粒子は、フィルムの延伸中に問題を生じる（空胞の形成が増大し、フィルムのヘーズに悪影響を及ぼす）。下部フィルム（A）の粒子濃度が 0.1 重量% を超えると、フィルムのヘーズが本発明の範囲内とならない。

【0047】

一般的な耐ブロッキング剤としては、一般的な無機および／または有機粒子であり、例えば、炭酸カルシウム、非晶シリカ、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、硫酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、下部フィルム（A）中に含まれるジカルボン酸のカルシウム塩、バリウム塩、亜鉛塩またはマンガン塩、二酸化チタン、カオリン、架橋ポリスチレン粒子、アクリル酸またはその誘導体系架橋ポリマー粒子が挙げられる。

20

【0048】

これらの粒子は、下部フィルム（A）にそれぞれ好適な濃度で添加され、例えばポリエスチルの製造中、例えば重縮合中にグリコール分散体の形で、或いは、フィルムの押出し中にマスター パッチの形で添加される。

【0049】

本発明の好ましい粒子は、コロイダル形状の合成、非晶 SiO_2 粒子である。この粒子はポリマー マトリックス中に良好に結合し、空胞がほとんど出来ない。空胞はフィルムの二軸延伸中に生じ、通常ヘーズを増加させるため、本発明においてできる限り避けなくてはならない。 SiO_2 粒子の製造に關し、欧州特許第 1475228 号明細書にその詳細が記載され、参照される。

30

【0050】

フィルム中のラジカル捕捉剤：

包装体を設置し、密封し、オープン内に入れ、特定の調理時間の後オープンから出される調理法は、クックイン法として知られる（欧州特許出願公開第 1697129 号または 2810776 号明細書を参照）。調理時間は基本的に包装体のサイズ（内容量）により、通常 30 分～2 時間である。

40

【0051】

このプロセスにおいて、熱成形性フィルムの大部分の面積においては、熱応力のレベルが低い。包装体のエッジ領域において、特に包装体のコーナー（シール部分）においてのみに熱応力が顕著に増大する。水の蒸発がフィルム熱成形されるフィルムの残りの部分を顕著に 160 未満の温度にするが、包装体のコーナー部分は調理時間の間オープンの温度に曝される。

【0052】

ここで、極端な事例において、フィルムのコーナー部分の温度は、 220 の温度で 2 時間を超えて熱応力を受け、このような高い温度では酸素がポリマー中を透過できる。

【0053】

この結果、包装材およびフィルム、特にコーナー部分は脆化し始め、分裂する傾向が見

50

られる。これは極めて不都合であり、避けるべきである。

【0054】

この用途において耐熱性を向上させることが必要とされる場合、フィルム（好ましくはアンチモンフリーのポリエステルから形成される）は1種以上のラジカル捕捉剤を含有する。このラジカル捕捉剤は、好ましくはフェノール系酸化防止剤である。

【0055】

1種以上のラジカル捕捉剤を含有するフィルムは極めて高温耐熱性に優れ、このフィルムから製造された包装体は、220℃を超える温度のオーブン内で1時間を超えて脆化せずにそのままの状態を保てることがわかった。

【0056】

好ましい実施態様において、本発明のフィルムは、ラジカル捕捉剤を500～3000ppm、好ましくは600～2500ppm、特に好ましくは700～2000ppm含有する。ラジカル捕捉剤の含有量が500ppm未満の場合、オーブン中の不具合（=裂ける）を導く傾向となり、含有量が3000ppmを超えると、それ以上のフィルムの改良効果が無くなり、それ故単純にコスト高となり、更にフィルムから包装されている食品への安定剤の染み出しを導く。含有量が3000ppmを超えると、更にゲルの形成や好ましくないフィルムが黄味を導く。

【0057】

ラジカル捕捉剤としては、1種のラジカル捕捉剤（この方が好ましい）或いは種々のラジカル捕捉剤の混合物のいずれも使用できる。使用されるラジカル捕捉剤は、好ましくはフェノール系酸化防止剤の群から選択される。

【0058】

好ましいラジカル捕捉剤としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]（CAS番号：6683-19-8）及び1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン）（CAS番号：1709-70-2）が挙げられ、Irganox 1010及びIrganox 1330の商品名でBASF社より入手できる。

【0059】

ラジカル捕捉剤の効果は、例えばオーブンから包装体を取出した後に、包装体を直接テストしてもよい。本発明のフィルムは、分裂がいかなる場所にも発見されない場合に、ここでは包装体が良好とランク付けされる（すなわち、用途に適している）。

【0060】

下部フィルム（A）の構造：

下部フィルム（A）は単層または多層（すなわち2層以上）から構成されている。前述の性質、特にポリエステルフィルムに必要とされる良好な光学的性質を達成するために、フィルムの単層構成が有利であることがわかった。しかしながら、下部フィルム（A）の2層または3層構成、例えば、A'A''の2層構成、A'A''A'又はA'A''A'''の3層構成もまた好適である。例えば、3層フィルムのベース層A''の粒子含有量は2つの層A'（及びA'''）の粒子含有量（同じであっても、異なってもよい）よりも少なくすることが出来る。

【0061】

層（A''）の粒子含有量は、フィルムのヘーズやグロスに好影響を及ぼすように選択される。上述の3層フィルムの場合、層（A''）の粒子含有量は0～0.08重量%、好ましくは0～0.05重量%、更に好ましくは0～0.02重量%である。使用される粒子の粒径は、特に好ましくはd₅₀が1.5μm超える。

【0062】

外層（A'及び/又はA''）及びベース層（A''）の粒子含有量の選択の際、フィルム中の粒子含有量の総量が、本発明に従って0.1重量%を超えないようにすべきである。

【0063】

2層A'（又はA'及びA''')の厚さは、同じであっても異なっていてもよい。これらの厚さは通常0.2~5μmである。下部フィルム（A）は、更に、製造で推奨される濃度の通常の添加剤、例えば安定剤（UV又は加水分解）や他のフィラー（着色顔料）を含有してもよい。添加剤は、通常、押出機内の溶融プロセス前にポリマー又はポリマー混合物に添加される。

【0064】

下部フィルム（A）の厚さ：

本発明のポリエステルフィルム（A）の総厚さは、特定の範囲内、すなわち50~300μm、好ましくは51~200μm、解くに好ましくは52~200μmの範囲で変化できる。フィルム（A）の厚さが50μm未満の場合、熱成形性フィルムの機械的特性およびバリア性が不十分。逆にフィルム（A）の厚さが300μmを超えると、フィルムの熱成形性が不良であり、更にフィルムの製造が不経済であり、これらの欠点はどちらも好ましくない。

10

【0065】

下部フィルム（A）の製造方法：

本発明は、熱成形性下部フィルム（A）の製造方法にも関する。その製造方法は、押出（層（A）の製造方法）または共押出（例えば層（A'A''A''')の製造方法）によって下部フィルムの製造と、下部フィルム（A）の二軸延伸と、延伸下部フィルム（A）の熱固定および巻取りとから成る。

20

【0066】

共押出法において、それぞれの溶融体は別々の押出機内で押し出され、共押出ダイ内で成形されて各層が相互に積層された平坦溶融フィルムを得る。多層フィルムは、冷却ロール及び他の任意のロールの使用によって引取られ、固化される。種々の成分を混合するために、層（A）又は他の層（A'A''A''')用のポリマーを押出すためにベント付二軸押出機を使用することが有利である。このように製造されたフィルムは、十分な光学的性質、すなわち曇りや縞の発生が無い光学的性質を満足する。

【0067】

二軸延伸は連続して行われる。最初に長手方向の延伸を行い、次いで横方向の延伸を行なう。長手方向の延伸は、所望の延伸比となるような回転速度の異なる2つのロールを用いて行われる。横方向の延伸は、通常、適当なテンターフレームを使用して行われる。

30

【0068】

二軸延伸延伸を行なう温度は、フィルムの所望とする特性、特に本発明のフィルムの所望の熱成形性によって比較的幅広い範囲を取り得る。驚くべきことに、所望のフィルムの熱成形性を達成するために、従来技術の場合よりも顕著に小さく延伸するべきである。

【0069】

長手方向の延伸は、通常、温度80~130の範囲内で、横方向の延伸は、通常、温度90~150の範囲内で行われる。長手方向の延伸比は、通常、2.5:1~6:1、好ましくは3.0:1~5.5:1の範囲である。横方向の延伸比は、通常、3.0:1~5.0:1、好ましくは3.5:1~4.5:1の範囲である。

40

【0070】

引続いて行われる熱固定は、フィルムを約160~240の温度で約0.1~1.5秒保持して行われる。この後、フィルムは通常の方法によって巻取られる。

【0071】

下部フィルム（A）の所望の熱成形性を達成するために、長手方向の延伸は特別な状況下で行われる。延伸中のフィルムの温度は70~100（ロールの加熱温度が60~110）である。長手方向の延伸比は2.0:1~4.0:1の範囲、好ましくは2.1:1~3.8:1の範囲、特に好ましくは2.2:1~3.6:1の範囲である。フィルムの延伸比が2.0:1未満の場合、厚さプロフィールが劣る。一方、フィルムの延伸比が4.0:1を超える場合、熱成形性が不十分である。

50

【0072】

本発明の下部フィルム（A）の製造方法の上記の製造条件に従うことは重要である。下部フィルム（A）の長手方向延伸および横方向延伸ならびに熱固定に関する本発明の上記の製造条件に従わない場合、フィルムの機械的性質、特に所望の熱成形性および耐突き刺し性に関し、フィルムの本発明の特性を達成できず、好ましくない。

【0073】

下部フィルム（A）の塗布層（C）：

好ましい実施態様において、低フィラー含有量の透明フィルムの巻取り特性を向上させるため、下部フィルム（A）の少なくとも片面に、インラインまたはオフラインで、ポリ（アルキルアクリレート）及び／又はポリ（アルキルメタクリレート）及び／又はポリ（アルキルアクリレート／アルキルメタクリレート）共重合体から成る更なる層（C）が塗布形成されている。更に、アクリル及び／又はメタクリル共重合ポリエステルがポリマーの架橋構造を有しているのも可能である。共重合体の製造においてN-メチロールアクリルアミドを使用することも好ましい。更に、他の架橋剤、例えばメラミン等を使用することも出来る。塗布は子のマイクはインライン法でおこなわれる。

10

【0074】

本発明の塗布層（C）の詳細は欧洲特許出願公開第0144948合明細書に記載されており、参照により本発明に引用する。

【0075】

好ましいアクリレート塗布剤は、下部フィルム（A）の少なくとも片面に塗布され、巻取り性、特に貯蔵後（温度上昇において）のフィルムの巻き戻しを改良する。塗布剤は、例えば静電防止剤、濡れ剤、界面活性剤、pH調整剤、酸化防止剤、染料、顔料、耐プロッキング剤（例えば、コロイダルSiO₂等）の公知の添加剤を含有してもよい。水性塗布を可能とするため、支持フィルムのポリエステルの濡れ性を更に向上させるため、そしてアクリル／メタクリル酸から誘導される共重合体から成る粒子を安定化させるために、界面活性剤を含有することが通常好ましい。

20

【0076】

層（C）の塗布：

アクリル系架橋層（C）を有する下部フィルム（A）の塗布は、インライン法、好ましくは第1延伸と第2延伸との間のインライン法または、二軸延伸フィルムの製造後のオフライン法によって達成できる。

30

【0077】

好ましく使用されるインラインコーティングの場合、横方向延伸の前に下部フィルム（A）の片面または両面に層（C）が塗布される。オフラインコーティングの場合、層（C）は、好ましくは下部フィルム（A）の製造後に塗布形成される。

【0078】

製造されたポリエステルフィルム上に塗布層の厚さが好ましくは5～100nm、更に好ましくは10～90nm、特に好ましくは15～80nmになるように、ポリエステルフィルムは機能層が塗布形成される。特に好ましくは、層（C）の塗布がリバースグラビアロール塗布法によって行われ、これは200nmの層厚さまで極めて均一な塗布が可能である。塗布は、溶液、懸濁液または分散体、特に好ましくは水性溶液、水性懸濁液または水性分散体、の形で行われることが好ましい。

40

【0079】

上記の基質は、希釈液、水溶液または水分散体の形態でフィルムの片面または両面に塗布され、次いで溶媒が蒸発除去される。塗布剤が横方向延伸前のインライン法で塗布される場合、横方向延伸中および引続いて行われる熱固定中の温度で溶媒が十分に蒸発し、乾燥塗布層が形成できる。

【0080】

下部フィルム（A）の性質：

上記の本発明の方法に従って製造される本発明の下部フィルム（A）は、種々の性質を

50

有志、その重要な点を以下に列挙する。

【0081】

本発明の下部フィルム(A)は、本用途で意図される非常に優れた機械的性質(面弾性率、強度値の合計、耐突き刺し性)に特徴付けられ、とりわけ、所望の良好な熱成形性および所望の良好な耐突き刺し性が達成される。

【0082】

下部フィルム(A)は鮮明な光学的性質に特徴付けられる。下部フィルム(A)のヘーズは2%未満で、明瞭度は85%を超え、グロス140を超える。

【0083】

驚くべきことに、フィルムから製造された熱成形された包装体の輸送や貯蔵で損傷を受けることが無いほどに。本用途で重要なフィルムの耐突き刺し性F[N]が十分に高い。本発明に従い、下部フィルム(A)の耐突き刺し性Fは、規定範囲内の厚さにおいてフィルムの厚さdと以下の式で示されるように相関する。

【0084】

$$FN d \mu m > 0.35$$

【0085】

下部フィルム(A)の熱成形性は少なくとも70mm(図3に示す仕様を参照)であり、熱成形比は少なくとも2.5である。この本発明の熱成形性を有するトレーは、通常に設計されるパッケージに、通常の肉、鶏肉または魚の商品量を包装するのに問題無く使用できる。

【0086】

下部フィルム(A)は優れたバリア性、特に酸素、水蒸気、匂いに関するバリア性を必要とする。

【0087】

高透明性下部フィルム(A)はルぐれた巻取り特性および加工特性を有する。フィルムが巻かれる際、温度上昇、例えば50又は60に上昇しても個々のフィルム層は互いに付着しない。

【0088】

フィルムは更に費用効果に優れて製造できる。これは、通常の工業的に使用される製造装置で下部フィルムを製造できることを意味する。

【0089】

本発明の熱成形性ポリエステルフィルムは、食品や他の消費物品の包装に極めて適している。上記の製造方法で製造された熱成形トレー中に食費にや他の消費物品を包装するのにとくに好適である。

【0090】

本発明のフィルムの最も重要な特性を以下の表1に列挙する。

【0091】

10

20

30

【表1】

表1

下部フィルム (A)	本発明の範囲	好ましい範囲	更に好ましい範囲	単位
下部フィルム (A) 中の共重合ポリエステルの割合	≥ 85	≥ 86	≥ 87	重量%
イソフタレート単位からの誘導される共重合ポリエステルの割合	6~15	7~14	8~13	モル%
粒子濃度	0~0.1	$1.0 \times 10^{-5} \sim 0.075$	$1.1 \times 10^{-5} \sim 0.05$	重量%
粒径 d_{50}	1.5~5	1.7~4.5	2.0~4.0	μm

10

20

30

40

【0092】

【表2】

表1

製造方法	本発明の範囲	好ましい範囲	更に好ましい範囲	単位
長手方向の延伸 (T製法)	ロールの加熱温度	60~110	65~105	°C
	フィルムの延伸温度	70~100	75~100	°C
	長手方向の延伸比	2.0~4.0	2.1~3.8	2.2~3.6
横方向の延伸	加熱領域の温度	70~120		°C
	フィルムの加熱温度	60~110		°C
	延伸温度	90~140		°C
	横方向の延伸比	2.2~3.8	2.4~3.7	2.6~3.6
熱固定	温度	175~220	178~215	180~210
	時間	5~25	6~22	7~20

【表3】

表1

フィルムの性質	本発明の範囲	好ましい範囲	更に好ましい範囲	単位	試験方法
面弾性率	4500～6400	4600～6300	4700～6300	N/mm ²	ISO 527-1 及びISO 527-3; sample type 2
σ 5 値の合計	170～220	175～210	180～220	N/mm ²	ISO 527-1 及びISO 527-3; sample type 2
密度	<1395	<1392	<1390	kg/m ³	ASTM D1505-68, method C
フィルムのヘーズ	<2.0				ASTM D1003-61, method A
フィルムの明瞭度	≥85				ASTM D1003
フィルムのグロス	≥140			N/15mm	DIN 67530
フィルムの透明度	≥89				DIN 1033-77
フィルムのSV値	680～1000	710～950	740～900		
耐突き刺し性／フィルムの厚さ	0.35d			N/μm	EN 14447
熱成形性（図3に従った仕様）	深絞りの深さ	≥70	≥73	≥76	mm
	A _{total} / A _{film}	≥2.5	≥2.6	≥2.7	
フィルムの厚さ	50～300	51～200	52～200	μm	

【0094】

(I I) 上部フィルム (B) (=シール性ポリエステルフィルム) :

本発明の包装体は、透明二軸延伸かつ共押出でヒートシール性かつ剥離性ポリエステルフィルム (B', B','; 以下の説明を参照) または (B', B', B','; 以下の説明を参照) から成る上部フィルム (B) を更に含む。外層 (B') は、主として、すなわち 60 重量 % 以上のポリエステルから成る。

【0095】

外層 (B') :

非晶性外層 (B') のポリマー :

本発明のヒートシール性外層 (B') は、少なくとも 1 種のポリエステルと任意の耐ブロッキング剤とから成る。ポリエステルは、芳香族および脂肪族ジカルボン酸から誘導される単位から成る。ポリエステル中の芳香族系ジカルボン酸単位の比率は 2.5 ~ 9.5 モル

10

20

30

40

50

%、好ましくは40～90モル%、特に好ましくは50～88モル%である。ポリエステル中の脂肪族系ジカルボン酸単位の比率は5～75モル%、好ましくは10～60モル%、特に好ましくは12～50モル%である。なお、モル%の比率の総計は常に100%である。対応するジオール単位も常に100モル%である。

【0096】

本発明で使用できる芳香族ジカルボン酸の例としては、テレフタル酸、イソフタル酸、フタル酸およびナフタレン-2,6-ジカルボン酸が挙げられる。

【0097】

脂肪族ジカルボン酸の例としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸およびセバシン酸が挙げられる。本発明において、好ましいのはアジピン酸およびセバシン酸の使用であり、次いでコハク酸、グルタル酸、アジピン酸、ピメリン酸セバシン酸およびアゼライン酸の使用である。

10

【0098】

本発明で使用できる脂肪族ジオールの例としては、エチレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール、シクロヘキサン-1,4-ジメタノール及びネオペンチルグリコールが挙げられる。

【0099】

好ましい実施態様において、ポリエステルはジカルボキシレートの総量およびアルキレンの総量をそれぞれ基準として以下に示すジカルボキシレート及びアルキレンを含む。

20

25～95モル%、好ましくは30～90モル%、特に好ましくは40～70モル%のテレフタレート。

0～25モル%、好ましくは5～20モル%、特に好ましくは10～20モル%のイソフタレート。

5～75モル%、好ましくは8～70モル%、特に好ましくは11～65モル%のセバケート。

0～50モル%、好ましくは0～40モル%、特に好ましくは0～30モル%のアジペート。

30モル%を超える、好ましくは40モル%を超える、特に好ましくは50モル%を超えるエチレン又はブチレン。

30

【0100】

外層の材料として、任意にポリマーの重量の15重量%以下で、ポリエステルに非相溶(a n t i - P E Tポリマー)なポリマーを含有させてもよい。好ましい実施態様において、a n t i - P E Tポリマーの比率は2～12重量%、好ましくは2～10重量%、特に好ましくは2～8重量%である。

【0101】

外層(B')の材料の10重量%以下の量で、粒子、添加剤、助剤および/またはポリエステルフィルム技術分野で通常使用される他の添加剤を含有させてもよい。

40

【0102】

外層(B')のポリエステルは、好ましくは物理的に混合可能なポリエステルI及びIIの2種から製造されることが好ましく、特に好ましくは物理的に混合可能なポリエステルI、II及びIIIの3種から製造されることが好ましい。これらは、この層(B')用の押出機に混合物として導入される。

