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STACK FRAMES INCLUDED BY THE STACK TRACE THAT ARE NOT REPRESENTED BY ANY PREVIOUSLY 

GENERATED NODE 804 

GENERATE ONE OR MORE ADDITIONAL NODES TO REPRESENT THE ONE OR MORE SUBSEQUENCES OF 
STACK FRAMES 806 

INCORPORATE AT LEAST ONE OF THE ONE OR MORE ADDITIONAL NODES INTO ONE OR MORE 
PREVIOUSLY GENERATED BINARY TREES OF ONE OR MORE PREVIOUSLY GENERATED TUPLES 808 

GENERATE ONE OR MORE ADDITIONAL BINARY TREES , WHEREIN AT LEAST ONE OR MORE THE ONE OR 
MORE BINARY TREES INCLUDE AT LEAST ONE OF THE ONE OR MORE ADDITIONAL NODES 810 

GENERATE AN ADDITIONAL TUPLE THAT INCLUDES THE ONE OR MORE ADDITIONAL BINARY TREES TO 
REPRESENT THE STACK TRACE 812 

GENERATE A TUPLE THAT INCLUDES A SINGLE BINARY TREE THAT INCLUDES A SINGLE NODE TO 
REPRESENT THE STACK TRACE 814 

END 850 

FIG . 8 
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900 

START 

DETERMINE A LENGTH OF TIME WHEN HEAP USAGE BY ONE OR MORE PROCESSES EXCEEDS A 
THRESHOLD 902 

DETERMINE HEAP INFORMATION OF THE ONE OR MORE PROCESSES DURING THE LENGTH OF TIME 
904 

DETERMINE THREAD INFORMATION OF THE ONE OR MORE PROCESSES DURING THE LENGTH OF TIME 
906 

CORRELATE THE HEAP INFORMATION WITH THE THREAD INFORMATION TO IDENTIFY ONE OR MORE 
LINES OF CODE OF THE ONE OR MORE PROCESSES THAT CORRESPOND TO THE HEAP USAGE 

EXCEEDING THE THRESHOLD 908 

RESPONSIVE TO IDENTIFYING THE ONE OR MORE LINES OF CODE , INITIATE ONE OR MORE ACTIONS 
ASSOCIATED WITH THE ONE OR MORE LINES OF CODE 910 

END 950 

FIG . 9 
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1000 

START 

OBTAIN ONE OR MORE THREAD DUMPS OF ONE OR MORE PROCESSES 1002 

OBTAIN ONE OR MORE CLASSES OF THREADS BY , FOR EACH OF ONE OR MORE THREADS OF THE ONE 
OR MORE THREAD DUMPS , CLASSIFY THE THREAD BASED ON A STACK TRACE THAT CORRESPONDS TO 

THE THREAD 1004 

No ANOTHER CLASS OF THREADS ? 1006 

Yes 

CALCULATE A MEAN OF THE HEAP USAGE SEASONAL FACTORS OF THE PLURALITY OF INTERVALS 
1008 

CALCULATE A MEAN OF THE THREAD INTENSITY SEASONAL FACTORS OF THE CLASS OF THREADS AND 
OF THE PLURALITY OF INTERVALS 1010 

CALCULATE A VARIANCE OF THE HEAP USAGE SEASONAL FACTORS OF THE PLURALITY OF INTERVALS 
1012 

CALCULATE A VARIANCE OF THE THREAD INTENSITY SEASONAL FACTORS OF THE CLASS OF THREADS 
AND OF THE PLURALITY OF INTERVALS 1014 

CALCULATE THE DEGREE OF CORRELATION BETWEEN THE CLASS OF THREADS AND THE HEAP USAGE 
EXCEEDING THE THRESHOLD 1016 

SELECT , FROM THE ONE OR MORE CLASSES OF THREADS , A GIVEN CLASS OF THREADS THAT HAS A 
HIGHEST DEGREE OF CORRELATION TO THE HEAP USAGE EXCEEDING THE THRESHOLD 1018 

IDENTIFY , BASED ON THE GIVEN CLASS OF THREADS , ONE OR MORE LINES OF CODE 1020 

END 1050 

FIG . 10 
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1400 

START 

RECEIVE A SIGNAL COMPRISING A PLURALITY OF MEASURES SAMPLED OVER A SPAN OF TIME FROM 
AN ENVIRONMENT IN WHICH ONE OR MORE PROCESSES ARE BEING EXECUTED 1402 

EXTRACT A SEASONAL EFFECTOR AND A DE - SEASONALIZED COMPONENT FROM THE SIGNAL 1404 

APPLY ONE OR MORE SPLINE FUNCTIONS TO THE SEASONAL EFFECTOR TO GENERATE A FIRST MODEL 
1406 

APPLY A LINEAR REGRESSION TECHNIQUE TO THE DE - SEASONALIZED COMPONENT TO GENERATE A 
SECOND MODEL 1408 

GENERATE A FORECAST OF THE SIGNAL BASED ON THE FIRST MODEL AND THE SECOND MODEL 1410 

INITIATE , BASED AT LEAST IN PART ON THE FORECAST , ONE OR MORE ACTIONS ASSOCIATED WITH THE 
ENVIRONMENT 1412 

END 1450 

FIG . 14 



U.S. Patent Jan. 14 , 2020 Sheet 15 of 17 US 10,534,643 B2 

1500 

DATABASE 
1514 

DATABASE 
1516 

COMPONENT 
1518 . 

COMPONENT 
1520 

COMPONENT 
1522 

SERVER 1512 

NETWORK ( S ) 
1510 

1508 

1502 BOOK 
000 

1504 

1506 

FIG . 15 



1600 

SERVICE REQUEST 1634 

CLOUD INFRASTRUCTURE SYSTEM 1602 

U.S. Patent 

CLIENT DEVICE 1604 

CLOUD UI 1612 

CLOUD UI 1614 

CLOUD UI 1616 

PROVIDED SERVICE 1644 

1636 

1638 

SERVICE REQUEST 1634 

ORDER DATABASE 1618 

ORDER MANAGEMENT 1620 
1640 

CLIENT DEVICE 1606 

Jan. 14 , 2020 

1642 

PROVIDED SERVICE 1644 NETWORK ( S ) 
1610 

ORDER PROVISIONING 1624 
~ 1646 

ORDER ORCHESTRATION 1622 

ORDER MANAGEMENT AND MONITORING 1626 

Sheet 16 of 17 

SERVICE REQUEST 1634 

IDENTITY MANAGEMENT 1628 

CLIENT DEVICE 1608 

INFRASTRUCTURE RESOURCES 1630 

PROVIDED SERVICE 1644 

INTERNAL SHARED SERVICES 1632 

US 10,534,643 B2 

FIG . 16 



COMPUTER SYSTEM 1700 

PROCESSING SUBSYSTEM 1704 

U.S. Patent 

PROCESSING UNIT 1732 

PROCESSING UNIT 1734 

PROCESSING ACCELERATION UNIT 1706 

VO SUBSYSTEM 1708 

BUS ( ES ) 1702 

Jan. 14 , 2020 

COMMUNICATIONS SUBSYSTEM 1724 MMUNICATIONS SUBSYSTEM 

SYSTEM MEMORY 1710 

COMPUTER READABLE STORAGE MEDIA READER 1720 

APPLICATION PROGRAMS 1712 

Sheet 17 of 17 

PROGRAM DATA 1714 

DATA FEEDS 1726 

EVENT STREAMS 1728 

EVENT UPDATES 1730 

COMPUTER READABLE STORAGE MEDIA 1722 

OPERATING SYSTEM 1716 

STORAGE SUBSYSTEM 1718 

US 10,534,643 B2 

FIG . 17 



1 

5 

US 10,534,643 B2 
2 

CORRELATION OF THREAD INTENSITY approach , however , the instrumentation itself can affect the 
AND HEAP USAGE TO IDENTIFY measurements . This problem can be more pronounced when 
HEAP - HOARDING STACK TRACES the execution time of the instrumentation code around a 

method dominates the execution time of the method itself 
CROSS - REFERENCES TO RELATED ( e.g. , if the invocation count of the method is high ) . 

