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CORRELATION OF THREAD INTENSITY
AND HEAP USAGE TO IDENTIFY
HEAP-HOARDING STACK TRACES

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is a non-provisional of and claims
the benefit and priority under 35 U.S.C. 119(e) of U.S.
Provisional Application No. 62/333,786, filed May 9, 2016,
entitled “Correlation of Thread Intensity and Heap Usage to
Identify Heap-Hoarding Stack Traces,” U.S. Provisional
Application No. 62/333,798, filed May 9, 2016, entitled
“Memory Usage Determination Techniques,” U.S. Provi-
sional Application No. 62/333,804, filed May 9, 2016,
entitled “Compression Techniques for Encoding Stack
Traces Information,” U.S. Provisional Application No.
62/333,811, filed May 9, 2016, entitled “Correlation of Stack
Segment Intensity in Emergent Relationships,” U.S. Provi-
sional Application No. 62/333,809, filed May 9, 2016,
entitled “Systems and Methods of Stack Trace Analysis,”
and U.S. Provisional Application No. 62/340,256, filed May
23, 2016, entitled “Characterization of Segments of Time-
Series,” the entire contents of which are incorporated herein
by reference for all purposes.

The present application is related to the following con-
currently filed applications, the entire contents of which are
incorporated herein by reference for all purposes:

(1) U.S. Non-Provisional application Ser. No. 15/588,526,
entitled “MEMORY USAGE DETERMINATION TECH-
NIQUES” filed May 5, 2017.

(2) U.S. Non-Provisional application Ser. No. 15/588,523,
entitled “COMPRESSION TECHNIQUES FOR ENCOD-
ING STACK TRACE INFORMATION” filed May 5, 2017.

(3) U.S. Non-Provisional application Ser. No. 15/588,521,
entitled “CORRELATION OF STACK SEGMENT INTEN-
SITY IN EMERGENT RELATIONSHIPS” filed May 5,
2017.

BACKGROUND

In general, cloud service providers maintain operational
resources to meet service level agreements (SLA) with
customers. The providers continuously monitor the perfor-
mance metrics of the cloud services they provide to ensure
the services’ conformance to SLAs. However, because
available tools may lack the capability to predict or detect
impending SLLA violations, the operational resources may be
unable to circumvent the violations. Additionally, because
the tools may lack the capability to diagnosis the root causes
of SL A violations, the operations may take longer to resolve
such violations when they do occur. As a result, the customer
experience may be adversely affected.

Furthermore, such SLAs might require that data be ana-
lyzed systematically and actionable information in the data
be acted upon proactively to avoid SLA violations and also
to determine whether the agreement is being satisfied. Fol-
lowing the service level agreements and other requirements
can be very burdensome, and can grow more burdensome
with the passage of time.

For obtaining the capabilities mentioned above, what is
needed are techniques that represent the system using high-
level state models that are easily updated based on low-level
events of the system and system measurements. With
regards to obtaining metrics on low-level events, one can
instrument application programs underlying the system to
collect the exact measurements of the events. In such an
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approach, however, the instrumentation itself can affect the
measurements. This problem can be more pronounced when
the execution time of the instrumentation code around a
method dominates the execution time of the method itself
(e.g., if the invocation count of the method is high).

BRIEF SUMMARY

Certain techniques are disclosed for identifying heap-
hoarding stack traces to optimize memory efficiency. Some
embodiments may correlate heap information with the
thread information to identify code that corresponds to high
heap usage within a software execution environment.

One embodiment is directed to a method. The method can
include: determining, by one or more computer systems, a
length of time when heap usage by one or more processes
exceeds a threshold; determining heap information of the
one or more processes for the length of time, the heap
information comprising heap usage information for each of
a plurality of intervals in the length of time; determining
thread information of the one or more processes for the
length of time, wherein determining the thread information
comprises determining one or more classes of threads and
wherein the thread information comprises, for each of the
one or more classes of threads, thread intensity information
for each of the plurality of intervals; correlating the heap
information with the thread information to identify one or
more lines of code of the one or more processes that
correspond to the heap usage exceeding the threshold; and
responsive to identifying the one or more lines of code,
initiating one or more actions associated with the one or
more lines of code.

BRIEF DESCRIPTION OF THE DRAWINGS

Iustrative embodiments are described in detail below in
reference to the following drawing figures:

FIG. 1 depicts an exemplary runtime profiling of a single
thread over a period of time at a relatively high frequency
sampling rate.

FIG. 2 depicts an exemplary calling context tree.

FIG. 3 depicts exemplary thread dumps of a virtual
machine over a period of time, according to some embodi-
ments.

FIGS. 4-6 depict exemplary thread classification signa-
tures, according to some embodiments.

FIG. 7 shows a simplified flowchart that depicts the
generation and/or modification of one or more thread clas-
sification signatures in response to a thread dump according
to some embodiments.

FIG. 8 shows a simplified flowchart that depicts the
generation or modification of a thread classification signa-
ture in response to detecting a branch point.

FIG. 9 shows a simplified flowchart that depicts the
identification of code that corresponds to high heap usage
according to some embodiments.

FIG. 10 shows a simplified flowchart that depicts the
calculation of degrees of correlation between various classes
of threads and high heap usage according to some embodi-
ments.

FIG. 11 depicts an example graph where the weight
assigned to a sample measurement is plotted against the
sampling time interval associated with the sample measure-
ment across a time range of an example data set.

FIG. 12 depicts an example chart showing trend graphs
derived by different linear regression techniques for the heap
usage in a production environment.



US 10,534,643 B2

3

FIG. 13 depicts an example chart showing an additional
trend graph that illustrates incorrect results given by stan-
dard robust regression techniques.

FIG. 14 shows a simplified flowchart that depicts the
generation of a forecast of a signal according to some
embodiments.

FIG. 15 depicts a simplified diagram of a distributed
system for implementing certain embodiments.

FIG. 16 depicts a simplified block diagram of one or more
components of a system environment in which services may
be offered as cloud services, in accordance with some
embodiments.

FIG. 17 depicts an exemplary computer system that may
be used to implement certain embodiments.

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawings will be provided by the
Office upon request and payment of the necessary fee.

DETAILED DESCRIPTION

1. Overview

In the following description, for the purposes of expla-
nation, specific details are set forth in order to provide a
thorough understanding of embodiments of the disclosure.
However, it will be apparent that various embodiments may
be practiced without these specific details. The figures and
description are not intended to be restrictive.

The present disclosure relates generally to using heap
usage statistics and thread intensity statistics to identify code
blocks within a multi-threaded process (e.g., an application
program) for potential optimization and to forecast future
heap usage and/or thread intensity. Thread intensity statistics
may be used to track the response, load, and resource usage
of the process without instrumenting the process’s underly-
ing code or using code injection. In particular, the intensity
of a thread’s type or a stack segment’s type may refer to a
statistical measure of the “hotness” of the code blocks being
executed by the thread or referenced by the stack segment.
The hotness of a code block can be quantified by volume of
execution (e.g., the number of invocations of the code block
multiplied by the execution time of the code block). Hotter
code blocks have a higher number of invocations and/or
longer response times.

By analyzing a series of thread dumps taken from a
process at regular or irregular time intervals, some embodi-
ments may provide a statistical sampling solution that is (1)
low-overhead, (2) non-intrusive, (3) provides always-on
monitoring, and (4) avoids the problem of instrumentation
code dominating the execution time of the code being
instrumented (i.e., the Heisenberg problem).

Some embodiments may classify threads and stack seg-
ments based on intensity statistics. By monitoring stack
traces of individual threads included in thread dumps
received from an software execution environment (e.g., a
virtual machine), a monitoring process can classify the
threads based on the contents of their stack traces into one
or more thread classes. As more stack traces are analyzed,
some embodiments may observe the bifurcation of thread
classes into sub-classes and eventually build a hierarchy of
thread classes. For example, if a stack segment (A) is
observed to be a component of a stack segment (A, B, D),
one could say that the thread type (A, B, D) is a sub-class of
thread type (A). One could also say that thread type (A, C)
is a sub-class of thread type (A). The thread type (A)
includes sub-classes (A, B, D) and (A, C) in the sense that
the aggregate of intensity statistics corresponding to (A, B,
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D) and (A, C) can be represented by the intensity statistics
corresponding to (A). Additionally, some embodiments may
travel (e.g., traversing a tree or graph) down the thread class
hierarchy to observe how the intensity of a particular thread
class can be proportionally attributed to the intensities of one
or more sub-classes of the thread class. For example, the
thread intensity of (A) can be proportionally attributed to the
thread intensities of (A, B, D) and (A, C). In other embodi-
ments, each stack trace may be represented as a binary tree.

Some embodiments can provide one or more sequential
filters to estimate the measure, rate of change, acceleration,
seasonal factor, and residual. Techniques to represent sepa-
rate seasonal indices for multiple periods (e.g., a weekday
period and a weekend period) and to normalize the seasonal
factors for the multiple periods may be performed by such
embodiments. In particular, some embodiments may repre-
sent a separate sequence of seasonal indices for each of the
multiple periods. For example, the multiple periods may
include a weekday period, a weekend period, an end-of-
quarter period, or individual holiday periods. In estimating
seasonal indices for multiple periods, some embodiments
may also (1) renormalize the seasonal indices to provide a
common scale and a common reference level across all
periods and (2) fit a smooth-spline across adjacent periods to
provide smooth transitions between the cycles of a period or
between the cycles of two adjacent periods. By renormal-
ization, the seasonal factors across the multiple periods can
have a common scale.

Some embodiments may correlate trends between inten-
sity statistics of various classes of threads and heap usage
statistics to identify classes of threads whose intensity
statistics have a high degree of correlation with high heap
usage. There is a high probability of finding inefficient heap
memory usage among classes of threads whose intensity
statistics are highly correlated with the high heap usage in
the software execution environment. Once the classes of
threads are identified, the code associated with the classes of
threads may investigated and/or optimized.

Some embodiments may construct and maintain models
(e.g., univariate, multivariate) of the multi-threaded envi-
ronment (e.g., virtual machine) executing the process, where
the models include seasonal trends, linear trends, and first-
order non-linear trends for the intensities of each thread
class. Such models may be used to obtain seasonally
adjusted long term forecasts on the trend of the system’s
performance.

By (1) dynamically classifying threads and observing how
the intensities of sub-classes of thread classes contribute to
an aggregate intensity of the thread class and (2) observing
how closely various classes of threads are correlated with
detected periods of high heap usage, some embodiments
may facilitate the detection and observation of performance
glitches within cloud service provisioning systems. Because
even minor performance glitches often reveal issues within
the process that can result in SLLA violations, enabling
service providers to detect and address performance glitches
may substantially reduce the risk of such violations.

II. Runtime Profiling of Threads

FIGS. 1-2 depict techniques of profiling a running thread
to determine how long various stack segments are present on
the thread’s call stack in relation to one another. FIG. 1
depicts an exemplary runtime profiling of a single thread
100 over a period of time at a relatively high frequency
sampling rate. In some cases, certain techniques may utilize
a runtime profiler to take multiple stack trace samples of a
thread to construct a calling context tree 200 shown in FIG.
2. If the sampling interval employed by the runtime profiler
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is relatively short compared to the thread’s execution time,
the observation count (i.e., call count) statistics for each
calling context of the thread can be used to accurately
estimate and/or represent the execution time of the calling
context relative to the sampling interval.

For example, as shown in FIG. 1, the total execution time
of the thread 100 may be between 100 milliseconds and one
second while the sampling interval is between 10 millisec-
onds and 100 milliseconds. During the thread’s execution,
different calling contexts may be present within the thread’s
stack depending on which methods are invoked by the
thread. The thread may begin its execution by invoking a set
of methods that correspond to stack segment A.

It should be noted that a stack segment corresponds to a
set of one or more stack frames that are linearly connected.
Stack frames that are linearly connected are always observed
together within stack traces and thus have the same intensity
statistics. Thus, stack segment A may correspond to a
plurality of stack frames such as stack frames al, a2, and a3.
Sampling a thread may result in a stack trace that describes
an entire calling context of the sampled thread in a list of
stack frames. If some of the listed stack frames are linearly
connected, those stack frames may be conceptually grouped
into a stack segment. As a result, a stack trace may include
one or more stack segments, with each stack segment
including one or more stack frames.

As the thread continues its execution, code associated
with stack segment A may cause the thread to invoke a set
of methods that correspond to stack segment B. Next, code
associated with stack segment B may cause the thread to
invoke yet another set of methods that correspond to stack
segment D. After a short period of time, the runtime profiler
may take sample 1 of the thread 100, resulting in a first stack
trace. From the first stack trace, the runtime profiler may
determine that stack segments A, B, and D were on the stack
at the time of the sampling. After a sampling interval, the
runtime profiler may take another sample 2 of the thread,
resulting in a second stack trace. From the second stack
trace, the runtime profiler may determine that stack seg-
ments A, B, and D were on the stack. As the thread continues
to execute, the methods associated with stack segment D
may return, resulting in the stack frames corresponding to
stack segment D being popped off the stack. Next, the
runtime profiler may take another sample 3 of the thread,
resulting in a third stack trace. From the third stack trace, the
runtime profiler may determine that stack segments A and B
were on the stack.

As the thread executes, stack segment B invokes stack
segment E, which invokes stack segment F. Next, taking
sample 4 results in a fourth stack trace indicating that stack
segments A, B, E, and F were on the stack. Stack segments
F, E, and B return one after another. Next, taking sample 5
results in a fifth stack trace indicating that only stack
segment A is on the stack. Stack segment A causes stack
segment C to be pushed onto the stack. Before stack segment
C returns, samples 6 and 7 are taken, resulting in a sixth
stack trace and a seventh stack trace that both indicate that
stack segments A and C are on the stack. Eventually, stack
segment C returns, leaving only stack segment A on the
stack. When the methods associated with stack segment A
return, the thread finishes executing.

As shown in FIG. 2, calling context tree 200 depicts the
execution times of stack segments A-F relative to the
sampling interval. Node 202 indicates that stack segment A
was observed in all of the seven samples. Node 204 indicates
that stack segment B was observed in four of the seven
samples. Node 206 indicates that stack segment C was
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observed in two of the seven samples. Node 208 indicates
that stack segment D was observed in two of the seven
samples. Node 210 indicates that stack segment E was
observed in one of the seven samples. Node 212 indicates
that stack segment F was observed in one of the seven
samples. Because the total execution time of thread 100 is
approximately ten times the duration of the sampling inter-
val, the observation count for each stack segment may be
closely correlated with the stack segment’s execution time.
For example, because stack segment B was observed four
times, it may be inferred that the relative execution time of
stack segment B is at least four times the sampling interval.

In some cases, the environment where the thread 100
executes (i.e., the software execution environment) may
correspond to a virtual machine (e.g., a Hotspot Java Virtual
Machine (JVM)) where a thread dump is taken once per
sampling interval. Before the virtual machine takes a thread
dump, it may signal all executing threads (e.g., thread 100)
to pause at safepoints. This safepoint mechanism may be
similar to the one used by a garbage collector to pause
threads prior to executing a full garbage collection. Note that
a thread running in kernel mode (e.g., running/blocking on
1/O operation) may not pause at a safepoint until the thread
returns out of kernel mode (e.g., back to JVM mode).

It should be noted however, that invoking the safepoint
mechanism at a high frequency rate may result in substantial
overhead. Thus, runtime profiling techniques that rely on a
high sampling rate may be more appropriate for develop-
ment or testing environments rather than production envi-
ronments.

To reduce overhead, some embodiments employ system
models to compensate for a reduced sampling rate. For
example, some embodiments may track the intensities of
threads of a multi-threaded process and sample only threads
with intensities exceeding a threshold that determines
latency. One advantage with embodiments that employ
reduced samplings rates or adaptive samplings rates is that
threads running in kernel mode are less likely to be paused
at safepoints. Other methods of reducing overhead may
involve lengthening the sampling interval to be commensu-
rate with the intensity of the threads being sampled. For
instance, while a one minute sampling interval may result in
negligible overhead within a production environment, the
one minute sampling interval may be short enough for
deriving the relative execution time of threads and their
component stack segments in the production environment.
Thus, some embodiments may provide an always-on per-
formance monitoring solution for production systems that
exhibit stationary mean-ergodicity or cyclo-stationary mean
ergodicity for satistfying the assumptions of Little’s formula.
In such embodiments, the always-on performance monitor-
ing solution may be embodied in a monitoring process (i.e.,
a control system) that periodically samples threads execut-
ing within one or more virtual machines of the production
system.

II1. Classifying Threads

Various embodiments provide techniques for sequentially
analyzing a series of thread dump samples taken from one or
more virtual machines (e.g., JVMs) to identify thread classes
and to track intensity statistics pertaining to the thread
classes. For example, during the execution of one or more
multi-threaded processes within a virtual machine, the con-
trol system may periodically take a thread dump of the
virtual machine. The thread dump may result in a stack trace
for each thread that is executing in the virtual machine. For
each stack trace that is received, the control system may
analyze text contained in the stack trace to classify the
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associated thread and to update intensity statistics tracked
for all thread classes based on the stack trace.

In addition to classifying threads, embodiments may
classify new stack segments whenever they emerge at
branch points along previously classified stack segments.
When the control system observes the first stack trace before
any thread classes have been discovered, the control system
may consider the entire sequence of stack frames within the
stack trace to be linearly connected because the entire
sequence of stack frames have only appeared together so far.
In response, the control system may initialize a thread class
to classity the entire stack trace (i.e., the entire sequence of
stack frames). As the control system observes subsequent
stack traces that include varying sequences of stack frames,
the control system can initialize additional thread classes to
classify each unique permutation of stack frames. In some
cases, the control system may observe a stack trace that does
not share any stack frames (i.e., have any stack frames in
common) with previously observed stack traces. In
response, the control system may initialize a separate thread
class to classify the new stack trace in its entirety.

More commonly however, the control system can observe
a stack trace that shares one or more stack frames with
previously observed stack traces. Returning to FIG. 1 for
example, suppose the first stack trace observed by the
control system is {(A, B, D)} (i.e., the stack trace in sample
1 or sample 2) where the stack trace contains the stack
frames included in stack segments A, B, and D. The control
system may initialize a thread class {(A, B, D)} to classify
all threads that are observed to contain the stack frames
included in stack segments A, B, and D. Next, suppose the
second stack trace observed by the control system is {(A,
O)} (ie., the stack trace in sample 6 or sample 7). In this
regard, the control system may determine that while the first
and second stack traces are different, the first and second
stack traces share all of the stack frames included in stack
segment A, which results in a branch point at stack segment
A. In response, the control system may initialize a thread
class {(A, C}) to classify all threads that contain stack
segments A and C on their call stacks.

It should be noted that because the stack frames in stack
segment A has been observed separately from the stack
frames in stack segment (B, D), the stack segments A and (B,
D) are no longer considered by the control system to be
linearly connected. Yet, the control system still considers the
stack frames in stack segment A to be linearly connected and
the stack frames in stack segment (B, D) to be linearly
connected. In this regard, the control system may initialize
several thread segment components of thread class {(A, B,
D)} and thread class {(A, C)} to classify the new stack
segments formed by the newly discovered branch point. In
particular, the control system may initialize a thread segment
(A), a thread segment (B, D), and a thread segment (C),
where the thread segments (A) and (B, D) are components
of the thread class {(A, B, D}) and the thread segments (A)
and (C) are components of the thread class {(A, C)}.

Some embodiments may use classification signatures to
represent stack traces and stack segments. In particular, trace
signatures can be used to represent stack traces of a par-
ticular thread class and segment signatures can be used to
represent stack segments of a particular thread segment.
Each trace signature may correspond to a tuple of labeled
binary trees that is built up via a synthesis and analysis
process. Meanwhile, each segment signature of a thread
segment may correspond to a node in the tuple that corre-
sponds to the thread class of which the thread segment is a
component of. Later on in the analysis process, the tuples
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may be used like a parse tree (e.g., as part of a production
grammar) to recognize incoming stack traces.

Returning to the above example, subsequent to the obser-
vation of the first stack trace but prior to the observation of
the second stack trace, the thread class {(A, B, D}) may
correspond to a tuple of a single binary tree. Because the
entire sequence of frames within the first stack trace is
considered to be a single stack segment, the single binary
tree may include a single root node that represents the stack
segment (A, B, D). Subsequent to the observation of the
second stack trace, tuple may still include just a single
binary tree. However, the binary tree may now include three
separate nodes: a root node that represents the stack segment
(A, B, D), a first child node of the root node that represents
the stack segment (A), and a second child node of the root
node that represents the stack segment (B, D). The process
of synthesizing trace signatures and segment signatures are
discussed in further detail below with reference to FIGS.
4-6.

Each node in a binary tree may be uniquely identified by
a label or an identifier, which may be referred to as a
compact code. In some embodiments, a thread of a particular
thread class may be represented by the one or more compact
codes that identify each top-ranked node of the tuple that
corresponds to the thread class. In a fashion similar to
Huffman coding or other entropy coding schemes, some
embodiments may associate shorter tuples to thread classes
that are more popular (i.e., have a higher thread intensity)
and/or are discovered first. As a result, more common types
of threads can be compactly represented by shorter
sequences of compact codes. In some embodiments, this
may be ensured by first analyzing the probability distribu-
tion of stack traces in an offline analysis (i.e., offline
processing) and feeding the stack traces to the control
system in descending order of frequency.

In embodiments that do not rely on offline analysis, the
control system may receive stack traces in sequence with
thread dumps that are taken periodically from the one or
more virtual machines (i.e., online processing).

The order in which different types of stack traces are
observed may be affected by the intensity of each type of
stack trace. In other words, stack traces with higher inten-
sities are statistically more likely to be observed earlier in
the sequence. Thus, such embodiments may assume that (1)
the thread intensity of a particular thread class represents the
associated stack trace’s probability of occurrence and (2)
stack traces associated with higher intensity thread classes
are often observed before stack traces associated with lower
intensity thread classes. In this regard, the control system
will naturally derive the most compact representation for the
highest intensity threads. Thus, by relying on thread inten-
sity statistics rather than on offline processing, some
embodiments can provide an optimal compression algorithm
for stack traces observed in response to a series of thread
dumps.