【0103】

外層(B')用ポリエステルI

外層(B')中の1つ以上の芳香族ジカルボキシレートと1つ以上の脂肪族アルキレンとから成るポリエステルIの比率は10～60重量%である。好ましい実施態様において、ポリエステルIの比率は15～55重量%、特に好ましい実施態様において20～50重量%である。

50

【0104】

好ましい実施態様において、本発明の外層（B'）のポリエステルⅠは、ジカルボキシレートの総量およびアルキレンの総量を基準として、以下のジカルボキシレート及びアルキレンから少なくとも成る。

・60～100モル%、好ましくは62～95モル%、特に好ましくは66～93モル%のテレフタレート

・0～40モル%、好ましくは5～38モル%、特に好ましくは7～34モル%のイソフタレート

（ジカルボン酸の総量は常に100モル%）

・50モル%を超える、好ましくは65モル%を超える、特に好ましくは80モル%を超えるエチレン単位。

【0105】

存在できる残りの画分は、ベース層（B''）で上述した他の芳香族ジカルボン酸および脂肪族ジオールから誘導される。

【0106】

テレフタレート単位の比率が60～80モル%、イソフタレート単位の比率が20～40モル%及びエチレン単位の比率が100モル%の共重合ポリエステルが特に好ましい。この材料は、エチレンテレフタレート-エチレンイソフタレート共重合体である。

【0107】

外層（B'）中のポリエステルⅠの比率が10重量%未満の場合、フィルムの共押出法による製造が顕著に不適となり、また、確実な製造が困難となることがわかった。機械の構成部品上に、特にメタリックなロールにフィルムが固着する傾向が高くなる。一方、外層（B'）中のポリエステルⅠの比率が60重量%を超えると、本用途のフィルムのシール性能が著しく損なわれる。これは、それに伴って融点が高くなり、所望のシールを行なう上で必要とされる柔軟性（しばしば汚染された部分を介して行われる）を有し、シール性層（B'）が通常使用されるシール温度における融点を有さないからである。

【0108】

本発明において、原料のSV値は600を超える、好ましくは650を超える、特に好ましくは700を超える。原料のSV値が600未満の場合、原料の押出が困難になり好ましくない。

【0109】

外層（B'）用ポリエステルⅡ：

本発明において、外層（B'）におけるポリエステルⅡの比率は20～70重量%である。好ましい実施態様において、ポリエステルⅡの比率は25～65重量%、特に好ましい実施態様において30～60重量%である。

【0110】

ポリエステルⅡは、脂肪族酸および芳香族酸成分から形成される共重合体から成ることが好ましく、脂肪族酸成分の量は、ポリエステルⅡ中の総酸量を基準として20～90モル%、好ましくは30～70モル%、特に好ましくは35～60モル%である。ジカルボキシレートの総量100モル%にするための残渣は、特にテレフタル酸およびイソフタル酸の芳香族酸（テレフタル酸が好ましく、イソフタル酸はやや劣る）と、グリコール側は上記のベース層で記載した脂肪族、脂環式、芳香族脂オールとから誘導される。

【0111】

本発明の外層（B'）のポリエステルⅡは、ジカルボキシレートの総量およびアルキレンの総量を基準として、以下のジカルボキシレート及びアルキレンから少なくとも成る。

・20～70モル%、好ましくは30～70モル%、特に好ましくは35～60モル%のセバケート，

・0～50モル%、好ましくは0～45モル%、特に好ましくは0～40モル%のアジペート，

10

20

30

40

50

- ・ 10 ~ 80 モル%、好ましくは 20 ~ 70 モル%、特に好ましくは 30 ~ 60 モル% のテレフタレート、
- ・ 0 ~ 30 モル%、好ましくは 3 ~ 25 モル%、特に好ましくは 5 ~ 20 モル% のイソフタレート
(ジカルボン酸の総量は常に 100 モル%)
- ・ 30 モル% を超える、好ましくは 40 モル% を超える、特に好ましくは 50 モル% を超えるエチレン又はブチレン。

【0112】

好ましい実施態様として、本発明の外層 (B') のポリエステルIIは、ジカルボキシレートの総量およびアルキレンの総量を基準として、以下のジカルボキシレート及びアルキレンから少なくとも成る。

- ・ 20 ~ 70 モル%、好ましくは 30 ~ 65 モル%、特に好ましくは 35 ~ 60 モル% のセバケート
- ・ 10 ~ 80 モル%、好ましくは 20 ~ 70 モル%、特に好ましくは 30 ~ 60 モル% のテレフタレート
- ・ 0 ~ 20 モル%、好ましくは 3 ~ 15 モル%、特に好ましくは 3 ~ 10 モル% のイソフタレート
- ・ 30 モル% を超える、好ましくは 40 モル% を超える、特に好ましくは 50 モル% を超えるエチレン又はブチレン。

【0113】

存在できる残りの画分は、ベース層 (B'') で上述した他の芳香族ジカルボン酸および脂肪族ジオールから誘導される。

【0114】

10 モル% 以上の芳香族ジカルボン酸の存在で、例えば、共押出機内または長手方向の延伸中にポリマーIIが付着無く加工できる。

【0115】

外層 (B') 中のポリエステルIIの比率が 20 重量% 未満の場合、フィルムのシール性および剥離性が著しく損なわれる。これはすでに上述したように、シール性層が、所望のシールを行なう上で必要とされる柔軟性 (しばしば汚染された部分を介して行われる) を有するような通常使用されるシール温度を有さないからである。一方、外層 (B') 中のポリエステルIの比率が 10 重量% 未満の場合、フィルムの共押出法による製造が顕著に不適となり、また、確実な製造が困難となる。機械の構成部品上に、特にメタリックなロールにフィルムが固着する傾向が高くなる。

【0116】

本発明において、原料の SV 値は 900 を超え、好ましくは 950 を超え、特に好ましくは 1000 を超える。原料の SV 値が 900 未満の場合、フィルムのヘーズが増大し、好ましくない。

【0117】

外層 (B') のポリエステルIII：

1 つ以上の芳香族ジカルボキシレート及び 1 つ以上の脂肪族アルキレンから成るポリエステルIIIの外層 (B') 中の含有量は、0 ~ 15 % であり、任意成分である。好ましい実施態様において、ポリエステルIIIの含有量は 3 ~ 12 重量%、特に好ましくは 4 ~ 10 重量% である。

【0118】

本発明の外層 (B') のポリエステルIIIは、ジカルボキシレートの総量およびアルキレンの総量をそれぞれ基準として以下のジカルボキシレート及びアルキレンから成る。

- ・ 80 ~ 98 モル%、好ましくは 82 ~ 96 モル%、特に好ましくは 74 ~ 95 モル% のテレフタレート
- ・ 2 ~ 20 モル%、好ましくは 4 ~ 18 モル%、特に好ましくは 5 ~ 17 モル% のイソフタレート

10

20

30

40

50

・ 50 モル%を超える、好ましくは 65 モル%を超える特に好ましくは 80 モル%を超えるエチレン単位

【 0119 】

存在してもよい残余のポリマー画分は、ベース層 (B') 用の特に好ましい他の芳香族ジカルボン酸として既に上述した他の芳香族ジカルボン酸および他の脂肪族ジオールから誘導されるものである。

【 0120 】

ポリエステル I、II 及び III の混合物は、その比率%の合計が 100% とならなければならない。

【 0121 】

テレフタレート単位の比率が 84 ~ 94 モル%、イソフタレート単位の比率が 6 ~ 16 モル% (ジカルボキシレートの比率として合計 100 モル% となる) 及びエチレン単位の比率が 100 モル% である共重合ポリエステルが特に好ましい。この材料は、すなわちポリエチレンテレフタレート / イソフタレートである。

【 0122 】

特に好ましい実施態様において、ポリエステル III が 5 ~ 25 重量% の比率で耐ブロッキング剤 (以下を参照) を含有する。この好ましい実施態様において、ポリエステル II は、好ましくは押出技術によって製造されるマスターバッチである。押出中に (好ましくは二軸押出機) ポリエステル原料に添加される耐ブロッキング剤の濃度は、フィルム中に存在する濃度に比べて顕著に大きい。本発明において、マスターバッチの SV 値が 400 を超え、好ましくは 425 を超え、特に好ましくは 450 を超える。

【 0123 】

外層 (B') は、好ましくはポリエステル I、II 及び III の混合物から成る。この混合物は、比較される成分と比率を有する 1 種のみのポリエステルと比較して以下の利点を有する。

・ それぞれのガラス転移温度 (T_g) において、2 種のポリエステル I 及び II の混合物は、単一の原料のそれぞれのポリマー成分の濃度のそれと比較してより押出しが容易である。

・ 高い T_g を有するポリマー (ポリエステル I 及び III) と低い T_g を有するポリマー (ポリエステル II) との混合物は、対応する平均の T_g を有する単独のポリマーに比べて共押出機内の付着が少ないことが研究により明らかになった。

・ 実施において、この混合物は、単独のポリエステル使用に比べて、所望のシール性および剥離性をより個別に設定できる。

・ 特に、ポリエステル III の場合の方が、ポリエステル I 又は II の場合よりも、より容易に粒子を添加できることがわかった。

【 0124 】

ポリエステル I のガラス転移温度は、好ましくは 50 を超える。ポリエステル I 及び III のガラス転移温度は、好ましくは 55 を超え、特に好ましくは 60 を超える。ポリエステル I 及び III のガラス転移温度が 50 未満の場合、フィルムは信頼性のある製造方法で製造できない。例えば外層 (B') が関連するロールに付着する傾向が非常に強まり、頻繁にフィルム破断が起きる。

【 0125 】

ポリエステル II のガラス転移温度は 10 未満が好ましく、更に好ましくは 8 未満、特に好ましくは 6 未満である。ポリエステル II のガラス転移温度が 10 を超えると、シール性層は、通常のシール温度において、シールで要求される所望の柔軟性を有さない (しばしば部分的に汚染された箇所を通じてのシール)。

【 0126 】

外層 (B') 中の Ant i - PET ポリマー：

ヒートシール性および剥離性外層 (B') は、任意にポリエステルとは非相溶のポリマー (Ant i - PET ポリマー) を所定量含んでもよい。Ant i - PET ポリマーの比

10

20

30

40

50

率は、外層（B'）の組成を基準として0～15重量%である。好ましい実施態様においてa n t i - P E Tポリマーの比率は、外層（B'）の組成を基準として2～10重量%、特に好ましい実施態様において2～8重量%である。

【0127】

好適な非相溶ポリマー（アンチP E Tポリマー）の例としてはエチレン系（L L D P E、H D P E）、プロピレン系（P P）、シクロオレフィン系（C O）、アミド系（P A）、スチレン系（P S）のポリマーが挙げられる。好ましい実施態様において、ポリエステル非相溶ポリマーとして共重合体が使用される。この共重合体の例としては、エチレン系（C 2 / C 3、C 2 / C 3 / C 4共重合体）、プロピレン系（C 2 / C 3、C 2 / C 3 / C 4共重合体）またはシクロオレフィン系（ノルボルネン/エチレン共重合体、テトラシクロドデカン/エチレン共重合体）が挙げられる。中でも特に好ましい実施態様において、ポリエステルと非相溶なポリマーがシクロオレフィン共重合体（C O C）である。これらのシクロオレフィン共重合体は、欧州特許出願公開第1068949号明細書または特開平05-009319号にその例が記載されており、本発明に参照により引用する。

10

【0128】

シクロオレフィン共重合体の中でも、好ましくはノルボルネン構造を基本とする多環オレフィン単位（特に好ましくはノルボルネン又はテトラシクロドデセン）の重合体から成るものである。特に好ましくは、非環式オレフィン（特にエチレン）単位の重合体から成るシクロオレフィン共重合体（C O C）である。特に好ましくは、ノルボルネン/エチレン共重合体およびテトラシクロドデセン/エチレン共重合体で、エチレン単位は5～80重量%、好ましくは10～60重量%（共重合体の重量を基準として）である。

20

【0129】

C O Cのガラス転移温度は、通常-20～400の範囲である。本発明の好適なC O Cは、ガラス転移温度120未満、好ましくは100未満、特に好ましくは80未満を有するものである。ガラス転移温度は、好ましくは50を超える、更に好ましくは55を超える、特に好ましくは60を超える。粘度数は（デカリン中、135、D I N 53728）は、0.1～200m l / g、好ましくは50～150m l / gである。

20

【0130】

フィルムがガラス転移温度80未満のC O Cから成ることにより、ガラス転移温度が80を超えるC O Cから成るフィルムと比較して、低いヘーズと良好なシール性が得られる。

30

【0131】

欧州特許出願公開第0283164号明細書、欧州特許出願公開第0407870号明細書、欧州特許出願公開第0485893号明細書および欧州特許出願公開第0503422号明細書に、可溶メタロセン錯体を基にする触媒を用いるシクロオレフィン共重合体（C O C）の製造方法が記載されている。可溶メタロセン錯体を基にする触媒を用いて製造されたシクロオレフィン共重合体は特に好ましい。このC O Cは、例えば、T o p a s（登録商標、T i c o n a社製、フランクフルト）として市販品を入手できる。

【0132】

更に、アンチP E Tポリマーは、シール性および加工特性、特に本発明のフィルムの巻取り性に有利となる。好ましい実施態様においてC O Cの比率が2重量%未満の場合、シール性およびトレーの加工特性におけるポリマーの好ましい効果は得られない。トレーはプロッキングを起こしやすくなる。一方、ポリエステル非相溶ポリマーの比率が15重量%を超えないようにすべきであり、これはフィルムのヘーズが高くなりすぎるからである。

40

【0133】

外層（B'）中の耐プロッキング剤：

ヒートシール性および剥離性外層（B'）の良好な自己放出性、上部フィルム（B）の良好な加工特性、更に、調理後のトレー（熱成形によって下部フィルム（A）から製造される）からの剥離の際の上部フィルム（B）の性能を改良するために、ヒートシール性お

50

および剥離性外層（B'）の更なる改変のための好適な耐ブロッキング剤（＝粒子）を使用することが本発明において有利である。

【0134】

ヒートシール性および剥離性外層（B'）の良好な自己放出性のために、粒子の粒径 d_{50} は本発明の範囲内でなければならない。メジアン粒径 d_{50} が1.5~5.0 μm、好ましくは1.5~4.5 μm、特に好ましくは1.5~4.0 μmの粒子を使用することが特に有利であることが明らかになった。粒径が1.5 μm未満の粒子を使用すると、自己放出性および外層（B'）の剥離性能に関して粒子の好適な効果が得られない。調理後にトレーから剥離する際に、フィルムが引裂かれたり、引裂きが成長する傾向となり好ましくない。粒径が5.0 μmを超える粒子の使用は、通常フィルムのヘーズが高くなりすぎ、グロスが不十分となり、フィルターの問題の原因ともなる。

10

【0135】

所望の良好な自己放出性、良好な剥離特性、良好なフィルムの巻取り及び加工特性を供するために、ヒートシール性および剥離性外層（B'）の粒子濃度が0.04重量%を超える、好ましくは0.05重量%を超える、特に好ましくは0.06重量%を超えることが有利であることが明らかになった。また、粒子濃度の上限は10.00重量%、好ましくは8.00重量%、特に好ましくは6.00重量%である。外層（B'）の粒子濃度が0.04重量%未満の場合、自己放出性に関する良好な効果は得られない。外層（B'）の粒子濃度が10重量%を超える場合、フィルムのヘーズが高くなりすぎる。

20

【0136】

好ましい実施態様において、ヒートシール性および剥離性外層（B'）中の粒子の粒径 d_{50} は、この層の厚さよりも大きい。粒径/層厚さの比率が1.0を超える、好ましくは1.1を超える、特に好ましくは1.2を超えることにより、本発明では有利となる。この場合、自己放出性および調理後のトレーからの剥離におけるフィルム性能に関し、特に粒子の有利な効果が得られる。

20

【0137】

本発明における好ましい粒子は、コロイダル形状の合成非晶SiO₂粒子であり、ポリマーマトリックス中に非常に良好に結合する。SiO₂粒子の製造方法に関しては、例えば欧州特許第1475228B1合明細書に製造方法の詳細が記載されており、従来技術として参照される。

30

【0138】

外層（B'）中に使用できる他の代表的な粒子としては、無機および/または有機粒子であり、例えば、炭酸カルシウム、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、LiF、使用されるジカルボン酸のカルシウム塩、バリウム塩、亜鉛塩またはマンガン塩、二酸化チタン、カオリンが挙げられる。

【0139】

外層（B'）の厚さ：

本発明において、ヒートシール性および剥離性外層（B'）の厚さは1.5~5 μmである。外層（B'）の厚さが1.5 μm未満の場合、上部フィルム（B）の下部フィルム（A）に対するシールが不十分となる。外層の厚さが5 μmを超える場合、包装体の自己放出性が悪化し、好ましくない。

40

【0140】

外層（B'）は、それ自身良好なシール特性（フィンシール：外層（B'）と外層（B'））、特に下部フィルム（A）に対して良好なシール性および剥離性を示す。160（460 N、2秒）におけるヒートシール後、それ自身（フィンシール）および下部フィルム（A）に対する外層（B'）のシールシーム強度は2 N/15 mmを超え、10 N/15 mm以下である。ここで、全ての場合において、下部フィルム（A）に対し、フィルムが部分的に肉汁などで汚染されていても剥離性シールが達成できる。

【0141】

50

ベース層(B'') :

ベース層(B'') に使用するポリマー :

上部フィルム(B)のベース層(B'') は、ジカルボン酸誘導単位およびジオール誘導単位、またはジカルボキシレート及びアルキレンから成る 90 重量% 以上の熱可塑性ポリエステルから成り、通常それぞれジカルボキシレートの総量およびアルキレンの総量を基準として以下のジカルボキシレート及びアルキレンから成る。

- ・ 90 モル% を超え、好ましくは 95 モル% を超えるテレフタレート
- ・ 90 モル% を超え、好ましくは 95 モル% を超えるエチレン

【 0142 】

ポリエステルを形成するための他の好適な脂肪族ジオールとしては、例えば、ジエチレングリコール、トリエチレングリコール、一般式 $\text{HO} - (\text{CH}_2)_n - \text{OH}$ で表される脂肪族グリコール(式中、n は、3 ~ 6 の整数を示す；特に、プロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール及びヘキサン-1,6-ジオール等)および炭素数 6 以下の分岐鎖脂肪族ジオールが挙げられる。他の好適な芳香族ジオールとしては、例えば、式 $\text{HO} - \text{C}_6\text{H}_4 - \text{X} - \text{C}_6\text{H}_4 - \text{OH}$ で表される芳香族ジオール(式中 X は、- CH_2 -、- $\text{C}(\text{CH}_3)_2$ -、- $\text{C}(\text{CF}_3)_2$ -、- O -、- S - 又は - SO_2 -)が挙げられる。

【 0143 】

他の好適な芳香族ジカルボン酸としては、ベンゼンジカルボン酸、ナフタレンジカルボン酸(例えば、ナフタレン-1,4-又は1,6-ジカルボン酸)、ビフェニル- x , x' -ジカルボン酸(特に、ビフェニル-4,4'-ジカルボン酸)、ジフェニルアセチレン- x , x' -ジカルボン酸(特に、ジフェニルアセチレン-4,4'-ジカルボン酸)およびスチルベン- x , x' -ジカルボン酸が挙げられる。脂環式ジカルボン酸としては、シクロヘキサンジカルボン酸(特に、シクロヘキサン-1,4-ジカルボン酸)が挙げられる。脂肪族ジカルボン酸としては、アルカン部位が直鎖又は分岐鎖である $\text{C}_3 - \text{C}_1$, アルカン二酸が特に好適である。

【 0144 】

ベース層(B'') 用のポリエステルは、例えばエステル交換法によって製造できる。これは、ジカルボン酸エステル及びジオールを出発原料とし、例えば亜鉛塩、カルシウム塩、リチウム塩、マグネシウム塩およびマンガン塩などの通常のエステル交換触媒を使用して反応させる。中間体は次いで公知の重縮合触媒の存在下で重縮合を行う。重縮合触媒の存在下での直接エステル化法によっても同様に製造できる。これはジカルボン酸とジオールとから直接開始される。