APPLICATIONS 
BRIEF SUMMARY 

The present application is a non - provisional of and claims 
the benefit and priority under 35 U.S.C. 119 ( e ) of U.S. Certain techniques are disclosed for identifying heap 
Provisional Application No. 62 / 333,786 , filed May 9 , 2016 , 10 hoarding stack traces to optimize memory efficiency . Some 
entitled “ Correlation of Thread Intensity and Heap Usage to embodiments may correlate heap information with the 
Identify Heap - Hoarding Stack Traces , ” U.S. Provisional thread information to identify code that corresponds to high 
Application No. 62 / 333,798 , filed May 9 , 2016 , entitled heap usage within a software execution environment . 
“ Memory Usage Determination Techniques , ” U.S. Provi One embodiment is directed to a method . The method can 
sional Application No. 62 / 333,804 , filed May 9 , 2016 , 15 include : determining , by one or more computer systems , a 
entitled " Compression Techniques for Encoding Stack length of time when heap usage by one or more processes 
Traces Information , ” U.S. Provisional Application No. exceeds a threshold ; determining heap information of the 
62 / 333,811 , filed May 9 , 2016 , entitled “ Correlation of Stack one or more processes for the length of time , the heap 
Segment Intensity in Emergent Relationships , " U.S. Provi information comprising heap usage information for each of 
sional Application No. 62 / 333,809 , filed May 9 , 2016 , 20 a plurality of intervals in the length of time ; determining 
entitled “ Systems and Methods of Stack Trace Analysis , " thread information of the one or more processes for the 
and U.S. Provisional Application No. 62 / 340,256 , filed May length of time , wherein determining the thread information 
23 , 2016 , entitled “ Characterization of Segments of Time comprises determining one or more classes of threads and 
Series , ” the entire contents of which are incorporated herein wherein the thread information comprises , for each of the 
by reference for all purposes . 25 one or more classes of threads , thread intensity information 

The present application is related to the following con for each of the plurality of intervals ; correlating the heap 
currently filed applications , the entire contents of which are information with the thread information to identify one or 
incorporated herein by reference for all purposes : more lines of code of the one or more processes that 

( 1 ) U.S. Non - Provisional application Ser . No. 15 / 588,526 , correspond to the heap usage exceeding the threshold ; and 
entitled “ MEMORY USAGE DETERMINATION TECH- 30 responsive to identifying the one or more lines of code , 
NIQUES ” filed May 5 , 2017 . initiating one or more actions associated with the one or 

( 2 ) U.S. Non - Provisional application Ser . No. 15 / 588,523 , more lines of code . 
entitled “ COMPRESSION TECHNIQUES FOR ENCOD 
ING STACK TRACE INFORMATION ” filed May 5 , 2017 . BRIEF DESCRIPTION OF THE DRAWINGS 

( 3 ) U.S. Non - Provisional application Ser . No. 15 / 588,521 , 35 
entitled “ CORRELATION OF STACK SEGMENT INTEN Illustrative embodiments are described in detail below in 
SITY IN EMERGENT RELATIONSHIPS ” filed May 5 , reference to the following drawing figures : 
2017 . FIG . 1 depicts an exemplary runtime profiling of a single 

thread over a period of time at a relatively high frequency 
BACKGROUND 40 sampling rate . 

FIG . 2 depicts an exemplary calling context tree . 
In general , cloud service providers maintain operational FIG . 3 depicts exemplary thread dumps of a virtual 

resources to meet service level agreements ( SLA ) with machine over a period of time , according to some embodi 
customers . The providers continuously monitor the perfor ments . 
mance metrics of the cloud services they provide to ensure 45 FIGS . 4-6 depict exemplary thread classification signa 
the services ' conformance to SLAs . However , because tures , according to some embodiments . 
available tools may lack the capability to predict or detect FIG . 7 shows a simplified flowchart that depicts the 
impending SLA violations , the operational resources may be generation and / or modification of one or more thread clas 
unable to circumvent the violations . Additionally , because sification signatures in response to a thread dump according 
the tools may lack the capability to diagnosis the root causes 50 to some embodiments . 
of SLA violations , the operations may take longer to resolve FIG . 8 shows a simplified flowchart that depicts the 
such violations when they do occur . As a result , the customer generation or modification of a thread classification signa 
experience may be adversely affected . ture in response to detecting a branch point . 

Furthermore , such SLAs might require that data be ana FIG . 9 shows a simplified flowchart that depicts the 
lyzed systematically and actionable information in the data 55 identification of code that corresponds to high heap usage 
be acted upon proactively to avoid SLA violations and also according to some embodiments . 
to determine whether the agreement is being satisfied . Fol FIG . 10 shows a simplified flowchart that depicts the 
lowing the service level agreements and other requirements calculation of degrees of correlation between various classes 
can be very burdensome , and can grow more burdensome of threads and high heap usage according to some embodi 
with the passage of time . 60 ments . 

For obtaining the capabilities mentioned above , what is FIG . 11 depicts an example graph where the weight 
needed are techniques that represent the system using high assigned to a sample measurement is plotted against the 
level state models that are easily updated based on low - level sampling time interval associated with the sample measure 
events of the system and system measurements . With ment across a time range of an example data set . 
regards to obtaining metrics on low - level events , one can 65 FIG . 12 depicts an example chart showing trend graphs 
instrument application programs underlying the system to derived by different linear regression techniques for the heap 
collect the exact measurements of the events . In such an usage in a production environment . 
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FIG . 13 depicts an example chart showing an additional D ) and ( A , C ) can be represented by the intensity statistics 
trend graph that illustrates incorrect results given by stan corresponding to ( A ) . Additionally , some embodiments may 
dard robust regression techniques . travel ( e.g. , traversing a tree or graph ) down the thread class 

FIG . 14 shows a simplified flowchart that depicts the hierarchy to observe how the intensity of a particular thread 
generation of a forecast of a signal according to some 5 class can be proportionally attributed to the intensities of one 
embodiments . or more sub - classes of the thread class . For example , the 

FIG . 15 depicts a simplified diagram of a distributed thread intensity of ( A ) can be proportionally attributed to the 
system for implementing certain embodiments . thread intensities of ( A , B , D ) and ( A , C ) . In other embodi 

FIG . 16 depicts a simplified block diagram of one or more ments , each stack trace may be represented as a binary tree . 
components of a system environment in which services may Some embodiments can provide one or more sequential 
be offered as cloud services , in accordance with some filters to estimate the measure , rate of change , acceleration , 
embodiments . seasonal factor , and residual . Techniques to represent sepa 

FIG . 17 depicts an exemplary computer system that may rate seasonal indices for multiple periods ( e.g. , a weekday 
be used to implement certain embodiments . period and a weekend period ) and to normalize the seasonal 

The patent or application file contains at least one drawing 15 factors for the multiple periods may be performed by such 
executed in color . Copies of this patent or patent application embodiments . In particular , some embodiments may repre 
publication with color drawings will be provided by the sent a separate sequence of seasonal indices for each of the 
Office upon request and payment of the necessary fee . multiple periods . For example , the multiple periods may 

include a weekday period , a weekend period , an end - of 
DETAILED DESCRIPTION 20 quarter period , or individual holiday periods . In estimating 

seasonal indices for multiple periods , some embodiments 
I. Overview may also ( 1 ) renormalize the seasonal indices to provide a 

In the following description , for the purposes of expla common scale and a common reference level across all 
nation , specific details are set forth in order to provide a periods and ( 2 ) fit a smooth - spline across adjacent periods to 
thorough understanding of embodiments of the disclosure . 25 provide smooth transitions between the cycles of a period or 
However , it will be apparent that various embodiments may between the cycles of two adjacent periods . By renormal 
be practiced without these specific details . The figures and ization , the seasonal factors across the multiple periods can 
description are not intended to be restrictive . have a common scale . 