A. Seasonality of Thread Intensity

Some embodiments can estimate, for each thread class
that is identified, the seasonal trend for the thread class’s
intensity. As mentioned above, the intensity of a thread class
or a thread segment may refer to a statistical measure of the
“hotness” of the code blocks being referenced by the asso-
ciated stack trace or stack segment. The hotness of a code
block can be quantified by the number of invocations of the
code block times the execution time of the code block. A
single raw thread intensity measure for a thread class may be
the count of the number of threads of that thread class in a
particular thread dump. An average thread intensity measure
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per thread dump can correspond to the traffic intensity,
offered load, or queue length of the thread type. For mean-
ergodic processes, Little’s formula can relate the expected
intensity p (the expected number of arrivals during a sam-
pling interval corresponding to the expected response time
T) to the expected response time T and the arrival rate A, as
shown below:
p=ht

In some embodiments, the seasonal trending process may
use variable filter parameters to account for irregular sam-
pling intervals (e.g., sampling heap usage and/or taking
thread dumps) and to overcome the Cauchy Distribution
Problem. The process can also support sequentially filtering
multiple types of periods (e.g., weekday periods, weekend
periods, and holiday periods) with varying lengths (e.g., 1
day, 2 days). Furthermore, the process can adjust, according
to seasonality, the rate at which thread dumps are taken to
reduce overhead while maintaining a particular confidence
level for the thread intensity statistics that are determined
based on the thread dumps. In some cases, adjusting the
thread dump rate may also minimize the volume of thread
dump data that needs to be transported over a network (e.g.,
LAN, the Internet) to other machines (e.g., Big Data reposi-
tory) for offline processing.

In some embodiments, the seasonal trending process may
partition weekday periods (i.e., 24 hour periods) into 96
fifteen minute intervals, which results in 96 seasonal indices
(i.e., seasons) for each weekday period. The process may
partition weekend periods (i.e., 48 hour periods) into 192
fifteen minute intervals, which results in 192 seasonal indi-
ces for each weekend period. Upon receiving a data set of a
particular length (e.g., a time series recording thread dumps
or heap usage over 10 days, which includes one or two
weekends), the process can apply multi-period trending
filters to weekday periods and weekend periods separately in
order to separate out seasonal patterns observed over single
weekdays and seasonal patterns observed over entire week-
ends, resulting in a set of 96 seasonal factors for the 96
seasonal indices of each weekday and a set of 192 seasonal
factors for the 192 seasonal indices of each weekend. The
process may then renormalize the weekday seasonal factors
and the weekend seasonal factors so that a seasonal factor of
‘1’ represents a common reference level for both weekday
periods and weekend periods.

It should be noted that if a seasonal factor larger than one
is assigned to a seasonal index, that seasonal index has a

10

15

20

25

30

35

40

45

10

higher than average value in comparison to the rest of the
period. On the other hand, if a seasonal factor smaller than
one is assigned to a seasonal index, that seasonal index has
a lower than average value in comparison to the rest of the
period. For example, if the seasonal factor for the thread
intensity of a particular thread class for the seasonal index
that corresponds to the 9 AM-9:15 interval is 1.3, the
average thread intensity of that particular thread class during
the 9 AM-9:15 AM interval is 30% higher than the average
thread intensity of that particular thread class throughout an
entire weekday.

In some embodiments, the seasonal trending process may
separate out holidays (e.g., Labor Day, Christmas Day) as
separate periods that repeat with a frequency of once every
12 months while weekday periods repeat every 24 hours and
weekend periods repeat every 5 or 7 days. The set of
seasonal factors for such holiday periods may be renormal-
ized together with those of weekday periods and weekend
periods so that the seasonal factor 1 represents a common
reference level for all periods. Other frequencies for each
period may be appropriate, as desired. As examples, holi-
days may be separated at a frequency of every 6 months or
the like while weekday may be periods repeat every 12 hours
or the like.

In some embodiments, determining and tracking intensity
statistics may further include forecasting future values and
the rate of change. However, the sampling interval can be
irregular or even become arbitrarily close to zero. In cases
where the sampling interval becomes arbitrarily close to
zero, the rate of change may become a random variable of
the Cauchy Distribution, whose mean and standard devia-
tion are undefined. To overcome the Cauchy Distribution
problem with regards to determining seasonal trends with
adaptive sampling intervals, some embodiments may
employ various adaptions of Holt’s Double Exponential
Filter, Winter’s Triple Exponential Filter, Wright’s Exten-
sion for Irregular Time Intervals, Hanzak’s Adjustment
Factor for time-close intervals, outlier detection, and clip-
ping with adaptive scaling of outlier cutoff. The five sets of
exponential filters can be sequentially applied to the data set
to estimate sets of seasonal factors for weekday periods and
weekend periods.

B. Classification Signatures and Compression Scheme

Certain embodiments can assign a variable length
sequence of compact codes to the stack traces of threads
where the length of sequence depends on the intensity of the
threads. An exemplary stack trace is presented below:

oracle.jdbe.driver. TACCallableStatement.executeForRows(T4CCallableStatement.java:991)
oracle.jdbe.driver.OracleStatement.doExecuteWith Timeout(OracleStatement.java:1285)

oracle.mds.core.MetadataObject.getBaseMO(MetadataObject.java:1048)
oracle.mds.core. MDSSession. getBaseMO(MDSSession. java:2769)
oracle.mds.core. MDSSession. getMetadataObject(MDSSession.java:1188)

oracle.adf.model.servlet. ADFBindingFilter.doFilter(ADFBindingFilter.java:150)

oracle.apps.setup.taskListManager.ui.customization.CustomizationFilter.doFilter(CustomizationFi

lterjava:46)

weblogic.servlet.internal. WebAppServletContext.securedExecute( WebAppServletContext.java:22

09)

weblogic.servlet.internal. ServletRequestImpl.run(ServletRequestImpl.java:1457)

weblogic.work.ExecuteThread.execute(ExecuteThread.java:250)

weblogic.work.ExecuteThread.run(ExecuteThread.java:213)




US 10,534,643 B2

11

In the exemplary stack trace, the stack frame “oracle mds
core MetadataObject getBaseMO” below the Java Database
Connectivity (JDBC) driver stack segment (i.e., the two
stack frames each including “oracle.jdbc.driver . . . ™)
indicates that the Meta Data Service (MDS) library invokes
the JDBC operations that correspond to the JDBC stack
segment. The stack frame “oracle adf model servlet ADF-
BindingFilter doFilter” below the MDS library stack seg-
ment (i.e., the three stack frames each including “oracle.
mds . . . ”) indicates that the MDS operations are invoked by
an Application Development Framework (ADF) operation.
As shown by the WeblLogic stack segment (i.e., the four
stack frames each including “weblogic . . . ) at the bottom
of the stack trace, the ADF operation is invoked through a
Hypertext Transfer Protocol (HTTP) Servlet request.

As an example, a two-level Huffman coding scheme can
be used to encode and compress the above stack trace,
resulting in a sequence of compact codes that represents the
exemplary stack trace. In the first level, compression tools
(e.g., gzip) can detect substrings within the stack trace such
as “ServletRequestlmpl.java” and “weblogic.servlet.inter-
nal.ServletRequestImpl.run” and derive Huffman codes for
the substrings according to how frequently those substrings
occur in the stack trace. To increase the compression ratio,
more frequently occurring substrings may be assigned
shorter Huffman codes. After the first level of compression,
the compressed stack trace may include, as metadata, an
encoding dictionary that can be used to restore the substrings
from the Huffman codes.

The second level may involve applying another level of
compression to the compressed stack trace by replacing
stack segments of the stack trace with segment signatures.
The steps of applying the second level of compression are
discussed in further detail below with respect to FIGS. 4-6.

C. Exemplary Data Structures

Classification signatures may be represented in memory
via one or more object types. In particular, some embodi-
ments may use a ThreadClassificationInfo object to repre-
sent the classification signature of a thread class (i.e., a trace
signature), a SegmentInfo object to represent the classifica-
tion signature of a thread segment (i.e., a segment signature),
a StackFramelnfo object to represent each element in a
linearly connected stack frames within stack segments, and
a SeasonalTrendInfo object to encapsulate and track inten-
sity statistics for a thread class or a thread segment.

Exemplary class/interface definitions that define Thread-
ClassificationInfo objects, Segmentlnfo objects, Stack-
Framelnfo objects, and SeasonalTrendInfo objects are pro-
vided below:

public class ThreadClassificationInfo {
long id;
String name;
short numOfOccur;
short totalNumOfOccur;
short numOfStackFrames;
short numOfCoalescedSegments;
List<SegmentInfo> segments;
Seasonal TrendInfo trend;

public class SegmentInfo extends SegmentInfo {
long id;
String name;
String dimension;
short numOfOccur;
short totalNumOfOccur;
List<StackFrameInfo> elements;
SegmentInfo firstSegment;
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-continued

SegmentInfo secondSegment;
StackSegmentInfo coalescingSegment;
Set<StackSegmentInfo> predecessors;
Set<StackSegmentInfo> successors;
Seasonal TrendInfo trend;
Set<ThreadClassInfo> partOfThreadClasses;

public class StackFramelnfo {
long id;
String name;
short numOfOccur;
short totalNumOfOccur;
Set<StackFramelnfo> predecessors;
Set<StackFramelnfo> successors;
StackSegmentInfo coalescingSegment;
String classMethodLineNumber;

h
public class SeasonalTrendInfo {

List<long> posixTimestampOfMeasurement;
List<short> rawMeasure;

List<double>  rawDeseasonalizedMeasure;
List<double>  smoothedMeasure;

List<double>  smoothedDeseasonalizedMeasure;
double measureFilterConstant;
List<double>  measureWeightFactor;
List<double>  measureFilterParameter;
List<double>  rawGrowthRate;

List<double>  smoothedGrowthRate;

double rateFilterConstant;

List<double>  rateWeightFactor;

List<double>  rateFilterParameter;

List<double>  rawGrowthRateAcceleration;
List<double>  smoothedGrowthRateAcceleration;
double accelerationFilterConstant;
List<double>  accelerationWeightFactor;
List<double>  accelerationFilterParameter;
List<double> rawWeekdaySeasonalFactor;
List<double>  rawWeekendSeasonalFactor;
List<double>  smoothedWeekdaySeasonalFactor;
List<double>  smoothedWeekendSeasonalFactor;
double seasonalFactorFilterConstant;
List<double>  seasonallndexWeightFactor;
List<double>  seasonallndexFilterParameter;
List<double>  errorResidual;

List<double>  smoothedErrorResidual;
List<double>  smoothedAbsoluteErrorResidual;
List<double>  normalizedResidual;
List<double>  normalizedResidualCutoft;

double errorResidualFilterConstant;
List<double>  errorResidualWeightFactor;
List<double>  errorResidualFilterParameter;
List<double>  localGrowthRateForecast;
List<double>  oneSteplntensityForecast;
List<double>  multiStepIntensityForecast;

short forecastHorizon;

double[96] weekdaySeasonalFactor;
double[192] weekendSeasonalFactor;

As can be seen in the above definitions, each ThreadClas-
sificationlnfo object, Segmentlnfo object, and Stack-
Framelnfo object includes a unique identifier (i.e., id), a
name, a counter that tracks the number of times an object of
the same type (e.g., same thread class, same thread segment,
same type of stack frame) was observed in the latest thread
dump (i.e., numOfOccur), and another counter that tracks
the number of times an object of the same type was observed
in all thread dumps.

A ThreadClassificationInfo object can include a list of
SegmentInfo objects and a Seasonal TrendInfo object. In this
regard, the ThreadClassificationlnfo may correspond to a
tuple of binary trees while the list of SegmentInfo objects
corresponds to the nodes making up the binary trees. The
SeasonalTrendInfo object may record intensity statistics
(e.g., a filter state) that pertain to the thread class represented
by the ThreadClassificationInfo object.
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A Segmentlnfo object can include a list of Stack-
Framelnfo objects, a first child SegmentInfo object (i.e.,
firstSegment), a second child SegmentInfo object (i.e., sec-
ondSegment), a coalescing (i.e., parent) Segmentlnfo object
(i.e., coalescingSegment), a list of preceding sibling Seg-
mentlnfo objects (i.e., predecessors), a list of succeeding
sibling Segmentlnfo objects (i.e., successors), and a Sea-
sonalTrendInfo object. In this regard, the Segmentlnfo
object may correspond to a stack segment. If the Seg-
mentlnfo object corresponds to a leaf node, the list of
StackFramelnfo objects may correspond to the linearly
connected stack frames included in the stack segment. If the
SegmentInfo object borders a branch point, the sibling
Segmentlnfo objects may correspond to stack segments on
the opposite side of the branch point while the coalescing
SegmentInfo object may correspond to a parent stack seg-
ment that includes both the stack segment and a sibling stack
segment. If the Segmentlnfo object does not correspond to
a leaf node, the child SegmentInfo objects may correspond
to sub-segments of the stack segment that were created when
a branch point was discovered in the stack segment. The
SeasonalTrendInfo object, may record intensity statistics
pertaining to the thread segment represented by the Seg-
mentlnfo object.

Some embodiments may classify a stack segment of a
stack trace by associating a list of StackFramelnfo objects
that are observed together with a single SegmentInfo node.
In other words, the SegmentInfo node is the coalescing node
of each of the StackFramelnfo objects of the stack segment.
Each StackFramelnfo object may have a single coalescing
Segmentlnfo node. When a branch point is detected some-
where along the linearly connected StackFramelnfo objects
of a SegmentInfo node, some embodiments may create two
new SegmentInfo nodes and split the linearly connected
StackFramelnfo objects into two sets of linearly connected
StackFramelnfo objects among the new SegmentInfo nodes.
It can then reconnect the two StackFramelnfo objects
through a branch point.

Each of the new SegmentInfo nodes become the coalesc-
ing node of the StackFramelnfo objects in its part of the
segment. Certain embodiments can update the coalescing-
Segment of the StackFramelnfo objects correspondingly so
that each StackFramelnfo object refers to the correct
coalescing Segmentlnfo node. The two new Segmentlnfo
nodes are represented as a left sibling node and a right
sibling node. The two new SegmentInfo nodes also become
children of the original Segmentlnfo node, which in turn
becomes their parent. The parent Segmentlnfo node can
become the coalescing node of the two new Segmentlnfo
nodes.

The process of splitting stack segments in response to
discovered branch points can result in a binary tree structure
composed of SegmentInfo nodes. This splitting process can
be seen as bifurcation of a thread class (i.e., a class of stack
traces) into thread sub-classes. Some embodiments can
continually split the stack segments into smaller stack seg-
ments as the intensities of the individual stack frames in the
stack segments diverge over time, thereby enabling one to
drill-down a thread class hierarchy to observe how the
intensity of a thread class can be proportionally attributed to
the intensities of thread sub-classes.

In some embodiments, the SegmentInfo nodes in the
interior of the binary tree are parent nodes whose Stack-
Framelnfo objects are not all linearly connected because
some stack frames are connected through branch points. In
contrast, the StackFramelnfo objects of the leaf Seg-
mentlnfo nodes can be linearly connected. Within a Seg-
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mentInfo node, the linearly connected or branch-point con-
nected StackFramelnfo objects can be oriented as a stack
with a bottom StackFramelnfo and a top StackFramelnfo.
By convention, the top StackFramelnfo object in the left
sibling SegmentInfo node can be connected to the bottom
StackFramelnfo object of the right sibling SegmentInfo
node through a branch point.

Each SegmentInfo node may include a Seasonal TrendInfo
object to track the intensity statistics of the thread (sub-)
class represented by the SegmentInfo node. When splitting
a Segmentlnfo node into two new children SegmentInfo
nodes, some embodiments can clone the Seasonal TrendInfo
object of the Segmentlnfo node into two new Seasonal-
TrendInfo objects and set one SeasonalTrendInfo object in
each of the children SegmentInfo nodes.

Some embodiments provide the ability to replicate the
filter state of a parent Segmentlnfo node to new child
SegmentInfo nodes through the splitting process. In doing
so, some embodiments can continuously track the ratio of
the intensity statistics among the parent and sibling Seg-
mentInfo nodes. In particular, the intensity statistics of the
children SegmentInfo nodes are each initially the same as
that of the parent Segmentlnfo node. However, as new
samples are obtained, the intensity statistics of the children
SegmentInfo nodes may begin to diverge from that of the
parent and from each other. The filter states of the new stack
segments begin to deviate from each other and the filter state
of the original stack segment as the filter states of the new
stack segments are separately updated.

In some cases, intensity statistics among parent and
sibling SegmentInfo nodes can converge to a ratio over time.
Some embodiments can apply the parent-child and sibling
relationships among the Segmentlnfo nodes to define cor-
relation models for multivariate state estimation techniques.
In particular, if the process is stationary, the ratio of the
intensity statistics among the related Segmentlnfo nodes
may converge to a stationary state. In particular, if a process
is strict-sense or wide-sense stationary, the first and second
moments of the joint probability distributions of intensity
statistics among related Segmentlnfo nodes, which may
include the mean, variance, auto-covariance, and cross-
covariance of the related SegmentInfo nodes may not vary
with respect to time. Thus, the ratio of intensity statistics
among the parent and sibling Segmentlnfo nodes can be
expected to converge over time. Thus, by continuously
tracking the intensity statistics of the sibling SegmentInfo
nodes through branch points and determining that the ratio
of intensity statistics among the parent and sibling Seg-
mentInfo nodes converge over time, some embodiments can
use the ratios to define correlation models for multivariate
state estimation techniques. The resulting models can be
used for anomaly detection and generating predictions.

A StackFramelnfo object can include a one or more
preceding StackFramelnfo objects and/or one or more suc-
ceeding StackFramelnfo objects (i.e., predecessors and suc-
cessors), a coalescing Segmentlnfo object (i.e., coalescing-
Segment), and information that identifies code referenced by
the StackFramelnfo object (i.e., classMethodLineNumber).
If the StackFramelnfo object is not adjacent to a branch
point, the StackFramelnfo object can be linearly connected
to a single predecessor stack frame and a single successor
stack frame. The StackFramelnfo object can refer to the
containing Segmentlnfo object by the member variable
coalescingSegment.

When it comes time to process the latest thread dump, the
member variable numOfOccur for every ThreadClassifica-
tionlnfo object, SegmentInfo object, and StackFramelnfo
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object can be reset to 0. Each stack trace obtained from the
thread dump may be parsed from the bottom to the top of the
stack trace. After applying the first level of the Huffman
coding scheme to compress the stack trace, each line of the
stack trace may be parsed into a StackFramelnfo object.
After parsing the list of StackFramelnfo objects into a list of
Segmentlnfo objects, some embodiments may attempt to
match the list of SegmentInfo objects to a ThreadClassifi-
cationlnfo object that contains a matching list of Seg-
mentlnfo objects. If such a ThreadClassificationInfo object
does not exist, some embodiments may register a new
ThreadClassificationInfo object to represent the list of Seg-
mentlnfo objects. Afterwards, some embodiments may then
update the numOfOccur and totalNumOfOccur member
variables of the matching/new ThreadClassificationlnfo
object and each SegmentInfo object and StackFramelnfo
object in the matching/new ThreadClassificationInfo object.
Note that if a SegmentInfo node is a leaf level node, the
numOfOccur member variable of the node will be equiva-
lent to that of each StackFramelnfo element in the Seg-
mentInfo node.

Next, some embodiments can update intensity statistical
measures encapsulated in associated SeasonallrendInfo
objects. In particular, some embodiments may update the
rawMeasure member variables in each SeasonallrendInfo
object by setting the rawMeasure to the numOfOccur mem-
ber variable of the containing ThreadClassificationlnfo
object or SegmentInfo object. Note that in some embodi-
ments, the rawMeasure may only be updated every N thread
dumps, in which case the rawMeasure of a SeasonalTrend-
Info object is set to the corresponding numOfOccur divided
by N. In some embodiments, such embodiments may update
the rawMeasure member variable of a SeasonallrendInfo
object only when the numOfOccur member variable of the
associated ThreadClassificationInfo object or the associated
Segmentlnfo object is not zero. If the numOfOccur member
variable is not zero, then the rawMeasure of the Seasonal-
TrendInfo object is set to the value of numOfOccur divided
by N, where N is the number of thread dumps since the last
update of rawMeasure. In such embodiments, the method
treats the case of when the numOfOccur is zero as if no
measurement is available. In this regard, when no measure-
ment is available, the rawMeasure is not updated. Stated
another way, such embodiments track the number of thread
dumps since the last update of the rawMeasure ‘N’. The
thread intensity measurements may correspond to an irregu-
lar time series. It should be noted that exponential filters for
irregular time intervals (e.g., Holt’s Double Exponential and
Winter’s Triple Exponential Filter, disclosed above) can
effectively filter the rawMeasure to get a de-seasonalized
measure and a seasonal factor from a set of measurements
taken at irregular time intervals.

It should be noted that each SeasonalTrendInfo object can
include time-series data generated by five sets of exponential
filters being applied to each of the following statistical
measurements: the raw measure of thread intensity, the rate
at which the thread intensity is increasing or decreasing, the
acceleration or deceleration of the rate, the seasonal factor
for the thread intensity, and the residual component. Within
a SeasonalTrendInfo object, the states of the five sets of
exponential filters for the variables, the filter constants, filter
parameter adjustment weight factors (to adjust for irregular
time intervals between samples), and filter parameters can be
represented by the time-series data.

D. Exemplary Generation of Classification Signatures

FIG. 3 depicts exemplary thread dumps of a virtual
machine 300 over a period of time, according to some
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embodiments. In contrast with the 100 ms to one second
sampling interval runtime profiling in FIG. 1, the sampling
interval employed by the control system in FIG. 3 may be
longer (e.g., between 20 seconds and one minute) to reduce
sampling overhead. As shown in FIG. 3, within two to three
sampling intervals, processes executing within the virtual
machine 300 spawn the threads 302, 304, 306, 308, 310, and
312. Each of the threads 302-312 are associated with a
separate call stack while executing and can thus produce a
stack trace when a thread dump is taken. FIG. 3 depicts a
total of three thread dumps being taken: thread dump N,
thread dump N+1, and thread dump N+2.