【 0145 】

二酸化チタン又はゲルマニウム化合物の存在下で中間体を重縮合するか、二酸化チタン又はゲルマニウム化合物などの重縮合触媒の存在下で直接エステル化法を行うことが特に有利であることが明らかになった。二軸延伸ポリエステルフィルムはそれ故アンチモンを含まない。特に好ましい態様は、所望の製品がアンチモンを含まない二軸延伸ポリエステルフィルムであり、フィルムが食品と直接接触する包容用途において使用できる。

【 0146 】

ベース層(B'') 、例えば、安定剤(UV、加水分解)、特に熱安定剤(例えば、Irganox 1010)又は他のフィラー(例えば、着色顔料)などの公知の添加剤を、製造者が要求する濃度においてを更に含有できる。これらの添加剤は、溶融前のポリマー又はポリマー混合物に添加することが好ましい。

【 0147 】

ベース層(B'') は、更に、フィルム製造中の押出工程に再生原料を 60 重量% 以下の量で添加してもよい。これにより、物理的、特に光学的特性などのフィルムの特性に顕著な悪影響を及ぼすことはない。

【 0148 】

フィルム中のラジカル捕捉剤 :

10

20

30

40

50

下部フィルムに関する上記記載と同じく、クックインプロセスとして知られる調理中に上部フィルムもまた高温ストレスを受ける。

【0149】

この過程において、フィルムの面積の大部分はこの熱によるストレスは低い。一方、包装体のエッジ領域、特に包装体のコーナー部分（シールエッジ）においてのみフィルムの熱ストレスが顕著に増加する。に水の蒸発によって熱成形フィルムの残部の温度が顕著に160℃未満にさせるが、包装体のコーナー部分は、調理時間の全てにおいてオープンの温度（例えば220℃）に曝される。

【0150】

極端な場合、フィルムのコーナー部分は220℃の温度で2時間を超えて熱応力を受け、この高い温度において酸素がポリマー中に浸透する。

【0151】

可能性のあるこの結果は、包装体、すなわち、特にフィルムのコーナー部分の脆化、およびフィルム裂けの傾向がある。これは非常に好ましくなく、避けなければならない。

【0152】

フィルム（A）で記載したように、耐熱性が必要とされる場合、ベース層（B'）もまた1種以上のラジカル捕捉剤を含有することが好ましい。ラジカル捕捉剤はフェノール性酸化防止剤が好ましい。

【0153】

驚くべきことに、1種以上のラジカル捕捉剤を含有するフィルムは顕著に耐熱性の向上が示され、それから製造される包装材は、オープン内に220℃を超える温度で一時間を超えて入れておいても脆化は認められないことが明らかになった。

【0154】

好ましい実施態様において、本発明のフィルムは、400～2000ppm、更に好ましくは500～2500ppm、特に好ましくは700～2000ppmのラジカル捕捉剤を含有する。含有量が400ppm未満の場合、オープン中で不具合が生じ（＝裂け）、2000ppmを超える場合、フィルムにそれ以上の改良効果は無く費用効果が悪くなり、フィルムから包装されている食品への安定剤の染出しを導く。更に、2000ppmを超えた場合、ゲルの形成やフィルムの好ましくない黄変の傾向がある。

【0155】

使用するラジカル捕捉剤は、1種の化合物（好ましい）でも種々のラジカル捕捉剤の混合物であってもよい。使用するラジカル捕捉剤はフェノール系酸化防止剤の群から選択されるのが好ましい。

【0156】

好ましいラジカル捕捉剤としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]（CAS番号：6683-19-8）及び1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン）（CAS番号：1709-70-2）が挙げられ、Irganox 1010及びrganox 1330の商品名でBASF社より入手できる。

【0157】

ラジカル捕捉剤の効果は、包装体において（すなわち、オープンから包装体を取出した後）直接試験される。ここで、本発明のフィルムにおいて裂けがいかなる場所において観察されない場合、包装体が良好である（すなわち用途に適している）と評価される。

【0158】

上部フィルム（B）の構造：

本発明のヒートシール性および剥離性上部フィルム（B）は、2層または3層構造を有する。B' B'' B'''層の3層構造を有する上部フィルム（B）は、上記の性質、特に必要とされる非常に良好な光学的性質を達成するのに有利である。その場合、本発明の上部フィルム（B）は、ベース層B''と、ベース層B'''の片面に配置されるヒートシ

10

20

30

40

50

ール性および剥離性外層 B' と、ベース層 B'' のもう 1 つの片面に配置される外層 B''' とから成る。

【0159】

外層 B''' の厚さは通常 0.5 ~ 3 μm であり、この層は、ベース層 (B'') に使用されるポリエステルから成るのが好ましい。

【0160】

上部フィルム (B) の厚さ：

本発明のポリエステルフィルム (B) の総厚さは、特定の範囲内で変化でき、20 ~ 125 μm 、好ましくは 25 ~ 100 μm 、特に好ましくは 30 ~ 75 μm である。フィルム (B) の厚さが 20 μm 未満の場合、フィルムの機械的性質およびバリア性が不十分となる。一方、フィルム (B) の厚さが 125 μm を超えると、フィルムのシール性が悪化し、フィルムの製造が経済的でなくなり、いずれも好ましくない。

【0161】

上部フィルム (B) の製造方法：

本発明は、文献で知られているような共押出しプロセスによる本発明のポリエステルフィルム (B) の製造方法も提供する。

【0162】

本発明の製造方法は、フラットフィルムダイを介して上部フィルム (B) の個々の層 (B'、B'' 及び存在するのであれば、B''') に対応する溶融体を共押出しし、得られたフィルムを 1 つ以上のロールで引取って固化し、フィルムを二軸延伸し、二軸延伸フィルムを熱固定することから成る。

【0163】

二軸延伸は連続して行われる。好ましくは、最初に長手方向 (機械方向) の延伸を行い、次いで横方向 (機械方向と垂直方向) の延伸を行なう。長手方向の延伸は、所望の延伸比となるような回転速度の異なる複数のロールを用いて行われる。横方向の延伸は、通常、適当なテンターフレームを使用して行われる。

【0164】

製造において、先ず、それぞれの押出機内で個々の層用のポリマー又はポリマー混合物の圧縮および可塑化することによって通常の共押出しを行う。ここで任意に添加される添加剤は、ポリマー又はポリマー混合物中にすでに存在する。それぞれの溶融体はフラットフィルムダイを介して同時に押出され、押出された多層溶融体は 1 つ以上の引取りロールで引取られ、ロール上で冷却固化され、プレフィルムを得る。

【0165】

延伸を行なう温度は、フィルムの所望とする特性によって比較的幅広い範囲を取り得る。長手方向の延伸は、通常、温度 80 ~ 130 の範囲内で、横方向の延伸は、通常、温度 90 ~ 150 の範囲内で行われる。長手方向の延伸比は、通常、2.5 : 1 ~ 6 : 1、好ましくは 3.0 : 1 ~ 5.5 : 1 の範囲である。横方向の延伸比は、通常、3.0 : 1 ~ 5.0 : 1、好ましくは 3.5 : 1 ~ 4.5 : 1 の範囲である。

【0166】

引続いて行われる熱固定は、フィルムを約 160 ~ 240 の温度で約 0.1 ~ 15 秒保持して行われる。この後、フィルムは通常の方法によって巻取られる。

【0167】

本発明のフィルムの特性：

本発明の製造方法で製造された本発明のヒートシール性および剥離性ポリエステルフィルム (B) は種々の特性を有し、以下にその重要な特性を列挙する。

【0168】

ヒートシール性および剥離性ポリエステルフィルム (B) のヘーズは 20.0 % 未満、好ましくは 16.0 % 未満、特に好ましくは 12.0 % 未満である。

【0169】

ヒートシール性および剥離性ポリエステルフィルム (B) の明瞭度は 70 % を超え、好

10

20

30

40

50

ましくは 75 % を超え、特に好ましくは 80 % を超える。

【0170】

ヒートシール性および剥離性ポリエステルフィルム (B) の透明度は 88 を超え、好ましくは 89 を超え、特に好ましくは 90 を超える。

【0171】

ヒートシール性および剥離性ポリエステルフィルム (B) のグロスは 70 を超え、好ましくは 75 を超え、特に好ましくは 80 を超える。

【0172】

外層 (B') は、それ自身において良好なシール性を示し、特に、下部フィルム (A) に対して良好なシール性および剥離性を示す。フィルムは、ベース層 (B'') の融点よりも顕著に低いシール温度において、上記の材料に対して良好な接着性を示す。160 (460 N、2 秒) においてシールした際の、外層 (B') それ自身および下部フィルム (A) に対するシールシーム強度は 2 N / 15 mm を超え、10 N / 15 mm 以下である。ここで、全ての場合において、下部フィルム (A) に対して剥離性シールが達成できる（少なくとも調理後にフィルムの剥離が可能）。

【0173】

ポリエステルフィルム (B) は非常に良好な巻取り特性を有する。

【0174】

ポリエステルフィルム (B) は、食品および他の消費物品の包装、特にヒートシール性および剥離性ポリエステルフィルムが包装体を開封するために使用されるようなトレー中の食品および他の消費物品の包装に好適である。

【0175】

表 2 に、とりわけ重要な本発明のフィルムの特性について纏める。

【0176】

10

20

【表4】

表2

外層 (B')	本発明の範囲	好ましい範囲	更に好ましい範囲	単位	試験方法
本発明のポリエステル中の芳香族ジカルボン酸系単位の比率	25～95	40～90	50～88	モル%	
本発明のポリエステル中の脂肪族ジカルボン酸系単位の比率	5～75	10～60	12～50	モル%	
Anti-PETポリマー	15以下	2～12	2～8	重量%	
ポリエステルI	10～60	15～55	20～50	重量%	
ポリエステルII	20～70	25～65	30～60	重量%	
ポリエステルIII	15以下	3～12	4～40	重量%	
粒径d ₅₀	1.5～5.0	1.5～4.5	1.5～4.0	μm	本発明の試験方法
粒子濃度	0.04～10.0	0.05～8.0	0.06～6.0	%	本発明の試験方法
外層B'の厚さ	1.5～5.0	1.6～5.0	1.7～5.0	μm	
粒径/層厚さの比	1.0以上	1.1以上	1.2以上		
特性					
フィルムの厚さ	20～125	25～100	30～75	μm	
(B') それ自身および下部フィルム (A) に対するシールシーム強度	2.0～10	2.0～8	2.0～6	N/15mm	本発明の試験方法
外層B'及びB'', のグロス	>70 及び >100	>75 及び >110	>80 及び >120		DIN 675360
フィルムのヘーズ	<20	<16	<12	%	ASTM D1003-61 Method A
フィルムの明瞭度	>70	>75	>80	%	ASTM D1003
フィルムの透明度	>88	>89	>90		DIN 1033-77
OL: 外層、>/=以上					

【0177】

定義:

ヒートシール性とは、一般に、少なくとも1つのベース層 (B) と少なくとも1つのヒートシール性外層 (B') とから成る多層ポリエステルフィルムが所有する性質である。シールジョーの手段を介して、所定時間 (0.1～4秒) 加熱され (例えば、110～220)、加圧される (圧力: 1～6 bar) ことにより、熱可塑性プラスチックから成

10

20

30

40

50

る基材、例えば、A P E T から成るトレーに、ヒートシール性外層（B'）が接着される。この際、ベース層（B）は、それ自身がこのシール過程において熱可塑化しない。外層（B'）のポリマーが、通常ベース層（B'')のポリマーよりも顕著に低い融点または軟化点を有することにより、このシールが達成される。例えば、254の融点を有するポリエチレンテレフタレートをベース層のポリマーに使用するのであれば、ヒートシール性外層（B'）の融点は、通常顕著に低い220未満となる。本発明の場合、上部フィルムのシール性外層（B'）の主ポリマーは、ほぼ100%非晶である。

【0178】

「剥離性」という語は、少なくとも1つのヒートシール性および剥離性外層（B'）から成るポリエステルフィルムが、A P E T / R P E T トレー及びC P E T トレーの上にヒートシールした後に、フィルムの引裂きや破断が生じることなくトレーから再度悪戻できるという性質を有することを意味する。フィルムがトレーから剥離される際、ヒートシール性および剥離性フィルムとトレーとから成る複合体は、ヒートシール性層とトレー表面との間のシーム部で通常分離する（Ahlhaus, O. E. : Verpackung mit Kunststoffen [プラスチックを用いた包装]，Carl Hanser Verlag, P. 271, 1997, ISBN 3-446-17711-6も更に参照）。トレーの試験片にヒートシールされたフィルムが剥離された際、図1に示すような180°の剥離角度において引張歪み試験装置で剥離し、図2に従った引張歪み拳動がフィルムから得られる。基材からフィルムの剥離が始まるまで、剥離に必要な応力が特定値（例えば、5 N / 15 mm）まで図2に示すように増加し、ついで剥離長全体においてほぼ一定の値となるが、相対的に大きな変動も受ける（約+/-20%）。

10

20

20

【実施例】

【0179】

以下の試験方法を本発明の目的のための原料やフィルムの特性付けに用いた。

【0180】

試験方法：

弾性率：

弾性率は、100 mm × 15 mmに測定されたフィルム片においてD I N E N I S O 572-1及び-3（type 2の試験サンプル）に従って測定された。面弾性率は以下の式に従って算出された。

30

【0181】

$$E_{area} = (E_{MD2} + E_{TD2})$$

【0182】

5値：

5値は、100 mm × 15 mmに測定されたフィルム片においてD I N E N I S O 572-1及び-3（type 2の試験サンプル）に従って測定された。

30

【0183】

密度：

フィルムの密度はA S T M D 1505-68、M e t h o d Cに従って決定される。

40

【0184】

ヘーズ、明瞭度および透明度：

Haze-gard X L - 211 Haze meter (B Y K G a r d n e r 社製)がポリエステルフィルムの試験に使用された。ヘーズはA S T M - D 1003-61, M e t h o d Aによって決定された。明瞭度（C l a r i t y）は、Haze-gardの「c l a r i t y p o r t」を使用し、A S T M - D 1003に従って測定される。透明度はA S T M - D 1003-61, M e t h o d Aによって決定された。測定はフィルムの製造後に直接行われた。

【0185】

50

20°グロス：

グロスはDIN 67530に従って決定する。反射率を測定し、これをフィルム表面の光学的特性値とする。ASTM D523-78規格およびISO 2813規格を基にした方法を使用し、入射角を20°にセットする。光線はセットした入射角度から平面の試料表面を照射し、表面から反射または散乱する。光電子検出器に当たる光線が比例電気変数が映し出される。測定値は無次元であり、入射角とともに報告されるべきである。

【0186】

標準粘度SV：

希薄溶液中の標準粘度(SV)は、ジクロロ酢酸(DCA)を溶媒とし、ウベローデ型粘度計を用い、 25 ± 0.05 で、DIN 53728 Part 3に記載の方法に従って測定した。ポリマー濃度は、ポリマー1g/100ml純溶媒である。溶解には60で1時間を必要とする。この後、サンプルがなお完全に溶解していない場合は、80で40分間を2回繰り返し、溶液を4100分⁻¹の回転速度の遠心分離で1時間処理する。

10

【0187】

無次元のSV値は、相対粘度($\eta_{rel} = \eta / \eta_s$)を用いて以下の式から決定する。

$$SV = (\eta_{rel} - 1) \times 1000$$

【0188】

フィルム又はポリマー原料中の粒子の量は灰化法により決定し、粒子量によって投入した重量の増加した分を補正する。

20

【0189】

投入重量 = (100%ポリマーに相当する投入重量) / [(100 - 粒子濃度(重量%)) · 0.01]

【0190】

メジアン粒径 d_{50} ：

メジアン粒径 d_{50} は、使用する粒子についてMalvern Mastersize r 2000を使用して測定し、ここで関連する値は体積平均 d_{v50} である。先ず、試料をセルの水中に投入し、測定装置に設置する。レーザを用い、分散を解析し、検知データを較正曲線と比較して粒径分布を求める。粒径分布は2つのパラメーターによって表され、1つはメジアン値 d_{50} (測定値の中央値)、もう1つは分散幅を表し、SPAN 98(粒径分散の測定)として知られる。試験は自動的に行われ、粒径 d_{50} の数学的な計算も行われる。ここで d_{50} 値は、(相対的)積算粒径分布曲線(50%縦軸値と積算曲線と交点が、求めるべき横軸上の d_{50} 値を与える)から決定される。ここで関連する値は体積平均 d_{v50} である。

30

【0191】

上記の粒子を使用することによって製造されたフィルムにおける測定は、使用する粒子の粒径よりも15~25%低い d_{50} 値を与える。

【0192】

耐突刺し性(=突刺し試験)：

耐突刺し性(=突刺し試験)は、EN 14477に従って測定する。固く、尖った又は角のある物体に曝すことは、包装体の分野では重要なファクターである。フィルムが、例えば、食品や鋭利な角の物体などの用途の包装材料に使用された際に、耐突刺し性の知見が関係する。EN 14477に従った突刺し試験は、直径0.8mmの尖ったプローブに関連する挙動を試験する。これはParkerペン試験としても知られている。

40

【0193】

熱性形成の評価：

下部フィルム(A)の熱性形成は、Multivac machine(例えばR 245/SN:166619)でこのフィルムを熱成形することにより評価した。成型条件は、成型温度210°、加熱時間2~3秒、爆発成形/圧縮空気リザーバー2bar、成型圧力2bar:2秒である。図3に製造されるトレーの仕様を示す。本発明のフィルムの

50

熱成形性を特徴付ける2つの特性は以下の通りである。

(1) 本発明の下部フィルムの最大絞り深さ (mm) (=トレーの深さ)

(2) 熱成形比 = $A_{トレー} / A_{フィルム}$ ($A_{トレー}$ = 熱成形されたトレーの表面積、 $A_{フィルム}$ = 使用した本発明のフィルムの表面積)。

【0194】

バリア性の評価 :

水蒸気透過率 (WVTR) は、ISO 15106-3 に準拠して、23 及び 85% 相対湿度において、種々の厚さのフィルムで測定した。酸素バリア性 (OTR) は、ISO 15105-2、Annex A に準拠して、23.0 / 50% 相対湿度において、OXTRAN (登録商標) 100 (Mocon Modern Controls 社製 (米国)) を使用して測定した。OTR も同様に種々のフィルムの厚さで測定した。

【0195】

シールシーム強度 (DIN 55529) :

上部フィルム (B) のそれ自身に対するシールシーム強度は、15mm 幅の本発明の2つのフィルム片を互いに重ね、これらを一緒に 200 、シール圧力 460N で 3 秒間加圧した (装置: Brugger NDS 、片側加熱シールジョー)。シールジョーへの付着を防ぐため、12 μm の厚さの結晶化ポリエチレンフィルムを本発明のフィルムとシールジョーの間に挟んだ。シールシーム強度 (最大力) は剥離角度 90° (90° 剥離法) 、速度 200mm / 分で測定した。

【0196】

上部フィルム (B) の下部フィルム (A) に対するシールシーム強度は、フィルム片の非晶部分を 15mm 幅の同じサイズの下部フィルム (A) のフィルム片に配置して測定した。基材の剛性ゆえ、シールシーム強度 (最大応力) を 180° 剥離法で測定した。測定応力が 1N / 15mm を超える場合、シールが適しているとする。

【0197】

本発明を以下の実施例を参照して更に詳述する。

【0198】

実施例 1 :

I. 熱成形性下部フィルム (A) の製造 :

二軸延伸フィルム (A) は、エチレンテレフタレート - エチレンイソフタレート共重合体から本発明の製造方法により製造された。フィルムの厚さは 96 μm であった。これに関し、共重合体から形成されたチップは、下部フィルムの製造用の押出機内に導入された。この共重合体は、以下の表に示す製造条件に従って押出機内で溶融され、均一化された。

【0199】

濾過後、溶融体はフラットフィルムダイで成形され、ダイリップによって放出された。溶融フィルムは冷却され、透明単層フィルムが長手方向および横方向の逐次延伸により製造され、次いで熱固定された。