The present disclosure relates generally to using heap Some embodiments may correlate trends between inten 
usage statistics and thread intensity statistics to identify code 30 sity statistics of various classes of threads and heap usage 
blocks within a multi - threaded process ( e.g. , an application statistics to identify classes of threads whose intensity 
program ) for potential optimization and to forecast future statistics have a high degree of correlation with high heap 
heap usage and / or thread intensity . Thread intensity statistics usage . There is a high probability of finding inefficient heap 
may be used to track the response , load , and resource usage memory usage among classes of threads whose intensity 
of the process without instrumenting the process's underly- 35 statistics are highly correlated with the high heap usage in 
ing code or using code injection . In particular , the intensity the software execution environment . Once the classes of 
of a thread's type or a stack segment's type may refer to a threads are identified , the code associated with the classes of 
statistical measure of the “ hotness ” of the code blocks being threads may investigated and / or optimized . 
executed by the thread or referenced by the stack segment . Some embodiments may construct and maintain models 
The hotness of a code block can be quantified by volume of 40 ( e.g. , univariate , multivariate ) of the multi - threaded envi 
execution ( e.g. , the number of invocations of the code block ronment ( e.g. , virtual machine ) executing the process , where 
multiplied by the execution time of the code block ) . Hotter the models include seasonal trends , linear trends , and first 
code blocks have a higher number of invocations and / or order non - linear trends for the intensities of each thread 
longer response times . class . Such models may be used to obtain seasonally 
By analyzing a series of thread dumps taken from a 45 adjusted long term forecasts on the trend of the system's 

process at regular or irregular time intervals , some embodi performance . 
ments may provide a statistical sampling solution that is ( 1 ) By ( 1 ) dynamically classifying threads and observing how 
low - overhead , ( 2 ) non - intrusive , ( 3 ) provides always - on the intensities of sub - classes of thread classes contribute to 
monitoring , and ( 4 ) avoids the problem of instrumentation an aggregate intensity of the thread class and ( 2 ) observing 
code dominating the execution time of the code being 50 how closely various classes of threads are correlated with 
instrumented ( i.e. , the Heisenberg problem ) . detected periods of high heap usage , some embodiments 
Some embodiments may classify threads and stack seg may facilitate the detection and observation of performance 

ments based on intensity statistics . By monitoring stack glitches within cloud service provisioning systems . Because 
traces of individual threads included in thread dumps even minor performance glitches often reveal issues within 
received from an software execution environment ( e.g. , a 55 the process that can result in SLA violations , enabling 
virtual machine ) , a monitoring process can classify the service providers to detect and address performance glitches 
threads based on the contents of their stack traces into one may substantially reduce the risk of such violations . 
or more thread classes . As more stack traces are analyzed , II . Runtime Profiling of Threads 
some embodiments may observe the bifurcation of thread FIGS . 1-2 depict techniques of profiling a running thread 
classes into sub - classes and eventually build a hierarchy of 60 to determine how long various stack segments are present on 
thread classes . For example , if a stack segment ( A ) is the thread's call stack in relation to one another . FIG . 1 
observed to be a component of a stack segment ( A , B , D ) , depicts an exemplary runtime profiling of a single thread 
one could say that the thread type ( A , B , D ) is a sub - class of 100 over a period of time at a relatively high frequency 
thread type ( A ) . One could also say that thread type ( A , C ) sampling rate . In some cases , certain techniques may utilize 
is a sub - class of thread type ( A ) . The thread type ( A ) 65 a runtime profiler to take multiple stack trace samples of a 
includes sub - classes ( A , B , D ) and ( A , C ) in the sense that thread to construct a calling context tree 200 shown in FIG . 
the aggregate of intensity statistics corresponding to ( A , B , 2. If the sampling interval employed by the runtime profiler 
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is relatively short compared to the thread's execution time , observed in two of the seven samples . Node 208 indicates 
the observation count ( i.e. , call count ) statistics for each that stack segment D was observed in two of the seven 
calling context of the thread can be used to accurately samples . Node 210 indicates that stack segment E was 
estimate and / or represent the execution time of the calling observed in one of the seven samples . Node 212 indicates 
context relative to the sampling interval . 5 that stack segment F was observed in one of the seven 

For example , as shown in FIG . 1 , the total execution time samples . Because the total execution time of thread 100 is 
of the thread 100 may be between 100 milliseconds and one approximately ten times the duration of the sampling inter 
second while the sampling interval is between 10 millisec val , the observation count for each stack segment may be 
onds and 100 milliseconds . During the thread's execution , closely correlated with the stack segment's execution time . 
different calling contexts may be present within the thread's 10 For example , because stack segment B was observed four 
stack depending on which methods are invoked by the times , it may be inferred that the relative execution time of 
thread . The thread may begin its execution by invoking a set stack segment B is at least four times the sampling interval . 
of methods that correspond to stack segment A. In some cases , the environment where the thread 100 

It should be noted that a stack segment corresponds to a executes ( i.e. , the software execution environment ) may 
set of one or more stack frames that are linearly connected . 15 correspond to a virtual machine ( e.g. , a Hotspot Java Virtual 
Stack frames that are linearly connected are always observed Machine ( JVM ) ) where a thread dump is taken once per 
together within stack traces and thus have the same intensity sampling interval . Before the virtual machine takes a thread 
statistics . Thus , stack segment A may correspond to a dump , it may signal all executing threads ( e.g. , thread 100 ) 
plurality of stack frames such as stack frames al , a2 , and a3 . to pause at safepoints . This safepoint mechanism may be 
Sampling a thread may result in a stack trace that describes 20 similar to the one used by a garbage collector to pause 
an entire calling context of the sampled thread in a list of threads prior to executing a full garbage collection . Note that 
stack frames . If some of the listed stack frames are linearly a thread running in kernel mode ( e.g. , running / blocking on 
connected , those stack frames may be conceptually grouped I / O operation ) may not pause at a safepoint until the thread 
into a stack segment . As a result , a stack trace may include returns out of kernel mode ( e.g. , back to JVM mode ) . 
one or more stack segments , with each stack segment 25 It should be noted however , that invoking the safepoint 
including one or more stack frames . mechanism at a high frequency rate may result in substantial 