FIG. 3 shows three different types of stack traces being
observed in the order (A,B,D), (A,B,D), (A,C), and (A,B,E)
in three consecutive thread dumps. The stack trace (A,B,D)
is observed twice. Before thread dump N is taken, the thread
302 is spawned and begins executing. When thread dump N
is taken, a stack trace (A,B,D) observed for the thread 302.
It should be noted that even though stack segment A, stack
segment B, and stack segment D have yet to be identified,
for ease of explanation, the names of the stack segments will
be used throughout the example depicted in FIG. 3. As a
sampling interval elapses after thread dump N is taken, the
thread 302 finishes, the thread 304 is spawned and finishes
without ever being sampled while the threads 306 and 308
are spawned. When thread dump N+1 is taken, the thread
308 yields a stack trace (A,B,D) while the thread 310 yields
stack trace (A,C). As another sampling interval elapses after
thread dump N+1 is taken, the threads 306 and 308 finish,
the thread 310 is spawned and finishes without ever being
sampled, and the thread 312 is spawned. When thread dump
N+2 is taken, thread 312 yields stack trace (A,B,E). As can
be seen in FIG. 3, the (A,B,D) thread type is the first type of
thread to be observed and the (A,B.D) thread type has a
higher intensity than the (A,C) or (A,B,E) thread types.

After thread dump N, the control system can register the
single SegmentInfo(A,B,D) node as the classification sig-
nature for the stack trace (A,B,D). The control system may
then associate a SeasonalTrendInfo(A,B,D) object with the
SegmentInfo(A,B,D) node and update the state encapsulated
by the node:

SegmentInfo(A,B,D).numOfOccur = 1.
SegmentInfo(A,B,D).totalNumOfOccur = 1.

FIG. 4 depicts a set of classification signatures 400
including a single classification signature 450 that has been
registered in response to the stack trace (A,B.D). As can be
seen in FIG. 4, the classification signature 450 includes a
single node 402 that corresponds to SegmentInfo(A,B,D),
where Segmentlnfo(A,B,D) is shown to be the coalescing
node of all stack frames al-d3 of the stack trace.

When stack trace (A,B,D) is observed again in thread
dump N+1, the control system may update the SegmentInfo
(A,B,D) node as follows:

SegmentInfo(A,B,D).numOfOccur = 1.
SegmentInfo(A,B,D).totalNumOfOccur = 2.

When stack trace (A,C) is observed for the first time in
thread dump N+1, the control system determines that the
entire set of stack frames within the stack segment (A,B,D)
are no longer linearly connected. A branch point now exists
between the last stack frame (e.g., going from top to bottom
of the stack trace) of the set of stack frames represented by
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‘A’ and the first stack frame of the set of stack frames
represented by ‘B,D’ because, in any given stack trace, the
next stack frame that follows the last stack frame could be
(1) the first stack frame of (B,D) or (2) the first stack frame
of the set of stack frames represented by ‘C’. Thus, the
control system may split the stack segment (A,B,D) into
stack segment (A) and stack segment (B,D) by creating the
nodes SegmentInfo(A) and SegmentInfo(B,D) and assign-
ing the two nodes to be children of Segmentlnfo(A,B,D).
For stack trace (A,C), the control system may initialize stack
segment (C) by creating the node Segmentlnfo(C) and
register an ordered tuple including Segmentlnfo(A) and
SegmentInfo(C) as the classification signature for the stack
trace (A,C).

In some embodiments, the control system may clone the
SeasonalTrendInfo(A,B,D) object into SeasonalTrendInfo
(A) and SeasonalTrendInfo(B,D) objects for the nodes Seg-
mentlnfo(A) and Segmentlnfo(B,D), respectively, and cre-
ate a new SeasonalTrendInfo(C) for Segmentlnfo(C) as
follows:

SeasonalTrendInfo(A) < SeasonalTrendInfo(A,B,D)
SeasonalTrendInfo(B,D) < SeasonalTrendInfo(A,B,D)
Seasonal TrendInfo(C) <— new SeasonalTrendInfo

The control system may also update the above Seg-
mentlnfo nodes as follows:

SegmentInfo(A).numOfOccur = 2
SegmentInfo(A).total NumOfOccur = 3
SegmentInfo(C).numOfOceur = 1
SegmentInfo(C).totalNumOfOceur = 1

FIG. 5 depicts a set of classification signatures 500
including the classification signature 450 and a new classi-
fication signature 550 that was generated in response to
observing stack trace (A,C) for the first time. As can be seen
in FIG. 5, the classification signature 450 now includes three
nodes: node 402, nodes 502, and node 504. Node 402
corresponds to SegmentInfo(A,B,D), which is the coalesc-
ing node of node 502 and node 504. Node 502 corresponds
to SegmentInfo(A), which coalesces stack frames al-a3.
Node 504 corresponds to Segmentlnfo(B,D), which
coalesces stack frames b1-d3. The classification signature
550 includes two nodes: node 506, which corresponds to
SegmentInfo(A) shown to coalesce stack frames al-a3, and
node 508, which corresponds to SegmentInfo(C) shown to
coalesce stack frames c1-c3.

When stack trace (A,B,E) is observed for the first time in
thread dump N+2, the control system determines that the
entire set of stack frames within the stack segment (B,D) are
no longer linearly connected. A branch point now exists
between the last stack frame of the set of stack frames
represented by ‘B’ and the first stack frame of the set of stack
frames represented by ‘D’ because, in any given stack trace,
the next stack frame that follows the last stack frame could
be (1) the first stack frame of (D) or (2) the first stack frame
of the set of stack frames represented by ‘E’. Thus, the
control system may split the stack segment (B,D) into stack
segment (B) and stack segment (D) by creating the nodes
SegmentInfo(B) and SegmentInfo(D) and assigning the two
nodes to be children of SegmentInfo(B,D). For stack trace
(A,B,E), the control system may initialize stack segment ‘E’
by creating the node SegmentInfo(E) and register an ordered
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tuple including SegmentInfo(A), SegmentInfo(B), and Seg-
mentInfo(E) as the classification signature for the stack trace
(A,B,E).

In some embodiments, the control system can clone the
SeasonalTrendInfo(B,D) object into SeasonalTrendInfo(B)
and Seasonal TrendInfo(D) objects for the nodes SegmentIn-
fo(B) and Segmentlnfo(D), respectively, and create a new
SeasonalTrendInfo(E) for SegmentInfo(E) as follows:

SeasonalTrendInfo(B) < SeasonalTrendInfo(B,D)
SeasonalTrendInfo(D) < SeasonalTrendInfo(B,D)
SeasonalTrendInfo(E) < new SeasonalTrendInfo

The control system may also update the above Seg-
mentInfo nodes as follows:

SegmentInfo(A).numOfOccur = 1
SegmentInfo(A).totalNumOfOccur = 4
SegmentInfo(B).numOfOccur = 1
SegmentInfo(B).totalNumOfOccur = 3
SegmentInfo(E).numOfOccur = 1
SegmentInfo(E).totalNumOfOccur = 1

FIG. 6 depicts a set of classification signatures 600
including the classification signatures 450 and 550 and a
new classification signature 650 that was generated in
response to the stack trace (A,B,E). As can be seen in FIG.
6, the classification signature 450 now includes five nodes:
node 402, node 502, node 504, node 602, and node 604.
Node 504 corresponds to SegmentInfo(B,D), which is the
coalescing node for node 602 and node 604. Node 602
corresponds to Segmentlnfo(B), which coalesces stack
frames b1-b3. Node 604 corresponds to SegmentInfo(D),
which is the coalescing node for stack frames d1-d3. The
classification signature 550 has not changed. The classifi-
cation signature 650 includes three nodes: node 606, which
corresponds to Segmentlnfo(A) shown to coalesce stack
frames al-a3, node 608, which corresponds to SegmentInfo
(B) shown to coalesce stack frames b1-b3, and node 610,
which corresponds to SegmentInfo(E) shown to coalesce
stack frames el-e3.

As shown in FIG. 6, the classification signature for the
stack trace (A,B,D) can be comprised of a single Seg-
mentInfo node at the root of the classification signature 450.
In other words, stack trace (A,B,D), which is the highest
intensity stack trace, has the most compact representation.
Meanwhile, stack trace (A,C) is assigned the second shortest
classification signature with the two ordered nodes (A) and
(C). Stack trace (A,B,E), which was detected last, is
assigned the third shortest classification signature with the
three ordered nodes (A), (B), and (E). As shown in FIGS.
4-6, a ThreadClassificationInfo object may correspond to a
tuple of SegmentInfo nodes and a Segmentlnfo node may
refer to binary trees (or sub-trees that are binary) of other
SegmentInfo nodes and/or sets of StackFramelnfo objects.
Together, the ThreadClassificationInfo objects, SegmentInfo
nodes, and the StackFramelnfo objects may constitute the
production grammar:

Threadl —> (A,B,D)
Thread2 —> (A)(C)
Thread3 —> (A)(B)(E)
(A,B,D) > (A)(B,D)
B.D) -> B)D)

A ->al,a2,a3
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-continued

B —> bl1,b2,b3
C —>cl,e2,e3
D ->d1,d2,d3
E ->el,e2,e3

As can be seen above, the individual stack frames ai, bi,
ci, di, ei are terminals while the SegmentInfo nodes are
non-terminals of the grammar. Some embodiments can parse
the stack frames of a stack trace from the bottom of the stack
trace to the top of the stack trace (oriented as left to right in
the following notation).

al,a2,a3,b1,b2,b3,d1,d2,d3
(A),b1,b2,b3,d1,d2,d3
(A),(B),d1,d2,d3
(A),(B),(D)

use production (A) —> al,a2,a3
use production (B) —> b1,b2,b3
use production (D) —> d1,d2,d3

(A),(B,D) use production (B,D) —> (B)(D)
(A,B,D) use production (A,B,D) —> (A),(B,D)
Threadl use production Threadl —> (A,B,D)

As can be seen above, some embodiments can analyze the
stack frames via bottom-up syntax analysis, which may be
similar to shift-reduce parsing or left to right “LLR” parsing.
The analysis can involve shifting and reducing the stack
frames and SegmentInfo nodes to construct a parse tree for
the stack trace by working from the leaves to the root of the
tree. Some embodiments can synthesize the parse tree for an
earlier occurrence of the stack traces of a thread and analyze
the stack traces of another occurrence of the thread by
reducing (i.e., shift-reduce parsing, left to right “LLR” pars-
ing) to the same parse tree. Each node of the classification
tree can be a compact label for a class of stack traces and the
root of the classification tree can be a compact label for a
class of threads.

FIG. 7 illustrates a flowchart 700 of a process for gener-
ating and/or modifying one or more thread classification
signatures in response to a thread dump according to some
embodiments. In some embodiments, the process depicted in
flowchart 700 may be implemented by a computer system
with one or more processors (e.g., computer system 1700 of
FIG. 17) where the one or more processors can execute the
steps based on computer code stored in a computer-readable
medium. The steps described in FIG. 7 can be performed in
any order and with or without any of the other steps.

Flowchart 700 begins at step 702, where embodiments
perform a thread dump during an execution of a multi-
threaded program. In particular, some embodiments may
correspond to one or more monitoring processes that moni-
tor a software execution environment in which the multi-
threaded program executes. The software execution envi-
ronment may support a plurality of multi-threaded processes
that include the multi-threaded program. In some cases, the
software execution environment may be a virtual machine
that supports the taking of thread dumps. In some embodi-
ments, one or more monitoring processes may execute
within the virtual machine alongside the multi-threaded
program. In some embodiments, the one or more monitoring
processes may execute separately from the virtual machine
on the same set of machines or on a different set of
machines. The one or more monitoring processes may
periodically initiate a thread dump of the virtual machine.
For a particular thread dump, stack traces may be obtained
for each thread that is executing on behalf of the (e.g.,
spawned by) the multi-threaded program at the time the
particular thread dump is taken.
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At step 704, embodiments receive a stack trace for each
thread that was executing during the thread dump. The stack
trace for a particular thread may correspond to one or more
lines of text that describe the thread’s call stack. Each line
within the stack trace corresponds to a particular stack frame
on the thread’s call stack and may describe the code block
associated with the stack frame. In some embodiments, the
stack frame may include a source code file and line number
that points to the code block and a class name and/or method
name associated with the code block.

At decision 706, embodiments determine whether another
stack trace needs to be analyzed. If not, the flowchart ends
at step 716. In particular, once all of the stack traces of a
thread dump have been analyzed by the one or more
monitoring processes, some embodiments may update inten-
sity statistics encapsulated by one or more objects in
memory. For example, member variables of one or more
SeasonalTrendInfo objects (e.g., rawMeasure, raw-
DeseasonalizedMeasure, smoothedWeekdaySeasonalFac-
tor, and/or smoothedWeekendSeasonalFactor) may be
updated based on what sort of stack traces are obtained from
the thread dump.

Otherwise, at step 708, embodiments determine whether
an existing trace signature represents the sequence of stack
frames included by the stack trace. In particular, some
embodiments may use, as a production grammar, an existing
set of classification signatures that have been built up based
on the stack frames received from previous thread dumps to
determine whether the sequence of stack frames can be
represented by one of the existing signatures. This may
involve one or more shift-reduce operations where portions
of the stack trace are collapsed into leaf SegmentInfo nodes
and the Segmentlnfo nodes themselves are collapsed into
coalescing nodes. If the shift-reduce operations results in an
ordered-tuple that is registered as a classification signature,
that classification signature represents the sequence of stack
frames included by the stack trace.

At decision 710, if such a trace (i.e., classification)
signature exists, the flowchart proceeds to step 714. Other-
wise, at step 712, embodiments generate a new trace signa-
ture that represents the sequence of stack frames included by
the stack trace. In other words, a branch point within a set
of stack frames that were thought to be linearly connected
has been discovered. Some embodiments may then generate
one or more SegmentInfo nodes, modify one or more binary
trees, and/or modify one or more ordered tuples to generate
a new classification signature that represents the set of
(formerly) linearly connected stack frames included by the
stack trace. The technique of generating the new classifica-
tion signature is described in further detail below with
respect to FIG. 8.

At step 714, embodiments increment a counter associated
with the trace signature before returning to decision 706. In
particular certain counters that are members of ThreadClas-
sificationInfo objects, SegmentInfo objects, and/or Stack-
Framelnfo objects (e.g., numOfOccur and/or totalNumOfO-
ccur) may be incremented to track the number of stack
traces, stack segments, and stack frames by type as they are
received and discovered.

FIG. 8 illustrates a flowchart 800 of a process for gener-
ating or modifying a thread classification signature in
response to detecting a branch point according to some
embodiments. In some embodiments, the process depicted in
flowchart 800 may be implemented by a computer system
with one or more processors (e.g., computer system 1700 of
FIG. 17) where the one or more processors can execute the
steps based on computer code stored in a computer-readable
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medium. The steps described in FIG. 8 can be performed in
any order and with or without any of the other steps.

Flowchart 800 begins at step 802, where embodiments
determine whether one or more Segmentlnfo nodes have
been previously generated. If so, the flow chart proceeds to
step 804. Otherwise, the flowchart proceeds to step 814.
Unless the stack trace currently being analyzed is the first
stack trace received for the data set, the set of classification
signatures will likely contain one or more classification
signatures previously generated for prior stack traces, where
the classification signatures include SegmentInfo nodes.
Because types of stack traces received from the same
process are likely to share stack segments with each other,
any type of stack trace received for the first time will likely
result in the discovery of branch points.

At step 804, embodiments determine one or more subse-
quences of stack frames included in the sequence of stack
frames included by the stack trace that are not represented by
any previously generated node. In particular, some embodi-
ments may consult existing classification signatures and
SegmentInfo nodes while attempting to compress the
sequence of stack frames contained by the stack trace
through a series of shift-reduce operations. Any subse-
quences of stack frames of the sequence that cannot be
reduced may be determined to be a new type of stack
segment. In this case, some embodiments may determine
that a SegmentInfo node that represents the new type of
stack segment needs to be generated.

At step 806, embodiments generate one or more addi-
tional nodes to represent the one or more subsequences of
stack frames. In particular, a new StackFramelnfo object
may be generated for each stack frame included in the new
type of stack segment. A new SegmentInfo node that cor-
responds to the new type of stack segment may be generated,
where the new SegmentlInfo node refers to each of the new
StackFramelnfo objects.

At step 808, embodiments incorporate at least one of the
one or more additional nodes into one or more previously
generated binary trees of one or more previously generated
tuples. One or more binary trees of one or more existing
classification signatures may be modified and/or expanded
to account for the newly discovered branch point. In cases
where a stack segment represented by a leaf Segmentlnfo
node of an existing binary tree is split by the new branch
point, that leaf node may become the coalescing node of two
new leaf SegmentInfo nodes.

At step 810, embodiments generate one or more addi-
tional binary trees, wherein at least one or more the one or
more binary trees include at least one of the one or more
additional nodes. In many cases, the one or more additional
binary trees may be single level trees having a single node.
One of the newly generated binary trees may include the
new SegmentInfo node generated in step 806.

At step 812, embodiments generate an additional tuple
that includes the one or more additional binary trees to
represent the stack trace. The additional tuple may corre-
spond to the classification signature that represents the
newly discovered type of stack trace. Some tuples may be
ordered sets of single-level binary trees that each contain a
single node and may look similar to a list of nodes. Other
tuples may correspond to a single multi-level binary tree.
Still yet other tuples may include single-level binary trees
and multi-level binary trees in combination. In general, as
more and more types of stack traces are discovered, each
subsequent classification signature that is generated may
correspond to longer and longer ordered tuples. However,
because common types of stack traces are more likely to be
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encountered first, the longer classification signatures are
more likely to represent stack traces that occur less often.
This may ensure that a higher percentage of stack traces are
compressed into shorter classification signatures. After step
812, the flowchart ends at step 820.

At step 814, embodiments generate a tuple that includes
a single binary tree that includes a single node to represent
the stack trace. Because no Segmentlnfo nodes have been
found, the currently analyzed stack trace is likely to be the
first. As a result, some embodiments may generate a clas-
sification signature that corresponds to a single binary tree
with only one SegmentInfo node. After step 814, the flow-
chart ends at step 820. As different types of stack traces as
encountered in the future, the binary tree may be expanded
with new SegmentInfo nodes to represent newly encoun-
tered branch points.

IV. Heap Usage Measurements at Irregular Time Intervals

Some embodiments may have the control system monitor
the time series data for heap allocation (i.e., heap usage) to
estimate trends and to forecast future memory usage within
a virtual machine. By detecting seasonal trends and fore-
casting the memory capacity requirements, some embodi-
ments can dynamically reallocate shared system memory
among virtual machines, thereby enabling elasticity in
resource allocation. Forecasting of capacity requirements
may involve the estimation of the heap’s growth rate. To
ensure sample accuracy, heap allocation measurements may
be taken during full garbage collection (GC) cycles, which
occur at irregular time intervals. Estimation of heap growth
rate may involve division by random time intervals which is
complicated by the irregular time intervals that intermit-
tently get arbitrarily close to zero. The noise in growth rate
measurement is a ratio of two Gaussian distributions yield-
ing a Cauchy distribution, which can be hard to filter. The
mean and standard deviation of the Cauchy distribution are
undefined in the sense that a large number of data points do
not yield more accurate estimate of the mean and standard
deviation than does a single data point. Increasing the pool
of samples can increase the likelihood of encountering
sample points with a large absolute value corresponding to
division by a time close interval.

It should be noted that, unlike heap size measurements
whose sampling intervals are irregular due to the irregularity
of full GC cycles, the thread intensity measurements can be
sampled at regular intervals to avoid time-close intervals.
Even so, the same techniques described herein for trending
of heap allocation can be applied to seasonal trending and
forecasting of thread and stack segment intensity measure-
ments. In some embodiments, the techniques can adjust for
variable latencies due to the CPU scheduling of the threads
and the interference of the full GC cycles. The techniques
can also adjust for the variable sampling intervals due to the
variable computation time required to classify the stack
segments. In situations where a particular thread or stack
segment has not been observed in a thread dump, some
embodiments may leave the numOfOccur member variable
of the associated ThreadClassificationlnfo object or the
associated SegmentInfo object as zero, which may indicate
that no measurement for the particular thread or stack
segment is available. Such embodiments may not update the
rawMeasure variable of a SeasonalTrendInfo object. Such
embodiments may update the rawMeasure member variable
of a SeasonalTrendInfo object only when the numOfOccur
member variable of the associated ThreadClassificationInfo
object or the associated SegmentInfo object is not zero. Such
embodiments may track the number of thread dumps ‘N’
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since the last update of the rawMeasure. The thread intensity
measurements may correspond to a series with irregular time
intervals.

A Holt-Winter triple exponential filter, published in 1957
and 1960, can be used for seasonal trending and forecasting.
C. C. Holt, “Forecasting Trends and Seasonal by Exponen-
tially Weighted Averages,” Office of Naval Research Memo-
randum, no. 52 (1957) is incorporated by reference herein.
P. R. Winters, “Forecasting Sales by Exponentially Weighted
Moving Averages,” Management Science, vol. 6, no. 3, p.
324-342 (1960) is incorporated by reference herein. Wright
extended the Holt-Winter formulae in 1986 to support
irregular time intervals. D. J. Wright, “Forecasting data
published at irregular time intervals using an extension of
Holt’s method,” Management Science, vol. 32, no. 4, pp.
499-510 (1986) is incorporated by reference herein. In 2008,
Hanzak proposed an adjustment factor for time-close inter-
vals. T. Hanzak, “Improved Holt Method for Irregular Time
Series,” WDS’08 Proceedings Part I, pp. 62-67 (2008) is
incorporated by reference herein.

The adjustment factor for time close intervals, which is
meant to compensate for higher relative intensity of noise
due to a random time-close interval in the rate estimate, can
inadvertently dampen the rate of change estimates if the time
interval decreases monotonically during a congestion caused
by memory leaks or deadlocks. Non-linear or polynomial
time complexity of full GC algorithms can result in decreas-
ing thread runtime intervals as congestion worsens. In case
of memory leaks, as the time interval decreases, the run time
can decrease but the measurement time can increase because
the virtual machine can be frozen longer due to full GCs
being performed more often. If the virtual machine is frozen
during a full GC, new requests can be queued up outside the
virtual machine. The backlog can accelerate the rate of
change of the heap usage during the subsequent run time. In
some embodiments, Hanzak’s adjustment for time-close
intervals is used for trending and forecasting of heap allo-
cation and to track the accelerating heap growth rate.