【0200】

フィルムの良好な巻取り特性を達成するために、リバースグラビア法を用いて、長手方向延伸と横方向延伸との間に、フィルムに水性分散体の塗布を行った。テンターフレーム内でアクリル系架橋された塗布層 (C) は、60 重量 % のメチルメタクリレートと 35 重量 % のエチルアクリレートと 5 重量 % の N - メチロールアクリルアミドとから成る共重合体および界面活性剤から成るラテックスの 4.5 重量 % 分散体から形成された。塗布層の乾燥重量は (二軸延伸フィルムを基準として) 、約 0.035 g / m² であった。

【0201】

本発明の下部フィルム (A) 用の共重合体の組成は以下の通りである。

- ・エチレンテレフタレート単位 : 89 モル %
- ・エチレンイソフタレート単位 : 11 モル %

製造方法の個々の工程における製造条件を以下に示す。

10

20

30

40

50

【0202】

【表5】

押し出し	溶融体(A)の温度	270	°C
	引取りロールの温度	20	°C
長手方向延伸	ロールの加熱温度	70～90	°C
	フィルムの延伸温度	86	°C
	長手方向延伸比	3.0	
横方向延伸	加熱領域の温度	118	°C
	フィルムの延伸温度	135	°C
	横方向延伸比	3.4	
熱固定	フィルムの温度	185	°C
	時間	9	秒

10

20

30

40

【0203】

表3に、下部フィルム(A)の組成、さらに本発明のフィルムに関する情報、特に本発明のフィルムの性質を示す。

【0204】

I I . ヒートシール性および剥離性上部フィルム(B)の製造：

ヒートシール性および剥離性上部フィルム(B)の製造のために、以下の出発原料を個々の共押出層(B', B'', B''')用として使用した。

【0205】

外層(B')は以下の混合物から成る。

・S V 値850のポリエステルI (=エチレンテレフタレート78モル%とエチレンイソフタレート22モル%とから成る共重合体) : 38.0重量% (ポリエステルIのガラス転移温度は約75)。ポリエステルIは更に、粒径 $d_{50} = 3.4 \mu\text{m}$ のS y l y s i a (登録商標)430(合成SiO₂、Fuji社製、日本)を5.0重量%含む。外層厚さ $d_{(A)}$ に対する粒径 d_{50} の比率は3.4:3である)

・S V 値1000のポリエステルII (=エチレンセバケート40モル%及びエチレンテレフタレート60モル%から成る共重合体) : 60重量% (ポリエステルIIのガラス転移温度は約0である)

・a n t i - P E Tポリマー (=C O C、T o p a s (登録商標)8007、T i c o n a社製、フランクフルト、 T_g は約75) : 2重量%

【0206】

ベース層B'':

・S V 値800のポリエチレンテレフタレート : 100重量%

【0207】

外層B''':

・ポリエチレンテレフタレート : 95重量%

・98.5重量%のポリエチレンテレフタレートと1.5重量%のS y l o b l o c 46とから成る : 5重量%

【0208】

上記の原料をそれぞれの層用の押出機内で溶融し、A - B - C構造を有するように3層

50

フラットフィルムダイを介して冷却引取りロール上に押出した。得られた非晶プレフィルムは長手方向に延伸された。フィルムは次いで横方向に延伸され、熱固定を行い、巻取った（最終的なフィルム厚さは42μm）。個々の製造条件を以下に示す。

【0209】

【表6】

押出し	溶融体（B' B'' B'''）の温度	270	°C
	引取りロールの温度	20	°C
長手方向延伸 (鏡面延伸)	ロールの加熱温度	80～120	°C
	延伸温度	115	°C
	長手方向延伸比	4.0	
横方向延伸	加熱領域の温度	80～135	°C
	延伸温度	135	°C
	横方向延伸比	4.2	
熱固定	温度	230	°C
	時間	3	秒

10

20

30

40

50

【0210】

表4にフィルムの組成、さらに本発明のフィルムに関する情報、特に本発明のフィルムの性質を示す。

【0211】

I I I . 包装体の製造：

下部フィルム（A）及び上部フィルム（B）をそれぞれ別々にMultivac machine（R 245/SN:166619）に把持した。下部フィルム（A）は以下の成形条件で熱成形された。成形温度：210、加熱時間：2-3秒、爆発成形／圧縮空気リザーバー：2bar、成形圧力：2bar、成形時間：2秒。図3に製造されるべきトレーの仕様を示す。下部フィルム（A）の深絞りの深さは75mmまでであった。熱成形比は2.86であった。

【0212】

成形体は冷却され、熱成形された下部フィルム（A）は型から取出された。豚肉片をキャビティ内に入れ、上部フィルム（B）を下部フィルム（A）の上部に接触させた。上部フィルム（B）のヒートシール性および剥離性表面（B'）を肉片に接触させ、そして下部フィルム（A）に接触させるような方法で上部フィルム（B）を下部フィルム（A）に接触させた。ヒートシールは、同じ機械を用いて、温度160で2秒間、圧力2barで行われた。肉片の重量は約1000gであった。包装体は通常のオーブン内に入れ、220で60分間加熱した。約10分後に、所望の自己放出性が観察された。一旦調理を終え、包装体の下部フィルム（A）から上部フィルム（B）を手で剥離した。2つのフィルムは、この過程で引裂きなどは起こらなかった。肉は調理され、パリッと茶色に仕上がった。

【0213】

実施例2：

実施例 1 において下部フィルム (A) の製造方法のみ変更した。熱固定における収縮率は実施例 1 において 0 % であったが、実施例 2 では 1 . 7 5 % とした。総合的に結果は同じであったが、下部フィルム (A) の耐突刺性が若干向上した。

【 0 2 1 4 】

比較例 1 :

下部フィルム (A) のイソフタレートの比率を 5 . 0 モル % に減少させた以外は、実施例 1 における全てのパラメーターと同じで行った。

【 0 2 1 5 】

比較例 2 :

欧洲特許第 1 6 9 7 1 2 9 B 1 号明細書の実施例 1 を追試した。表 4 にフィルムの特性を示す。積層体は従来技術で説明した用途には好適であるが、熱成形性、耐突刺性、および特に光学的性質 (ヘーズ及び明瞭度) の改良が必要とされた。 10

【 0 2 1 6 】

比較例 3 :

欧洲特許第 1 9 4 5 5 1 2 B 1 号明細書の実施例 1 を追試した。この製造方法は従来技術で説明した用途には好適であるが、欧洲特許第 1 9 4 5 5 1 2 B 1 号明細書に詳述されるフィルムは熱成形性、耐突刺性、および特に光学的性質 (ヘーズ及び明瞭度) の改良が必要とされた。

【 0 2 1 7 】

【表7】

フィルムのボリ エステルの組成		フィルム の弾性率 長手 方向	フィルム の弾性率 横 方 向	σ5値 の合計	密度	フィルム のベース	フィルム の明滅度	フィルム のグロス	透過率 のSV値	フィルム の耐寒刺 性	熱成形性	フィルムの パリア特性 (熱成形され ていない) OTR	WVTR	巻取り性							
TA	IA	EG						A側 B側													
モル%		N/mm ²		kg/dm ³	%	%	%	%	%	N/mm	mm	cm ³ (m ² × bar × d)	g/(m ² × d)								
1	89	11	100	3682	4117	5523	98	99	197	1.385	0.5	100	203	90.7	780	0.395	75	2.88	16	1.89	優秀
2	89	11	100	3843	4294	5763	94	103	197	1.386	0.4	100	204	91	777	0.398	75	2.86	16	1.89	優秀
1	95	5	100	4110	4569	6146	103	100	203	1.392	0.4	100	215	214	91	787	0.36	55	2.00		
2											17	75	74	76	88						
3											5	120	120	90							

【0 2 1 8】

【表8】

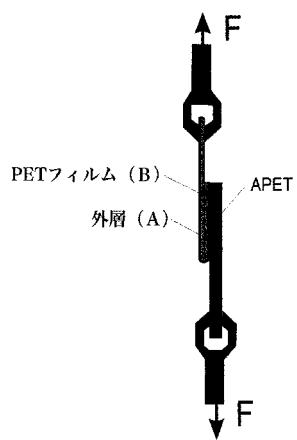
ポリエステルI の組成 モル%	ポリエステルII の組成物 モル%	ポリエスチルII の組成物 モル%			アンチPET ポリマー 比率 重量%	P/I/PII/PIII/ アンチPET ポリマー ガラス転移温度 °C	P/I/PII/PIII/ アンチPET ポリマー ガラス転移温度 °C	(B) (B'') μm	外層の厚さ フィルム 厚さ μm	耐プロッキング剤 粒径 μm	FINシール シーム強度 160°C % ヘーズ グロス	
		TA	IA	EG								
実施例1	78	22	100	40	60	100	100	38/60/0/2	75/-2/-75	BB'BB''	42	3
実施例2	78	22	100	40	60	100	100	38/60/0/2	75/-2/-75	BB'BB''	42	3
比較例										BB'BB''	42	2.7
比較1											3	0.075

TA:テレフタレート IA:イソフタレート EG:エチレン
SeA:セバゲート

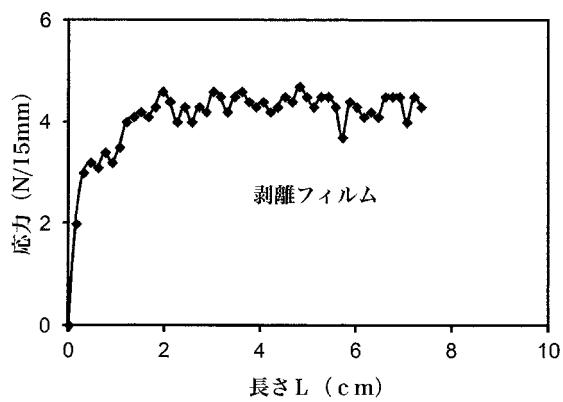
10

20

30


40

【産業上の利用可能性】


【0219】

本発明の真空成形用透明包装体は、トレー、特に肉、魚、鶏肉およびサンドイッチ、パーガー、ラップ等の乾燥調理済み食品用のトレーに好適である。

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 ボド・クーマン

ドイツ連邦共和国、デー - 6 5 5 9 4 ルンケル、ブッヒエンハイン 2 3

(72)発明者 ステファン・アウデルシュ

ドイツ連邦共和国、デー - 6 4 2 8 3 ダルムシュタット、ミュールストラッセ 4 4

F ターム(参考) 3E013 BA15 BB06 BC04 BC14 BD06 BD07 BD11 BE01 BE05 BF04

BF25 BF36

3E033 AA10 BA17 CA07 DA06 FA04 GA03

4F100 AA01B AA20B AK25C AK42A AK42B BA02 BA03 BA07 CA06A CA06B

CA18C DE01B EH17A EH20A EH20B EH46C EJ05C EJ24 EJ38A EJ38B

EJ42A GB15 GB23 JA05B JA13A JD03 JD04 JK01A JK06B JK07A

JL12B JL14B JM01C JN01 JN01A JN01B YY00 YY00A YY00B YY00C

【外国語明細書】

- 1 -

19/001 MFE

明細書

発明の名称

Pack made of polyester with a thermoformable lower film and a sealable and peelable upper film, use thereof, and process for its production

技術分野

The invention relates to a transparent pack comprising a biaxially oriented, thermoformable polyester film as lower film and a biaxially oriented, heat-sealable and peelable polyester film as upper film. The thermoformable lower film serves to hold food, e.g. meat, fish or poultry. The upper film serves to cover the lower film, and is securely sealed to the latter by means of heat. The pack has a self-venting (self-venting/self-opening) feature when it is used for cooking by way of example in an oven, in a microwave or in a compact grill at high temperature. The upper film can be peeled from the lower film after cooking with use of moderate force. The invention further relates to use of the pack and to a process for its production.

背景技術

In particular for meat, fish, poultry and dry ready-to-eat products such as sandwiches, burgers or wraps, transparent trays are used which are produced from thermoformable polyester, e.g. a-PET or modified b-PET with use of vacuum and which, after filling with food, are closed by a film heat-sealed onto the edge of the tray. Provision of the product in such packaging is regarded as clean and hygienic, and is therefore very popular.

Vacuum processes, e.g. using Multivac machines, are a cost-effective method of producing hygienic packing for meat, fish or poultry. The finished packing here is generally produced as follows: A roll of the film for

producing the tray - also termed lower film - is clamped into the front region of the machine. By way of one or more vacuum chambers, the film is thermoformed to a desired depth by use of heat and vacuum. According to the prior art (see, for example, EP 1 697 129 B1), depths up to about 70 mm can be achieved for example when laminates made of polyester and polyamide are used (see Figure 3 for format). The food product is then placed into the tray, mostly by hand. By way of a further roll, the lid film - also termed upper film - is introduced to the tray and securely sealed to its perimeter, with use of heat and pressure. This step again mostly takes place under vacuum, which is applied to the entire pack. This is followed by separation into individual packs and other associated separate downstream operations, for example the printing or labelling of the packaging.

Certain products are precooked; this takes place by way of example in a water bath at 85 °C over a period of up to 6 hours. The packs - precooked or not precooked - are frozen and then marketed. The consumer thaws the pack and cooks it for a defined time in an oven at temperatures up to 220 °C. The cooking time in essence depends on the pack size (corresponding to the mass of the food in the pack), and is about 30 min up to two hours. For this, the closed pack is placed into the preheated oven (cook-in), where it automatically opens at the seal seam (the term used for this being self-venting), ideally after 5 to 10 min.

Self-venting is an essential feature in the development of new packs with improved functionality or with modified design. The automatic opening of the seal seam, in essence as a consequence of the increased pressure of steam in the pack, allows the steam to escape from the pack, and the product becomes crisp and brown - as

desired by a consumer. Once the cooking time has expired, the upper film is peeled - while retaining its integrity - from the tray while it is still hot, and the contents of the pack are available for consumption.

The heat-sealing of the transparent tray made of thermoformable polyester to the upper film - likewise made of polyester - takes place at sealing temperatures between 120 and 220 °C. The process is cost-effective if the sealing time can be restricted to 3 seconds or less. There are various possible ways of sealing lower and upper film. In the present case, both films, the lower film and the upper film, are made of polyester polymers (= monoPET or single-material packaging), the upper film being the sealable and peelable variant.

The pack of the invention produced from the two films exhibits the desired self-venting during cooking. Self-venting is achieved by adjusting the sealing properties of the upper film so that they are appropriate for the lower film.

The market places stringent optical requirements on the two films of the pack, in particular on haze, clarity and gloss. For good discernibility of the contents of the pack (size of the food), the haze of the pack should be < 20 % and the clarity of the pack should be > 70 %. The pack is moreover intended to be visually attractive. To this end, high gloss values of the pack are desirable.

High puncture resistance is also demanded from the pack, in order that it is not damaged during transport or during storage in the retail outlet.

先行技術

Packs made of thermoformable lower film and sealable

upper film are known.

EP 1 697 129 B1 describes a thermoformable film laminate which comprises a thermoformable film layer (a), a structural film layer (b), a heat-sealable layer (c) and optionally a barrier layer (d). The structural film layer (b) is adjacent to the first surface of the thermoformable film layer (a), and the heat-sealable layer (c) is on the opposite, second surface that is directed towards the internal side of the pack. The thermoformable film layer (a) comprises a polymer composition comprising at least 80 % by weight of polyethylene terephthalate. The structural film layer (b) can comprise a large number of polymers, and preferably comprises a polyamide. The heat-sealable layer (c) can likewise comprise a large number of different polymers, and preferably comprises an amorphous polyester. The laminate is suitable for the application mentioned in the introduction, but requires improvement in thermoformability and puncture resistance, and especially requires improvement in optical properties such as haze, clarity and gloss.

EP 1 945 512 B1 describes a process for the packaging of fish or meat which in essence comprises the steps mentioned in the introduction of the present application: (i) provision of a thermoformable polymeric holder film (= lower film) and of a polymeric cover film (= upper film). The holder film consists of a single-layer polyester substrate or polyamide substrate, and the cover film is preferably composed of polyester polymers. At least one of the two surfaces of the holder film and of the cover film is heat-sealable. (ii) Provision of an elevated exterior portion and of a lowered central portion in the holder film via thermoforming. (iii) Arrangement of a portion of meat or fish on the interior (= first) surface of the holder

film. (iv) Arrangement of the cover film over the portion of meat or fish, so that the interior (= first) surface of the cover film faces towards the interior surface of the holder film. (v) Bringing the peripheral portions of the first surface of the holder film and of the first surface of the cover film into contact and formation of a heat-sealed bond therebetween, and (vi) optionally freezing of the packaged meat or fish. The process is suitable for the application mentioned in the introduction; however, the films described in more detail in EP 1 945 512 B1 require improvement in thermoformability and puncture resistance, and especially require improvement in optical properties (haze, clarity and gloss).

WO 2018/004558 describes recyclable packaging made of polyester - consisting of a tray made of thermoformable film and of a lid film. The application includes two embodiments: In embodiment 1 [07], the tray is formed from an oriented polyethylene terephthalate film and from a heat-sealing lacquer made of polyester copolymer applied onto the said film by coating. The lid film is a single-layer film (= monofilm) - formed from amorphous polyethylene terephthalate or oriented polyethylene terephthalate or crystalline polyethylene terephthalate or recycled polyethylene terephthalate. In embodiment 2 [08] the lid film is formed from an oriented polyethylene terephthalate film and from a heat-sealing lacquer made of polyester copolymer applied onto the said film by coating. The tray is a monofilm - formed from amorphous polyethylene terephthalate or oriented polyethylene terephthalate or crystalline polyethylene terephthalate or recycled polyethylene terephthalate. The application mentions examples of commercially available films that can be used for the tray or for the lid film. However, the application contains no information concerning

formulations or processes for the production of the films mentioned.

先行技術文献

特許文献

特許文献1 EP 1 697 129 B1

特許文献2 EP 1 945 512 B1

特許文献3 WO 2018/004558

発明の概要

発明が解決しようとする課題

It was an object of the present invention to provide, for the use mentioned in the introduction, packaging which is made of polyester and which features good thermoformability of the lower film and excellent sealing and peeling properties of the upper film in relation to the lower film. The pack is moreover intended to have good self-venting properties and good optical properties. It is intended to overcome the disadvantages of films of the prior art, and in particular to feature the following points/properties:

- The lower film of the packaging is intended to have thermoformability sufficiently good to permit problem-free use thereof for packing, in the desired packaging design, of commercially available cuts of meat, poultry or fish, or dry products, e.g. sandwiches. The lower film is intended to be amenable for thermoforming up to a depth of 70 mm, in line with the requirements of the market (see Figure 3 for format).
- A further intention is that the two films also have very good mechanical properties, but in particular that the lower film has very good mechanical properties. For the present application, the particularly important mechanical property of the lower film is puncture resistance. It is intended to

be sufficiently high to permit avoidance of damage during transport and storage of the pack.

- Sealing of the pack between lower film and upper film is intended to be such that it withstands inter alia precooking in a water bath (with water bath temperature up to 85 °C, time in water bath up to 6 hours) with no resultant opening of the seal seams.
- The pack is intended to self-vent during the cooking procedure, e.g. in a conventional oven at up to 220 °C, where the self-venting ideally is intended to occur after a period of about 5 to 15 min in the oven.
- The pack is intended to feature excellent sealing and peeling properties of the upper film in relation to the lower film. It is desirable that the pack remains securely closed and does not open as a result of, for example, shaking during transport – even after sealing via contaminated surfaces, for example via a tray perimeter contaminated with meat juices (which have been removed to a substantial extent at least on the sealing areas, for example by wiping). The sealing force here is intended to be in the range about 2 to 10 N per 15 mm of film strip width. After the cooking procedure, the upper film is intended to be amenable, while still hot, to peeling from the lower film, with no resultant tearing or tear-propagation in the upper film.
- The pack is intended to feature brilliant optical properties. This relates to haze, but in particular to clarity of both films of the pack. It is desirable that the haze of both films is below 20 % and that their clarity is above 70 %. The customer's wish is by way of example to be able to see the contents of the pack clearly and in detail during purchase of the product. The pack is moreover intended to be visually attractive by virtue of maximized gloss.
- A further requirement is that the pack withstands the cooking procedure without any white clouding, for

example due to crystallization of the films during the cooking procedure.