As the thread continues its execution , code associated overhead . Thus , runtime profiling techniques that rely on a 
with stack segment A may cause the thread to invoke a set high sampling rate may be more appropriate for develop 
of methods that correspond to stack segment B. Next , code ment or testing environments rather than production envi 
associated with stack segment B may cause the thread to 30 ronments . 
invoke yet another set of methods that correspond to stack To reduce overhead , some embodiments employ system 
segment D. After a short period of time , the runtime profiler models to compensate for a reduced sampling rate . For 
may take sample 1 of the thread 100 , resulting in a first stack example , some embodiments may track the intensities of 
trace . From the first stack trace , the runtime profiler may threads of a multi - threaded process and sample only threads 
determine that stack segments A , B , and D were on the stack 35 with intensities exceeding a threshold that determines 
at the time of the sampling . After a sampling interval , the latency . One advantage with embodiments that employ 
runtime profiler may take another sample 2 of the thread , reduced samplings rates or adaptive samplings rates is that 
resulting in a second stack trace . From the second stack threads running in kernel mode are less likely to be paused 
trace , the runtime profiler may determine that stack seg at safepoints . Other methods of reducing overhead may 
ments A , B , and Dwere on the stack . As the thread continues 40 involve lengthening the sampling interval to be commensu 
to execute , the methods associated with stack segment D rate with the intensity of the threads being sampled . For 
may return , resulting in the stack frames corresponding to instance , while a one minute sampling interval may result in 
stack segment D being popped off the stack . Next , the negligible overhead within a production environment , the 
runtime profiler may take another sample 3 of the thread , one minute sampling interval may be short enough for 
resulting in a third stack trace . From the third stack trace , the 45 deriving the relative execution time of threads and their 
runtime profiler may determine that stack segments A and B component stack segments in the production environment . 
were on the stack . Thus , some embodiments may provide an always - on per 
As the thread executes , stack segment B invokes stack formance monitoring solution for production systems that 

segment E , which invokes stack segment F. Next , taking exhibit stationary mean - ergodicity or cyclo - stationary mean 
sample 4 results in a fourth stack trace indicating that stack 50 ergodicity for satisfying the assumptions of Little's formula . 
segments A , B , E , and F were on the stack . Stack segments In such embodiments , the always - on performance monitor 
F , E , and B return one after another . Next , taking sample 5 ing solution may be embodied in a monitoring process ( i.e. , 
results in a fifth stack trace indicating that only stack a control system ) that periodically samples threads execut 
segment A is on the stack . Stack segment A causes stack ing within one or more virtual machines of the production 
segment C to be pushed onto the stack . Before stack segment 55 system . 
C returns , samples 6 and 7 are taken , resulting in a sixth III . Classifying Threads 
stack trace and a seventh stack trace that both indicate that Various embodiments provide techniques for sequentially 
stack segments A and C are on the stack . Eventually , stack analyzing a series of thread dump samples taken from one or 
segment C returns , leaving only stack segment A on the more virtual machines ( e.g. , JVMs ) to identify thread classes 
stack . When the methods associated with stack segment A 60 and to track intensity statistics pertaining to the thread 
return , the thread finishes executing . classes . For example , during the execution of one or more 
As shown in FIG . 2 , calling context tree 200 depicts the multi - threaded processes within a virtual machine , the con 

execution times of stack segments A - F relative to the trol system may periodically take a thread dump of the 
sampling interval . Node 202 indicates that stack segment A virtual machine . The thread dump may result in a stack trace 
was observed in all of the seven samples . Node 204 indicates 65 for each thread that is executing in the virtual machine . For 
that stack segment B was observed in four of the seven each stack trace that is received , the control system may 
samples . Node 206 indicates that stack segment C was analyze text contained in the stack trace to classify the 
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associated thread and to update intensity statistics tracked may be used like a parse tree ( e.g. , as part of a production 
for all thread classes based on the stack trace . grammar ) to recognize incoming stack traces . 

In addition to classifying threads , embodiments may Returning to the above example , subsequent to the obser 
classify new stack segments whenever they emerge at vation of the first stack trace but prior to the observation of 
branch points along previously classified stack segments . 5 the second stack trace , the thread class { ( A , B , D } ) may 
When the control system observes the first stack trace before correspond to a tuple of a single binary tree . Because the 
any thread classes have been discovered , the control system entire sequence of frames within the first stack trace is 
may consider the entire sequence of stack frames within the considered to be a single stack segment , the single binary 
stack trace to be linearly connected because the entire tree may include a single root node that represents the stack 
sequence of stack frames have only appeared together so far . 10 segment ( A , B , D ) . Subsequent to the observation of the 
In response , the control system may initialize a thread class second stack trace , tuple may still include just a single 
to classify the entire stack trace ( i.e. , the entire sequence of binary tree . However , the binary tree may now include three 
stack frames ) . As the control system observes subsequent separate nodes : a root node that represents the stack segment 
stack traces that include varying sequences of stack frames , ( A , B , D ) , a first child node of the root node that represents 
the control system can initialize additional thread classes to 15 the stack segment ( A ) , and a second child node of the root 
classify each unique permutation of stack frames . In some node that represents the stack segment ( B , D ) . The process 
cases , the control system may observe a stack trace that does of synthesizing trace signatures and segment signatures are 
not share any stack frames ( i.e. , have any stack frames in discussed in further detail below with reference to FIGS . 
common ) with previously observed stack traces . In 4-6 . 
response , the control system may initialize a separate thread 20 Each node in a binary tree may be uniquely identified by 
class to classify the new stack trace in its entirety . a label or an identifier , which may be referred to as a 
More commonly however , the control system can observe compact code . In some embodiments , a thread of a particular 

a stack trace that shares one or more stack frames with thread class may be represented by the one or more compact 
previously observed stack traces . Returning to FIG . 1 for codes that identify each top - ranked node of the tuple that 
example , suppose the first stack trace observed by the 25 corresponds to the thread class . In a fashion similar to 
control system is { ( A , B , D ) } ( i.e. , the stack trace in sample Huffman coding or other entropy coding schemes , some 
1 or sample 2 ) where the stack trace contains the stack embodiments may associate shorter tuples to thread classes 
frames included in stack segments A , B , and D. The control that are more popular ( i.e. , have a higher thread intensity ) 
system may initialize a thread class { ( A , B , D ) } to classify and / or are discovered first . As a result , more common types 
all threads that are observed to contain the stack frames 30 of threads can be compactly represented by shorter 
included in stack segments A , B , and D. Next , suppose the sequences of compact codes . In some embodiments , this 
second stack trace observed by the control system is { ( A , may be ensured by first analyzing the probability distribu 
C ) } ( i.e. , the stack trace in sample 6 or sample 7 ) . In this tion of stack traces in an offline analysis ( i.e. , offline 
regard , the control system may determine that while the first processing ) and feeding the stack traces to the control 
and second stack traces are different , the first and second 35 system in descending order of frequency . 
stack traces share all of the stack frames included in stack In embodiments that do not rely on offline analysis , the 
segment A , which results in a branch point at stack segment control system may receive stack traces in sequence with 
A. In response , the control system may initialize a thread thread dumps that are taken periodically from the one or 
class { ( A , C } ) to classify all threads that contain stack more virtual machines ( i.e. , online processing ) . 
segments A and C on their call stacks . The order in which different types of stack traces are 