In an embodiment of the invention, Holt-Winter triple
exponential filter can be applied for seasonal trending and
forecasting of heap usage to efficiently achieve elasticity in
memory allocation. The standard Holt-Winter triple expo-
nential filter, which can be applied to demand forecasting
from regular time series, can be specially adjusted to work
for the random time intervals with irregular time-close
intervals. Embodiments of the invention can apply the
Wright formula for irregular time intervals and Hanzak’s
adjustment for time-close intervals for trending and fore-
casting of heap allocation. A non-trivial selection of a
structure of the filters suitable for the irregular time intervals
resulting from full GCs can be performed. The structure of
the Holt-Winter-Wright-Hanzak filters can be derived from
first principles to systematically devise the adaptations to
match the time series generated by full GC cycles.

In some embodiments, formulae for exponential moving
averages are applied to smooth out time-series data, locally
linear trend, seasonal trend, error residual of forecast, and
absolute deviation of forecast for monitoring and forecasting
of resource utilization measures such as heap memory usage
and thread intensity. In some embodiments, the formulae can
be based on Brown’s exponential filter proposed in 1956,
Holt’s double exponential filter proposed in 1957, Winters’
triple exponential filter proposed in 1960, Wright’s exten-
sion for irregular time intervals proposed in 1986, Hanzak’s
adjustment factor for time-close intervals proposed in 2008,
and outlier detection and clipping. The following publica-
tions are included by reference herein: R. G. Brown, “Expo-
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nential Smoothing for Predicting Demand,” Cambridge,
Arthur D. Little Inc. (1956), p. 15; C. C. Holt, “Forecasting
Trends and Seasonal by Exponentially Weighted Averages,”
Office of Naval Research Memorandum, no. 52, (1957); P.
R. Winters, “Forecasting Sales by Exponentially Weighted
Moving Averages,” Management Science, vol. 6, no. 3, p.
324-342, (1960); D. J. Wright, “Forecasting data published
at irregular time intervals using an extension of Holt’s
method,” Management Science, vol. 32, no. 4, pp. 499-510
(1986); T. Hanzak, “Improved Holt Method for Irregular
Time Series,” WDS’08 Proceedings Part I, pp. 62-67 (2008);
and S. Maung, S. W. Butler and S. A. Henck, “Method and
Apparatus for process Endpoint Prediction based on Actual
Thickness Measurements,” U.S. Pat. No. 5,503,707 (1996).
V. Correlating Thread Intensity and Heap Usage

Various embodiments provide techniques for identifying
heap-hoarding stack traces (i.e., classes of threads) within
multi-threaded applications by correlating trends between
intensity statistics of various classes of threads spawned by
the application and heap usage statistics. In doing so, some
embodiments may identify, based on heap usage statistics,
seasons where high heap usage tends to be high (i.e., high
heap usage seasons) within a time period during which one
or more multi-threaded applications are executing within a
software execution environment. As explained above, some
embodiments may then identify and collect intensity statis-
tics for multiple classes of threads through the analysis of
thread dumps obtained from the software execution envi-
ronment in the same time period of the high heap usage
seasons. Some embodiments may then identify “heap-hoard-
ing” classes of threads (i.e., heap hoarding stack traces) from
amongst the identified classes of threads by ranking the
classes of threads by the degree of correlation between their
intensity statistics and the high heap usage trends.

Some embodiments may refer to such classes of threads
as heap-hoarding because there is a high probability that the
code being executed by such threads is inefficient in terms
of heap memory usage. Stated another way, erroneously
written code and/or unoptimized code executed by these
threads may cause the threads to hoard a large amount of
heap memory, thereby contributing significantly to the high
heap usage trend.

It should be noted that such memory hotspots are impor-
tant from the perspective of operating cloud-based services
over long periods of time in a production environment.
Accordingly, by enabling the continuous detection and miti-
gation of such hotspots, some embodiments may directly
impact the operational efficiency of the cloud services. It
should also be noted that such embodiments may be advan-
tageous over using memory profiler tools to profile such
applications because such tools may add too much overhead
to the application. Accordingly, memory profiler tools may
not be practical for continuously profiling an application that
is executing in a production environment.

A. Inefficient Heap Usage in Code

One common cause of inefficient memory usage is due to
local variables defined in the stack frames of a thread. In
general, when a running thread instantiates an object, that
object occupies heap memory until the number of stack
frames that refer (directly or indirectly) to the object falls to
zero, at which point the heap memory is freed at the next
garbage collection. Accordingly, local variables that refer-
ences large objects from stack frames that remain active over
a long period of time may inadvertently contribute signifi-
cantly to heap memory usage because they don’t allow the
objects to be garbage collected.
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Some embodiments suppose that a fraction ‘p’ of the total
heap usage ‘G’ bytes can be attributed to a class of threads
‘C’. Further, some embodiments may also suppose that the
average heap usage among this class of threads ‘C’ (i.e.,
heap usage per thread) is ‘M’ bytes. In this instance, let “T .’
denote the expected number of threads of the class of threads
‘C’. The following relation gives ‘T.’, which is defined as
the thread intensity in the statistical model:

In response to identifying heap-hoarding classes of
threads, certain embodiments may report (e.g., via a notifi-
cation or an alert) the classes of threads to developers,
performance engineers, and other relevant personnel. As a
result, code associated with such types of threads may be
subject to detailed code review and code profiling. In some
cases, certain associated stack frames may be inspected. For
example, an investigation may involve taking a heap dump
during the time when the heap usage is near a seasonal peak
to inspect the stack frames included in the stack traces of
heap-hoarding threads. The stack frames can contain the
local variables referencing the objects contributing to the
high heap usage (e.g., objects occupying large amounts of
heap memory). This kind of code inspection and optimiza-
tion can be done by visual code review, automatic code
review, profiling of the identified threads, just-in-time com-
piler optimization, dynamic byte-code injection, or combi-
nations of these techniques. In some embodiments, heap-
hoarding classes of threads may be reported to other
automatic code optimization tools to leverage their code
optimization functionalities.

Some embodiments may automatically redesign or
rewrite application code to make its usage of memory more
efficient. For example, some embodiments can automati-
cally rewrite code so that local variables release large objects
as soon as possible without changing the behavior or cor-
rectness of the application. In some cases, this may involve
deep analysis of the code paths involved in the heap-
hoarding threads.

For example, consider the following code:

fileOS.write(buffer.toString( ).getBytes( ));

Some embodiments may determine that the above code is
inefficient with respect to memory usage because three
objects: buffer, buffer.toString( ), and buffer.toString( ).get-
Bytes( ), are held by local variables in a stack frame of a
heap-hoarding thread. In particular, the local variables pre-
vent the three objects from being garbage collected while the
thread is blocking in a file system call.

Some embodiments can modity the code as shown below
so that at least two objects: buffer and buffer.toString( ), can
be garbage collected while the thread is blocking in a file
system call:

String templ = buffer.toString( );

buffer = new StringBuffer( ); // allow garbage collection of the old buffer
byte[ ] temp2 = templ.getBytes( );

templ = null; // allow garbage collection of the string
fileOS.write(temp2); // this is a blocking call

temp2 = null; // allow garbage collection of the bytes array

Some embodiments can use non-intrusive ways to inspect
the stack frames of the heap-hoarding stack traces.
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B. Initializing Seasonal Factors for Weekday and Week-
end Periods

To identify the heap-hoarding stack traces, some embodi-
ments may (1) identify the high heap usage seasons by
estimating the seasonal trends of heap usage statistics of the
execution environment and (2) estimate, for each of one or
more classes of threads, the seasonal trends of the thread
intensity statistics of the class of threads. Some techniques
for determining the seasonal trends of the heap usage
statistics and the seasonal trends of the thread intensity
statistics, for regular or irregular time intervals, are disclosed
in the patent application Ser. Nos. 14/109,578, 14/109,546,
and 14/705,304, which are herein incorporated by reference
for all purposes.

To determine a seasonal trend of a statistic, the period and
intervals to which the seasonal trend is mapped may be
defined. In particular, a period can be partitioned into a
plurality of non-overlapping intervals. Each interval of the
period can be associated with a seasonal index. For example,
if the period is a day and the interval is an hour, then there
should be 24 seasonal indices to cover the period. As another
example, if the period is a year and the interval is a month,
there should be 12 seasonal indices.

Some embodiments can model the weekdays, weekends,
and holidays as separate periods. If the weekday and week-
end periods are separated, then there can be 5 cycles of the
weekday periods interleaved with 1 cycle of the weekend
period such that after processing 5 consecutive weekday
periods, a single weekend period is processed. Accordingly,
the frequency of the consecutive weekday periods will be
one weekday period every 24 hours while the frequency of
the weekend period will be one weekend period every 7
days. In embodiments where the individual holidays (e.g.,
the Christmas and New Year Holidays) are modeled as
separate periods, the frequency of a particular holiday period
is once a year.

A seasonal index can be a multiplicative seasonal factor or
an additive seasonal term that is applied to the interval
associated with the seasonal index. For example, in an
embodiment that represents seasonal indices using multipli-
cative seasonal factors, if the interval ‘9-10 AM’ is associ-
ated with a seasonal factor of 1.3, then any measurement
sampled during the 9-10 AM interval can be adjusted higher
by 30% (i.e., multiplied by 1.3). In embodiments where
seasonal indices are represented by additive seasonal terms,
the additive seasonal terms are added to measurements.

A season classifies a set of intervals by some criteria. For
example, given a period of one year, the 12 intervals
January, Feburary, March, April, May, June, July, August,
September, October, November, and December can be clas-
sified into four northern meteorological seasons as follows:

December, January, and February are classified as the
winter season.

March, April, and May are classified as the spring season.

June, July, and August are classified as the summer
season.

September, October, and November are classified as the
fall season.

Some embodiments may partition weekday periods into
96 15-minute intervals. In this regard, 96 seasonal indices
are derived, where each of the 96 weekday seasonal indices
(i.e., weekday factors) maps to a different one of the 96
weekday intervals. Similarly, some embodiments may par-
tition weekend periods into 192 15-minute intervals, thereby
deriving 192 seasonal indices with each of the 192 weekend
seasonal indices (i.e., weekend factors) mapping to a dif-
ferent one of the 192 weekend intervals.
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In order to separate out seasonal patterns of the weekday
periods and those of the weekend periods, certain embodi-
ments may apply multi-period trending filters to the week-
day periods separately from applying such filters to the
weekend periods. Some embodiments may then renormalize
the weekday factors and the weekend factors so that a
seasonal factor of 1 represents a common reference level for
both the weekday periods and the weekend periods. As a
result, a seasonal factor that is larger than 1 may represent
a higher than average heap usage during an interval to which
the seasonal factor applies. Meanwhile, another seasonal
factor that is smaller than 1 may represent a lower than
average heap usage during another interval to which the
other seasonal factor applies.

In some embodiments, techniques for multi-period trend-
ing can be extended to separate out holidays (e.g., Labor
Day, Christmas Day, New Year’s Day, etc.) as separate
periods, where holidays periods repeat with a frequency of
once every 12 months. Meanwhile, the weekday period
repeats with a frequency of once every 24 hours and the
weekend period repeats with a frequency of once every 7
days. In such embodiments, the seasonal factors for holiday
periods, the seasonal factors for the weekday periods, and
the seasonal factors for the weekend periods may all be
renormalized together so that a seasonal factor of 1 repre-
sents a common reference level for weekday periods, week-
end periods, and holiday periods.

Given a period (e.g., a weekday period, a weekend period,
or a holiday/one-year period, etc.), let P denote the number
of cycles of the period covered by a given measurement
dataset (e.g., a time series of heap usage measurements
spanning a particular period of time) and let K denote the
number of intervals within the number of periods covered by
the given data set. If L. denotes the number of seasonal
indices in a period, then K=P*L.. For example, if there are at
least 3 years of data within the dataset, a period corresponds
to a year, and an interval corresponds to a month, then the
number of available cycles P of the period is 3 and the
number of available monthly intervals is 36.

Some embodiments may calculate the average heap usage
for each interval of the period based on data spanning
multiple cycles of the period. In particular, some embodi-
ments may enumerate the intervals from 0 to (K-1) and
calculate an average heap usage for each of the enumerated
intervals X, using the following formula:

k=0, 1,...,K-1; N, is the number of samples in the interval
k; and t, is the time of the sample number i in the interval k

Some embodiments may also calculate the average heap
usage of each cycle of the period based on the data spanning
multiple cycles of the period. In particular, some embodi-
ments may enumerate the cycles of the period from 0 to
(P-1) and calculate an average heap usage for each of the
enumerated cycles D of the period using the following
formula:

1
Dp:N—p;x,‘.,p:O, 1,... ,P-1;
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N,, is the number of samples in the cycle p of the period; and
t, is the time of the sample number i in the cycle p of the
period

To initialize the seasonal factors of a period, some
embodiments may compute the seasonal factors for each of
the seasonal indices S, in the period using the following
formula:

_ 1
Si= F(fl/Do + XL/ Dy +Xpur/ Dy + oo + Xpe ot/ Dp-1)s

[=0,1,... ,L-1

In particular, a seasonal factor for a particular interval
may be equal to the ratio of the average heap usage of that
interval across the entire dataset (calculated by averaging the
average heap usage of all of the same intervals (e.g., all 9-10
AM intervals) in the entire dataset (e.g., a dataset that spans
an entire week) and the average heap usage of the period
across the entire dataset.

C. Renormalization

As mentioned above, some embodiments may renormal-
ize the weekday seasonal factors and the weekend seasonal
factors so that a seasonal factor of ‘1’ represents a common
reference level for both weekday periods and weekend
periods.

In general, certain embodiments may perform renormal-
ization by computing a weighted average of seasonal factors
across all periods and dividing each of the seasonal factors
by the weighted average. Consider the following example
involving the seasonal indices of multiple periods of differ-
ing lengths, where each period is partitioned into 15 minute
intervals:

seasonal indices for a weekday: D,, i=1, 2, . . . 96

seasonal indices for a weekend: E,, i=1, 2, . . ., 192

seasonal indices for 10 individual holidays: H,,, i=
1,2,...,96;k=1,2,...10

Suppose that in a particular year, there are 253 weekdays
(excluding holidays), 50.5 weekends, and 10 holidays,
where 253+50.5%2+10=364 days. In this example, some
embodiments may use the following formula to calculate the
weighted average ‘A’ of the seasonal factors, where the
weights are proportional to the number of cycles of each
period (e.g., the weekday period, the weekend period, and 10
individual holiday periods) in a year.

192 10 86

A= 32—4 2532 D; +50.5; E + 102211“

k=1 i=1

Some embodiments can derive the new renormalized
seasonal factors for each period by dividing each seasonal
factor D,, E,, and H, , by A.

Returning to the steps for identifying the heap-hoarding
stack traces, after initializing the seasonal indices S, using
the above formulae, some embodiments can renormalize the
weekday and weekend factors by dividing each weekend
factor B, and each weekday factor C, by a normalization
factor as follows:

=~

~1

1 [K—l
[ B, +5 E‘,]
K +5L é

[

I
=3



US 10,534,643 B2

29

After renormalization of the weekday and weekend sea-
sonal factors, a seasonal factor of 1 should represent a
common reference level for both weekday factors and
weekend factors.

D. Smooth-Spline Fitting

As mentioned above, some embodiments may fit a
smooth-spline across multiple periods to provide smooth
transitions between the cycles of a period (e.g., between two
weekday periods) or between the cycles of two adjacent
periods (e.g., between a weekday period and a weekend). In
particular, fitting a spline can involve concatenating the
seasonal indices of one or more periods to smooth transi-
tions between the periods.

In general, when certain embodiments (e.g., a filter) reach
the end of the cycle of a period A, and begin a new cycle of
the period A, such as when repeating the weekday cycles at
the transition from a Monday to a Tuesday, a Tuesday to a
Wednesday, a Wednesday to a Thursday, and a Thursday to
a Friday, such embodiments can concatenate three
sequences of the seasonal indices A, and fit the smooth-
spline across the whole sequence. Some embodiments may
then take the middle segment of the smoothed sequence to
represent the new smoothed seasonal indices A,.

When certain embodiments (e.g., a filter) reach the end of
the cycle of a period A, and begin a new cycle of an adjacent
period B,, such as when transitioning from a Friday to a
Saturday, some embodiments may concatenate one sequence
of the seasonal indices A,, one sequence of the seasonal
indices B,, and one sequence of the seasonal indices C, of a
period that follows the period B,, and fit the smooth-spline
across the whole sequence. Some embodiments may then
take the middle segment of the smoothed sequence to
represent the new smoothed seasonal indices B,. Some
embodiments may also take the first segment of the
smoothed sequence to represent the smoothed seasonal
indices A,.

When certain embodiments (e.g., a filter) reach the end of
the cycle of a period B, and begin a new cycle of an adjacent
period C,, such as when transitioning from a Sunday to a
Monday, some embodiments can concatenate one sequence
of'the seasonal indices A, of a period that precedes the period
B,, one sequence of the seasonal indices B,, and one
sequence of the seasonal indices C,, and fit the smooth-
spline across the whole sequence. Some embodiments may
then take the middle segment of the smoothed sequence to
represent the new smoothed seasonal indices B,. Some
embodiments may also take the third segment of the
smoothed sequence to represent the new smoothed seasonal
indices C,.

With regards to cloud services, load cycles during week-
ends and holidays are often different from those during
weekdays. Conventional seasonal trending solutions may
typically represent only one period of seasonal indices. In
order to separate the seasonal indices of weekends from the
seasonal indices of regular weekdays, such conventional
solutions may depend on the range of a period being
extended to an entire week or an entire month. Additionally,
such conventional solutions may handle holidays separately.

Returning to the steps for identifying the heap-hoarding
stack traces, to smooth the weekday seasonal factors, some
embodiments can compose an array of seasonal factors by
concatenating three sequences of the weekday factors. For
example, some embodiments may generate the array by
executing the following code in the R programming lan-

guage:
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factors <- c(smoothedWeekdaySeasonalFactor,
smoothedWeekdaySeasonalFactor,
smoothed WeekdaySeasonalFactor)

Next, some embodiments may apply a spline to smooth
out the array of the weekday factors. For example, some
embodiments may invoke the R smooth.spline function with
a smoothing parameter of 0.3 to smooth out the factors:

extendedWeekdayIndices < 1:(3 * 96)
f <- smooth.spline(extendedWeekdaylIndices, factors, spar = 0.3)

Some embodiments may then designate the middle
sequence (i.e., the middle 96 weekday factors) within the
array as the smoothed weekday factors. For example, some
embodiments may obtain the smoothed weekday factors by
executing the following code in the R programming lan-

guage:

sandwichWeekdayIndices <- (96 + 1):(96 * 2)
smoothedWeekdaySeasonalFactor <- predict(f,
sandwichWeekdayIndices)$y

In a fashion similar to smoothing the weekday factors,
some embodiments may apply a spline to smooth the
weekend factors. In particular, some embodiments may
compose an array of seasonal factors by concatenating a
sequence of weekend factors between two sequences of
weekday factors. For example, some embodiments may
generate the array by executing the following code in the R
programming language:

factors <- c(smoothedWeekdaySeasonalFactor,
smoothed WeekendSeasonalFactor,
smoothed WeekdaySeasonalFactor)

Next, some embodiments may apply a spline to smooth
out the array of the weekday and weekend factors. For
example, some embodiments may invoke the R smooth-
.spline function with a smoothing parameter of 0.3 to
smooth out the factors:

extendedWeekendIndices <- 1:(2 * 96 + 192)
f <- smooth.spline(extendedWeekendIndices, factors, spar = 0.3)

Some embodiments may then designate the middle
sequence (i.e., the middle 192 seasonal factors within the
array, which are weekend factors) within the array as the
smoothed weekend factors. For example, some embodi-
ments may obtain the smoothed weekend factors by execut-
ing the following code in the R programming language:

sandwichWeekendIndices <— (96 + 1):(96 + 192)
smoothedWeekendSeasonalFactor <- predict(f,
sandwichWeekendIndices)$y

It should be noted that some embodiments may represent
the 96 weekday seasonal indices and 192 weekend seasonal
indices separately in order to separate seasonal patterns
observed during weekdays from those observed during
weekends. In some embodiments, sequentially filtering
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time-series of heap usage statistics can involve five sets of
exponential filters, including one for heap usage measure-
ments, one for seasonal factors, one for the linear trend, one
for the acceleration trend, and one for the residual.

As mentioned above, to ensure sample accuracy, heap
allocation measurements may be taken during full garbage
collection (GC) cycles that occur at irregular time intervals.
In situations where heap usage is especially high, sampling
intervals may become arbitrarily close to zero due to con-
stant garbage collecting. Because forecasting involves esti-
mation of the rate of change, if the irregular time intervals
get arbitrarily close to zero, the rate of change may become
a random variable of Cauchy distribution, whose mean and
standard deviation are undefined. Thus, some embodiments
may employ the adaptations of Holt’s double exponential
filter, Winters” triple exponential filter, Wright’s extension
for irregular time intervals, Hanzak’s adjustment factor for
time-close intervals, and outlier detection and clipping with
adaptive scaling of outlier cutoff to overcome the Cauchy
distribution problem for determining the seasonal trends of
statistics determined in association with full GCs. In some
embodiments, the five sets of exponential filters can be
sequentially applied to the times-series to estimate the
weekday factors and weekend factors.