- The pack is moreover intended to have good barrier properties, in particular with respect to oxygen and water vapour. The transmission rate values of conventional biaxially oriented PET films produced according to the prior art serve for comparison (see, for example, <http://www.bfr.bund.de/cm/343/barrierefirkung-ausgewahlter-kunststoffmaterialien-gegen-die-migration-von-mineraloelfraktionen-in-lebensmittel.pdf>); these must not be exceeded, or may be exceeded only marginally (< 5 %). The transmission rate values of PET films (not thermoformed) of thickness 100 μm are: OTR = 12 $\text{cm}^3/(\text{m}^2 \text{ d bar})$ and WVTR = 2 $\text{g}/(\text{m}^2 \text{ d})$.
- The two transparent films (see further below for concentration of antiblocking agent) of the pack are intended to have good winding properties and good processing properties. Adhesion of the individual film plies to one another during wind-up and unwinding of the films is not permitted, even at elevated temperature, e.g. 50 or 60 °C. Any increase of adhesion between the individual film plies would render unwinding of the films difficult or even impossible.
- Production of the pack is intended to be cost-effective. This means by way of example that processes conventional in the industry can be used for the production of lower film and upper film.

課題を解決するための手段

The object is achieved via provision of transparent packaging for vacuum forming. The said packaging comprises a biaxially oriented, thermoformable polyester film as lower film (A) and a biaxially oriented polyester film as upper film (B), which is

heat-sealable and peelable in relation to the lower film (A).

I The lower film (A) is a film which comprises at least 85 % by weight of a copolyester in which 85 to 94 mol% of the dicarboxylic acid components are based on terephthalic-acid-derived units and 6 to 15 mol% of the dicarboxylic acid components are based on isophthalic-acid-derived units, where the film

- a) has an area modulus of elasticity in the range 4500 to 6400 N/mm²
- b) has a sum of strength values (σ_5 value) in longitudinal direction and in transverse direction in the range 170 to 220 MPa
- c) has a puncture resistance
$$F[N] > 0.35 \text{ } d[\mu\text{m}], d = \text{film thickness}$$
- d) has a density below 1395 kg/m³
- e) has a haze below 2.0 % and clarity at least 85 % and
- f) has a thickness in the range 50 to 300 μm .

II The upper film (B) is a film which has a base layer (B'') and an outer layer (B') which is heat-sealable and peelable in relation to the lower film (A), where the heat-sealable and peelable outer layer (B')

- a) is composed of at least 60 % by weight of a polyester which is composed of 25 to 95 mol% of units based on at least one aromatic dicarboxylic acid and 5 to 75 mol% of units based on at least one aliphatic dicarboxylic acid, where the sum of the dicarboxylic-acid-

derived molar percentages is 100; and

- b) comprises up to 10 % by weight of inorganic and/or organic particles with median diameter d_{50} 1.5 to 5.0 μm , where the ratio of particle size d_{50} to thickness of the outer layer (B') is above 1.0; and
- c) the thickness of the outer layer (B') is 1.5 to 5.0 μm ;

and where the upper film (B)

- has a haze below 20 % and clarity of at least 70 %,
- has a seal seam strength in relation to itself (fin sealing) and in relation to the lower film (A) which is in the range 2 to 10 N/15 mm and
- has a thickness in the range 20 to 125 μm .

発明の効果

The above object can be attained by the above film according to the present invention.

図面の簡単な説明

図 1

Figure 1 shows an illustration of peel test using a tensile-strain-testing equipment at a peel angle of 180 °.

図 2

Figure 2 shows a tensile strain behaviour in the peel test using the equipment shown in Figure 1.

図 3

Figure 3 shows the tray formats used for the evaluation tests in Examples.

発明を実施するための形態

Unless otherwise stated, the expression "% by weight" above and hereinafter is always based on the composition of the respective layer or on the respective system to which the information relates.

(I) Lower film (A) = Thermoformable polyester film

The pack according to the present invention comprises a thermoformable lower film (A) composed of a transparent, biaxially oriented, single-layer polyester film (A), or of a transparent, biaxially oriented, multilayer coextruded polyester film, e.g. (A' A'' A'''').

Copolyester

The lower film (A) comprises at least 85 % by weight of a thermoplastic copolyester. According to the invention, this is a copolyester in which 85 to 94 mol% of the dicarboxylic acid components are based on terephthalic-acid-derived units and 6 to 15 mol% of the dicarboxylic acid components are based on isophthalic-acid-derived units. It is preferable that this is a film composed of a copolyester in which 86 to 93 mol% of the dicarboxylic acid components are based on terephthalic-acid-derived units and 7 to 14 mol% of the dicarboxylic acid components are based on isophthalic-acid-derived units. According to the invention, ethylene glycol is preferably suitable as diol in the thermoplastic copolyester.

0 to 15 % by weight of the lower film (A) can be composed of other polymers/polymer fractions and/or of other substances, where the other polymers/polymer fractions derive from other aromatic and/or aliphatic dicarboxylic acids and, respectively, diols. It is also advantageously possible to use, for the thermoplastic polyester of the lower film (A), mixtures or blends of

the abovementioned homo- and/or copolymers.

Suitable other aromatic dicarboxylic acids are preferably terephthalic acid, furan-2,5-dicarboxylic acid (FDCA), biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acids (for example naphthalene-1,4- or -1,6-dicarboxylic acid or naphthalene-2,6-dicarboxylic acid), biphenyl-x,x'-dicarboxylic acids (in particular biphenyl-4,4'-dicarboxylic acid), diphenylacetylene-x,x'-dicarboxylic acids (in particular diphenylacetylene-4,4'-dicarboxylic acid) or stilbene-x,x'-dicarboxylic acids. Among the cycloaliphatic dicarboxylic acids, mention may be made of cyclohexanedicarboxylic acids (in particular cyclohexane-1,4-dicarboxylic acid). Among the aliphatic dicarboxylic acids, the (C₃-C₁₉) alkanedi acids are particularly suitable, where the alkane moiety can be straight-chain or branched.

Examples of suitable other aliphatic diols are diethylene glycol, triethylene glycol, aliphatic glycols of the general formula HO-(CH₂)_n-OH, where n is an integer from 3 to 6 (in particular propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol) and branched aliphatic glycols having up to 6 carbon atoms, or cycloaliphatic, optionally heteroatom-containing diols having one or more rings. Among the cycloaliphatic diols, mention may be made of cyclohexanediols (in particular cyclohexane-1,4-diol). Suitable other aromatic diols have by way of example the formula HO-C₆H₄-X-C₆H₄-OH, where X is -CH₂-, -C(CH₃)₂-, -C(CF₃)₂-, -O-, -S- or -SO₂-.

The desired good mechanical properties, and in particular the desired good thermoformability of the biaxially oriented polyester film, are/is obtained via selection of the fractions according to the invention

that are based on terephthalic-acid-derived units and on isophthalic-acid-derived units. If the proportion of the dicarboxylic acid components based on isophthalic-acid-derived units is below 6 % by weight, it is impossible to obtain the desired good thermoformability of the film. If, on the other hand, this proportion is above 15 % by weight, reliable production of the lower film (A) by the process described below is no longer achievable. Films consisting of such high proportions of components based on isophthalic-acid-derived units exhibit, during the production process by way of example, a very strong tendency toward adhesion to themselves or to relevant machine components, e.g. rolls during longitudinal stretching or rolls at the outgoing end of the machine downstream of transverse stretching.

The polyesters can be produced by the transesterification process. This starts from dicarboxylic esters and diols, which are reacted with the conventional transesterification catalysts, for example zinc salts, calcium salts, lithium salts and manganese salts. The intermediates are polycondensed in the presence of well-known polycondensation catalysts, for example antimony trioxide, titanium oxide, or else germanium compounds. Successful production can equally be achieved by the direct esterification process in the presence of polycondensation catalysts. This starts directly from the dicarboxylic acids and the diols.

It has proved to be particularly advantageous to polycondense the intermediates in the presence of titanium dioxide or germanium compounds, or to carry out the direct esterification process in the presence of polycondensation catalysts such as titanium dioxide or germanium compounds. The biaxially oriented polyester film is then antimony-free. In the

particularly preferred case, the desired product is a biaxially oriented polyester film which comprises no antimony and therefore can be used in packaging applications where the film has direct contact with food.

Other parameters required to achieve the object

The film according to the present invention is characterized by an area modulus of elasticity in the range 4500 to 6400 N/mm², in accordance with the following formula:

$$E_{\text{area}} = (E_{\text{MD}} + E_{\text{TD}}) / 2$$

E_{MD} is the modulus of elasticity of the film measured in longitudinal direction of the machine, and E_{TD} is the modulus of elasticity of the film measured in transverse direction of the machine. This property is in essence achieved by compliance with the production procedure described below according to the invention in conjunction with the polyesters described above according to the invention. Surprisingly, it has been found that if the area modulus is below 4500 N/mm², the film no longer has the desired mechanical properties and is therefore unsuitable for the abovementioned application. By way of example, the excessively low area modulus of elasticity then prevents satisfactory winding of the film; undesirable creases arise. It has moreover been found in the context of the present invention that, on the other hand, if the area modulus is above 6400 N/mm² the film can no longer be thermoformed as required by the object of the invention.

The film according to the present invention is moreover characterized by the sum of strength values (σ_5 value) in longitudinal direction (MD) and in transverse direction (TD) in the range 170 to 220 MPa. Again, this property is in essence achieved by compliance with the

production procedure described below according to the invention in conjunction with the polyesters described above according to the invention. If the sum of strength values is below 170 MPa, the film no longer has the desired mechanical properties and is therefore unsuitable for the application. By way of example, because the sum of strength values is too small, the film can then no longer be satisfactorily transported within the thermoforming machine; the film undergoes undesirable distortion. If, on the other hand, the sum of strength values is above 220 MPa, the film can no longer be thermoformed as required by the object of the invention.

The film according to the present invention is moreover characterized by density below 1395 kg/m³. Again, this property is in essence achieved by compliance with the production procedure described below according to the invention in conjunction with the polyesters described above according to the invention. If the density of the film is above 1395 kg/m³, the film is surprisingly too crystalline to permit thermoforming as required by the object of the invention.

SV value of the lower film (A)

In order to achieve the desired good mechanical properties, and in particular in order to achieve the desired good thermoformability, it is necessary that the SV value of the lower film (A) is within a particular range. According to the invention, the SV value of the lower film (A) is in the range 680 to 1000, preferably in the range 710 to 950, with particular preference in the range 740 to 900. The SV values of the respective polymer melts (base layers and outer layers) should differ by no more than 100 units, preferably no more than 75, and in particular no more

than 50.

If the SV value of the film is below 680, it is impossible to achieve the required good thermoformability of the film: about 70 mm draw depth (see Figure 3 for format). On the other hand, if the SV value is above 1000, the polyester is too viscous and by way of example can no longer be extruded cost-effectively.

Antiblocking agent in lower film (A)

In order to improve the processing performance of the film, it is advantageous to incorporate particles into the lower film (A). Compliance with the following conditions has been found to be advantageous here:

- a) The median diameter d_{50} of the particles is to be 1.5 to 5.0 μm . It has proved to be particularly advantageous to use particles with d_{50} 1.7 to 4.5 μm , and particularly preferably 2.0 to 4.0 μm .
- b) The particles are intended to be present at a concentration of 0 to 0.1 % by weight (1000 ppm) in the lower film. The concentration of the particles in the film is preferably 1.0×10^{-5} to 0.075 % by weight and particularly preferably 1.1×10^{-5} to 0.05 % by weight.

If particles with diameter d_{50} below 1.5 μm are used the particles have no favourable effect by way of example on the winding of the film. The film then exhibits a tendency by way of example towards undesirable tearing or tear-propagation during unwinding. Particles with diameter d_{50} above 5.0 μm generally cause problems during orientation of the film; vacuoles are increasingly formed and adversely affect the haze of the film. If the lower film (A) comprises particles at a concentration above 0.1 % by weight, the haze of the

film is no longer in the range according to the invention.

Conventional antiblocking agents are conventional inorganic and/or organic particles, for example calcium carbonate, amorphous silica, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium sulfate, calcium phosphate, magnesium phosphate, aluminium oxide, the calcium, barium, zinc or manganese salts of the dicarboxylic acids involved in the lower film (A), titanium dioxide, kaolin, or crosslinked polystyrene particles, or crosslinked polymer particles based on acrylic acid derivatives.

The particles can be added to the lower film (A) at the respectively advantageous concentrations, e.g. in the form of glycolic dispersion during production of the polyester, i.e. during polycondensation thereof, or in the form of masterbatch during extrusion of the film.

Particles preferred according to the invention are synthetic, amorphous SiO_2 particles in colloidal form. The particles become bound in excellent manner into the polymer matrix, and produce only a small number of vacuoles. Vacuoles can by way of example arise during the biaxial orientation of the film; they generally increase haze, and therefore are to be avoided as far as possible for the present invention. In relation to production of the SiO_2 particles, reference is made to the prior art; the production process is disclosed in detail by way of example in EP 1 475 228 B1.

Radical-scavengers in the film

In what is known as the cook-in process (in which connection see EP 1 697 129 or EP 2810776 A1), the pack is placed, closed, into the oven, and is removed from

the oven after a particular cooking time. The cooking time depends in essence on the pack size (mass of contents), and generally between 30 min and two (2) hours.

This procedure results in a low level of thermal stress across a large part of the area of the thermoformable film. The film is subjected to significantly increased thermal stress only in the edge region of the pack, and in particular at the corners of the pack (sealed edge). While evaporation of water ensures that the remainder of the thermoformed film experiences temperatures significantly below 160 °C, the corner region of the pack is exposed to oven temperature for the entire cooking time.

In extreme cases here, the corner region of the film is subject to thermal stress at a temperature of 220 °C for more than 2 h, and at this elevated temperature oxygen can penetrate into the polymer.

A possible consequence of this is embrittlement of the pack, and therefore of the film, in particular at the corners, and a tendency towards splintering. This is extremely undesirable and must be avoided.

If increased heat resistance is required for this application sector, the film - preferably made of antimony-free polyester - preferably comprises one or more radical-scavengers. This/these radical-scavenger(s) is/are preferably based on phenolic antioxidants.

Surprisingly, it has been found that the film comprising one or more radical-scavengers exhibits significantly increased heat resistance, and that therefore packaging produced therefrom can remain for

more than one hour in an oven at temperatures above 220 °C without resultant embrittlement.

In a preferred embodiment, the film according to the present invention comprises 500-3000 ppm of a radical-scavenger, the content preferably being between 600 and 2500 ppm and with particular preference between 700 and 2000 ppm. Contents below 500 ppm tend to lead to failure in the oven (= splintering), and contents higher than 3000 ppm have no further improving effect on the film and therefore merely reduce cost-effectiveness, and can lead to migration of the stabilizer out of the film into a packaged food. Contents above 3000 ppm moreover tend to lead to formation of gels and to an undesired yellow tinge of the film.

The radical-scavenger used can be either one compound (preferably) or else a mixture of various radical-scavengers. The radical-scavenger(s) used is/are preferably selected from the group of the phenolic antioxidants.

Preferred radical-scavengers are pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (CAS No. 6683-19-8) and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene) (CAS No. 1709-70-2) obtainable from BASF with trade names Irganox 1010 and Irganox 1330.

The effectiveness of the radical-scavenger can be tested directly on the packaging, e.g. after removal of the packaging from the oven. The packaging is described here as good (i.e. suitable for the application) if no splintering is observed anywhere in the film according to the present invention.

Structure of the lower film (A)

The lower film (A) can have a single-layer or multilayer (i.e. at least two-layer) structure. A single-layer structure of the film has proved to be particularly advantageous for achieving the abovementioned properties, in particular the required good optical properties of the polyester film. However, a two- or three-layer structure of the lower film (A) has also proved to be suitable, made of two layers A' and A'' or three layers A'A"A' or A'A"A''. The quantity of particles in the base layer A'' of a, for example, three-layer film here should be smaller than in the two layers A' (and A''), which are preferably kept identical in the structure, but can also be different.

The particle concentration in the layer (A'') should be selected in a manner that has an advantageous effect on the haze and the gloss of the film. The particle concentration in the layer (A'') of a three-layer film of the abovementioned type will be between 0 and 0.08 % by weight, preferably between 0 and 0.05 % by weight, and in particular between 0 and 0.02 % by weight. The diameter of the particles used is particularly preferred with d_{50} above 1.5 μm .

When particle concentration in the outer layers (A' or A'') and in the base layer (A'') is selected, care must be taken to ensure that particle concentration in the entire film does not exceed the value of 0.1 % by weight according to the present invention.

The thickness of the two layers A' (or A' and A'') can be identical or different. Their thicknesses are generally between 0.2 and 5 μm . The lower film (A) can moreover additionally comprise conventional additives,

for example stabilizers (UV, hydrolysis) or other fillers (e.g. colour pigments) in the concentrations recommended by the manufacturer. They are advantageously added to the polymer or, respectively, polymer mixture before melting in the extruder.

Thickness of the lower film (A)

The total thickness of the polyester film (A) according to the invention can vary within particular boundaries. It is 50 to 300 μm , preferably 51 to 200 μm and particularly preferably from 52 to 200 μm . If the thickness of the film (A) is below 50 μm , the mechanical properties and the barrier properties of the thermoformed film are inadequate. If the thickness of the film (A) is, in contrast, above 300 μm , the thermoformability of the film becomes poorer, and moreover production of the film becomes uneconomic; both of these outcomes are undesirable.

Process for the production of the lower film (A)

The present invention likewise provides a process for the production of the thermoformable lower film (A). It comprises the production of the lower film by extrusion (production of layer (A)) or coextrusion (e.g. production of the layers (A'A''A'')), biaxial stretching of the lower film (A), and also heat-setting and wind-up of the stretched lower film (A).

In the coextrusion process, the respective melts are extruded in separate extruders and then these are shaped in a coextrusion die to give flat melt films and mutually superposed in layers. The multilayer film is then drawn off and solidified with the aid of a chill roll and optionally other rolls. For the mixing of the various components, it has proved to be advantageous here to use a vented twin-screw extruder to extrude the

polymers for the layer (A) or layers (A'A''A''). The film thus produced has fully satisfactory optical properties, e.g. exhibits no clouding or streaking.

The biaxial stretching of the film is carried out sequentially. Sequential stretching begins with stretching in longitudinal direction, which is followed by stretching in transverse direction. The stretching in longitudinal direction can be achieved by way of example with the aid of two rolls rotating at different speeds corresponding to the desired stretching ratio. The transverse stretching is generally achieved by using an appropriate tenter frame.

The temperatures at which the biaxial stretching is carried out can vary within certain ranges; they depend in essence on the desired properties, in particular on the desired thermoforming properties of the film according to the invention. Surprisingly, it has been found here that in order to achieve the desired thermoformability the film should be stretched to a significantly smaller extent than is conventional according to the prior art.

In order to achieve the desired thermoformability of the lower film (A), the stretching in longitudinal direction is carried out under particular conditions. The temperature of the film during stretching is in the range 70 to 100 °C (the heating temperatures of the rolls being 60 to 110 °C). The longitudinal stretching ratio is in the range 2.0:1 to 4.0:1, preferably in the range 2.1:1 to 3.8:1 and particularly preferably in the range 2.2:1 to 3.6:1. If the film is oriented at less than 2.0:1, by way of example the thickness profile is poor; if the film is oriented at more than 4.0:1, thermoformability is no longer adequate.

The longitudinal stretching is followed by transverse stretching in an appropriate tenter frame. The temperatures of the heating fields in the tenter frame are 70 to 120 °C (film temperature: 60 to 110 °C). The stretching in transverse direction is kept in the film temperature range 90 °C (start of stretching) to 140 °C (end of stretching). According to the invention, the transverse stretching ratio is in the range 2.2:1 to 3.8:1, preferably 2.4:1 to 3.7:1 and particularly preferably in the range 2.6:1 to 3.6:1. If the film is oriented at less than 2.2:1 by way of example the thickness profile is poor; if the film is oriented at more than 3.8:1, thermoformability is no longer adequate.