It should be noted that because the stack frames in stack observed may be affected by the intensity of each type of 
segment A has been observed separately from the stack stack trace . In other words , stack traces with higher inten 
frames in stack segment ( B , D ) , the stack segments A and ( B , sities are statistically more likely to be observed earlier in 
D ) are no longer considered by the control system to be the sequence . Thus , such embodiments may assume that ( 1 ) 
linearly connected . Yet , the control system still considers the 45 the thread intensity of a particular thread class represents the 
stack frames in stack segment A to be linearly connected and associated stack trace's probability of occurrence and ( 2 ) 
the stack frames in stack segment ( B , D ) to be linearly stack traces associated with higher intensity thread classes 
connected . In this regard , the control system may initialize are often observed before stack traces associated with lower 
several thread segment components of thread class { ( A , B , intensity thread classes . In this regard , the control system 
D ) } and thread class { ( A , C ) } to classify the new stack 50 will naturally derive the most compact representation for the 
segments formed by the newly discovered branch point . In highest intensity threads . Thus , by relying on thread inten 
particular , the control system may initialize a thread segment sity statistics rather than on offline processing , some 
( A ) , a thread segment ( B , D ) , and a thread segment ( C ) , embodiments can provide an optimal compression algorithm 
where the thread segments ( A ) and ( B , D ) are components for stack traces observed in response to a series of thread 
of the thread class { ( A , B , D } ) and the thread segments ( A ) 55 dumps . 
and ( C ) are components of the thread class { ( A , C ) } . A. Seasonality of Thread Intensity 
Some embodiments may use classification signatures to Some embodiments can estimate , for each thread class 

represent stack traces and stack segments . In particular , trace that is identified , the seasonal trend for the thread class's 
signatures can be used to represent stack traces of a par intensity . As mentioned above , the intensity of a thread class 
ticular thread class and segment signatures can be used to 60 or a thread segment may refer to a statistical measure of the 
represent stack segments of a particular thread segment . “ hotness ” of the code blocks being referenced by the asso 
Each trace signature may correspond to a tuple of labeled ciated stack trace or stack segment . The hotness of a code 
binary trees that is built up via a synthesis and analysis block can be quantified by the number of invocations of the 
process . Meanwhile , each segment signature of a thread code block times the execution time of the code block . A 
segment may correspond to a node in the tuple that corre- 65 single raw thread intensity measure for a thread class may be 
sponds to the thread class of which the thread segment is a the count of the number of threads of that thread class in a 
component of . Later on in the analysis process , the tuples particular thread dump . An average thread intensity measure 

40 
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per thread dump can correspond to the traffic intensity , higher than average value in comparison to the rest of the 
offered load , or queue length of the thread type . For mean period . On the other hand , if a seasonal factor smaller than 
ergodic processes , Little’s formula can relate the expected one is assigned to a seasonal index , that seasonal index has 
intensity P ( the expected number of arrivals during a sam a lower than average value in comparison to the rest of the 
pling interval corresponding to the expected response time 5 period . For example , if the seasonal factor for the thread 
T ) to the expected response time i and the arrival rate a , as intensity of a particular thread class for the seasonal index 
shown below : that corresponds to the 9 AM - 9 : 15 interval is 1.3 , the 

average thread intensity of that particular thread class during 0²h the 9 AM - 9 : 15 AM interval is 30 % higher than the average 
In some embodiments , the seasonal trending process may 10 thread intensity of that particular thread class throughout an 

use variable filter parameters to account for irregular sam entire weekday . 
pling intervals ( e.g. , sampling heap usage and / or taking In some embodiments , the seasonal trending process may 
thread dumps ) and to overcome the Cauchy Distribution separate out holidays ( e.g. , Labor Day , Christmas Day ) as 
Problem . The process can also support sequentially filtering separate periods that repeat with a frequency of once every 
multiple types of periods ( e.g. , weekday periods , weekend 15 12 months while weekday periods repeat every 24 hours and 
periods , and holiday periods ) with varying lengths ( e.g. , 1 weekend periods repeat every 5 or 7 days . The set of 
day , 2 days ) . Furthermore , the process can adjust , according seasonal factors for such holiday periods may be renormal 
to seasonality , the rate at which thread dumps are taken to ized together with those of weekday periods and weekend 
reduce overhead while maintaining a particular confidence periods so that the seasonal factor 1 represents a common 
level for the thread intensity statistics that are determined 20 reference level for all periods . Other frequencies for each 
based on the thread dumps . In some cases , adjusting the period may be appropriate , as desired . As examples , holi 
thread dump rate may also minimize the volume of thread days may be separated at a frequency of every 6 months or 
dump data that needs to be transported over a network ( e.g. , the like while weekday may be periods repeat every 12 hours 
LAN , the Internet ) to other machines ( e.g. , Big Data reposi or the like . 
tory ) for offline processing . In some embodiments , determining and tracking intensity 

In some embodiments , the seasonal trending process may statistics may further include forecasting future values and 
partition weekday periods ( i.e. , 24 hour periods ) into 96 the rate of change . However , the sampling interval can be 
fifteen minute intervals , which results in 96 seasonal indices irregular or even become arbitrarily close to zero . In cases 
( i.e. , seasons ) for each weekday period . The process may where the sampling interval becomes arbitrarily close to 
partition weekend periods ( i.e. , 48 hour periods ) into 192 30 zero , the rate of change may become a random variable of 
fifteen minute intervals , which results in 192 seasonal indi the Cauchy Distribution , whose mean and standard devia 
ces for each weekend period . Upon receiving a data set of a tion are undefined . To overcome the Cauchy Distribution 
particular length ( e.g. , a time series recording thread dumps problem with regards to determining seasonal trends with 
or heap usage over 10 days , which includes one or two adaptive sampling intervals , some embodiments may 
weekends ) , the process can apply multi - period trending 35 employ various adaptions of Holt's Double Exponential 
filters to weekday periods and weekend periods separately in Filter , Winter's Triple Exponential Filter , Wright's Exten 
order to separate out seasonal patterns observed over single sion for Irregular Time Intervals , Hanzak's Adjustment 
weekdays and seasonal patterns observed over entire week Factor for time - close intervals , outlier detection , and clip 
ends , resulting in a set of 96 seasonal factors for the 96 ping with adaptive scaling of outlier cutoff . The five sets of 
seasonal indices of each weekday and a set of 192 seasonal 40 exponential filters can be sequentially applied to the data set 
factors for the 192 seasonal indices of each weekend . The to estimate sets of seasonal factors for weekday periods and 
process may then renormalize the weekday seasonal factors weekend periods . 
and the weekend seasonal factors so that a seasonal factor of B. Classification Signatures and Compression Scheme 
‘ l ' represents a common reference level for both weekday Certain embodiments can assign a variable length 
periods and weekend periods . 45 sequence of compact codes to the stack traces of threads 

It should be noted that if a seasonal factor larger than one where the length of sequence depends on the intensity of the 
is assigned to a seasonal index , that seasonal index has a threads . An exemplary stack trace is presented below : 