When certain embodiments (e.g., a filter) reach the end of
a processing cycle for the weekday and weekend period,
before processing the next cycle of the period or transition-
ing to a different period (e.g., transition from a weekday
period to a weekend period), such embodiments can divide
each weekend factor B, and weekday factor C, by the
normalization factor as follows:

-1
[

After the end of each period, some embodiments may
apply a spline to smooth the seasonal factors. For instance,
when reaching the end of a weekday period that precedes
another weekday period (i.e., when transitioning from a
Monday to a Tuesday, a Tuesday to a Wednesday, a Wednes-
day to a Thursday, or a Thursday to a Friday), some
embodiments can compose an array of seasonal factors by
concatenating three sequences of the weekday factors. For
example, some embodiments may generate the array by
executing the following code in the R programming lan-

guage:
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factors <- c¢(smoothedWeekdaySeasonalFactor,
smoothed WeekdaySeasonalFactor,
smoothed WeekdaySeasonalFactor)

Next, some embodiments may apply a spline to smooth
out the array of the weekday factors. For example, some
embodiments may invoke the R smooth.spline function with
a smoothing parameter of 0.3 to smooth out the factors:

extendedWeekdayIndices <— 1:(3 * 96)
f <- smooth.spline(extendedWeekdayIndices, factors, spar = 0.3)

Some embodiments may then designate the middle
sequence (i.e., the middle 96 weekday factors) within the
array as the smoothed weekday factors. For example, some

32

embodiments may obtain the smoothed weekday factors by
executing the following code in the R programming lan-

guage:

sandwichWeekdayIndices <- (96 + 1):(96 * 2)
smoothedWeekdaySeasonalFactor <- predict(f,
sandwichWeekdayIndices)$y

In a different instance, when reaching the end of a
weekday period that precedes a weekend period (i.e. when
transitioning from a Friday to a Saturday), some embodi-
ments can compose an array of seasonal factors by concat-
enating a sequence of weekend seasonal factors between two
sequences of weekday seasonal factors. For example, some
embodiments may generate the array by executing the
following code in the R programming language:

15
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factors <- c(smoothedWeekdaySeasonalFactor,
smoothed WeekendSeasonalFactor,
smoothed WeekdaySeasonalFactor)

Next, some embodiments may apply a spline to smooth
out the array of the weekday and weekend factors. For
example, some embodiments may invoke the R
smooth.spline function with a smoothing parameter of 0.3 to
smooth out the factors:

extendedWeekendIndices <- 1:(2 * 96 + 192)
f <- smooth.spline(extendedWeekendIndices, factors, spar = 0.3)

35

Some embodiments may then designate the left sequence
(i.e., the first 96 seasonal factors within the array, which are
weekday factors) within the array as the smoothed weekday
factors. For example, some embodiments may obtain the
smoothed weekday factors by executing the following code
in the R programming language:

40

leftsideWeekendIndices <- 1:96
smoothedWeekdaySeasonalFactor <- predict(f,
leftsideWeekendIndices)$y

45

In a different instance, when reaching the end of a
weekend period (i.e., transitioning from a Sunday to a
Monday), some embodiments can compose an array of
seasonal factors by concatenating a sequence of weekend
seasonal factors between two sequences of weekday sea-
sonal factors. For example, some embodiments may gener-
ate the array by executing the following code in the R
programming language:

factors <- c(smoothedWeekdaySeasonalFactor,
smoothedWeekendSeasonalFactor,

60 smoothedWeekdaySeasonalFactor)

Next, some embodiments may apply a spline to smooth
out the array of the weekday and weekend factors. For
example, some embodiments may invoke the R
smooth.spline function with a smoothing parameter of 0.3 to
smooth out the factors:

65
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extendedWeekendIndices <— 1:(2 * 96 + 192)
f <- smooth.spline(extendedWeekendIndices, factors, spar = 0.3)

Some embodiments may then designate the middle
sequence (i.e., the middle 192 seasonal factors within the
array, which are weekend factors) within the array as the
smoothed weekend factors. For example, some embodi-
ments may obtain the smoothed weekend factors by execut-
ing the following code in the R programming language:

sandwichWeekendIndices <— (96 + 1):(96 + 192)
smoothedWeekendSeasonalFactor <- predict(f,
sandwichWeekendIndices)$y

Some embodiments may also designate the right sequence
(i.e., the last 96 seasonal factors within the array, which are
weekday factors) within the array as the smoothed weekday
factors. For example, some embodiments may obtain the
smoothed weekday factors by executing the following code
in the R programming language:

rightsideWeekendIndices <— (96 + 192+ 1):( 2 * 96 + 192)
smoothedWeekdaySeasonalFactor <- predict(f,
rightsideWeekendIndices)$y

It should be noted that, some embodiments may execute
the renormalization and the smooth-spline fitting described
above each time the sequential filters reach either (1) the end
of a cycle of a period and begin a new cycle of the same
period (e.g., the sequential filters reach the end of a Monday)
or (2) the end of a cycle of a period and begin a new cycle
of an adjacent period (e.g., the sequential filters reach the
end of a Friday).

E. Testing for Seasonal Cycles

Some embodiments can test the existence of seasonal
cycles for one or more candidate period of a data set to
determine whether a separate sequence of seasonal indices
for the period should be represented. In general, to deter-
mine whether a data set exhibits a seasonal cycle of a
particular period, some embodiments may perform the fol-
lowing steps.

Let Q denote the number of seasonal indices in a period,
P denote the number of available cycles of a period, and K
denote the number of available intervals across the cycles of
a period, where K=P*Q.

Some embodiments can calculate the average measure in
each interval of the cycles of a period. To do so, some
embodiments may enumerate the intervals from 0 to (K-1)
and calculate an average measure of each interval of the
period using the formula below:

N

k=0, 1, ...,K-1; N, is the number of samples in the interval
k; and t is the time of the sample number i in the interval k

Some embodiments can then calculate the average mea-
sure of each cycle of the period. To do so, some embodi-
ments may enumerate the cycles of the period from 0 to
(P-1) and calculate an average measure of each cycle of the
period using the formula below:
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1

— X, p=0,1,... ,P-1;
Np; ‘i

D, =

N,, is the number of samples in the cycle p of the period;
and t, is the time of the sample number i in the cycle p of
the period
Some embodiments can then compute the sequence Y, =<
Y, 0 Y1, - -+, Y, o> of seasonal indices for each cycle
p of the period using the formula below:

— x;

pj:—J,j:kmodulo Q;k=0,1,... ,K-1
=D,

p=0,1, ,P-1

Some embodiments can then apply null hypothesis testing
to detect whether there are seasonal cycles in the period. In
this regard, the null hypothesis that is to be tested may
correspond to the assumption that the correlation coeflicient
r,., between the seasonal indices of a most recent cycle ‘v’
and the seasonal indices of a preceding cycle ‘v’ is zero. In
particular, some embodiments may determine the correla-
tion coefficient r,,,, using the following formulae below:

=
Mean(Y ) = EZ Y,
=0

Variance(Y ,) =

0-1

14 .

772, (V.= Mean(¥,))"
=

0-1

(¥ ~Mean(¥ (¥, ; - Mean(¥,))

=

Fuy =

1 1\/ Variacle(Y ,)Variacle(Y )

Some embodiments may employ various techniques to
determine whether the correlation coeflicient r,, is large
enough to indicate, above a level of significance, that there
is a common seasonal cycle between the cycles “u” and “v’.
For example, some embodiments may employ the Student-t
test, the permutation test, or the Fisher transformation.

To test the hypothesis, some embodiments may define one
or more test statistics, which may be a function of the
parameter. In this case, the correlation coefficient r,, , is to be
tested. The following test statistics t has Student’s t-distri-
bution, with ‘n-2’ degrees of freedom and is a function of
r,..- Some embodiments define the null hypothesis, r, =0,
which assumes that the seasonal indices are not correlated
between the cycles of a period. Some embodiments may
search for evidence to reject the null hypothesis (i.e., r, ,=0)
by accepting an alternative hypothesis.

Let F(t) denote the probability distribution. Given the
level of significance of 0.1, let ty, (, ») denote the value of
the random variable t such that F(t)=0.9. The alternative
hypothesis is the one-sided condition:
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n-2
’
wy T2,

> 10.9,(2-2)

If this condition is true, the alternative hypothesis is
accepted, which indicates that there is a common seasonal
cycle between cycles years ‘u’ and “v’. If there are common
seasonal cycles between the most recent cycle and the
preceding cycles, then some embodiments may proceed to
compute the seasonal factors for each of the seasonal indices
of'the cycle. Some embodiments apply the above formula to
detect the existence of an annual seasonal cycle of the heap
usage by the software execution environment, as described
below.

F. Detecting Annual Seasonal Cycle for Heap Usage

When analyzing multiple years of heap usage statistics of
a software execution environment, some embodiments may
detect more than one seasonal trend at different time scales.
For example, such embodiments may detect, a multi-year
time-series of heap usage statistics, a yearly seasonal trend
and a daily seasonal trend, which are both superimposed
onto a multi-seasonal trend. Thus, some embodiments may
adopt an appropriate time scale to analyze the yearly sea-
sonal trend, where the time scale has a period correspond to
1 year and an interval correspond to 1 month. As such, the
year-long period may be partitioned into 12 month-long
intervals.

To determine whether the data set exhibits an annual
seasonal cycle, some embodiments may first determine
multiplicative factors for the monthly indices in the data set.

In a particular instance, let P denote the number of
available years (i.e., the number of cycles of the one-year
period) in the data set. Additionally, let Q denote the number
of available months (i.e., the number of intervals within the
number of cycles) in the data set. Accordingly, Q=12*P. Let
K denote the number of available weekdays or weekends in
the data set. Let the index k range from O to (K-1) to
represent an enumeration of the available weekdays or
weekends. Let N, denote the number of samples in the k”
weekday or weekend. Using the following formula, some
embodiments can apply the following formula to calculate
the average heap usage of each weekday or weekend in the
dataset:

g
.

= — Xy
Ny 4
o1

Xk

k=0, 1,...,K-1 and N, is the number of samples in the day
k

Some embodiments can define a function H, H:(Yearx
Integer)—Index, which maps an ordered pair including the
index of the year and an integer that corresponds to the index
of a weekday or weekend within that year. Using the
following formula, some embodiments may then calculate
the average heap usage of each year from the average heap
usage of the weekdays or weekends within that year:

o1
Zp:N_p;xH(p'i)’ p=0,1,...,P-1;

15

35

40

45

50

65

36

N,, is the number of weekdays in the cycle p of the one

year period;

and H(p,i) is the index of the i weekday in the cycle p of

the one year period.

Some embodiments define a function G, G:(MonthxInte-
ger)—Index, which maps an ordered pair including the
index of the month and an integer that corresponds to the
index of a weekday or a weekend within that month. Using
the following formula, some embodiments may calculate the
average heap usage of each monthly interval of the period
from the average heap usage of the weekdays or weekends
within that month:

_ 1 o

Ypm= IR ch(m,i), m=0,1,...,0-1;

m&p =1

M,, is the number of weekdays in the month m;
G(m,i) is the index of the i”* weekday in the month m;
and p is the index of the cycle of the year period.

In particular, the above formula produces Y,=<Y,,
Y,1: s Y, o> which correspond to 12 monthly averages
for each cycle of the year-long period p. The average heap
usage for a month can be divided by the yearly average heap
usage to obtain a multiplicative factor for the monthly indice
that corresponds to that month. In such embodiments, if the
multiplicative factor for a particular month is determined to
be greater than 1, then the heap usage in that month is above
average. On the other hand, if the multiplicative factor for a
particular month is determined to be less than 1, then the
heap usage in that month is below average.

After determining the multiplicative factors for the
monthly indices, some embodiments can apply null hypoth-
esis testing to detect whether there are annual seasonal
cycles. In this regard, the null hypothesis that is to be tested
may correspond to the assumption that the correlation coef-
ficient r,,, between the monthly indices of the most recent
year ‘u” and the monthly indices of a preceding year ‘v’ is
zero. In particular, some embodiments may determine the
correlation coefficient r,, using the following formulae
below:

o1&,
Mean(¥;) = 753 ¥,
=

1 1

2
Variance (¥,) = 77 Z (Y,.; — Mean (Y,))°
=1

12
(¥ =Mean (Y)Y, ; ~Mean (¥,))
=

Yuy =

1 1\/Variacle (Y,) Variacle(Y,)

Some embodiments may employ various techniques to
determine whether the correlation coeflicient r,, is large
enough to indicate, above a level of significance, that there
is a common seasonal cycle between the years “u” and “v’.
For example, some embodiments may employ the Student-t
test, the permutation test, or the Fisher transformation.

The following test statistics t has Student’s t-distribution,
with ‘n-2" degrees of freedom, if the null hypothesis is true

(ie.,r,,=0).
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Let F(t) denote the probability distribution. Given the
level of significance of 0.1, let t,  (, », denote the value of
the random variable t such that F(t)=0.9. The alternative
hypothesis is the one-sided condition:

n-2
Fuy | ——— > T0.0.0—
wy T-7, 0.9,(0-2)

The condition that accepts the alternative hypothesis
indicates that there is a common seasonal cycle between the
years ‘0’ and ‘v’.

G. Determining Annual High Heap Usage Season

If it is determined that there are common seasonal cycles
between the most recent year and preceding years, some
embodiments can compute the seasonal factors for each
month enumerated by the monthly seasonal index 0 to 11 by
employing the following formula:

38

Vo ={N | Sy =MAX(S,. $)peo, . p-1)}
Vi =
Vi UL 1S, > T and [[J = (K + 1)mod P, K = MAX(Vy)] or [J =

(L-1+ PymodP, L = MIN(Vy)]l}

10

V= Vi
W=0... (P-1)

13 It should be noted that the above recursion involves an

unbound variable s that can be used to break a tie. In some
embodiments, s=1 by default.

In certain embodiments, the closure V of the seasonal
indices classifies an annual high heap usage season. The
threshold T can be set to a percentage, such as 85 percent of
the range of the seasonal factors. For example, suppose the
seasonal factors for the 12 monthly seasonal indices in one
year-long period are as given in the following table.

20

January February March April May June July August September October November December
0.76 0.82 1.0 1.2 129 134 1.26 1.12 1.01 0.99 0.95 0.9
30
The range of the multiplicative seasonal factors is (1.34-
g ] T rTop s ¥ T ) n=0.1 " 0.76), which is 0.58. Accordingly, 85 percent of the range of
R pU T i T i pepolzh EEE D the seasonal factors is (0.76+0.85*0.58), which is 1.253.
. Given the 85 percent threshold T, T=1.25. As a result, such

In an alternative embodiment, the monthly indices Y, of
the most recent year (i.e., cycle) can be used as the monthly
seasonal indices, as indicated by the following formula:

5,=Y,,.n=0,1, .. .,11

To classify the annual high heap usage season, some
embodiments can identify the seasonal index N correspond-
ing to the month that has the largest seasonal factor in the
year-long period. Such embodiments can then use the index
N as a seed. Starting from N, such embodiments can scan the
seasonal indices less than or greater than N (i.e., seasonal

embodiments may classify May, June, and July as the annual
high heap usage season.

Some embodiments can select a segment of the dataset
that spans the most recent cycle of the year-long period. For
example, among the cycles: 2013, 2014, 2015, and 2016,
such embodiments may select the segment of data covering
2015 to 2016. The selected data segment can span 2 or more
weeks of heap usage statistics that are inside the annual high
heap usage season. For example, if the seasonal factors are
as given in the following table, the data segment can be
selected from November 2015, December 2015, and January
2016.

40
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January February March April

May June July August September October November December

1.26 1.12 1.01

0.99

095 09 076 0.82 1.0 1.2 1.29 1.34

indices 0, 1,2 .. . N-1, N+1, N+2) that have seasonal factors
greater than a threshold T. In some embodiments, T is
greater than 1. Some embodiments may classify more than
one disjoint high heap usage season if there is more than one
N such that S,/MAX(S,,). The function MAX(S,,,s) selects
the s element of a sequence of indices N, S,~MAX(S,).
The parameter s is used to break the tie in case there is more
than one N such that S,/MAX(S,). Some embodiments
may classify each disjoint high heap usage season and repeat
the correlation analysis for each season. In some embodi-
ments, a method to classify the set of monthly seasonal
indices for a high heap usage season is defined by the
following recursion:

H. Regression for Filter Constants and Time Zone Offset

Some embodiments can incorporate an estimate of a time
zone offset. If a time zone offset is not available, some
embodiments can perform a non-linear regression for a
segment of the data set to estimate the time zone offset and
use it for filtering the data. By providing an estimation of the
time zone offset, some embodiments can improve the esti-
mation of the seasonal indices in the transitions between the
periods.

In particular, some embodiments can perform a non-linear
regression with the filter constants (i.e., regression param-
eters, which are independent variables): measureFilterCon-
stant a, rateFilterConstant {3, accelerationFilterConstant «,
seasonalFactorFilterConstant y, errorResidualFilterConstant
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9, and timeZoneOffset tz to minimize the mean square error
(MSE) and/or the mean absolute deviation (MAD) of the
residual of the 1-step forecasts. In some embodiments, the
time stamps may be shifted by the time zone offset tz in the
regression. Some embodiments may apply a non-linear
multivariate regression using an optimization routine (e.g.,
the optim routine provided by the R programming lan-
guage). Some embodiments may derive the weekday and
weekend seasonal factors using the optimal values of ., ,
K, v, O, and tz, as indicated in the following formulae
employed by such embodiments:

12
1
MSE = f(a, B, &, 7, 0, 12, X;) = [ﬁz (@h,rn)z]

n=1

1 N
MAD = f(a, B, &, 7,0, 12, %) = NZ len, |
n=1

Some embodiments include the time zone offset as a
regression parameter so that the transitions between cycles
of a period or between two adjacent periods can be as
accurate as possible.

1. Ranking Classes of Threads by Degree of Correlation

Once the annual high heap usage season has been deter-
mined, some embodiments may calculate and/or obtain
weekday/weekend factors that represent daily/weekly sea-
sonal cycles covered by a recent (e.g., most recent) annual
high heap usage season. It should be noted that the daily/
weekly seasonal cycles in this segment of the data set (i.e.,
during an annual high heap usage season) may be more
pronounced than at other times (i.e., outside the annual high
heap usage season). Thus, the determination of degrees of
correlation between seasonal trends in heap usage and
seasonal trends in the intensity statistics of one or more
classes of threads may be based on this segment of the data
set. Stated another way, for correlation analysis, some
embodiments can derive the seasonal trends of various
classes of threads using the same time intervals as the time
intervals covered by the most recent annual high heap usage
season.

It should be noted that to determine seasonal trends for the
intensity statistics of a particular class of threads, some
embodiments may employ techniques that were used for
determining seasonal trends in heap usage, as described
above. In other words, seasonal trending of thread intensity
statistics and heap usage statistics may both involve using
the same number of seasonal indices for the weekday and
weekend periods (e.g., 96 seasonal indices for a weekday
period and 192 seasonal indices for a weekend period).

Upon determining the seasonal trends for heap usage and
the seasonal trends of intensity statistics for one or more
classes of threads, some embodiments may then compute,
for each of the one or more classes of threads, the degree of
correlation between the seasonal trends for heap usage and
the seasonal trends for the intensity statistics of the class of
threads. In particular, the degree of correlation may be
computed for the sequences of the 96 seasonal factors or the
192 seasonal factors. It should be noted that computing the
degree of correlation between seasonal trends may be more
efficient than computing a degree of correlation between a
sequence of heap usage measures and a sequence of thread
intensity measures because sequences of measures may be
much longer.
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Let H denote a sequence of N seasonal factors for heap
usage. Let T denote a sequence of N seasonal factors for the
thread intensity of a class of threads. The correlation coef-
ficient of the two sequences of seasonal factors is given by
CorrelationCoefficient(H,T), as defined below:

1 N
Mean (H) = ﬁz H;
=1
1 N
Mean (T) = ﬁz T;
1
1 N
Variance (H) = WZ (H; — Mean (H))?
i=1
1 N
Variance (T) = mz (T; = Mean (1))
i=1

N
> (H; ~Mean (H))(T; - Mean (T))

CorrelationCoefficient (H, T) = =
(N = 1)V Variacle (H) Variacle (T)

Some embodiments may derive weekday and weekend
seasonal factors for heap usage by taking a regression of the
heap usage statistics included in the most recent annual high
heap usage season. Let’s denote the time interval of this
segment of the data set by (t1, t2). To analyze the correlation
between the seasonal factors for the intensity statistics of a
class of threads with the seasonal factors for the heap usage,
some embodiments can take the seasonal factors from the
same time interval (tl, t2) in the seasonal factor time-series
in the SeasonalTrendInfo associated with the class of
threads. In particular, the seasonal factor time-series can be
stored in the smoothedWeekdaySeasonalFactor member
variable and the smoothed WeekendSeasonalFactor member
variable in the associated SeasonalTrendinglnfo object.

Some embodiments can iterate over the ThreadClassifi-
cationlnfo objects of all of the classes of threads and
recursively traverse the Segmentlnfo objects in each of the
ThreadClassificationInfo object to collect SeasonalTrend-
Info objects contained within the ThreadClassificationIlnfo
objects and the Segmentlnfo objects. In computing a Cor-
relationCoeflicient(H, T) between the heap usage and each of
the classes of threads using the formulae identified above,
some embodiments can retrieve the weekday factors or the
weekend factors in each of the SeasonalTrendInfo objects.
Once a degree of correlation has been calculated for each
class of thread, some embodiments may rank the classes of
the threads by their degrees of correlation with heap usage
seasonal trends. The top ranking classes of threads may then
be classified as heap-hoarding classes of threads. Some
embodiments may then analyze stack traces and code asso-
ciated with the heap-hoarding classes of threads to identify
inefficient memory usage that can be rectified and/or
improved, either manually or automatically.

It should be noted that some embodiments can be
extended to determine correlation coefficients based on
periods other than weekday and weekend periods (e.g.,
end-of-quarter periods).

FIG. 9 illustrates a flowchart 900 of a process for iden-
tifying code that is likely to be contributing to high heap
usage within a software execution environment according to
some embodiments. In some embodiments, the process
depicted in flowchart 900 may be implemented by a com-
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puter system with one or more processors (e.g., computer
system 1700 of FIG. 17) where the one or more processors
can execute the steps based on computer code stored in a
computer-readable medium. The steps described in FIG. 9
can be performed in any order and with or without any of the
other steps.