The biaxial orientation is followed by heat-setting of the film. Surprisingly, it has been found that in order to achieve the abovementioned desired good thermoformability of the film it is necessary to carry out the heat-setting under particular conditions according to the invention. According to the invention, the heat-setting time is 5 to 25 s, preferably 6 to 22 s and particularly preferably 7 to 20 s. According to the invention, the heat-setting temperature is in the range 175 to 220 °C, preferably in the range 178 to 215 °C and particularly preferably in the range 180 to 210 °C.

After heat-setting, the film is cooled and conventionally wound up.

Compliance with the abovementioned process conditions for the production of the lower film (A) according to the invention is important. Failure to comply with the abovementioned process conditions according to the invention for longitudinal stretching and transverse stretching, and also for setting of the lower film (A),

can lead to failure to achieve the properties according to the invention of the film in respect of mechanical properties of the film, and in particular in respect of the desired thermoformability and puncture resistance; this is undesirable.

Coating (C) of the lower film (A)

In a preferred embodiment, in order to improve the windability of the transparent film with low filler content, at least one surface of the lower film (A) is coated in-line or off-line with a further layer (C) which comprises poly(alkyl acrylate) and/or poly(alkyl methacrylate) and/or poly(alkyl acrylate-co-alkyl methacrylate). It is moreover possible that acrylic and/or methacrylic copolymers are present which bring about crosslinking of the polymers. It is preferable here to use N-methylolacrylamide for the production of the copolymers. It is moreover also possible to use other crosslinking agents, e.g. melamine. The coating is preferably applied in-line.

The coating (C) according to the present invention is described in detail in EPA 0 144 948, which is expressly incorporated by way of reference here.

The preferred acrylate coating is applied to at least one side of the lower film (A), and in essence serves to improve winding, and in particular to improve unwinding of the film after storage (at elevated temperatures). The coating formulation can comprise known additions, e.g. antistatic agents, wetting agents, surfactants, pH regulators, antioxidants, dyes, pigments, and antiblocking agents, e.g. colloidal SiO₂, etc. It is normally advisable to incorporate a surfactant in order that the ability of the aqueous coating to wet the polyester carrier film is further

increased, and in order to stabilize the particles made of copolymers derived from acrylic/methacrylic acid.

Application of the layer (C)

Coating of the lower film (A) with the acrylically crosslinking layer (C) is achieved either in-line, preferably between the first and second stretching step, or off-line after production of the biaxially oriented film.

In the case of in-line coating, which is preferably used, a layer (C) is used to coat one or both surfaces of the lower film (A) before transverse stretching. In the case of off-line coating, the layer (C) is preferably applied after production of the lower film (A).

The polyester film is coated with a functional coating in a manner such that the thickness of the coating on the finished polyester film is preferably 5 to 100 nm, particularly preferably 10 to 90 nm and very particularly preferably 15 to 80 nm. Particular preference is given to application of the layer (C) by means of the reverse gravure-roll coating process, which can apply the coating extremely homogeneously in layer thicknesses up to 200 nm. The coating is preferably applied in the form of solution, suspension or dispersion, particularly preferably in the form of aqueous solution, suspension or dispersion.

The abovementioned substances are applied in the form of dilute, aqueous solution or dispersion to one or both film surfaces, and then the solvent is evaporated. If the coating is applied in-line before transverse stretching, the temperature during transverse stretching and subsequent heat-setting is sufficient to

evaporate the solvent and dry the coating.

Inventive properties of the lower film (A)

The lower film (A) according to the invention, produced by the process described above according to the invention, has a number of properties of which the most important are listed below.

The lower film (A) according to the invention features very good mechanical properties for the intended application (area modulus of elasticity, sum of strength values, puncture resistance); these inter alia permit achievement of the desired good thermoformability and the desired good puncture resistance.

The lower film (A) features brilliant optical properties. The haze of the lower film (A) is below 2 % and the clarity is above 85 % and gloss is above 140.

Surprisingly, the puncture resistance $F[N]$ of the film, this being important for the application, is sufficiently high to permit damage-free transport and storage of the thermoformed pack produced therefrom. According to the invention, the puncture resistance F of the lower film (A) in the thickness range defined correlates with the thickness d of the film in accordance with the following formula:

$$FNd\mu m > 0.35$$

The thermoformability of the lower film (A) is at least 70 mm (see Figure 3 for format), at a thermoforming ratio of at least 2.5. Trays having this thermoformability according to the invention can be used for problem-free packing, in conventionally designed packaging, of the usual commercial portions of

meat, poultry or fish.

The lower film (A) has the required good barrier properties, in particular in respect of oxygen, water vapour and various flavours.

The highly transparent lower film (A) has good winding properties and good processing properties. When the films are wound, the individual film plies do not adhere to one another, even at elevated temperature, for example 50 or 60 °C.

The film can moreover be produced cost-effectively. This means by way of example that processes conventionally used in the industry can be used to produce the lower film.

The thermoformable polyester film according to the invention has excellent suitability for the packaging of foods and of other consumable items. It is in particular suitable for the packaging of foods and other consumable items in thermoformed trays produced by the above process.

Table 1 collates *inter alia* the most important inventive properties of the film.

Table 1

Lower film (A)		Inventive range	Preferred	More preferred	Unit	Test method
Proportion of copolyester in lower film (A)		≥85	≥86	≥87	% to wt.	
Proportion of copolyester units derived from isophthalate units		6 to 15	7 to 14	8 to 13	Mol.%	
Filler concentration		0 to 0.1	1.0x10 ⁻⁵ to 0.075	1.1x10 ⁻⁵ to 0.05	% to wt.	
Particle diameter d ₅₀		1.5 to 5	1.7 to 4.5	2.0 to 4.0	μm	

Process technology

Longitudinal stretching (T procedure)	Heating temperature of rolls	60 to 110	65 to 105		°C	
	Stretching temperature of film	70 to 100	75 to 100		°C	
	Longitudinal stretching ratio	2.0 to 4.0	2.1 to 3.8	2.2 to 3.6		
Transverse stretching	Temperature of heating fields	70 to 120			°C	
	Heating temperature of film	60 to 110			°C	
	Stretching temperature	90 to 140			°C	
	Transverse stretching ratio	2.2 to 3.8	2.4 to 3.7	2.6 to 3.6	°C	
Setting	Temperature	175 to 220	178 to 215	180 to 210	°C	
	Time	5 to 25	6 to 22	7 to 20	sec	

Properties of film

Area modulus of elasticity		4500 to 6400	4600 to 6300	4700 to 6300	N/mm ²	ISO527-1 and ISO 527-3; sample type 2
Sum of σ ₅ values		170 to 220	175 to 210	180 to 220	N/mm ²	ISO527-1 and ISO 527-3; sample type 2
Density		<1395	< 1392	< 1390	kg/m ³	ASTM D1505-68, method C
Haze of film		< 2.0				ASTM D1003-61, method A
Clarity of film		≥85				ASTM D1003
Gloss of film		≥140			N/15 mm	DIN 67530
Transparency of film		≥89				DIN 1033-77
SV value of film		680 to 1000	710 to 950	740 to 900		
Puncture resistance/thickness of film		0.35 d			N/μm	EN 14447
Thermoformability (format according to Figure 3)	Depth	≥70	≥73	≥76	mm	
	A _{total} /A _{film}	≥2.5	≥2.6	≥2.7		
Thickness of film		50 to 300	51 to 200	52 to 200	μm	

(II) Upper film (B) = Sealable polyester film

The pack according to the present invention moreover comprises an upper film (B) composed of a transparent, biaxially oriented and coextruded, heat-sealable and peelable polyester film (B' B''); see below for explanation) or (B' B'' B'''; see below for explanation). The outer layer (B') is composed mainly of, i.e. of at least 60 % by weight of, polyesters.

Outer layer (B')***Polymers for the amorphous outer layer (B')***

According to the invention, the heat-sealable outer layer (B') comprises at least one polyester and optionally an antiblocking agent. The polyester is composed of units derived from aromatic and aliphatic dicarboxylic acids. The quantity of the units based on the aromatic dicarboxylic acids is 25 to 95 mol% in the polyester, preferably 40 to 90 mol%, particularly preferably 50 to 88 mol%. The quantity of the units based on the aliphatic dicarboxylic acids is 5 to 75 mol% in the polyester, preferably 10 to 60 mol%, particularly preferably 12 to 50 mol%, where the total of the mol% data is always 100 %. The diol units corresponding thereto likewise always give 100 mol%.

Examples of the aromatic dicarboxylic acids that can be used according to the invention are terephthalic acid, isophthalic acid, phthalic acid and naphthalene-2,6-dicarboxylic acid.

Examples of aliphatic dicarboxylic acids are succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebamic acid. According to the invention, it is preferably possible to use adipic acid

and sebacic acid, and less preferably possible to use succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid and azelaic acid.

Examples of the aliphatic diols that can be used according to the invention are ethylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, diethylene glycol, triethylene glycol, cyclohexane-1,4-dimethanol and neopentyl glycol.

In the preferred embodiment, the polyester includes the following dicarboxylates and alkynes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkyne:

- 25 to 95 mol%, preferably 30 to 90 mol% and particularly preferably 40 to 70 mol%, of terephthalate,
- 0 to 25 mol%, preferably 5 to 20 mol% and particularly preferably 10 to 20 mol%, of isophthalate,
- 5 to 75 mol%, preferably 8 to 70 mol% and particularly preferably 11 to 65 mol%, of sebacate,
- 0 to 50 mol%, preferably 0 to 40 mol% and particularly preferably 0 to 30 mol%, of adipate,
- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene.

The outer layer material optionally comprises up to 15 % by weight of a polymer that is incompatible with polyester (anti-PET polymer). In a preferred embodiment, the proportion of anti-PET polymer is 2 to 12 % by weight, preferably 2 to 10 % by weight and particularly

preferably 2 to 8 % by weight.

Up to 10 % by weight of the material of the outer layer (B') consists of particles, additives, auxiliaries and/or other additional substances usually used in polyester film technology.

The polyester for the outer layer (B') is preferably produced from two physically miscible polyesters I and II, and particularly preferably from three physically miscible polyesters I, II and III; these are introduced in the form of mixture to the extruder for this layer (B').

Polyester I for the outer layer (B')

The proportion, in the outer layer (B'), of the polyester I which consists of one or more **aromatic** dicarboxylates and of one or more aliphatic alkylenes is 10 to 60 % by weight. In the preferred embodiment, the proportion of the polyester I is 15 to 55 % by weight, and in the particularly preferred embodiment it is 20 to 50 % by weight.

In the preferred embodiment, the polyester I of the outer layer (B') according to the invention is based on the following dicarboxylates and alkylenes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 60 to 100 mol%, preferably 62 to 95 mol% and particularly preferably 66 to 93 mol%, of terephthalate,
- 0 to 40 mol%, preferably 5 to 38 mol% and particularly preferably 7 to 34 mol%, of isophthalate, where the mol% data of the stated

dicarboxylic acids always give a total of 100 %,

- more than 50 mol%, preferably more than 65 mol% and particularly preferably more than 80 mol%, of ethylene units.

Any residual fractions that may be present derive from other aromatic dicarboxylic acids and other aliphatic diols, as listed as most suitable other aromatic dicarboxylic acids for the base layer (B'').

Very particular preference is given to copolymers in which the proportion of terephthalate units is 60 to 80 mol%, the corresponding proportion of isophthalate units is 20 to 40 mol%, and the proportion of ethylene units is 100 mol%. The material is therefore an ethylene terephthalate-ethylene isophthalate copolymer.

It has been found that if the proportion of polyester I in the outer layer (B') is below 10 % by weight, the film becomes significantly less amenable to production by way of coextrusion, or there is no longer any certainty that this can be achieved. The tendency of the film here to adhere on particular machine components, in particular on metallic rolls, is particularly high. If on the other hand, in contrast, the proportion of polyester I in the outer layer (B') is above 60 % by weight, the sealing performance of the film is severely impaired for the present application. Because of the melting point increase associated therewith, the sealable layer (B') no longer has, at the sealing temperatures usually used, the desired softness required for the desired sealing (sometimes through partial contamination).

According to the invention, the SV value of the raw

material here is above 600, preferably above 650 and particularly preferably above 700. If the SV value of the raw material is below 600, the raw material becomes more difficult to extrude; this is undesirable.

Polyester II for the outer layer (B')

According to the present invention, the proportion of polyester II in the outer layer (B') is 20 to 70 % by weight. In the preferred embodiment, the proportion of polyester II is 25 to 65 % by weight, and in the particularly preferred embodiment it is 30 to 60 % by weight.

Polyester II preferably consists of a copolymer made of aliphatic and aromatic acid components, where the aliphatic acid components amount to 20 to 90 mol%, preferably 30 to 70 mol% and particularly preferably 35 to 60 mol%, based on the total quantity of acid in the polyester II. The balancing proportion of dicarboxylate to give 100 mol% derives from aromatic acids specifically terephthalic acid and isophthalic acid, terephthalic acid being mentioned here with preference and isophthalic acid being mentioned here with less preference, and also, on the glycolic side, from aliphatic, cycloaliphatic or aromatic diols as described in relation to the base layer.

The polyester II of the outer layer (B') according to the invention is based at least on the following dicarboxylates and alkylanes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 20 to 70 mol%, preferably 30 to 70 mol% and particularly preferably 35 to 60 mol%, of sebacate,

- 0 to 50 mol%, preferably 0 to 45 mol% and particularly preferably 0 to 40 mol%, of adipate,
- 10 to 80 mol%, preferably 20 to 70 mol% and particularly preferably 30 to 60 mol%, of terephthalate,
- 0 to 30 mol%, preferably 3 to 25 mol% and particularly preferably 5 to 20 mol%, of isophthalate, where the mol% data of the dicarboxylic acids stated always give a total of 100 %,
- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene.

In the preferred embodiment, the polyester II of the outer layer (B') according to the invention is based at least on the following dicarboxylates and alkylanes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 20 to 70 mol%, preferably 30 to 65 mol% and particularly preferably 35 to 60 mol%, of sebacate,
- 10 to 80 mol%, preferably 20 to 70 mol% and particularly preferably 30 to 60 mol%, of terephthalate,
- 0 to 20 mol%, preferably 3 to 15 mol% and particularly preferably 3 to 10 mol%, of isophthalate,
- more than 30 mol%, preferably more than 40 mol% and particularly preferably more than 50 mol%, of ethylene or butylene.

Any remaining fractions that may be present derive from

other aromatic dicarboxylic acids and other aliphatic diols as listed for the base layer (B'').

The presence of at least 10 mol% of aromatic dicarboxylic acid ensures that the polymer II can be processed without sticking, e.g. in the coextruder or during longitudinal stretching.

If the proportion of polyester II in the outer layer (B') is below 20 % by weight, the sealing and peeling performance of the film is severely impaired. The sealable layer then - as already described above - no longer has, at the usual sealing temperatures, the desired softness required for good sealing (sometimes through partial contamination). If, in contrast, the proportion of polyester II in the outer layer (B') is more than 70 % by weight, the film becomes less amenable to production by way of coextrusion, or there is no longer any certainty that this can be achieved. The tendency of the film here to adhere on particular machine components, in particular on metallic rolls, is particularly high.

According to the invention, the SV value of the raw material here is above 900, preferably above 950 and particularly preferably above 1000. If the SV value of the raw material is below 900, the haze of the film increases; this is undesirable.

Polyester III for the outer layer (B')

The proportion of the polyester III, which consists of one or more aromatic dicarboxylates and of one or more aliphatic alkynes, is 0 to 15 % by weight in the outer layer (B'), and is optional. In the preferred embodiment, the proportion of the polyester III is 3 to

12 % by weight, and in the particularly preferred embodiment it is 4 to 10 % by weight.

The polyester III of the outer layer (B') according to the invention is generally based on the following dicarboxylates and alkynes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkene:

- 80 to 98 mol%, preferably 82 to 96 mol% and particularly preferably 74 to 95 mol%, of terephthalate,
- 2 to 20 mol%, preferably 4 to 18 mol% and particularly preferably 5 to 17 mol%, of isophthalate,
- more than 50 mol%, preferably more than 65 mol% and particularly preferably more than 80 mol%, of ethylene units.

Any remaining polymeric fractions that may be present derive from other aromatic dicarboxylic acids and other aliphatic diols, as already listed above as most suitable other aromatic dicarboxylic acids for the base layer (B'').

Care must be taken to ensure that in the mixture of the polyesters I, II and III the proportions in % by weight give a total of 100.

Very particular preference is given to copolymers in which the proportion of terephthalate units is 84 to 94 mol%, the corresponding proportion of isophthalate units is 6 to 16 mol% (where the proportions of dicarboxylate again give a total of 100 mol%), and the proportion of ethylene units is 100 mol%. The material

is therefore again a polyethylene terephthalate/isophthalate.

In a particularly preferred embodiment, the polyester III comprises a proportion of 5 to 25 % by weight of a suitable antiblocking agent (see further below). In this preferred embodiment, polyester III is a masterbatch which preferably is produced by way of extrusion technology. The concentration at which the antiblocking agent here is added to the polyester raw material during extrusion (preferably in a twin-screw extruder) is significantly higher than that at which it is present subsequently in the film. According to the invention, the SV value of the masterbatch here is above 400, preferably above 425 and particularly preferably above 450.

It is preferable that the outer layer (B') comprises a mixture of the polyesters I, II and III. A mixture has the following advantages in comparison with the use of only one polyester with comparable components and comparable proportions of the components:

- In terms of the respective glass transition temperatures (T_g), the mixture of the two polyesters I and II is easier to extrude than a single raw material with comparable concentration of the respective polymer components. Studies have revealed that a mixture of polymers with high T_g (polyester I and III) with a polymer with low T_g (polyester II) has less tendency to sticking in the coextruder than a single polymer with a corresponding average T_g .
- In practical terms, with the mixture it is possible to achieve greater individuality of setting of the desired sealing and peeling

properties than with use of a single polyester.

In particular, addition of particles is found to be easier in the case of polyester III than in the case of polyester I or II.

The glass transition temperature of polyester I is advantageously above 50 °C. The glass transition temperature of polyester I and III is preferably above 55 °C and particularly preferably above 60 °C. If the glass transition temperature of polyester I and III is below 50 °C, the film cannot be produced in a reliable process. The tendency of the outer layer (B') to adhere, for example in relation to rolls, is so great here that frequent film break-offs must be expected.

The glass transition temperature of polyester II is advantageously below 10 °C. The glass transition temperature is preferably below 8 °C and particularly preferably below 6 °C. If the glass transition temperature of polyester II is above 10 °C, the sealable layer no longer has, at the usual sealing temperatures, the desired softness required for sealing (sometimes through partial contamination).

Anti-PET polymer in the outer layer (B')

The heat-sealable and peelable outer layer (B') optionally comprises a polymer incompatible with polyester (anti-PET polymer) at a particular concentration. The proportion of the anti-PET polymer is 0 to 15 % by weight, based on the composition of the outer layer (B'). In a preferred embodiment, the proportion of the anti-PET polymer is 2 to 10 % by weight, and in the particularly preferred embodiment it is 2 to 8 % by weight, likewise based on the composition of the outer layer (B').

Examples of incompatible polymers (anti-PET polymer) are polymers based on ethylene (e.g. LLDPE, HDPE), propylene (PP), cycloolefins (CO), amides (PA) or styrene (PS). In a preferred embodiment, a copolymer is used as polyester-incompatible polymer. Examples here are copolymers based on ethylene (C2/C3, C2/C3/C4 copolymers), propylene (C2/C3, C2/C3/C4 copolymers), butylene (C2/C3, C2/C3/C4 copolymers) or based on cycloolefins (norbornene/ethylene copolymers, tetracyclododecene/ethylene copolymers). In one of the particularly preferred embodiments, the polymer incompatible with polyester (anti-PET polymer) is a cycloolefin copolymer (COC). These cycloolefin copolymers are described by way of example in EP-A 1 068 949 or JP 05-009319, incorporated herein by way of reference.

Among the cycloolefin copolymers, preference is in particular given to those that comprise polymerized units of polycyclic olefins having fundamental norbornene structure, particularly preferably norbornene or tetracyclododecene. Particular preference is given to cycloolefin copolymers (COC) which contain polymerized units of acyclic olefins, in particular ethylene. Very particular preference is given to norbornene/ethylene copolymers and tetracyclododecene/ethylene copolymers which comprise 5 to 80 % by weight of ethylene units, preferably 10 to 60 % by weight of ethylene units (based on the weight of the copolymer).