25 

oracle.jdbc.driver . T4CCallableStatement.executeForRows ( T4CCallableStatement.java:991 ) 
oracle.jdbc.driver.OracleStatement.doExecuteWithTimeout ( OracleStatement.java:1285 ) 

oracle.mds.core.MetadataObject.getBaseMO ( MetadataObject.java:1048 ) 
oracle.mds.core.MDSSession.getBaseMO ( MDSSession.java:2769 ) 
oracle.mds.core.MDSSession.getMetadataObject ( MDSSession.java:1188 ) 

oracle.adf.model.servlet.ADFBindingFilter.doFilter ( ADFBindingFilter.java:150 ) 

oracle.apps.setup.taskListManager.ui.customization.CustomizationFilter.doFilter ( CustomizationFi 
lter.java:46 ) 

weblogic.servlet.internal.WebAppServletContext.securedExecute ( WebAppServletContext.java:22 
09 ) 

weblogic.servlet.internal.ServletRequestImpl.run ( ServletRequestImpl.java:1457 ) 

weblogic.work.Execute Thread.execute ( Execute Thread.java:250 ) 
weblogic.work.Execute Thread.run ( ExecuteThread.java:213 ) 
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In the exemplary stack trace , the stack frame “ oracle mds -continued 
core MetadataObject getBaseMO ” below the Java Database 
Connectivity ( JDBC ) driver stack segment ( i.e. , the two SegmentInfo secondSegment ; 

StackSegmentInfo coalescingSegment ; stack frames each including " oracle.jdbc.driver ” ) Set < StackSegmentInfo > predecessors ; 
indicates that the Meta Data Service ( MDS ) library invokes 5 Set < StackSegmentInfo > successors ; 
the JDBC operations that correspond to the JDBC stack SeasonalTrendInfo trend ; 

Set < ThreadClassInfo > partOfThreadClasses ; segment . The stack frame “ oracle adf model servlet ADF 
BindingFilter doFilter ” below the MDS library stack seg public class StackFrameInfo { 
ment ( i.e. , the three stack frames each including “ oracle . long id ; 
mds ... ” ) indicates that the MDS operations are invoked by String name ; 

short numOfOccur ; an Application Development Framework ( ADF ) operation . short totalNumOfOccur ; 
As shown by the WebLogic stack segment ( i.e. , the four Set < StackFrameInfo > predecessors ; 

Set < StackFrameInfo > successors ; stack frames each including “ weblogic ... " ) at the bottom StackSegmentInfo coalescingSegment ; of the stack trace , the ADF operation is invoked through a String class MethodLineNumber ; 
Hypertext Transfer Protocol ( HTTP ) Servlet request . 

As an example , a two - level Huffman coding scheme can public class SeasonalTrendInfo { 
be used to encode and compress the above stack trace , List < long > posixTimestampOfMeasurement ; 

List < short > raw Measure ; resulting in a sequence of compact codes that represents the List < double > rawDeseasonalized Measure ; 
exemplary stack trace . In the first level , compression tools List < double > smoothedMeasure ; 
( e.g. , gzip ) can detect substrings within the stack trace such List < double > smoothedDeseasonalized Measure ; 

double as " ServletRequestImpl.java ” and “ weblogic.servlet.inter measureFilterConstant ; 
List < double > measureWeightFactor ; nal.ServletRequestImpl.run ” and derive Huffman codes for List < double > measureFilterParameter ; the substrings according to how frequently those substrings List double > raw Growth Rate ; 

occur in the stack trace . To increase the compression ratio , List < double > smoothedGrowthRate ; 
double more frequently occurring substrings may be assigned rateFilterConstant ; 
List < double > rateWeightFactor ; shorter Huffman codes . After the first level of compression , List < double > rateFilterParameter ; the compressed stack trace may include , as metadata , an List double > raw Growth Rate Acceleration ; 

encoding dictionary that can be used to restore the substrings List < double > smoothedGrowthRate Acceleration ; 
from the Huffman codes . double acceleration FilterConstant ; 

List < double > acceleration WeightFactor ; The second level may involve applying another level of List double > accelerationFilterParameter ; compression to the compressed stack trace by replacing List < double > rawWeekdaySeasonalFactor ; 
stack segments of the stack trace with segment signatures . List double > raw WeekendSeasonalFactor ; 

List < double > The steps of applying the second level of compression are smoothedWeekday SeasonalFactor ; 
List < double > smoothedWeekendSeasonalFactor ; discussed in further detail below with respect to FIGS . 4-6 . double seasonalFactorFilterConstant ; C. Exemplary Data Structures List < double > seasonalIndex WeightFactor ; 

Classification signatures may be represented in memory List < double > seasonalIndexFilterParameter ; 
List double > via one or more object types . In particular , some embodi errorResidual ; 
List < double > smoothedErrorResidual ; ments may use a ThreadClassificationInfo object to repre List < double > smoothedAbsolute ErrorResidual ; 

sent the classification signature of a thread class ( i.e. , a trace List double > 40 normalized Residual ; 
signature ) , a SegmentInfo object to represent the classifica List < double > normalized ResidualCutoff ; 

double errorResidualFilterConstant ; tion signature of a thread segment ( i.e. , a segment signature ) , List < double > errorResidualWeightFactor ; a StackFrameInfo object to represent each element in a List double > errorResidualFilterParameter ; 
linearly connected stack frames within stack segments , and List double > localGrowthRate Forecast ; 
a SeasonalTrendInfo object to encapsulate and track inten List double > oneStep Intensity Forecast ; 
sity statistics for a thread class or a thread segment . List double > multiStepIntensityForecast ; 

short forecastHorizon ; Exemplary class / interface definitions that define Thread double [ 96 ] weekdaySeasonalFactor ; 
ClassificationInfo objects , SegmentInfo objects , Stack double [ 192 ] weekendSeasonalFactor ; 
FrameInfo objects , and SeasonalTrendInfo objects are pro 
vided below : 

As can be seen in the above definitions , each ThreadClas 
sificationInfo object , SegmentInfo object , and Stack public class ThreadClassificationInfo { 

long id ; FrameInfo object includes a unique identifier ( i.e. , id ) , a 
String name ; name , a counter that tracks the number of times an object of 
short numOfOccur ; 55 the same type ( e.g. , same thread class , same thread segment , short totalNumOfOccur ; 
short numOfStackFrames ; same type of stack frame ) was observed in the latest thread 
short numOfCoalescedSegments ; dump ( i.e. , numOfOccur ) , and another counter that tracks 
List < SegmentInfo > segments ; the number of times an object of the same type was observed 
SeasonalTrendInfo trend ; in all thread dumps . 

A ThreadClassificationInfo object can include a list of public class SegmentInfo extends SegmentInfo { 
long id ; SegmentInfo objects and a SeasonalTrendInfo object . In this 
String name ; regard , the ThreadClassificationInfo may correspond to a 
String dimension ; tuple of binary trees while the list of SegmentInfo objects short numOfOccur ; corresponds to the nodes making up the binary trees . The short totalNumOfOccur ; 
List < StackFrameInfo > elements ; 65 SeasonalTrendInfo object may record intensity statistics 
SegmentInfo firstSegment ; ( e.g. , a filter state ) that pertain to the thread class represented 

by the ThreadClassification Info object . 