Flow chart 900 begins at step 902, where embodiments
determine a length of time when heap usage by one or more
processes exceeds a threshold. The length of time may
correspond to the annual high heap usage season while the
threshold may correspond to a percentage of the range of
seasonal factors assigned to intervals (e.g., 15 minute inter-
vals) across one or more periods (e.g., the weekday period
and the weekend period). In some embodiments, the thresh-
old may be set by choosing a percentage. Once the percent-
age is chosen, the threshold may be given by the sum of the
smallest seasonal factor and the product of the range of
seasonal factors and the percentage. For example, if the
chosen percentage is 85 percent, the smallest seasonal factor
is 0.76, and the largest seasonal factor is 1.34, the threshold
may be given by (0.76+0.85%(1.34-0.76)), which 1.253. As
a result, any interval with a multiplicative seasonal factor
that exceeds 1.25 may be determined to be part of the length
of time when heap usage exceeds the threshold.

At step 904, embodiments determine heap information of
the one or more processes during the length of time. The
heap information may correspond to the amount of heap
memory being used by the one or more processes within a
software execution environment at different points during
the length of time. For example, the heap information may
be based on heap usage measurements obtained from the
software execution environment at irregular intervals (e.g.,
during full GCs). Additionally, the software execution envi-
ronment may correspond to a production environment that
comprises one or more virtual machines (e.g., JVMs) and the
one or more processes may support one or more cloud
services.

At step 906, embodiments determine thread information
of the one or more processes during the length of time. In
some embodiments, the thread information may comprise,
for each of one or more classes of threads determined from
analyzed thread dumps, a thread intensity seasonal factor for
each of the plurality of intervals.

In some embodiments, the heap information may include
a heap usage seasonal factor for each of the plurality of
intervals. In particular, the length of time may span one or
more cycles of a first period having a first length (e.g., the
weekday period) and one or more cycles of a second period
having a second length (e.g., the weekend period). Each
period may be split into a plurality of intervals. For example,
the weekday period may be split into 96 15 minute intervals
while the weekend period may be split into 192 15 minute
intervals.

It should be noted that each of the plurality of intervals
may be mapped to a particular season (i.e., seasonal indice)
of one of the periods. For each seasonal indice, some
embodiments may determine a heap usage seasonal factor
and, for each class of thread that is determined, a thread
intensity seasonal factor, which may result in each interval
being associated with a heap usage seasonal factor and a
plurality of thread intensity seasonal factors (one for each
class of threads). For example, assuming three different
classes of threads are discovered, the weekday period may
have 96 heap usage seasonal factors and 288 thread intensity
seasonal factors (96 thread intensity seasonal factors for
each of the three classes of threads) while the weekend
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period may have 192 heap usage seasonal factors and 576
thread intensity seasonal factors.

At step 908, embodiments correlate the heap information
with the thread information to identify one or more lines of
code of the one or more processes that correspond to the
heap usage exceeding the threshold. The steps of correlating
the heap information with the thread information are dis-
cussed in further detail below with respect to FIG. 10.

At step 910, responsive to identifying the one or more
lines of code, embodiments initiate one or more actions
associated with the one or more lines of code. For example,
embodiments may generate an alert associated with the one
or more lines of code that is sent to relevant personnel or a
code optimization tool. In response, the identified lines of
code may be investigated and/or optimized. Alternatively,
some embodiments may optimize the one or more lines of
code to use heap memory in a more efficient fashion.

FIG. 10 illustrates a flowchart 1000 of a process for
calculating of degrees of correlation between various classes
of threads and high heap usage according to some embodi-
ments. In some embodiments, the process depicted in flow-
chart 1000 may be implemented by a computer system with
one or more processors (e.g., computer system 1700 of FIG.
17) where the one or more processors can execute the steps
based on computer code stored in a computer-readable
medium. The steps described in FIG. 10 can be performed
in any order and with or without any of the other steps.

Flowchart 1000 begins at step 1002, where embodiments
obtain one or more thread dumps of one or more processes.
As mentioned above, a control system may periodically
cause the software execution environment to take thread
dumps, where each thread dump comprises one or more
stack traces of threads spawned by one or more processes
executing within the software execution environment.

At step 1004, embodiments obtain one or more classes of
threads by receiving one or more threads from one or more
thread dumps and classifying each of the received threads
based on a stack trace that corresponds to the received
thread. Once all of the thread dumps have been received and
processed, embodiments may analyze each of the one or
more classes of threads to determine a degree of correlation
between each of the classes of threads and high heap usage
in steps 1006-1016.

At decision 1006, embodiments determine whether there
is another class of threads of the one or more classes of
threads to determine a degree of correlation with high heap
usage. If so, embodiments may proceed to step 1008.
Otherwise, embodiments may proceed to step 1018.

At optional step 1008, embodiments calculate a mean of
the heap usage seasonal factors of the plurality of intervals.
At step 1010, embodiments calculate a mean of the thread
intensity seasonal factors of the class of threads and of the
plurality of intervals. At optional step 1012, embodiments
calculate a variance of the heap usage seasonal factors of the
plurality of intervals. At step 1014, embodiments calculate a
variance of the thread intensity seasonal factors of the class
of threads and of the plurality of intervals. At step 1016,
embodiments calculate the degree of correlation between the
class of threads and the heap usage exceeding the threshold.

At step 1018, embodiments select, from the one or more
classes of threads, a given class of threads that has a highest
degree of correlation to the heap usage exceeding the
threshold. In particular, once a degree of correlation has
been calculated for each class of thread, some embodiments
may rank the classes of the threads by their degrees of
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correlation with heap usage seasonal trends. The top ranking
class of threads may then be selected as the given class of
threads.

At step 1020, embodiments identify, based on the given
class of threads, one or more lines of code that are likely to
be contributing significantly to high heap usage. In particu-
lar, some embodiments may then analyze file names and
lines specified by stack traces to locate lines of code asso-
ciated with the heap-hoarding classes of threads. It should be
noted that each thread of the one or more processes that
belongs to the given class of threads executes the one or
more lines of code.

V1. Overcoming Weak-Exogeneity and Heteroscedasticity
in Forecasting

As mentioned above, to ensure sample accuracy, heap
allocation measurements may be taken during full garbage
collection (GC) cycles that occur at irregular time intervals.
In situations where heap usage is especially high, sampling
intervals may become arbitrarily close to zero due to con-
stant garbage collecting. As a result, time-series data based
on the heap allocation measurements may exhibit weak-
exogeneity, where the process of generating the residual is
somewhat dependent on the process of generating the time-
intervals of full GC samples, and heteroscedasticity, where
the variance of the residual is not constant over time.

Conventionally, generating an ordinary least-squares
regression of a linear trend assumes that the predictor
variable and the response variable are generated by a process
that is both exogenous and homoscedastic. However, with
regards to a data set based on measurements taken during
full GCs, the predictor variable (i.e., the irregular time
intervals) and the response variable (i.e., the heap usage
measurements taken during a full GC) are not independent
because the frequency at which full GCs are taken may
increase when heap usage increases. Some embodiments
may use robust and resistant regression methods to over-
come the weak-exogeneity and heteroscedasticity of the data
set.

Certain embodiments may utilize robust least-squares
regression to overcome the weak-exogeneity and heterosce-
dasticity exhibited in such data sets. In particular, some
embodiments may (1) decompose a time-series of measure-
ments into a de-seasonalized measure component (i.e., a
de-seasonalized component) and a seasonal factor compo-
nent (i.e., a seasonal effector), (2) apply a robust linear
regression to the de-seasonalized measure component, (3)
apply a smooth-spline filter to the seasonal factor compo-
nent, and (4) reconstitute the linear regression line and the
smoothed seasonal factors into a seasonal and linear trend
model.

The least-trimmed squares (LTS) estimator is a robust
regression technique that is resistant to the influence of
outliers. Given a set of N samples, the LTS estimator
minimizes the sum of the smallest 50% of squared residuals
by trimming out 50% of samples corresponding to the
largest squared residuals as outliers. The LTS estimator runs
one iteration of ordinary least-square regression of all N
samples to sort the residuals to select the smallest N/2
residuals (i.e., trimmed samples). The LTS estimator then
iteratively reruns the regressions by updating the trimmed
samples to reduce the mean of the squared residuals. In
comparison with certain embodiments described below,
however, the time-complexity of the LTS algorithm may be
relatively high.

The generalized weighted least-squares (WLS) estimator
is a robust regression technique that multiplies the squared
error residual of each sample by a weight that is inversely
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proportional to the variance of the sample. Employing the
WLS estimator may depend on the weights being deter-
mined by prior knowledge of the data. For example, the prior
knowledge may specify (1) the accuracy of the different
instruments used to measure different sample points, (2) the
variance among the redundant measurements corresponding
to the same time instant, or (3) the variance among the
nearest neighbor group of measurements. If the weights
cannot be determined by prior knowledge, the WLS estima-
tor may run one iteration of the ordinary least-squares
regression to estimate the residuals and use the inverse of the
residuals as the weights to iteratively rerun the regression to
produce a stable estimate of the linear model. In comparison
with certain embodiments described below, however, the
time-complexity of the WLS algorithm is relatively high.

In the patent application Ser. No. 14/109,546, which is
incorporated by reference herein for all purposes, a set of
equations to filter the rate of change r, of the measure is
disclosed. This filter monitors the trend of the measure:

Ktn = Kty
ry = —"=
" [ -

R, = Vi b, + (1= Vrn)érn

Since the rate of change

Ktn = Kty
r, = —"=
N

involves a division by the length of time interval (t,~t', ),
some embodiments may adjust the filter parameter to give a
relatively small weight to a sample when the length of time
interval t,—t, | is relatively short.

The filter parameter v, is adjusted by the adjustment
factors c,”" in the following equations:

Vin_1

V’ =
1

vy, +on b,

b, =(1 _ﬁ)(’n”nfl)
ol = (’nfl - [;172]
" [P A

The rate filter parameter is used to filter the smoothed rate
of change as follows. If seasonal trending is not employed,
some embodiments may use the value r', to update the
average, as shown in the formula below:

R, =v, v, +(1-v, )G,

On the other hand, if seasonal trending is employed, some
embodiments may use one of the following formulae
depending on whether the times fall in a weekend or on a
weekday period, where Ef,, and Cf,, are the seasonal factors of
weekend and weekday periods, respectively.
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L - = 1, and 1, fall in the weekend season
B, B Tn-1
My Xy .
e , I,— and 7, fall in the weekday season
Crn Cr 1

Axi = "

" xr/n X,y 1,1 falls on the weekday and

B, G, ’ 1, falls in a weekend
x,’n X, 1,1 falls in a weekend and
Cy, By, ’ 1, falls on a weekday

Next, some embodiments may determine the deseasonal-
ized raw growth rate using the following formula:

, Ax;,
/i’“ =

mI,—1

Some embodiments may then update the moving average
using the formula:

Ft,,:vt,, 4 't,,+(1 _,Vt,,)gtn

In particular, a rate filter parameter v, generated by the
above equations represents a weight that is based on the
length of the time interval that occurred in between the
particular sample and another sample immediately previous
to the particular sample. There is a one-to-one correspon-
dence between the rate filter parameter and the measurement
data in the time series. FIG. 11 depicts a graph that plots the
filter parameter v, against the sampling time interval across
the whole time range for an example data set. While the time
range is divided into 6 overlapping sub-ranges, the graph in
each sub-range shows that there is a linear relation between
the sample time interval and the filter parameter. As can be
seen in the graph, the filter parameter (i.e., the weight for the
sample) is small when the sample time interval is small. This
adjustment dynamically reduces the weight of the samples in
the filter depending on the density of the sample points
around the current sample point.

Some embodiments use the rate filter parameter to trim
the data points. Trimming the data points can help to even
out the density of the sample points across the whole time
range and thus improve the robustness of the linear regres-
sion algorithm. With regards to the data points that represent
the measurements of heap usage in a software execution
environment during full GC cycles, data points that are close
together may correspond to a period of higher heap usage
(e.g., during load spikes) where full GCs are performed
more often.

Some embodiments compare a rate filter parameter
against a threshold and exclude (i.e., trim) the corresponding
data point from the robust linear regression if the rate filter
parameter is smaller than the threshold. Some embodiments
can use the median or mean of the rate filter parameters as
a threshold. In particular, some embodiments can trim the
data points that are close together as such data points may
represent the load surges or outliers. As a result, some
embodiments may alleviate the weak-exogeneity condition
by evening out the density of the data points along the time
axis, which reduces the correlation between the irregular
time-intervals and the residuals.

The time series D for the forecast error residual and F,
for the forecasted measure generated by the followmg
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equations are disclosed in the patent application Ser. No.
14/109,546, which is incorporated by reference herein for all

purposes.

5
Xo  +My (1= 1,1)
Fo=4X,  +M, =5 1)]Cr, L
X + R (G —101)
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Some embodiments may generate the error residual of the
forecasted measure using the following formula:

e, =F, o,

15
Ez":%,,ez,ﬁ(l _Wt,,)Et,,,l

Etn:w:,,‘et,,""(l_wt,,)btn,l

Because there is a correlation between the smoothed
20 absolute error residual D, generated by the filter and the
variance of the residual of the least- squares regression, some
embodiments may use the inverse of the smoothed absolute
error residual 1/D D, as the Welght for the generalized
weighted least-squares regression. In doing so, some
embodiments may alleviate the heteroscedasticity condition
by giving a relatively small weight to a sample value that has
a relatively large deviation from the expected value. The
expected value can represent a convolution of the near-
neighbor group of samples.

The following example code (written in the R program-
ming language) shows how a trimmed subset of the samples
and the weights of the samples can be computed. As shown
in the example code below, some embodiments may use the
R function “rim”, which enables certain embodiments to
specify the trimmed subset of the samples and the weights
of the samples for generating a weighted least-squares
regression. It should be noted that the rateFilterParameter,
seasonalFactor, absoluteErrorResidual, measure, and time
vectors in the example code are time-series with the same
40 time range.

30

35

trimmingParameter <— c(rateFilterParameter, which(normSeasonalFactor <
1.0)
thresholdl <~ median(trimmingParameter, na.rm = TRUE)
threshold2 <- median(rateFilterParameter, na.rm = TRUE)
threshold3 <- mean(rateFilterParameter, na.rm = TRUE)
trimmingThreshold <— max(thresholdl, threshold2, threshold3)
lengthOfTimmingParameter <— length(trimmingParameter)
# can set up a list of graduated thresholds to give less weight to older data
listOfTrimmingThresholds <- c(trimmingThreshold * 1.1,
50 trimmingThreshold * 1.05,
trimmingThreshold,
trimmingThreshold * 0.95, trimmingThreshold * 0.9)
numberOfTrimmingThresholds <- length(listOfTrimmingThresholds)
# select the exclusion set of the data points which are time close together
# may use graduated thresholds to give less weight to older data for what
is
» # known as discounted least-squares regression
prevSplitPoint <- 0
for (num in 1:numberOfTrimmingThresholds) {
splitPoint <- trunc(lengthOfTimmingParameter * num /
numberOfTrimming Thresholds)
excludeIndices <- c(excludelndices,
which(rateFilterParameter[(prevSplitPoint + 1):splitPoint] <
listOf Trimming Thresholds[num]) + prevSplitPoint)
prevSplitPoint <- splitPoint

N
v

60

includeIndices <— 1:length(rateFilterParameter)

includeIndices <- includeIndices[-excludeIndices]
65 # use the inverse absolute error residual for weights

minErrorResidual <— min(absoluteErrorResidual)
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-continued

if (minErrorResidual == 0) {
absoluteErrorResidual [absoluteErrorResidual == 0] <~ 1.0
minErrorResidual <- 1.0

weights <— (minErrorResidual / absoluteErrorResidual)
# use regression methods robust to heteroscedasticity and weak-exogeneity
# use trimmed indices “includelndices” to compensate for the
weak-exogeneity
# use weights to compensate for the heteroscedasticity
# in generalized weighted least-squares
linear <- tryCatch(rlm(measure ~ time, weights = weights,
method = “M”, subset = includelndices),
error = function(e) return(null))

The rate filter parameter is given as a time-series of values
denoted by v, for each timestamp to corresponding to the
timestamp of the data point. If v, <z, where z is a threshold,
then the corresponding data poiﬁt x, is excluded from the
linear regression. Generally, some embodiments can use any
value at the N-percentile (e.g., the median, which is the
50-percentile) of the rate filter parameters as the threshold z.

In some embodiments, the absolute error residual is given
as a time-series D, for each timestamp t_ corresponding to
the timestamp of ‘the data point. The weight W, of the
sample at timestamp t,, can be inversely proportioneﬁ toD,.
Some embodiments can compensate for the variance
changes among the data points that represent the short-term
load surges or outliers.

To decrease the influence of outliers and short-term surges
in heap usage on the linear regression, some embodiments
may combine the technique of evening out the density of
data points with the technique of assign smaller weights to
deviating samples values. In doing so, some embodiments
may increase the robustness of the linear regression, which
may facilitate the capturing of long-term trends (e.g., in heap
usage). It should be noted that using the two techniques
together may provide a better fit of the linear regression line
to the data and may be more efficient than using conven-
tional an LTS estimator or an WLS estimator, which gen-
erally involves several iterations of regression.

To further improve the robustness of the regression, some
embodiments may additionally identify the transient states
and remove the sample points that fall in the transient states
and remove run-to-run segments that are outliers (e.g., data
segments that correspond to the software execution envi-
ronment experiencing a memory leak, an out of memory
event, or a very high growth rate)

FIG. 12 displays three trend graphs each derived by a
different linear regression technique for the heap usage in a
production environment. The blue color trend line 1205 can
be derived by standard linear regression algorithm that
assigns equal weights to each sample point. The brown color
trend line 1210 can be derived by a conventional robust
regression algorithm. The red color line 1215 represents a
regression provided by a present embodiment described
above, which lies close to the brown color trend line.

FIG. 13 displays an additional graph that illustrate how a
conventional regression technique may provide incorrect
results. As shown in the graph, the brown color trend line
1305, which represents a conventional regression technique,
fits closely to the two clusters of high density sample points.
In contrast, the red color line 1215 correctly traces the trend
in the sample points to provide a long term projection of the
heap usage in the software execution environment.

FIG. 14 illustrates a flowchart 1400 of a process for
generating of a forecast of a signal according to some
embodiments. In some embodiments, the process depicted in
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flowchart 1400 may be implemented by a computer system
with one or more processors (e.g., computer system 1700 of
FIG. 17) where the one or more processors can execute the
steps based on computer code stored in a computer-readable
medium. The steps described in FIG. 14 can be performed
in any order and with or without any of the other steps.

Flowchart 1400 begins at step 1402, where embodiments
receive a signal comprising a plurality of measures sampled
over a span of time from an environment in which one or
more processes are being executed. In some embodiments,
the plurality of measures may be heap usage measurements
taken by a control system that is monitoring heap usage
within a software execution environment (e.g., a production
environment), where the software execution environment
includes one or more executing processes.

At step 1404, embodiments extract a seasonal effector and
a de-seasonalized component from the signal 1404. In some
embodiments, the seasonal effector may correspond to the
seasonal factors determined for each interval of the period
assigned to the data set. In some embodiments, the de-
seasonalized component may be obtained by applying the
seasonal factors to the signal.

At step 1406, embodiments apply one or more spline
functions to the seasonal effector to generate a first model.
In this regard, some embodiments may give relatively small
weights to sample values that deviate drastically from the
expected value, where the expected value represents a
convolution of the near-neighbor group of samples.

At step 1408, embodiments apply a linear regression
technique to the de-seasonalized component to generate a
second model. In particular, to compensate for relatively
short time intervals experienced during high heap usage,
some embodiments may adjust a filter parameter to give a
relatively small weight to a sample taken during a short
interval. Some embodiments may use a rate filter parameter
to trim the data points included in the data set. Trimming the
data points can help to even out the density of the sample
points across the whole time range and thus improve the
robustness of the linear regression algorithm.

At step 1410, embodiments generate a forecast of the
signal based on the first model and the second model. In
some embodiments, the forecast of the signal may corre-
spond to a regression line that is generated using the
techniques described in steps 1406 and 1408. In particular,
the generated forecast may have a better fit to the signal.

At step 1412, embodiments initiate, based at least in part
on the forecast, one or more actions associated with the
environment. For example, if the forecast indicates that heap
usage will increase in the future, some embodiments may
allocate additional resources (e.g., memory, RAM) to the
software execution environment.

FIG. 15 depicts a simplified diagram of a distributed
system 1500 for implementing an embodiment. In the illus-
trated embodiment, distributed system 1500 includes one or
more client computing devices 1502, 1504, 1506, and 1508,
which are configured to execute and operate a client appli-
cation such as a web browser, proprietary client (e.g., Oracle
Forms), or the like over one or more network(s) 1510. Server
1512 may be communicatively coupled with remote client
computing devices 1502, 1504, 1506, and 1508 via network
1510.

In various embodiments, server 1512 may be adapted to
run one or more services or software applications. In certain
embodiments, server 1512 may also provide other services
or software applications can include non-virtual and virtual
environments. In some embodiments, these services may be
offered as web-based or cloud services or under a Software
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as a Service (SaaS) model to the users of client computing
devices 1502, 1504, 1506, and/or 1508. Users operating
client computing devices 1502, 1504, 1506, and/or 1508
may in turn utilize one or more client applications to interact
with server 1512 to utilize the services provided by these
components.

In the configuration depicted in FIG. 15, software com-
ponents 1518, 1520 and 1522 of system 1500 are shown as
being implemented on server 1512. In other embodiments,
one or more of the components of system 1500 and/or the
services provided by these components may also be imple-
mented by one or more of the client computing devices
1502, 1504, 1506, and/or 1508. Users operating the client
computing devices may then utilize one or more client
applications to use the services provided by these compo-
nents. These components may be implemented in hardware,
firmware, software, or combinations thereof. It should be
appreciated that various different system configurations are
possible, which may be different from distributed system
1500. The embodiment shown in FIG. 15 is thus one
example of a distributed system for implementing an
embodiment system and is not intended to be limiting.