The glass transition temperatures of the COCs are generally between -20 and 400 °C. COCs suitable for the invention are those with glass transition temperature

below 120 °C, preferably below 100 °C and particularly preferably below 80 °C. The glass transition temperature should preferably be above 50 °C, with preference above 55 °C, in particular above 60 °C. Viscosity number (decalin, 135°C, DIN 53 728) is advantageously between 0.1 and 200 ml/g, preferably between 50 and 150 ml/g.

Films comprising a COC with glass transition temperature below 80 °C feature lower haze and better sealability than films comprising a COC with a glass transition temperature above 80 °C.

EP-A-0 283 164, EP-A-0 407 870, EP-A-0 485 893 and EP-A-0 503 422 describe the production of cycloolefin copolymers (COCs) with catalysts based on soluble metallocene complexes. It is particularly preferable to use cycloolefin copolymers produced with catalysts based on soluble metallocene complexes. These COCs are obtainable commercially; for example Topas® (Ticona, Frankfurt).

Addition of the anti-PET polymer improves sealing and improves processing performance, in particular here the winding of the film according to the invention. If the proportion of the COC in the preferred embodiment is below 2 % by weight, there is no longer any advantageous effect of the polymer on sealing and on the processing performance of the tray. The tray tends to block. On the other hand, the proportion of the polyester-incompatible polymer should not exceed 15 % by weight, because otherwise the haze of the film becomes excessive.

Antiblocking agent in the outer layer (B')

In order to achieve good self-venting of the heat-sealable and peelable outer layer (B'), good processability of the upper film (B), and also to improve the performance of the upper film (B) during peeling from the tray (produced from lower film (A) by thermoforming) after cooking, it is advantageous according to the invention to use suitable antiblocking agents (= particles) for further modification of the heat-sealable and peelable outer layer (B').

For good self-venting of the heat-sealable and peelable outer layer (B'), the diameter d_{50} of the particles must be within a range according to the invention. It has proved here to be particularly advantageous to use particles with median diameter d_{50} 1.5 to 5.0 μm , preferably 1.5 to 4.5 μm and particularly preferably 1.5 to 4.0 μm . If particles with diameter below 1.5 μm are used, there is no advantageous effect of the particles on self-venting and on the peel performance of the outer layer (B'). During peeling from the tray after cooking, the film has a tendency towards tearing or tear-propagation; this is undesirable. Particles with a diameter above 5.0 μm generally cause excessive haze and inadequate gloss of the film, and also filter problems.

For provision of the desired good self-venting, good peel performance, good winding and good processability of the film, it has proved advantageous for the heat-sealable and peelable outer layer (B') to comprise particles at a concentration above 0.04 % by weight, preferably above 0.05 % by weight and particularly preferably above 0.06 % by weight. The maximal concentration of the particles is 10.00 % by weight, preferably 8.00 % by weight and particularly preferably

6.00 % by weight. If the outer layer (B') comprises particles at a concentration below 0.04 % by weight, there is no longer any favourable effect on self-venting. If the outer layer (B') comprises particles at a concentration above 10 % by weight, the haze of the film becomes excessive.

In a preferred embodiment, the particle diameter d_{50} in the heat-sealable and peelable outer layer (B') is greater than the thickness of this layer. Compliance with a particle diameter/layer thickness ratio above 1.0, preferably above 1.1 and particularly preferably above 1.2 has proved advantageous according to the invention. In these cases there is a particularly advantageous effect of the particles on self-venting and on the performance of the film in peeling from the tray after cooking.

Particles preferred according to the invention are synthetic, amorphous SiO_2 particles in colloidal form, which can be bound in excellent manner into the polymer matrix. In relation to production of the SiO_2 particles, reference is made to the prior art; the process is disclosed in detail by way of example in EP 1 475 228 B1.

Typical other particles that can be used in the outer layer (B') are inorganic and/or organic particles, for example calcium carbonate, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminium oxide, LiF , the calcium, barium, zinc or manganese salts of the dicarboxylic acids used, titanium dioxide or kaolin.

Thickness of the outer layer (B')

According to the invention, the thickness of the heat-sealable and peelable outer layer (B') is 1.5 to 5 μm . If the thickness of the outer layer (B') is below 1.5 μm , sealing of the upper film (B) to the lower film (A) is inadequate. If the thickness of the outer layer is above 5 μm , self-venting of the pack becomes impaired; this is undesirable.

The outer layer (B') exhibits good sealing properties in relation to itself (fin sealing, outer layer (B') in relation to outer layer (B')), and in particular good sealing and peeling properties in relation to the lower film (A). After heat-sealing at 160 °C (460 N, 2 s), the seal seam strength of the outer layer (B') in relation to itself (fin sealing) and in relation to the lower film (A) is above 2 N/15 mm, and is at most 10 N/15 mm. In all cases here, peelable sealing is achieved in relation to the lower film (A), even in cases where the film has been partially contaminated with meat juices or the like.

Base layer (B'')***Polymers used for the base layer (B'')***

The base layer (B'') of the upper film (B) consists of at least 90 % by weight of a thermoplastic polyester which is composed of dicarboxylic-acid-derived units and of diol-derived units, or of dicarboxylates and of alkylanes, and which generally comprises the following dicarboxylates and alkylanes, based in each case on the total quantity of dicarboxylate and, respectively, the total quantity of alkylene:

- more than 90 mol% of terephthalate, preferably more than 95 mol%,

- more than 90 mol% of ethylene, preferably more than 95 mol%.

Examples of other aliphatic diols suitable for forming the polyester are diethylene glycol, triethylene glycol, aliphatic glycols of the general formula $\text{HO-(CH}_2\text{)}_n\text{-OH}$, where n is an integer from 3 to 6 (in particular propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol) and branched aliphatic glycols having up to 6 carbon atoms. Suitable other aromatic diols have by way of example the formula $\text{HO-C}_6\text{H}_4\text{-X-C}_6\text{H}_4\text{-OH}$, where X is $-\text{CH}_2-$, $-\text{C}(\text{CH}_3)_2-$, $-\text{C}(\text{CF}_3)_2-$, $-\text{O}-$, $-\text{S}-$ or $-\text{SO}_2-$.

Other aromatic dicarboxylic acids are preferably benzenedicarboxylic acids, naphthalenedicarboxylic acids, for example naphthalene-1,4- or -1,6-dicarboxylic acid, biphenyl- x, x' -dicarboxylic acids, in particular biphenyl-4,4'-dicarboxylic acid, diphenylacetylene- x, x' -dicarboxylic acids, in particular diphenylacetylene-4,4'-dicarboxylic acid, or stilbene- x, x' -dicarboxylic acids. Among the cycloaliphatic dicarboxylic acids, mention may be made of cyclohexanedicarboxylic acids, in particular cyclohexane-1,4-dicarboxylic acid. Among the aliphatic dicarboxylic acids, the (C₃-C₁₉) alkanedi acids are particularly suitable, where the alkane moiety can be straight-chain or branched.

The polyesters for the base layer (B'') can by way of example be produced by the transesterification process. This starts from dicarboxylic esters and diols, which are reacted with the conventional transesterification catalysts, for example zinc salts, calcium salts, lithium salts, magnesium salts and manganese salts. The intermediates are then polycondensed in the presence of

well-known polycondensation catalysts, for example antimony trioxide or titanium, aluminium or germanium salts. Successful production can equally be achieved by the direct esterification process in the presence of polycondensation catalysts. This starts directly from the dicarboxylic acids and the diols.

It has proved to be particularly advantageous to polycondense the intermediates in the presence of titanium dioxide or germanium compounds, or to carry out the direct esterification process in the presence of polycondensation catalysts such as titanium dioxide or germanium compounds. The biaxially oriented polyester film is then antimony-free. In the particularly preferred case, the desired product is a biaxially oriented polyester film which comprises no antimony and therefore can be used in packaging applications where the film has direct contact with food.

The base layer (B'') can additionally comprise conventional additives, for example stabilizers (UV, hydrolysis), and in particular heat stabilizers (e.g. Irganox 1010) or other fillers (e.g. colour pigments) in the concentrations recommended by the manufacturer. These additives are advantageously added to the polymer or, respectively, polymer mixture before melting.

The base layer (B'') additionally comprises regrind, a quantity of up to 60 % by weight of which is introduced into the extrusion procedure during production of the film without any significant resultant adverse effect on the physical, and in particular the optical, properties of the film.

Radical-scavengers in the film

As described above for the lower film, the upper film is also subject to relatively high thermal stress during what is known as the cook-in process.

This procedure results in a low level of thermal stress across a large part of the area of the film. The film is subjected to significantly increased thermal stress only in the edge region of the pack, and in particular at the corners of the pack (sealed edge). While evaporation of water ensures that the remainder of the thermoformed film experiences temperatures significantly below 160 °C, the corner region of the pack is exposed to oven temperature (e.g. 220 °C) for the entire cooking time.

In extreme cases here, the corner region of the film is subject to thermal stress at a temperature of 220 °C for more than 2 h, and at this elevated temperature oxygen can penetrate into the polymer.

A possible consequence of this is embrittlement of the pack, and therefore of the film, in particular at the corners, and a tendency towards splintering. This is extremely undesirable and must be avoided.

As described for the film (A), the base layer (B'') also preferably comprises one or more radical-scavengers if increased heat resistance is required. The radical-scavenger(s) is/are preferably based on phenolic antioxidants.

Surprisingly, it has been found that the film comprising one or more radical-scavengers exhibits significantly increased heat resistance, and that

therefore packaging produced therefrom can remain for more than one hour in an oven at temperatures above 220 °C without resultant embrittlement.

In a preferred embodiment, the film according to the present invention comprises 400-2000 ppm of a radical-scavenger, the content preferably being 500-2500 ppm and with particular preference between 700 and 2000 ppm. Contents below 400 ppm tend to lead to failure in the oven (= splintering), and contents higher than 2000 ppm have no further improving effect on the film and therefore merely reduce cost-effectiveness, and can lead to migration of the stabilizer out of the film into a packaged food. Contents above 2000 ppm moreover tend to lead to formation of gels and to an undesired yellow tinge of the film.

The radical-scavenger used can be either one compound (preferably) or else a mixture of various radical-scavengers. The radical-scavenger(s) used is/are preferably selected from the group of the phenolic antioxidants.

Preferred radical-scavengers are pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (CAS No. 6683-19-8) and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene) (CAS No. 1709-70-2) obtainable from BASF with trade names Irganox 1010 and Irganox 1330.

The effectiveness of the radical-scavenger can be tested directly on the packaging, e.g. after removal of the packaging from the oven. The packaging is described here as good (i.e. suitable for the application) if no

splintering is observed anywhere in the film according to the present invention.

Structure of the upper film (B)

The heat-sealable and peelable upper film (B) according to the invention can have a two- or three-layer structure. A three-layer structure of the upper film (B) with the layers B'B''B''' has proved to be advantageous for achieving the abovementioned properties, in particular the very good optical properties required. The upper film (B) according to the invention then comprises the base layer B'', the heat-sealable and peelable outer layer B' on one side of the base layer B'', and the outer layer B''' on the other side of the base layer B''.

The thickness of the outer layer B''' is generally between 0.5 and 3 μm , and this layer preferably consists of the polyester that is also used in the base layer (B'').

Thickness of the upper film (B)

The total thickness of the polyester film (B) according to the invention can vary within particular boundaries. It is 20 to 125 μm , preferably 25 to 100 μm and particularly preferably 30 to 75 μm . If the thickness of the film (B) is below 20 μm , the mechanical properties and barrier properties of the film are inadequate. However, if the thickness of the film (B) is above 125 μm , the sealability of the film is impaired and moreover production of the film becomes uneconomic; both of these outcomes are undesirable.

Process for the production of the upper film (B)

The invention also provides a process for the production of the polyester film (B) according to the invention, by the coextrusion process known from the literature.

The procedure for the purposes of the said process is that the melts corresponding to the individual layers (B'B'' and, if present, B''') of the upper film (B) are coextruded through a flat-film die, the resultant film is drawn off on one or more rolls for solidification, the film is then biaxially stretched, and the biaxially stretched film is heat-set.

Biaxial orientation is carried out sequentially. It is preferable here to begin by orienting in longitudinal direction (i.e. in machine direction) and then to orient in transverse direction (i.e. perpendicularly to machine direction). The orientation in longitudinal direction can be achieved with the aid of a plurality of rolls rotating at different speeds corresponding to the desired stretching ratio. The transverse orientation is generally achieved by using an appropriate tenter frame.

The process begins, as is conventional in the coextrusion process, by compressing and plastifying the polymers or polymer mixtures for the individual layers in respective extruders; the additives optionally additionally provided here can already be present in the polymer or in the polymer mixture. The melts are simultaneously forced through a flat-film die, and the extruded multilayer melt is drawn off on one or more draw-off rolls, whereupon the melt cools and solidifies to give a prefilm.

The temperature at which stretching is carried out can vary within a relatively wide range, and depends on the desired properties of the film. The longitudinal stretching is generally carried out at a temperature in the range 80 to 130 °C, and the transverse stretching is generally carried out at a temperature in the range 90 to 150 °C. The longitudinal stretching ratio is generally in the range 2.5:1 to 6:1, preferably 3.0:1 to 5.5:1. The transverse stretching ratio is generally in the range 3.0:1 to 5.0:1, preferably 3.5:1 to 4.5:1.

In the heat-setting that follows, the film is kept at a temperature of about 160 to 240 °C for a period of about 0.1 to 15 s. This is followed by conventional wind-up of the film.

Properties according to the invention

The heat-sealable and peelable polyester film (B) according to the invention, produced by the process according to the invention, has a number of properties; the most important of these are listed below.

The haze of the heat-sealable and peelable polyester film (B) is below 20.0 %. Haze of the polyester film is preferably below 16.0 % and particularly below 12.0 %.

The clarity of the heat-sealable and peelable polyester film (B) is above 70 %. Clarity of the polyester film is preferably above 75 % and particularly preferably above 80 %.

The transparency of the heat-sealable and peelable polyester film (B) is above 88. Transparency is preferably above 89 and particularly preferably above 90.

The gloss of the heat-sealable and peelable polyester film (B) is above 70; in the preferred embodiment it is above 75, and in the particularly preferred embodiment it is above 80.

The outer layer (B') exhibits good sealing properties in relation to itself, and in particular good sealing and peeling properties in relation to the lower film (A). The film exhibits good adhesion on the abovementioned materials at a sealing temperature that is significantly below the melting point of the base layer (B''). After sealing at 160 °C (460 N, 2 s), the seal seam strength of the outer layer (B') in relation to itself and in relation to the lower film (A) is above 2 N/15 mm, and is at most 10 N/15 mm. In all cases here, peelable sealing is achieved in relation to the lower film (A) (at least in respect of peeling of the film after cooking).

The polyester film (B) features very good winding performance.

The polyester film (B) has excellent suitability for the packaging of foods and of other consumable items, in particular for the packaging of foods and other consumable items in trays where heat-sealable and peelable polyester films are used to open the packaging.

Table 2 collates inter alia the most important film properties according to the invention.

Table 2

Outer layer (B')	Inventive range	Preferred	More preferred	Unit	Test method
Proportion of units based on aromatic dicarboxylic acids in the polyester according to the invention	25 to 95	40 to 90	50 to 88	Mol. %	
Proportion of units based on aliphatic dicarboxylic acids in the polyester according to the invention	5 to 75	10 to 60	12 to 50	Mol. %	
Anti-PET polymer	up to 15	2 to 12	2 to 8	% by wt.	
Polyester I	10 to 60	15 to 55	20 to 50	% by wt.	
Polyester II	20 to 70	25 to 65	30 to 60	% by wt.	
Polyester III	up to 15	3 to 12	4 to 40	% by wt.	
Particle diameter d_{50}	1.5 to 5.0	1.5 to 4.5	1.5 to 4.0	μm	internal
Filler concentration	0.04 to 10.0	0.05 to 8.0	0.06 to 6.0	%	internal
Thickness of outer layer B'	1.5 to 5.0	1.6 to 5.0	1.7 to 50	μm	
Particle diameter/layer thickness ratio	≥ 1.0	≥ 1.1	≥ 1.2		

Properties

Thickness of film	20 to 125	25 to 100	30 to 75	μm	
Seal seam strength (B') in relation to itself and in relation to lower film (A)	2.0 to 10	2.0 to 8	2.0 to 6	N/15 mm	Internal
Gloss of outer layers B' and B'''	>70 and >100	>75 and >110	>80 and >120		DIN 67530
Haze of film	< 20	< 16	< 12	%	ASTM D1003-61, method A
Clarity of film	> 70	> 75	> 80	%	ASTM D1003
Transparency of film	> 88	> 89	> 90		DIN 1033-77

OL: outer layer, \geq greater, equal to

Definitions

The expression "heat-sealable" means in general terms the property possessed by a multilayer polyester film comprising at least one base layer (B) and comprising at least one heat-sealable outer layer (B'). The heat-sealable outer layer (B') is bonded to a substrate made of thermoplastic, for example trays made of polyester or of APET, by means of sealing jaws through application of heat (110 to 220 °C) and pressure (1 to 6 bar) within a predefined period (0.1 to 4 sec); the base layer (B) itself does not develop plasticity during this procedure. This is achieved in that the polymer of the outer layer (B') generally has a significantly lower melting or softening point than the polymer of the base layer (B''). If, by way of example, polyethylene terephthalate with melting point 254 °C is used as polymer for the base layer, the melting point of the heat-sealable outer layer (B') is generally significantly below 220 °C. In the present case, the main polymer for the sealable outer layer (B') of the upper film is almost 100 % amorphous.

The term "peelable" means that a polyester film comprising at least one heat-sealable and peelable outer layer (B') has the property that allows it, after heat-sealing on APET/RPET trays and CPET trays, to be peeled away again from the tray without any resultant tearing or break-off of the film. When the film is peeled from the tray, the composite composed of heat-sealable and peelable film and tray generally parts at the seam between the heat-sealable layer and the tray surface (cf. also Ahlhaus, O.E.: Verpackung mit Kunststoffen [Packaging with plastics], Carl Hanser Verlag, P. 271, 1997, ISBN 3-446-17711-6). When the film heat-sealed to a test strip of the tray is peeled

in tensile-strain-testing equipment at a peel angle of 180 ° according to Figure 1, tensile strain behaviour according to Figure 2 is obtained from the film. On commencement of peeling of the film from the substrate, the force required for this purpose increases according to Figure 2 up to a particular value (e.g. 5 N/15 mm), and then remains approximately constant over the entire peel distance, but is subject to relatively large variations (about +/- 20 %).

実施例

The following test methods were used to characterize the raw materials and the films for the purposes of the present invention.

Test methods

Modulus of elasticity

Modulus of elasticity is determined in accordance with DIN EN ISO 572-1 and -3 (type 2 test sample) on film strips measuring 100 mm × 15 mm. Area modulus of elasticity is calculated according to the following formula:

$$E_{area} = (EMD_2 + ETD_2).$$

σ_5 value

The σ_5 value is determined in accordance with DIN EN ISO 572-1 and -3 (type 2 test sample) on film strips measuring 100 mm × 15 mm.

Density

The density of the film is determined in accordance with ASTM D1505-68, Method C.

Haze, clarity and transparency

A haze-gard XL-211 haze meter from BYK Gardner is used

to test the polyester films. Hölz haze is determined in accordance with ASTM D1003-61, Method A. Clarity is measured in accordance with ASTM D1003 by means of a haze-gard, but this time using the "clarity port" of the test equipment. Transparency is measured in accordance with ASTM D1003-61, Method A. All of the measurements are made on the film directly after production.

20 ° gloss

Gloss is determined in accordance with DIN 67530. The reflectance value is measured as optical variable representing the surface of a film. Using a method based on the standards ASTM D523-78 and ISO 2813, the angle of incidence is set to 20 °. A light beam impacts the flat test surface at the set angle of incidence and is reflected or scattered thereby. Light impacting the photoelectronic detector is indicated in the form of a proportional electrical variable. The value measured is dimensionless, and must be stated together with the angle of incidence.