35 
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A SegmentInfo object can include a list of Stack mentInfo node , the linearly connected or branch - point con 
FrameInfo objects , a first child SegmentInfo object ( i.e. , nected StackFrameInfo objects can be oriented as a stack 
firstSegment ) , a second child SegmentInfo object ( i.e. , sec with a bottom StackFrameInfo and a top StackFrameInfo . 
ondSegment ) , a coalescing ( i.e. , parent ) SegmentInfo object By convention , the top StackFrameInfo object in the left 
( i.e. , coalescingSegment ) , a list of preceding sibling Seg- 5 sibling SegmentInfo node can be connected to the bottom 
mentInfo objects ( i.e. , predecessors ) , a list of succeeding StackFrameInfo object of the right sibling SegmentInfo 
sibling SegmentInfo objects ( i.e. , successors ) , and a Sea node through a branch point . 
sonalTrendInfo object . In this regard , the SegmentInfo Each SegmentInfo node may include a SeasonalTrendInfo 
object may correspond to a stack segment . If the Seg object to track the intensity statistics of the thread ( sub- ) 
mentInfo object corresponds to a leaf node , the list of 10 class represented by the SegmentInfo node . When splitting 
StackFrameInfo objects may correspond to the linearly a SegmentInfo node into two new children SegmentInfo 
connected stack frames included in the stack segment . If the nodes , some embodiments can clone the SeasonalTrendInfo 
SegmentInfo object borders a branch point , the sibling object of the SegmentInfo node into two new Seasonal 
SegmentInfo objects may correspond to stack segments on TrendInfo objects and set one SeasonalTrendInfo object in 
the opposite side of the branch point while the coalescing 15 each of the children SegmentInfo nodes . 
SegmentInfo object may correspond to a parent stack seg Some embodiments provide the ability to replicate the 
ment that includes both the stack segment and a sibling stack filter state of a parent SegmentInfo node to new child 
segment . If the SegmentInfo object does not correspond to SegmentInfo nodes through the splitting process . In doing 
a leaf node , the child SegmentInfo objects may correspond so , some embodiments can continuously track the ratio of 
to sub - segments of the stack segment that were created when 20 the intensity statistics among the parent and sibling Seg 
a branch point was discovered in the stack segment . The mentInfo nodes . In particular , the intensity statistics of the 
SeasonalTrendInfo object , may record intensity statistics children SegmentInfo nodes are each initially the same as 
pertaining to the thread segment represented by the Seg that of the parent SegmentInfo node . However , as new 
mentInfo object . samples are obtained , the intensity statistics of the children 

Some embodiments may classify a stack segment of a 25 SegmentInfo nodes may begin to diverge from that of the 
stack trace by associating a list of StackFrameInfo objects parent and from each other . The filter states of the new stack 
that are observed together with a single SegmentInfo node . segments begin to deviate from each other and the filter state 
In other words , the SegmentInfo node is the coalescing node of the original stack segment as the filter states of the new 
of each of the StackFrameInfo objects of the stack segment . stack segments are separately updated . 
Each StackFrameInfo object may have a single coalescing 30 In some cases , intensity statistics among parent and 
SegmentInfo node . When a branch point is detected some sibling SegmentInfo nodes can converge to a ratio over time . 
where along the linearly connected StackFrameInfo objects Some embodiments can apply the parent - child and sibling 
of a SegmentInfo node , some embodiments may create two relationships among the SegmentInfo nodes to define cor 
new SegmentInfo nodes and split the linearly connected relation models for multivariate state estimation techniques . 
StackFrameInfo objects into two sets of linearly connected 35 In particular , if the process is stationary , the ratio of the 
StackFrameInfo objects among the new SegmentInfo nodes . intensity statistics among the related SegmentInfo nodes 
It can then reconnect the two StackFrameInfo objects may converge to a stationary state . In particular , if a process 
through a branch point . is strict - sense or wide - sense stationary , the first and second 

Each of the new SegmentInfo nodes become the coalesc moments of the joint probability distributions of intensity 
ing node of the StackFrameInfo objects in its part of the 40 statistics among related SegmentInfo nodes , which may 
segment . Certain embodiments can update the coalescing include the mean , variance , auto - covariance , and cross 
Segment of the StackFrameInfo objects correspondingly so covariance of the related SegmentInfo nodes may not vary 
that each StackFrameInfo object refers to the correct with respect to time . Thus , the ratio of intensity statistics 
coalescing SegmentInfo node . The two new SegmentInfo among the parent and sibling SegmentInfo nodes can be 
nodes are represented as a left sibling node and a right 45 expected to converge over time . Thus , by continuously 
sibling node . The two new SegmentInfo nodes also become tracking the intensity statistics of the sibling SegmentInfo 
children of the original SegmentInfo node , which in turn nodes through branch points and determining that the ratio 
becomes their parent . The parent SegmentInfo node can of intensity statistics among the parent and sibling Seg 
become the coalescing node of the two new SegmentInfo mentInfo nodes converge over time , some embodiments can 
nodes . 50 use the ratios to define correlation models for multivariate 

The process of splitting stack segments in response to state estimation techniques . The resulting models can be 
discovered branch points can result in a binary tree structure used for anomaly detection and generating predictions . 
composed of SegmentInfo nodes . This splitting process can A StackFrameInfo object can include a one or more 
be seen as bifurcation of a thread class ( i.e. , a class of stack preceding StackFrameInfo objects and / or one or more suc 
traces ) into thread sub - classes . Some embodiments can 55 ceeding StackFrameInfo objects ( i.e. , predecessors and suc 
continually split the stack segments into smaller stack seg cessors ) , a coalescing SegmentInfo object ( i.e. , coalescing 
ments as the intensities of the individual stack frames in the Segment ) , and information that identifies code referenced by 
stack segments diverge over time , thereby enabling one to the StackFrameInfo object ( i.e. , class MethodLineNumber ) . 
drill - down a thread class hierarchy to observe how the If the StackFrameInfo object is not adjacent to a branch 
intensity of a thread class can be proportionally attributed to 60 point , the StackFrameInfo object can be linearly connected 
the intensities of thread sub - classes . to a single predecessor stack frame and a single successor 

In some embodiments , the SegmentInfo nodes in the stack frame . The StackFrameInfo object can refer to the 
interior of the binary tree are parent nodes whose Stack containing SegmentInfo object by the member variable 
FrameInfo objects are not all linearly connected because coalescingSegment . 
some stack frames are connected through branch points . In 65 When it comes time to process the latest thread dump , the 
contrast , the StackFrameInfo objects of the leaf Seg member variable numOfOccur for every ThreadClassifica 
mentInfo nodes can be linearly connected . Within a Seg tionInfo object , SegmentInfo object , and StackFrameInfo 
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object can be reset to 0. Each stack trace obtained from the embodiments . In contrast with the 100 ms to one second 
thread dump may be parsed from the bottom to the top of the sampling interval runtime profiling in FIG . 1 , the sampling 
stack trace . After applying the first level of the Huffman interval employed by the control system in FIG . 3 may be 
coding scheme to compress the stack trace , each line of the longer ( e.g. , between 20 seconds and one minute ) to reduce 
stack trace may be parsed into a StackFrameInfo object . 5 sampling overhead . As shown in FIG . 3 , within two to three 
After parsing the list of StackFrameInfo objects into a list of sampling intervals , processes executing within the virtual 
SegmentInfo objects , some embodiments may attempt to machine 300 spawn the threads 302 , 304 , 306 , 308 , 310 , and 
match the list of SegmentInfo objects to a ThreadClassifi 312. Each of the threads 302-312 are associated with a 
cationInfo object that contains a matching list of Seg separate call stack while executing and can thus produce a 
mentInfo objects . If such a ThreadClassificationInfo object 10 stack trace when a thread dump is taken . FIG . 3 depicts a 
does not exist , some embodiments may register a new total of three thread dumps being taken : thread dump N , 
ThreadClassificationInfo object to represent the list of Seg thread dump N + 1 , and thread dump N + 2 . 
mentInfo objects . Afterwards , some embodiments may then FIG . 3 shows three different types of stack traces being 
update the numOfOccur and totalNumOfOccur member observed in the order ( A , B , D ) , ( A , B , D ) , ( A , C ) , and ( A , B , E ) 
variables of the matching / new ThreadClassificationInfo 15 in three consecutive thread dumps . The stack trace ( A , B , D ) 
object and each SegmentInfo object and StackFrameInfo is observed twice . Before thread dump N is taken , the thread 
object in the matching / new ThreadClassification Info object . 302 is spawned and begins executing . When thread dump N 
Note that if a SegmentInfo node is a leaf level node , the is taken , a stack trace ( A , B , D ) observed for the thread 302 . 
numOfOccur member variable of the node will be equiva It should be noted that even though stack segment A , stack 
lent to that of each StackFrameInfo element in the Seg- 20 segment B , and stack segment D have yet to be identified , 
mentInfo node . for ease of explanation , the names of the stack segments will 