Client computing devices 1502, 1504, 1506, and/or 1508
may include various types of computing systems. For
example, a client computing device may include portable
handheld devices (e.g., an iPhone®, cellular telephone, an
iPad®, computing tablet, a personal digital assistant (PDA))
or wearable devices (e.g., a Google Glass® head mounted
display), running software such as Microsoft Windows
Mobile®, and/or a variety of mobile operating systems such
as 10S, Windows Phone, Android, BlackBerry 10, Palm OS,
and the like. The devices may support various applications
such as various Internet-related apps, e-mail, short message
service (SMS) applications, and may use various other
communication protocols. The client computing devices
may also include general purpose personal computers
including, by way of example, personal computers and/or
laptop computers running various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating
systems. The client computing devices can be workstation
computers running any of a variety of commercially-avail-
able UNIX® or UNIX-like operating systems, including
without limitation the variety of GNU/Linux operating sys-
tems, such as for example, Google Chrome OS. Client
computing devices may also include electronic devices such
as a thin-client computer, an Internet-enabled gaming sys-
tem (e.g., a Microsoft Xbox gaming console with or without
a Kinect® gesture input device), and/or a personal messag-
ing device, capable of communicating over network(s) 1510.

Although distributed system 1500 in FIG. 15 is shown
with four client computing devices, any number of client
computing devices may be supported. Other devices, such as
devices with sensors, etc., may interact with server 1512.

Network(s) 1510 in distributed system 1500 may be any
type of network familiar to those skilled in the art that can
support data communications using any of a variety of
available protocols, including without limitation TCP/IP
(transmission control protocol/Internet protocol), SNA (sys-
tems network architecture), IPX (Internet packet exchange),
AppleTalk, and the like. Merely by way of example, network
(s) 1510 can be a local area network (LAN), networks based
on Ethernet, Token-Ring, a wide-area network, the Internet,
a virtual network, a virtual private network (VPN), an
intranet, an extranet, a public switched telephone network
(PSTN), an infra-red network, a wireless network (e.g., a
network operating under any of the Institute of Electrical
and Flectronics (IEEE) 802.11 suite of protocols, Blu-
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etooth®, and/or any other wireless protocol), and/or any
combination of these and/or other networks.

Server 1512 may be composed of one or more general
purpose computers, specialized server computers (including,
by way of example, PC (personal computer) servers,
UNIX® servers, mid-range servers, mainframe computers,
rack-mounted servers, etc.), server farms, server clusters, or
any other appropriate arrangement and/or combination.
Server 1512 can include one or more virtual machines
running virtual operating systems, or other computing archi-
tectures involving virtualization. One or more flexible pools
of logical storage devices can be virtualized to maintain
virtual storage devices for the server. Virtual networks can
be controlled by server 1512 using software defined net-
working. In various embodiments, server 1512 may be
adapted to run one or more services or software applications
described in the foregoing disclosure. For example, server
1512 may correspond to a server for performing processing
as described above according to an embodiment of the
present disclosure.

Server 1512 may run an operating system including any
of those discussed above, as well as any commercially
available server operating system. Server 1512 may also run
any of a variety of additional server applications and/or
mid-tier applications, including HTTP (hypertext transport
protocol) servers, FTP (file transfer protocol) servers, CGI
(common gateway interface) servers, JAVA® servers, data-
base servers, and the like. Exemplary database servers
include without limitation those commercially available
from Oracle, Microsoft, Sybase, IBM (International Busi-
ness Machines), and the like.

In some implementations, server 1512 may include one or
more applications to analyze and consolidate data feeds
and/or event updates received from users of client comput-
ing devices 1502, 1504, 1506, and 1508. As an example,
data feeds and/or event updates may include, but are not
limited to, Twitter® feeds, Facebook® updates or real-time
updates received from one or more third party information
sources and continuous data streams, which may include
real-time events related to sensor data applications, financial
tickers, network performance measuring tools (e.g., network
monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like. Server 1512 may also include one or more applications
to display the data feeds and/or real-time events via one or
more display devices of client computing devices 1502,
1504, 1506, and 1508.

Distributed system 1500 may also include one or more
databases 1514 and 1516. These databases may provide a
mechanism for storing information such as user interactions
information, usage patterns information, adaptation rules
information, and other information used by embodiments of
the present disclosure. Databases 1514 and 1516 may reside
in a variety of locations. By way of example, one or more of
databases 1514 and 1516 may reside on a non-transitory
storage medium local to (and/or resident in) server 1512.
Alternatively, databases 1514 and 1516 may be remote from
server 1512 and in communication with server 1512 via a
network-based or dedicated connection. In one set of
embodiments, databases 1514 and 1516 may reside in a
storage-area network (SAN). Similarly, any necessary files
for performing the functions attributed to server 1512 may
be stored locally on server 1512 and/or remotely, as appro-
priate. In one set of embodiments, databases 1514 and 1516
may include relational databases, such as databases provided
by Oracle that are adapted to store, update, and retrieve data
in response to SQL-formatted commands.
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In some embodiments, a cloud environment may provide
one or more services. FIG. 16 is a simplified block diagram
of one or more components of a system environment 1600
in which services may be offered as cloud services, in
accordance with an embodiment of the present disclosure. In
the illustrated embodiment in FIG. 16, system environment
1600 includes one or more client computing devices 1604,
1606, and 1608 that may be used by users to interact with a
cloud infrastructure system 1602 that provides cloud ser-
vices. Cloud infrastructure system 1602 may comprise one
or more computers and/or servers that may include those
described above for server 1612.

It should be appreciated that cloud infrastructure system
1602 depicted in FIG. 16 may have other components than
those depicted. Further, the embodiment shown in FIG. 16
is only one example of a cloud infrastructure system that
may incorporate an embodiment of the present disclosure. In
some other embodiments, cloud infrastructure system 1602
may have more or fewer components than shown in the
figure, may combine two or more components, or may have
a different configuration or arrangement of components.

Client computing devices 1604, 1606, and 1608 may be
devices similar to those described above. Client computing
devices 1604, 1606, and 1608 may be configured to operate
a client application such as a web browser, a proprietary
client application (e.g., Oracle Forms), or some other appli-
cation, which may be used by a user of the client computing
device to interact with cloud infrastructure system 1602 to
use services provided by cloud infrastructure system 1602.
Although exemplary system environment 1600 is shown
with three client computing devices, any number of client
computing devices may be supported. Other devices such as
devices with sensors, etc. may interact with cloud infrastruc-
ture system 1602.

Network(s) 1610 may facilitate communications and
exchange of data between client computing devices 1604,
1606, and 1608 and cloud infrastructure system 1602. Each
network may be any type of network familiar to those skilled
in the art that can support data communications using any of
a variety of commercially-available protocols, including
those described above for network(s) 1610.

In certain embodiments, services provided by cloud infra-
structure system 1602 may include a host of services that are
made available to users of the cloud infrastructure system on
demand. Various other services may also be offered includ-
ing without limitation online data storage and backup solu-
tions, Web-based e-mail services, hosted office suites and
document collaboration services, database processing, man-
aged technical support services, and the like. Services pro-
vided by the cloud infrastructure system can dynamically
scale to meet the needs of its users.

In certain embodiments, a specific instantiation of a
service provided by cloud infrastructure system 1602 may
be referred to herein as a “service instance.” In general, any
service made available to a user via a communication
network, such as the Internet, from a cloud service provid-
er’s system is referred to as a “cloud service.” Typically, in
a public cloud environment, servers and systems that make
up the cloud service provider’s system are different from the
customer’s own on-premises servers and systems. For
example, a cloud service provider’s system may host an
application, and a user may, via a communication network
such as the Internet, on demand, order and use the applica-
tion.

In some examples, a service in a computer network cloud
infrastructure may include protected computer network
access to storage, a hosted database, a hosted web server, a
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software application, or other service provided by a cloud
vendor to a user, or as otherwise known in the art. For
example, a service can include password-protected access to
remote storage on the cloud through the Internet. As another
example, a service can include a web service-based hosted
relational database and a script-language middleware engine
for private use by a networked developer. As another
example, a service can include access to an email software
application hosted on a cloud vendor’s web site.

In certain embodiments, cloud infrastructure system 1602
may include a suite of applications, middleware, and data-
base service offerings that are delivered to a customer in a
self-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such a cloud infrastructure system is the Oracle Public
Cloud provided by the present assignee.

Cloud infrastructure system 1602 may also provide “big
data” elated computation and analysis services. The term
“big data” is generally used to refer to extremely large data
sets that can be stored and manipulated by analysts and
researchers to visualize large amounts of data, detect trends,
and/or otherwise interact with the data. This big data and
related applications can be hosted and/or manipulated by an
infrastructure system on many levels and at different scales.
Tens, hundreds, or thousands of processors linked in parallel
can act upon such data in order to present it or simulate
external forces on the data or what it represents. These data
sets can involve structured data, such as that organized in a
database or otherwise according to a structured model,
and/or unstructured data (e.g., emails, images, data blobs
(binary large objects), web pages, complex event process-
ing). By leveraging an ability of an embodiment to relatively
quickly focus more (or fewer) computing resources upon an
objective, the cloud infrastructure system may be better
available to carry out tasks on large data sets based on
demand from a business, government agency, research orga-
nization, private individual, group of like-minded individu-
als or organizations, or other entity.

In various embodiments, cloud infrastructure system 1602
may be adapted to automatically provision, manage and
track a customer’s subscription to services offered by cloud
infrastructure system 1602. Cloud infrastructure system
1602 may provide the cloud services via different deploy-
ment models. For example, services may be provided under
a public cloud model in which cloud infrastructure system
1602 is owned by an organization selling cloud services
(e.g., owned by Oracle Corporation) and the services are
made available to the general public or different industry
enterprises. As another example, services may be provided
under a private cloud model in which cloud infrastructure
system 1602 is operated solely for a single organization and
may provide services for one or more entities within the
organization. The cloud services may also be provided under
a community cloud model in which cloud infrastructure
system 1602 and the services provided by cloud infrastruc-
ture system 1602 are shared by several organizations in a
related community. The cloud services may also be provided
under a hybrid cloud model, which is a combination of two
or more different models.

In some embodiments, the services provided by cloud
infrastructure system 1602 may include one or more services
provided under Software as a Service (SaaS) category,
Platform as a Service (PaaS) category, Infrastructure as a
Service (laaS) category, or other categories of services
including hybrid services. A customer, via a subscription
order, may order one or more services provided by cloud
infrastructure system 1602. Cloud infrastructure system
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1602 then performs processing to provide the services in the
customer’s subscription order.

In some embodiments, the services provided by cloud
infrastructure system 1602 may include, without limitation,
application services, platform services and infrastructure
services. In some examples, application services may be
provided by the cloud infrastructure system via a SaaS
platform. The SaaS platform may be configured to provide
cloud services that fall under the SaaS category. For
example, the SaaS platform may provide capabilities to
build and deliver a suite of on-demand applications on an
integrated development and deployment platform. The SaaS
platform may manage and control the underlying software
and infrastructure for providing the SaaS services. By uti-
lizing the services provided by the SaaS platform, customers
can utilize applications executing on the cloud infrastructure
system. Customers can acquire the application services
without the need for customers to purchase separate licenses
and support. Various different SaaS services may be pro-
vided. Examples include, without limitation, services that
provide solutions for sales performance management, enter-
prise integration, and business flexibility for large organi-
zations.

In some embodiments, platform services may be provided
by cloud infrastructure system 1602 via a PaaS platform.
The PaaS platform may be configured to provide cloud
services that fall under the PaaS category. Examples of
platform services may include without limitation services
that enable organizations (such as Oracle) to consolidate
existing applications on a shared, common architecture, as
well as the ability to build new applications that leverage the
shared services provided by the platform. The PaaS platform
may manage and control the underlying software and infra-
structure for providing the PaaS services. Customers can
acquire the PaaS services provided by cloud infrastructure
system 1602 without the need for customers to purchase
separate licenses and support. Examples of platform services
include, without limitation, Oracle Java Cloud Service
(ICS), Oracle Database Cloud Service (DBCS), and others.

By utilizing the services provided by the PaaS platform,
customers can employ programming languages and tools
supported by the cloud infrastructure system and also con-
trol the deployed services. In some embodiments, platform
services provided by the cloud infrastructure system may
include database cloud services, middleware cloud services
(e.g., Oracle Fusion Middleware services), and Java cloud
services. In one embodiment, database cloud services may
support shared service deployment models that enable orga-
nizations to pool database resources and offer customers a
Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for
customers to develop and deploy various business applica-
tions, and Java cloud services may provide a platform for
customers to deploy Java applications, in the cloud infra-
structure system.

Various different infrastructure services may be provided
by an laaS platform in the cloud infrastructure system. The
infrastructure services facilitate the management and control
of the underlying computing resources, such as storage,
networks, and other fundamental computing resources for
customers utilizing services provided by the SaaS platform
and the PaaS platform.

In certain embodiments, cloud infrastructure system 1602
may also include infrastructure resources 1630 for providing
the resources used to provide various services to customers
of the cloud infrastructure system. In one embodiment,
infrastructure resources 1630 may include pre-integrated
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and optimized combinations of hardware, such as servers,
storage, and networking resources to execute the services
provided by the PaaS platform and the SaaS platform, and
other resources.

In some embodiments, resources in cloud infrastructure
system 1602 may be shared by multiple users and dynami-
cally re-allocated per demand. Additionally, resources may
be allocated to users in different time zones. For example,
cloud infrastructure system 1602 may enable a first set of
users in a first time zone to utilize resources of the cloud
infrastructure system for a specified number of hours and
then enable the re-allocation of the same resources to
another set of users located in a different time zone, thereby
maximizing the utilization of resources.

In certain embodiments, a number of internal shared
services 1632 may be provided that are shared by different
components or modules of cloud infrastructure system 1602
to enable provision of services by cloud infrastructure
system 1602. These internal shared services may include,
without limitation, a security and identity service, an inte-
gration service, an enterprise repository service, an enter-
prise manager service, a virus scanning and white list
service, a high availability, backup and recovery service,
service for enabling cloud support, an email service, a
notification service, a file transfer service, and the like.

In certain embodiments, cloud infrastructure system 1602
may provide comprehensive management of cloud services
(e.g., SaaS, PaaS, and IaaS services) in the cloud infrastruc-
ture system. In one embodiment, cloud management func-
tionality may include capabilities for provisioning, manag-
ing and tracking a customer’s subscription received by cloud
infrastructure system 1602, and the like.

In one embodiment, as depicted in FIG. 16, cloud man-
agement functionality may be provided by one or more
modules, such as an order management module 1620, an
order orchestration module 1622, an order provisioning
module 1624, an order management and monitoring module
1626, and an identity management module 1628. These
modules may include or be provided using one or more
computers and/or servers, which may be general purpose
computers, specialized server computers, server farms,
server clusters, or any other appropriate arrangement and/or
combination.

In an exemplary operation, at step 1634, a customer using
a client device, such as client computing devices 1604, 1606
or 1608, may interact with cloud infrastructure system 1602
by requesting one or more services provided by cloud
infrastructure system 1602 and placing an order for a
subscription for one or more services offered by cloud
infrastructure system 1602. In certain embodiments, the
customer may access a cloud User Interface (UI) such as
cloud UI 1612, cloud UI 1614 and/or cloud Ul 1616 and
place a subscription order via these Uls. The order infor-
mation received by cloud infrastructure system 1602 in
response to the customer placing an order may include
information identifying the customer and one or more ser-
vices offered by the cloud infrastructure system 1602 that the
customer intends to subscribe to.

At step 1636, the order information received from the
customer may be stored in an order database 1618. If this is
a new order, a new record may be created for the order. In
one embodiment, order database 1618 can be one of several
databases operated by cloud infrastructure system 1618 and
operated in conjunction with other system elements.

At step 1638, the order information may be forwarded to
an order management module 1620 that may be configured
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to perform billing and accounting functions related to the
order, such as verifying the order, and upon verification,
booking the order.

At step 1640, information regarding the order may be
communicated to an order orchestration module 1622 that is
configured to orchestrate the provisioning of services and
resources for the order placed by the customer. In some
instances, order orchestration module 1622 may use the
services of order provisioning module 1624 for the provi-
sioning. In certain embodiments, order orchestration module
1622 enables the management of business processes asso-
ciated with each order and applies business logic to deter-
mine whether an order should proceed to provisioning.

As shown in the embodiment depicted in FIG. 16, at step
1642, upon receiving an order for a new subscription, order
orchestration module 1622 sends a request to order provi-
sioning module 1624 to allocate resources and configure
resources needed to fulfill the subscription order. Order
provisioning module 1624 enables the allocation of
resources for the services ordered by the customer. Order
provisioning module 1624 provides a level of abstraction
between the cloud services provided by cloud infrastructure
system 1600 and the physical implementation layer that is
used to provision the resources for providing the requested
services. This enables order orchestration module 1622 to be
isolated from implementation details, such as whether or not
services and resources are actually provisioned on the fly or
pre-provisioned and only allocated/assigned upon request.

At step 1644, once the services and resources are provi-
sioned, a notification may be sent to the subscribing cus-
tomers indicating that the requested service is now ready for
use. In some instance, information (e.g. a link) may be sent
to the customer that enables the customer to start using the
requested services.

At step 1646, a customer’s subscription order may be
managed and tracked by an order management and moni-
toring module 1626. In some instances, order management
and monitoring module 1626 may be configured to collect
usage statistics regarding a customer use of subscribed
services. For example, statistics may be collected for the
amount of storage used, the amount data transferred, the
number of users, and the amount of system up time and
system down time, and the like.

In certain embodiments, cloud infrastructure system 1600
may include an identity management module 1628 that is
configured to provide identity services, such as access
management and authorization services in cloud infrastruc-
ture system 1600. In some embodiments, identity manage-
ment module 1628 may control information about customers
who wish to utilize the services provided by cloud infra-
structure system 1602. Such information can include infor-
mation that authenticates the identities of such customers
and information that describes which actions those custom-
ers are authorized to perform relative to various system
resources (e.g., files, directories, applications, communica-
tion ports, memory segments, etc.) Identity management
module 1628 may also include the management of descrip-
tive information about each customer and about how and by
whom that descriptive information can be accessed and
modified.

FIG. 17 illustrates an exemplary computer system 1700
that may be used to implement an embodiment of the present
disclosure. In some embodiments, computer system 1700
may be used to implement any of the various servers and
computer systems described above. As shown in FIG. 17,
computer system 1700 includes various subsystems includ-
ing a processing unit 1704 that communicates with a number
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of peripheral subsystems via a bus subsystem 1702. These
peripheral subsystems may include a processing accelera-
tion unit 1706, an I/O subsystem 1708, a storage subsystem
1718 and a communications subsystem 1724. Storage sub-
system 1718 may include tangible computer-readable stor-
age media 1722 and a system memory 1710.

Bus subsystem 1702 provides a mechanism for letting the
various components and subsystems of computer system
1700 communicate with each other as intended. Although
bus subsystem 1702 is shown schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple buses. Bus subsystem 1702 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. For example, such architectures
may include an Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus
manufactured to the IEEE P1386.1 standard, and the like.

Processing subsystem 1704 controls the operation of
computer system 1700 and may comprise one or more
processing units 1732, 1734, etc. A processing unit may
include be one or more processors, including single core or
multicore processors, one or more cores of processors, or
combinations thereof. In some embodiments, processing
subsystem 1704 can include one or more special purpose
co-processors such as graphics processors, digital signal
processors (DSPs), or the like. In some embodiments, some
or all of the processing units of processing subsystem 1704
can be implemented using customized circuits, such as
application specific integrated circuits (ASICs), or field
programmable gate arrays (FPGAs).

In some embodiments, the processing units in processing
subsystem 1704 can execute instructions stored in system
memory 1710 or on computer readable storage media 1722.
In various embodiments, the processing units can execute a
variety of programs or code instructions and can maintain
multiple concurrently executing programs or processes. At
any given time, some or all of the program code to be
executed can be resident in system memory 1710 and/or on
computer-readable storage media 1722 including potentially
on one or more storage devices. Through suitable program-
ming, processing subsystem 1704 can provide various func-
tionalities.

In certain embodiments, a processing acceleration unit
1706 may be provided for performing customized process-
ing or for off-loading some of the processing performed by
processing subsystem 1704 so as to accelerate the overall
processing performed by computer system 1700.

1/0 subsystem 1708 may include devices and mechanisms
for inputting information to computer system 1700 and/or
for outputting information from or via computer system
1700. In general, use of the term “input device” is intended
to include all possible types of devices and mechanisms for
inputting information to computer system 1700. User inter-
face input devices may include, for example, a keyboard,
pointing devices such as a mouse or trackball, a touchpad or
touch screen incorporated into a display, a scroll wheel, a
click wheel, a dial, a button, a switch, a keypad, audio input
devices with voice command recognition systems, micro-
phones, and other types of input devices. User interface
input devices may also include motion sensing and/or ges-
ture recognition devices such as the Microsoft Kinect®
motion sensor that enables users to control and interact with
an input device, the Microsoft Xbox® 360 game controller,
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devices that provide an interface for receiving input using
gestures and spoken commands. User interface input devices
may also include eye gesture recognition devices such as the
Google Glass® blink detector that detects eye activity (e.g.,
“blinking” while taking pictures and/or making a menu
selection) from users and transforms the eye gestures as
input into an input device (e.g., Google Glass®). Addition-
ally, user interface input devices may include voice recog-
nition sensing devices that enable users to interact with
voice recognition systems (e.g., Siri® navigator), through
voice commands.

Other examples of user interface input devices include,
without limitation, three dimensional (3D) mice, joysticks or
pointing sticks, gamepads and graphic tablets, and audio/
visual devices such as speakers, digital cameras, digital
camcorders, portable media players, webcams, image scan-
ners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices.
Additionally, user interface input devices may include, for
example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission
tomography, medical ultrasonography devices. User inter-
face input devices may also include, for example, audio
input devices such as MIDI keyboards, digital musical
instruments and the like.

User interface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liquid crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” is intended to include all
possible types of devices and mechanisms for outputting
information from computer system 1700 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

Storage subsystem 1718 provides a repository or data
store for storing information that is used by computer system
1700. Storage subsystem 1718 provides a tangible non-
transitory computer-readable storage medium for storing the
basic programming and data constructs that provide the
functionality of some embodiments. Software (programs,
code modules, instructions) that when executed by process-
ing subsystem 1704 provide the functionality described
above may be stored in storage subsystem 1718. The soft-
ware may be executed by one or more processing units of
processing subsystem 1704. Storage subsystem 1718 may
also provide a repository for storing data used in accordance
with the present disclosure.