Standard viscosity SV

Standard viscosity in dilute solution SV was measured by a method based on DIN 53 728 Part 3 in an Ubbelohde viscometer at (25 ± 0.05) °C. Dichloroacetic acid (DCA) was used as solvent. The concentration of the dissolved polymer was 1 g of polymer / 100 mL of pure solvent. Dissolution of the polymer took 1 hour at 60 °C. If the samples had not dissolved completely after this time, up to two further dissolution attempts were carried out at 80 °C in each case for 40 min, and the solutions were then centrifuged for 1 hour at a rotation rate of 4100 min^{-1} .

The dimensionless SV value is determined as follows from the relative viscosity ($\eta_{rel} = \eta / \eta_s$):

$$SV = (\eta_{rel} - 1) \times 1000$$

The proportion of particles in the film or polymer raw material was determined by ashing and corrected by increasing input weight accordingly, i.e.:

$$\text{input weight} = \frac{(\text{input weight corresponding to 100 % of polymer})}{[(100 - \text{particle content in \% by weight}) \cdot 0.01]}$$

Median particle diameter d_{50}

Median diameter d_{50} is determined by using a Malvern Mastersizer 2000 on the particle to be used; the relevant value here is the median by volume d_{v50} . For this, the samples are placed in a cell with water, and the cell is then placed in the test equipment. A laser is used to analyse the dispersion, and the particle size distribution is determined from the signal via comparison with a calibration curve. The particle size distribution is characterized by two parameters, the median value d_{50} (= measure of position of the central value) and the degree of scattering, the value known as SPAN98 (= measure of scattering of the particle diameter). The measurement procedure is automatic and also includes mathematical determination of the d_{50} value. The d_{50} value is defined here as being determined from the (relative) cumulative particle size distribution curve: The point of intersection of the 50 % coordinate value with the cumulative curve provides the desired d_{50} value on the x axis. The relevant value here is the median by volume d_{v50} .

Measurements on the film produced by using these

particles give a d_{50} value that is lower by 15-25 % than that of the particles used.

Puncture resistance (≈ puncture test)

Puncture resistance (≈ puncture test) is measured in accordance with EN 14477. Exposure to hard, pointed or angular objects is an important factor in the packaging sector. Knowledge of puncture resistance is relevant when the films are used as packaging material, e.g. for foods or for sharp-edged products. The puncture test in accordance with EN 14477 tests performance in relation to a pointed probe with diameter 0.8 mm. This is also known as the Parker pen test.

Determination of thermoforming properties

The thermoforming properties of the lower film (A) were determined by thermoforming this film in a Multivac machine (e.g. R245 / SN:166619) under the following moulding conditions: mould temperatures 210 °C, heating time 2 - 3 s, explosive forming / compressed-air reservoir 2 bar, mould pressure 2 bar, moulding time: 2 s). Figure 3 shows the set formats for the trays to be produced. The two properties that characterize the thermoformability of the film according to the invention are:

- Maximal draw depth in mm of the lower film according to the invention (= depth of tray) and
- Thermoforming ratio A_{tray}/A_{film} (A_{tray} = surface area of thermoformed tray, A_{film} = surface area of inventive film used).

Determination of barrier properties

Water vapour transmission rate (WVTR) was measured on films of varying thickness at 23 °C and 85 % r. h. in

accordance with ISO 15106-3. Oxygen barrier (OTR) was measured by using an OXTRAN® 100 from Mocon Modern Controls (USA) in accordance with ISO 15105-2, Annex A, 23.0 °C / 50 % r.h. OTR was likewise measured here on films of varying thickness.

Seal seam strength (DIN 55529)

The seal seam strength of the upper film (B) in relation to itself was determined by mutually superposing two strips of width 15 mm of the film according to the invention and pressing these together at 200 °C for a period of 3 s, using a "sealing pressure" of 460 N (equipment: Brugger NDS, single-side-heated sealing jaw). In order to avoid sticking on the sealing jaw, a crystalline polyester film of thickness 12 µm was placed between the film according to the invention and the sealing jaw. Seal seam strength (maximal force) was determined with a peel angle of 90 ° (90 ° peel method), using a velocity of 200 mm/min.

The seal seam strength of the upper film (B) in relation to the lower film (A) was determined by placing the amorphous side of a film strip of width 15 mm onto a strip of identical size of the lower film (A). Because of the stiffness of the substrate, seal seam strength (maximal force) was measured at a peel angle of 180 °. The term sealing is appropriate if the force measured is > 1 N/15 mm.

The invention is explained in more detail below with reference to Examples.

Inventive Example 1

I Production of the thermoformable lower film (A)

A biaxially oriented film (A) was produced by the process according to the invention from an ethylene terephthalate-ethylene isophthalate copolymer. The thickness of the film was 96 µm. For this, chips made of the copolymer were introduced into the extruder for production of the lower film. The copolymer was melted and homogenized in the extruder in accordance with the process conditions listed in the table below.

After filtration, the melt was shaped in a flat-film die and discharged by way of the die lip. The melt film was cooled and a transparent single-layer film was produced by way of stepwise orientation in longitudinal and transverse direction, followed by setting.

In order to achieve good winding of the film, a reverse-gravure process was used, between the longitudinal and transverse stretching, to coat the film with an aqueous dispersion. The coating (C) acrylically crosslinked in the tenter frame comprises a 4.5 % by weight dispersion of a latex consisting of a copolymer of 60 % by weight of methyl methacrylate, 35 % by weight of ethyl acrylate and 5 % by weight of N-methylolacrylamide and a surfactant. The dry weight of the coating (based on the biaxially oriented film) was about 0.035 g/m².

The composition of the copolymer for the lower film (A) according to the invention is as follows:

89 mol% of ethylene terephthalate units,
11 mol% of ethylene isophthalate units.

Production conditions in the individual steps of the process were

Extrusion	Temperatures for the	270	°C
-----------	----------------------	-----	----

	melt (A)			
	Temperature of draw-off roll	20	°C	
Longitudinal stretching	Heating temperature of rolls	70-	°C	
		90	°C	
	Stretching temperature of film	86	°C	
	Longitudinal stretching ratio	3.0		
Transverse stretching	Temperature of heating fields	118	°C	
	Stretching temperature of film	135	°C	
	Transverse stretching ratio	3.4		
Setting	Temperature of film	185	°C	
	Time	9	s	

Table 3 presents the composition of the lower film (A), and also further information relating to the film according to the invention, in particular to the properties of the film according to the invention.

II Production of the heat-sealable and peelable upper film (B)

The following starting materials were used for the individual coextruded layers (B'B''B''') for the production of the heat-sealable and peelable upper film (B) described below:

Outer layer (B') is a mixture of:

38.0 % by weight of polyester I (= copolymer of 78 mol% of ethylene terephthalate, 22 mol% of ethylene isophthalate) with SV value 850.

The glass transition temperature of polyester I is about 75°C. Polyester I moreover comprises 5.0 % by weight of [®]Sylisia 430 (synthetic SiO₂, Fuji, Japan) with particle diameter $d_{50} = 3.4 \mu\text{m}$. The ratio of particle diameter d_{50} to outer layer thickness $d_{(A)}$ is 3.4:3.

60 % by weight of polyester II (= copolymer comprising 40 mol% of ethylene sebacate, 60 mol% of ethylene terephthalate) with SV value 1000. The glass transition temperature of polyester II is about 0 °C.

2 % by weight of anti-PET polymer (= COC, [®]Topas 8007, Ticona, Frankfurt; with T_g about 75 °C).

Base layer B''

100 % by weight of polyethylene terephthalate with SV value 800.

Outer layer B'''

95 % by weight of polyethylene terephthalate.

5 % by weight of 98.5 % by weight of polyethylene terephthalate and 1.5 % by weight of Sylobloc 46.

The abovementioned raw materials were melted in an extruder for each layer, and, with the structure A-B-C, extruded through a three-layer flat-film die onto a chilled draw-off roll. The resultant amorphous prefilm was then oriented longitudinally. The film was then stretched transversely, set and rolled up (final film thickness 42 μm). Production conditions in the individual steps of the process were

Extrusion	Temperatures for the melts (B'B''B''')	270	°C
	Temperature of draw-off roll	20	°C
Longitudinal stretching (Spiegel-streckung)	Heating temperature of rolls Stretching temperature	80-120 115	°C °C
	Longitudinal stretching ratio	4.0	
Transverse stretching	Temperature of heating fields	80-135	°C
	Stretching temperature	135	°C
	Transverse stretching ratio	4.2	
Setting	Temperature	230	°C
	Time	3	s

Table 4 presents the composition of the film, and also further information relating to the film according to the invention, in particular to the properties of the film according to the invention.

III Production of the packaging

The lower film (A) and the upper film (B) were respectively separately clamped into a Multivac machine (R 245/SN:166619). The lower film (A) was thermoformed under the following moulding conditions: mould temperatures 210 °C, heating time 2 - 3 s, explosive forming / compressed-air reservoir 2 bar, mould pressure 2 bar, moulding time: 2 s. Figure 3 shows the set formats for the trays to be produced. The draw depth of the lower film (A) was up to 75 mm; the thermoforming ratio was up to 2.86.

The mould was cooled, and the thermoformed lower film (A) was ejected from the mould. A portion of pork was placed in the cavity, and the upper film (B) was brought into contact with the upper side of the lower film (A). The manner in which the upper film (B) was brought into contact with the lower film (A) here was such that the heat-sealable and peelable surface (B') of the upper film (B) was in contact with the portion of meat and with the lower film (A). Heat-sealing was carried out on the same machine at a temperature of 160 °C for 2 s at a pressure of 2 bar. The weight of the portion of meat was about 1000 g. The pack was placed into a conventional oven and cooked for 60 minutes at 220 °C. After about 10 min, the desired self-venting was observed. Once the cooking cycle had ended, the upper film (B) was peeled manually from the lower film (A) of the packaging; neither of the two films suffered any tearing during this procedure. The meat had been cooked, and was crisp and brown.

Inventive Example 2

The only change made from Inventive Example 1 concerned the production procedure for the lower film (A). Convergence during setting was now 1.75 %, having been 0 % in Inventive Example 1. The overall result was similar; the puncture resistance of the lower film (A) was slightly increased.

Comparative Example 1

All parameters remained the same as in Inventive Example 1, except that the proportion of isophthalate in the lower film (A) was reduced to 5.0 mol%.

Comparative Example 2

Example 1 from EP 1 697 129 B1 was repeated. Table 4 presents the properties of the film. The laminate is suitable for the applications mentioned in the introduction, but requires improvement in thermformability and puncture resistance, and especially in optical properties (haze and clarity).

Comparative Example 3

Example 1 from EP 1 945 512 B1 was repeated. The process is suitable for the applications mentioned in the introduction; however, the films described in more detail in EP 1 945 512 B1 require improvement in thermoformability and puncture resistance, and especially in optical properties (haze and clarity).

Table 3 - Lower film (A)

Composition of polyester for film	Modulus of elasticity of film	Area modulus of elasticity	σ ₅ value	Sum of σ ₅ values	Density	Haze of film	Clarity of film	Gloss of film	Transparency	SV value of film	Puncture resistance	Thermoformability	Barrier properties of film (not thermo-formed)		Winding performance							
													Side A	Side B	Depth A _{tray} /A _{film}	OTR	WVIR	cm ³ (m ² x d) bar ⁻¹	g/(m ² x d)			
Mol%																						
Examples					N/mn ²	kg/dm ³	%	%	%	N/μm	mm	mm										
Example 1	89	11	100	3682	4117	5223	98	99	197	1,385	0.5	100	203	202	90.7	780	0.395	75	2.88	16	1.89	very good
Example 2	89	11	100	3843	4294	5763	94	103	197	1,386	0.4	100	204	203	91	777	0.398	75	2.86	16	1.89	very good
Comparative examples																						
1	95	5	100	4110	4569	6146	103	100	203	1,392	0.4	100	215	214	91	787	0.36	55	2.00			
2	76.2μm PA+ 25.4μm APET										17	75	74	76	88			65	2.00			
3	50 μm Polyester										5	120	120	90				55	2.00			

Table 4 – Upper film (B)

Composition of polyester I	Composition of polyester II				Anti-PET polymer	PI/PII/PIII/PIII anti-PET polymer ratios	Film structure	Outer layer thickness	Antiblocking agent	FIN seal seam strength	Gloss
	TA	IA	EG	TS	IS	EG	COC	(B)	(B'')	160°C	160°C
	mol%			mol%		% by wt.	°C	μm	μm	μm	%
Example 1	78	22	100	40	60	100	100	38/60/0/2	75/-2/-75	B'B''B''	42
Example 2	78	22	100	40	60	100	100	38/60/0/2	75/-2/-75	B'B''B''	42
Inventive											
Ex 1								B'B''B''	42	2.7	2
Ex 2										3	0.075
Ex 3										3	2.5
Ex 4										2.5	168

TA terephthalate, IA isophthalate, EG ethylene
SeA sebacate

産業上の利用可能性

The transparent packaging for vacuum forming according to the present invention is suitable as a tray in particular for meat, fish, poultry and dry (ready-to-eat) products, such as sandwiches, burgers or wraps.

請求の範囲

1. Transparent packaging for vacuum forming, comprising a biaxially oriented, thermoformable polyester film as lower film (A) and a biaxially oriented polyester film as upper film (B), which is heat-sealable and peelable in relation to the lower film (A),

where

I the lower film (A) is a film which comprises at least 85 % by weight of a copolyester in which 85 to 94 mol% of the dicarboxylic acid components are based on terephthalic-acid-derived units and 6 to 15 mol% of the dicarboxylic acid components are based on isophthalic-acid-derived units, where the film

a) has an area modulus of elasticity in the range 4500 to 6400 N/mm²

b) has a sum of strength values (σ_5 value) in longitudinal direction and in transverse direction in the range 170 to 220 MPa

c) has a puncture resistance

$F[N] > 0.35 d[\mu\text{m}]$, d = film thickness

d) has a density below 1395 kg/m³

e) has a haze below 2.0 % and clarity at least 85 % and

f) has a thickness in the range 50 to 300 μm , and

II the upper film (B) is a film which has a base

layer (B'') and an outer layer (B') which is heat-sealable and peelable in relation to the lower film (A), where the heat-sealable and peelable outer layer (B')

- a) is composed of at least 60 % by weight of a polyester which is composed of 25 to 95 mol% of units based on at least one aromatic dicarboxylic acid and 5 to 75 mol% of units based on at least one aliphatic dicarboxylic acid, where the sum of the dicarboxylic-acid-derived molar percentages is 100; and
- b) comprises up to 10 % by weight of inorganic and/or organic particles with median diameter d_{50} 1.5 to 5.0 μm , where the ratio of particle size d_{50} to thickness of the outer layer (B') is above 1.0; and
- c) the thickness of the outer layer (B') is 1.5 to 5.0 μm ;

and where the upper film (B)

- has a haze below 20 % and clarity of at least 70 %,
- has a seal seam strength in relation to itself (thin sealing) and in relation to the lower film (A) which is in the range 2 to 10 N/15 mm and
- has a thickness in the range 20 to 125 μm .

2. Transparent packaging according to Claim 1, where the lower film (A) and/or the base layer (B'') comprise(s) one or more radical-scavengers.

3. Transparent packaging according to Claim 2, where the radical-scavenger(s) is/are selected from the group of the phenolic antioxidants, preferably from the group consisting of pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene).
4. Transparent packaging according to one or more of Claims 1 to 3, where the polyester for the outer layer (B') comprises the following dicarboxylates and alkylenes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

25 to 95 mol% of terephthalate
0 to 25 mol% of isophthalate,
5 to 75 mol% of sebacate,
0 to 50 mol% of adipate;
more than 30 mol% of ethylene or butylene
5. Transparent packaging according to one or more of Claims 1 to 4, where the outer layer (B') has been produced from two physically miscible polyesters I and II, and particularly preferably from three physically miscible polyesters I, II and III.
6. Transparent packaging according to Claim 5, where the polyester I comprises the following dicarboxylates and alkylenes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 60 to 100 mol% of terephthalate,
- 0 to 40 mol% of isophthalate,

where the mol% data of the dicarboxylic acids mentioned always give a total of 100 %,

- more than 50 mol% of ethylene units.

7. Transparent packaging according to Claim 5 or 6, where the polyester II comprises the following dicarboxylates and alkylenes, based in each case on the total quantity of dicarboxylate and, respectively, the total quantity of alkylene:

- 20 to 70 mol% of sebacate,
- 0 to 50 mol% of adipate,
- 10 to 80 mol% of terephthalate,
- 0 to 30 mol% of isophthalate,

where the mol% data of the dicarboxylic acids mentioned always give a total of 100 %,

- more than 30 mol% of ethylene or butylene.

8. Transparent packaging according to Claim 5, 6 or 7, where the polyester III comprises the following dicarboxylates and alkylenes, based in each case on the total quantity of dicarboxylate and, respectively, total quantity of alkylene:

- 80 to 98 mol% of terephthalate,
- 2 to 20 mol% of isophthalate,

where the mol% data of the dicarboxylic acids mentioned always give a total of 100 %,

- more than 50 mol% of ethylene units.

9. Transparent packaging according to one or more of

Claims 5 to 8, where the proportion of the polyester I in the outer layer (B') is 10 to 60 % by weight.

10. Transparent packaging according to one or more of Claims 5 to 9, where the proportion of polyester II in the outer layer (B') is 20 to 70 % by weight.
11. Transparent packaging according to one or more of Claims 5 to 10, where the proportion of polyester III in the outer layer (B') is 0 to 15 % by weight.
12. Process for the production of transparent packaging for vacuum forming according to one or more of Claims 1 to 11, characterized by
 - production of the lower film by extrusion (production of layer (A)) or coextrusion, biaxial stretching of the lower film (A) in longitudinal direction at a temperature between 70 ° and 100 °C (the heating temperatures of the rolls being 60 to 110 °C) with longitudinal stretching ratio 2.0:1 to 4.0:1, and in transverse direction at a temperature between 70 ° and 120 °C (film temperature: 60 to 110 °C) with transverse stretching ratio 2.2:1 to 3.8:1, and also heat-setting for 5 to 25 s at 175 ° to 220 °C;
 - coextrusion of the melts corresponding to the individual layers (B'B'' and, if present, B''') of the upper film (B) through a flat-film die, take-off of the resultant film on one or more rolls for solidification, and subsequent biaxial stretching and heat-setting of the film.

13. Use of the transparent packaging for vacuum forming according to one or more of Claims 1 to 11 as tray, in particular for meat, fish, poultry and dry (ready-to-eat) products, such as sandwiches, burgers or wraps.

* * * *

要約書**要約****課題**

It was an object of the present invention to provide, for the use mentioned in the introduction, packaging which is made of polyester and which features good thermoformability of the lower film and excellent sealing and peeling properties of the upper film in relation to the lower film.

解決手段

The invention relates to transparent packaging inter alia for vacuum forming, comprising a biaxially oriented, thermoformable polyester film as lower film (A) and a specific biaxially oriented polyester film as upper film (B), which is heat-sealable and peelable (at least when the material is hot) in relation to the lower film (A) and to use of such a pack, and to a process for its production.

- 76 -

19/001 MFE

- 77 -

19/001 MFE

図面
Figure 1

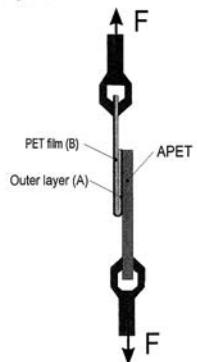


Figure 2

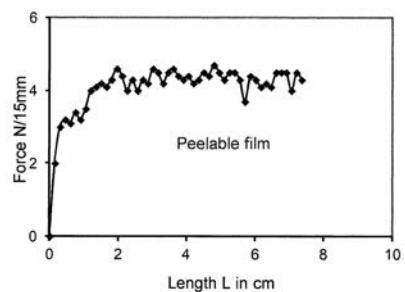
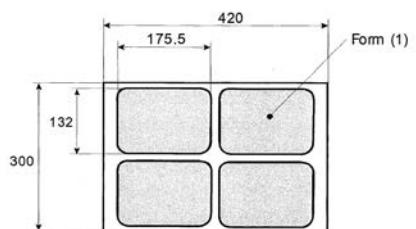



Figure 3