Storage subsystem 1718 may include one or more non-
transitory memory devices, including volatile and non-
volatile memory devices. As shown in FIG. 17, storage
subsystem 1718 includes a system memory 1710 and a
computer-readable storage media 1722. System memory
1710 may include a number of memories including a volatile
main random access memory (RAM) for storage of instruc-
tions and data during program execution and a non-volatile
read only memory (ROM) or flash memory in which fixed
instructions are stored. In some implementations, a basic
input/output system (BIOS), containing the basic routines
that help to transfer information between elements within
computer system 1700, such as during start-up, may typi-
cally be stored in the ROM. The RAM typically contains
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data and/or program modules that are presently being oper-
ated and executed by processing subsystem 1704. In some
implementations, system memory 1710 may include mul-
tiple different types of memory, such as static random access
memory (SRAM) or dynamic random access memory
(DRAM).

By way of example, and not limitation, as depicted in
FIG. 17, system memory 1710 may store application pro-
grams 1712, which may include client applications, Web
browsers, mid-tier applications, relational database manage-
ment systems (RDBMS), etc., program data 1714, and an
operating system 1716. By way of example, operating
system 1716 may include various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating
systems, a variety of commercially-available UNIX® or
UNIX-like operating systems (including without limitation
the variety of GNU/Linux operating systems, the Google
Chrome® OS, and the like) and/or mobile operating systems
such as i0S, Windows® Phone, Android® OS, Black-
Berry® 10 OS, and Palm® OS operating systems.

Computer-readable storage media 1722 may store pro-
gramming and data constructs that provide the functionality
of some embodiments. Software (programs, code modules,
instructions) that when executed by processing subsystem
1704 a processor provide the functionality described above
may be stored in storage subsystem 1718. By way of
example, computer-readable storage media 1722 may
include non-volatile memory such as a hard disk drive, a
magnetic disk drive, an optical disk drive such as a CD
ROM, DVD, a Blu-Ray® disk, or other optical media.
Computer-readable storage media 1722 may include, but is
not limited to, Zip® drives, flash memory cards, universal
serial bus (USB) flash drives, secure digital (SD) cards,
DVD disks, digital video tape, and the like. Computer-
readable storage media 1722 may also include, solid-state
drives (SSD) based on non-volatile memory such as flash-
memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as
solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid
SSDs that use a combination of DRAM and flash memory
based SSDs. Computer-readable media 1722 may provide
storage of computer-readable instructions, data structures,
program modules, and other data for computer system 1700.

In certain embodiments, storage subsystem 1700 may also
include a computer-readable storage media reader 1720 that
can further be connected to computer-readable storage
media 1722. Together and, optionally, in combination with
system memory 1710, computer-readable storage media
1722 may comprehensively represent remote, local, fixed,
and/or removable storage devices plus storage media for
storing computer-readable information.

In certain embodiments, computer system 1700 may
provide support for executing one or more virtual machines.
Computer system 1700 may execute a program such as a
hypervisor for facilitating the configuring and managing of
the virtual machines. Each virtual machine may be allocated
memory, compute (e.g., processors, cores), /O, and net-
working resources. Hach virtual machine typically runs its
own operating system, which may be the same as or different
from the operating systems executed by other virtual
machines executed by computer system 1700. Accordingly,
multiple operating systems may potentially be run concur-
rently by computer system 1700. Each virtual machine
generally runs independently of the other virtual machines.

Communications subsystem 1724 provides an interface to
other computer systems and networks. Communications
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subsystem 1724 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 1700. For example, communications subsystem
1724 may enable computer system 1700 to establish a
communication channel to one or more client computing
devices via the Internet for receiving and sending informa-
tion from and to the client computing devices.

Communication subsystem 1724 may support both wired
and/or wireless communication protocols. For example, in
certain embodiments, communications subsystem 1724 may
include radio frequency (RF) transceiver components for
accessing wireless voice and/or data networks (e.g., using
cellular telephone technology, advanced data network tech-
nology, such as 3G, 4G or EDGE (enhanced data rates for
global evolution), WiFi (IEEE 802.11 family standards, or
other mobile communication technologies, or any combina-
tion thereof), global positioning system (GPS) receiver
components, and/or other components. In some embodi-
ments communications subsystem 1724 can provide wired
network connectivity (e.g., Ethernet) in addition to or
instead of a wireless interface.

Communication subsystem 1724 can receive and transmit
data in various forms. For example, in some embodiments,
communications subsystem 1724 may receive input com-
munication in the form of structured and/or unstructured
data feeds 1726, event streams 1728, event updates 1730,
and the like. For example, communications subsystem 1724
may be configured to receive (or send) data feeds 1726 in
real-time from users of social media networks and/or other
communication services such as Twitter® feeds, Facebook®
updates, web feeds such as Rich Site Summary (RSS) feeds,
and/or real-time updates from one or more third party
information sources.

In certain embodiments, communications subsystem 1724
may be configured to receive data in the form of continuous
data streams, which may include event streams 1728 of
real-time events and/or event updates 1730, that may be
continuous or unbounded in nature with no explicit end.
Examples of applications that generate continuous data may
include, for example, sensor data applications, financial
tickers, network performance measuring tools (e.g. network
monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like.

Communications subsystem 1724 may also be configured
to output the structured and/or unstructured data feeds 1726,
event streams 1728, event updates 1730, and the like to one
or more databases that may be in communication with one
or more streaming data source computers coupled to com-
puter system 1700.

Computer system 1700 can be one of various types,
including a handheld portable device (e.g., an iPhone®
cellular phone, an iPad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a personal computer, a workstation, a mainframe,
a kiosk, a server rack, or any other data processing system.

Due to the ever-changing nature of computers and net-
works, the description of computer system 1700 depicted in
FIG. 17 is intended only as a specific example. Many other
configurations having more or fewer components than the
system depicted in FIG. 17 are possible. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

Although specific embodiments of the present disclosure
have been described, various modifications, alterations,
alternative constructions, and equivalents are also encom-
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passed within the scope of the present disclosure. The
modifications include any relevant combination of the dis-
closed features. Embodiments of the present disclosure are
not restricted to operation within certain specific data pro-
cessing environments, but are free to operate within a
plurality of data processing environments. Additionally,
although embodiments of the present disclosure have been
described using a particular series of transactions and steps,
it should be apparent to those skilled in the art that the scope
of'the present disclosure is not limited to the described series
of transactions and steps. Various features and aspects of the
above-described embodiments may be used individually or
jointly.

Further, while embodiments of the present disclosure
have been described using a particular combination of
hardware and software, it should be recognized that other
combinations of hardware and software are also within the
scope of the present disclosure. Embodiments of the present
disclosure may be implemented only in hardware, or only in
software, or using combinations thereof. The various pro-
cesses described herein can be implemented on the same
processor or different processors in any combination.
Accordingly, where components or modules are described as
being configured to perform certain operations, such con-
figuration can be accomplished, e.g., by designing electronic
circuits to perform the operation, by programming program-
mable electronic circuits (such as microprocessors) to per-
form the operation, or any combination thereof. Processes
can communicate using a variety of techniques including but
not limited to conventional techniques for interprocess com-
munication, and different pairs of processes may use differ-
ent techniques, or the same pair of processes may use
different techniques at different times.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele-
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and
scope as set forth in the claims. Thus, although specific
embodiments have been described, these are not intended to
be limiting. Various modifications and equivalents are
within the scope of the following claims.

What is claimed is:

1. A computer-implemented method comprising:

determining, by one or more computer systems, a length

of time when heap usage by one or more processes
exceeds a threshold, wherein the length of time spans
at least one period, wherein the at least one period is
divided into a plurality of intervals, and wherein each
of the plurality of intervals is mapped to a season of a
plurality of seasons;

determining heap information of the one or more pro-

cesses during the length of time, the heap information
comprising heap usage information and a heap usage
seasonal factor for each of the plurality of intervals in
the length of time, wherein the heap usage seasonal
factor for each of the plurality of intervals corresponds
to a smoothed heap usage seasonal factor associated
with the season to which each of the plurality of
intervals is mapped;

determining thread information of the one or more pro-

cesses during the length of time, wherein determining
the thread information comprises determining one or
more classes of threads and wherein the thread infor-
mation comprises, for each of the one or more classes
of threads, thread intensity information and a thread
intensity seasonal factor for each of the plurality of
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intervals, wherein the thread intensity seasonal factor
for each of the plurality of intervals and for each of the
one or more classes of threads corresponds to a
smoothed thread intensity seasonal factor associated
with the season to which each of the plurality of
intervals is mapped;

correlating the heap information with the thread informa-

tion to identify one or more lines of code of the one or
more processes that correspond to the heap usage
exceeding the threshold; and

responsive to identifying the one or more lines of code,

initiating one or more actions associated with the one or
more lines of code.

2. The method of claim 1, wherein correlating the heap
information with the thread information comprises:

for each of the one or more classes of threads, determin-

ing, based at least in part on the heap usage seasonal
factors of the plurality of intervals and the thread
intensity seasonal factors of the class of threads and the
plurality of intervals, a degree of correlation between
the class of threads and the heap usage exceeding the
threshold;

selecting, from the one or more classes of threads, a given

class of threads that has a highest degree of correlation
to the heap usage exceeding the threshold amongst the
one or more classes of threads; and

identifying, based at least in part on the given class of

threads, the one or more lines of code.

3. The method of claim 2, wherein determining the degree
of correlation between the class of threads and the heap
usage exceeding the threshold comprises:

calculating a mean of the heap usage seasonal factors of

the plurality of intervals;

calculating a mean of the thread intensity seasonal factors

of the class of threads and the plurality of intervals;
calculating a variance of the heap usage seasonal factors
of the plurality of intervals;

calculating a variance of the thread intensity seasonal

factors of the class of threads and the plurality of
intervals; and

calculating the degree of correlation based at least in part

on the mean of the heap usage seasonal factors of the
plurality of intervals, the mean of the thread intensity
seasonal factors of the class of threads and the plurality
of intervals, the variance of the heap usage seasonal
factors of the plurality of intervals, and the variance of
the thread intensity seasonal factors of the class of
threads and the plurality of intervals.

4. The method of claim 2, wherein each thread of the one
or more processes that belongs to the given class of threads
executes the one or more lines of code.

5. The method of claim 1:

wherein the length of time spans one or more first cycles

of a first period having a first length and one or more
second cycles of a second period having a second
length;
wherein the first period having the first length is divided
into a first plurality of seasons each associated with the
smoothed heap usage seasonal factor of a first type and
the smoothed thread intensity seasonal factor of a first
type for each of the one or more classes of threads;

wherein the second period having the second length is
divided into a second plurality of seasons each associ-
ated with the smoothed heap usage seasonal factor of a
second type and the smoothed thread intensity seasonal
factor of a second type for each of the one or more
classes of threads;
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wherein each of the plurality of intervals is mapped to one
of the first plurality of seasons or one of the second
plurality of seasons;
wherein, for each of the plurality of intervals, the
smoothed heap usage seasonal factor is associated with
the one of the first plurality of seasons or the one of the
second plurality of seasons that the interval is mapped
to; and
wherein, for each of the plurality of intervals, and for each
of the one or more classes of threads, the smoothed
thread intensity seasonal factor of the class of threads
is associated with the one of the first plurality of
seasons or the one of the second plurality of seasons
that the interval is mapped to.
6. The method of claim 5:
wherein the smoothed heap usage seasonal factors of the
first type are determined by:
for each of the first plurality of seasons, determining a
heap usage seasonal factor of the first type by
comparing an average heap usage of the season of
the first plurality of seasons with an average heap
usage of the period having the first length;
for each of the heap usage seasonal factors of the first
type, dividing the heap usage seasonal factor of the
first type by a normalization factor to obtain a
renormalized heap usage seasonal factor of the first
type;
applying a first spline function to the renormalized heap
usage seasonal factors of the first type to obtain the
smoothed heap usage seasonal factors of the first
type; and
wherein the smoothed heap usage seasonal factors of the
second type are determined by:
for each of the second plurality of seasons, determining
a heap usage seasonal factor of the second type by
comparing an average heap usage of the season of
the second plurality of seasons with an average heap
usage of the period having the second length;
for each of the heap usage seasonal factors of the
second type, dividing the heap usage seasonal factors
of the second type by the normalization factor to
obtain a renormalized heap usage seasonal factor of
the second type; and
applying a second spline function to the renormalized
heap usage seasonal factors of the second type to
obtain the smoothed heap usage seasonal factors of
the second type.
7. The method of claim 1, wherein determining the one or
more classes of threads comprises:
obtaining one or more thread dumps of the one or more
processes, wherein each of the thread dumps are taken
at a different point in time while the one or more
processes are executing; and
for each of one or more threads of the one or more thread
dumps, classifying the thread based at least in part on
a stack trace that corresponds to the thread, the stack
trace indicating code executed by the thread when the
thread dump was taken.
8. The method of claim 7, wherein classifying the thread
based at least in part on the stack trace comprises:
determining whether a class of threads that corresponds to
a combination of stack frames included in the stack
trace exists;
responsive to determining that the class of threads that
corresponds to the combination of stack frames
included in the stack trace does not exist, creating a
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new class of threads that corresponds to the combina-
tion of stack frames included in the stack trace; and

incrementing one or more counters associated with the
class of threads that corresponds to the combination of
stack frames included in the stack trace.

9. The method of claim 1, wherein for each of the one or
more classes of threads, for each of the plurality of intervals,
the thread intensity information for the interval indicates an
average number of threads belonging to the class of threads
that are executing during throughout the interval.

10. The method of claim 1, wherein the one or more
actions includes at least one of:

generating an alert associated with the one or more lines

of code; or

optimizing the one or more lines of code.

11. The method of claim 10, wherein optimizing the one
or more lines of code comprises modifying the one or more
lines of code to reduce an amount of heap memory used or
reduce a duration of a usage of the heap memory.

12. The method of claim 1, wherein:

the length of time spans a first period and a second period;

the second period immediately follows the first period;

the first period is associated with a plurality of first heap
usage seasonal factors and a plurality of first thread
intensity seasonal factors;

the second period is associated with a plurality of second

heap usage seasonal factors and a plurality of second
thread intensity seasonal factors;

the method further comprises:

forming a sequence of heap usage seasonal factors
based at least in part on concatenating the first
plurality of heap usage seasonal factors and the
second plurality of heap usage seasonal factors;

forming a sequence of thread intensity seasonal factors
based at least in part on concatenating the first
plurality of thread intensity seasonal factors and the
second plurality of thread intensity seasonal factors;

performing a first smooth-spline fitting on the sequence
of'heap usage seasonal factors to generate a sequence
of smoothed heap usage seasonal factors to be
included in the heap information; and

performing a second smooth-spline fitting on the
sequence of thread intensity seasonal factors to gen-
erate a sequence of smoothed thread intensity sea-
sonal factors to be included in the thread informa-
tion;

and the correlation of the heap information with the thread

information is based at least in part on the sequence of
smoothed heap usage seasonal factors and the sequence
of smoothed thread intensity seasonal factors.

13. The method of claim 12, wherein the first period is
associated with a weekday, and wherein the second period is
associated with at least one of: a weekend, or a holiday.

14. A system comprising:

one or more processors; and

a memory accessible to the one or more processors, the

memory storing one or more instructions that, upon

execution by the one or more processors, causes the one

Or more processors to:

determine a length of time when heap usage by one or
more processes exceeds a threshold, wherein the
length of time spans at least one period, wherein the
at least one period is divided into a plurality of
intervals, and wherein each of the plurality of inter-
vals is mapped to a season of a plurality of seasons;

determine heap information of the one or more pro-
cesses during the length of time, the heap informa-
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tion comprising heap usage information and a heap
usage seasonal factor for each of the plurality of
intervals in the length of time, wherein the heap
usage seasonal factor for each of the plurality of
intervals is associated with the season to which each
of the plurality of intervals is mapped, and wherein
the heap information is determined based at least in
part on a first smooth-spline fitting on the heap usage
seasonal factors for the plurality of intervals;

determine thread information of the one or more pro-
cesses during the length of time, wherein determin-
ing the thread information comprises determining
one or more classes of threads and wherein the
thread information comprises, for each of the one or
more classes of threads, thread intensity information
and a thread intensity seasonal factor for each of the
plurality of intervals, wherein the thread intensity
seasonal factor for each of the plurality of intervals
is associated with the season the each of the plurality
of intervals is mapped to, and wherein the thread
information is determined based at least in part on
performing a second smooth-spline fitting on the
thread intensity seasonal factors for the plurality of
intervals;

correlate the heap information with the thread infor-
mation based at least in part on the smooth-spline
fitted heap usage seasonal factors and the smooth-
spline fitted thread intensity seasonal factors to iden-
tify one or more lines of code of the one or more
processes that correspond to the heap usage exceed-
ing the threshold; and

responsive to identifying the one or more lines of code,
initiate one or more actions associated with the one
or more lines of code.

15. The system of claim 14, wherein correlating the heap
information with the thread information comprises:

for each of the one or more classes of threads, determin-

ing, based at least in part on the heap usage seasonal
factors of the plurality of intervals and the thread
intensity seasonal factors of the class of threads and the
plurality of intervals, a degree of correlation between
the class of threads and the heap usage exceeding the
threshold;

selecting, from the one or more classes of threads, a given

class of threads that has a highest degree of correlation
to the heap usage exceeding the threshold amongst the
one or more classes of threads; and

identifying, based at least in part on the given class of

threads, the one or more lines of code.

16. The system of claim 15, wherein determining the
degree of correlation between the class of threads and the
heap usage exceeding the threshold comprises:

calculating a mean of the heap usage seasonal factors of

the plurality of intervals;

calculating a mean of the thread intensity seasonal factors

of the class of threads and the plurality of intervals;
calculating a variance of the heap usage seasonal factors
of the plurality of intervals;

calculating a variance of the thread intensity seasonal

factors of the class of threads and the plurality of
intervals; and

calculating the degree of correlation based at least in part

on the mean of the heap usage seasonal factors of the
plurality of intervals, the mean of the thread intensity
seasonal factors of the class of threads and the plurality
of intervals, the variance of the heap usage seasonal
factors of the plurality of intervals, and the variance of
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the thread intensity seasonal factors of the class of
threads and the plurality of intervals.
17. The system of claim 14:
wherein the length of time spans one or more first cycles
of a first period having a first length and one or more
second cycles of a second period having a second
length;
wherein the first period having the first length is divided
into a first plurality of seasons each associated with a
smoothed heap usage seasonal factor of a first type and
a smoothed thread intensity seasonal factor of a first
type for each of the one or more classes of threads;
wherein the second period having the second length is
divided into a second plurality of seasons each associ-
ated with a smoothed heap usage seasonal factor of a
second type and a smoothed thread intensity seasonal
factor of a second type for each of the one or more
classes of threads;
wherein each of the plurality of intervals is mapped to one
of the first plurality of seasons or one of the second
plurality of seasons;
wherein, for each of the plurality of intervals, the heap
usage seasonal factor of the interval corresponds to a
smoothed heap usage seasonal factor that is associated
with the one of the first plurality of seasons or the one
of the second plurality of seasons that the interval is
mapped to; and
wherein, for each of the plurality of intervals, for each of
the one or more classes of threads, the thread intensity
seasonal factor of the class of threads of the interval
corresponds to a smoothed thread intensity seasonal
factor of the class of threads that is associated with the
one of the first plurality of seasons or the one of the
second plurality of seasons that the interval is mapped
to.
18. The system of claim 17:
wherein the smoothed heap usage seasonal factors of the
first type are determined by:
for each of the first plurality of seasons, determining a
heap usage seasonal factor of the first type by
comparing an average heap usage of the season of
the first plurality of seasons with an average heap
usage of the period having the first length;
for each of the heap usage seasonal factors of the first
type, dividing the heap usage seasonal factor of the
first type by a normalization factor to obtain a
renormalized heap usage seasonal factor of the first
type;
applying a first spline function to the renormalized heap
usage seasonal factors of the first type to obtain the
smoothed heap usage seasonal factors of the first
type; and
wherein the smoothed heap usage seasonal factors of the
second type are determined by:
for each of the second plurality of seasons, determining
a heap usage seasonal factor of the second type by
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comparing an average heap usage of the season of
the second plurality of seasons with an average heap
usage of the period having the second length; and
for each of the heap usage seasonal factors of the
second type, dividing the heap usage seasonal factors
of the second type by the normalization factor to
obtain a renormalized heap usage seasonal factor of
the second type; and
applying a second spline function to the renormalized
heap usage seasonal factors of the second type to obtain
the smoothed heap usage seasonal factors of the second

type.

19. The system of claim 14, wherein the one or more

actions includes at least one of:

generating an alert associated with the one or more lines
of code; or

optimizing the one or more lines of code.

20. A non-transitory computer-readable medium storing

one or more instructions that, upon execution by one or more
processors, cause the one or more processors to:

determine a length of time when heap usage by one or
more processes exceeds a threshold, wherein the length
of time spans at least one period, wherein the at least
one period is divided into a plurality of intervals, and
wherein each of the plurality of intervals is mapped to
a season of a plurality of seasons;

determine heap information of the one or more processes
during the length of time, the heap information com-
prising heap usage information and a heap usage sea-
sonal factor for each of the plurality of intervals in the
length of time, wherein the heap usage seasonal factor
for each of the plurality of intervals corresponds to a
smoothed heap usage seasonal factor associated with
the season to which each of the plurality of intervals is
mapped;

determine thread information of the one or more pro-
cesses during the length of time, wherein determining
the thread information comprises determining one or
more classes of threads and wherein the thread infor-
mation comprises, for each of the one or more classes
of threads, thread intensity information and a thread
intensity seasonal factor for each of the plurality of
intervals, wherein the thread intensity seasonal factor
for each of the plurality of intervals and for each of the
one or more classes of threads corresponds to a
smoothed thread intensity seasonal factor associated
with the season to which each of the plurality of
intervals is mapped;

correlate the heap information with the thread information
to identify one or more lines of code of the one or more
processes that correspond to the heap usage exceeding
the threshold; and

responsive to identifying the one or more lines of code,
initiate one or more actions associated with the one or
more lines of code.
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