Next , some embodiments can update intensity statistical be used throughout the example depicted in FIG . 3. As a 
measures encapsulated in associated SeasonalTrendInfo sampling interval elapses after thread dump N is taken , the 
objects . In particular , some embodiments may update the thread 302 finishes , the thread 304 is spawned and finishes 
raw Measure member variables in each SeasonalTrendInfo 25 without ever being sampled while the threads 306 and 308 
object by setting the raw Measure to the numOfOccur mem are spawned . When thread dump N + 1 is taken , the thread 
ber variable of the containing ThreadClassification Info 308 yields a stack trace ( A , B , D ) while the thread 310 yields 
object or SegmentInfo object . Note that in some embodi stack trace ( A , C ) . As another sampling interval elapses after 
ments , the raw Measure may only be updated every N thread thread dump N + 1 is taken , the threads 306 and 308 finish , 
dumps , in which case the raw Measure of a SeasonalTrend- 30 the thread 310 is spawned and finishes without ever being 
Info object is set to the corresponding numOfOccur divided sampled , and the thread 312 is spawned . When thread dump 
by N. In some embodiments , such embodiments may update N + 2 is taken , thread 312 yields stack trace ( A , B , E ) . As can 
the raw Measure member variable of a SeasonalTrendInfo be seen in FIG . 3 , the ( A , B , D ) thread type is the first type of 
object only when the numOfOccur member variable of the thread to be observed and the ( A , B , D ) thread type has a 
associated ThreadClassificationInfo object or the associated 35 higher intensity than the ( A , C ) or ( A , B , E ) thread types . 
SegmentInfo object is not zero . If the numOfOccur member After thread dump N , the control system can register the 
variable is not zero , then the raw Measure of the Seasonal single SegmentInfo ( A , B , D ) node as the classification sig 
TrendInfo object is set to the value of numOfOccur divided nature for the stack trace ( A , B , D ) . The control system may 
by N , where N is the number of thread dumps since the last then associate a SeasonalTrendInfo ( A , B , D ) object with the 
update of raw Measure . In such embodiments , the method 40 SegmentInfo ( A , B , D ) node and update the state encapsulated 
treats the case of when the numOfOccur is zero as if no by the node : 
measurement is available . In this regard , when no measure 
ment is available , the raw Measure is not updated . Stated 
another way , such embodiments track the number of thread SegmentInfo ( A , B , D ) .numOfOccur 
dumps since the last update of the raw Measure ‘ N ’ . The 45 SegmentInfo ( A , B , D ) .totalNumOfOccur 

thread intensity measurements may correspond to an irregu 
lar time series . It should be noted that exponential filters for FIG . 4 depicts a set of classification signatures 400 
irregular time intervals ( e.g. , Holt's Double Exponential and including a single classification signature 450 that has been 
Winter's Triple Exponential Filter , disclosed above ) can registered in response to the stack trace ( A , B , D ) . As can be 
effectively filter the raw Measure to get a de - seasonalized 50 seen in FIG . 4 , the classification signature 450 includes a 
measure and a seasonal factor from a set of measurements single node 402 that corresponds to SegmentInfo ( A , B , D ) , 
taken at irregular time intervals . where SegmentInfo ( A , B , D ) is shown to be the coalescing 

It should be noted that each SeasonalTrendInfo object can node of all stack frames al - d3 of the stack trace . 
include time - series data generated by five sets of exponential When stack trace ( A , B , D ) is observed again in thread 
filters being applied to each of the following statistical 55 dump N + 1 , the control system may update the SegmentInfo 
measurements : the raw measure of thread intensity , the rate ( A , B , D ) node as follows : 
at which the thread intensity is increasing or decreasing , the 
acceleration or deceleration of the rate , the seasonal factor 
for the thread intensity , and the residual component . Within SegmentInfo ( A , B , D ) .numOfOccur 
a SeasonalTrendInfo object , the states of the five sets of 60 SegmentInfo ( A , B , D ) .totalNumOfOccur = 2 . 

exponential filters for the variables , the filter constants , filter 
parameter adjustment weight factors ( to adjust for irregular When stack trace ( A , C ) is observed for the first time in 
time intervals between samples ) , and filter parameters can be thread dump N + 1 , the control system determines that the 
represented by the time - series data . entire set of stack frames within the stack segment ( A , B , D ) 
D. Exemplary Generation of Classification Signatures 65 are no longer linearly connected . A branch point now exists 
FIG . 3 depicts exemplary thread dumps of a virtual between the last stack frame ( e.g. , going from top to bottom 

machine 300 over a period of time , according to some of the stack trace ) of the set of stack frames represented by 

1 . 
= 1 . 

= 1 . 



10 

15 

1 
= 4 

= 

??? 

1 

25 

US 10,534,643 B2 
17 18 

‘ A ’ and the first stack frame of the set of stack frames tuple including SegmentInfo ( A ) , SegmentInfo ( B ) , and Seg 
represented by ‘ B , D ' because , in any given stack trace , the mentInfo ( E ) as the classification signature for the stack trace 
next stack frame that follows the last stack frame could be ( A , B , E ) . 
( 1 ) the first stack frame of ( B , D ) or ( 2 ) the first stack frame In some embodiments , the control system can clone the 
of the set of stack frames represented by ' C ' . Thus , the 5 SeasonalTrendInfo ( B , D ) object into SeasonalTrendInfo ( B ) 
control system may split the stack segment ( A , B , D ) into and SeasonalTrendInfo ( D ) objects for the nodes SegmentIn 
stack segment ( A ) and stack segment ( B , D ) by creating the fo ( B ) and SegmentInfo ( D ) , respectively , and create a new 
nodes SegmentInfo ( A ) and SegmentInfo ( B , D ) and assign SeasonalTrendInfo ( E ) for SegmentInfo ( E ) as follows : 
ing the two nodes to be children of SegmentInfo ( A , B , D ) . 
For stack trace ( A , C ) , the control system may initialize stack SeasonalTrendInfo ( B ) – SeasonalTrendInfo ( B , D ) segment ( C ) by creating the node SegmentInfo ( C ) and SeasonalTrendInfo ( D ) SeasonalTrendInfo ( B , D ) register an ordered tuple including SegmentInfo ( A ) and SeasonalTrendInfo ( E ) = new SeasonalTrendInfo 
SegmentInfo ( C ) as the classification signature for the stack 
trace ( A , C ) . The control system may also update the above Seg 

In some embodiments , the control system may clone the mentInfo nodes as follows : 
SeasonalTrendInfo ( A , B , D ) object into SeasonalTrendInfo 
( A ) and SeasonalTrendInfo ( B , D ) objects for the nodes Seg 
mentInfo ( A ) and SegmentInfo ( B , D ) , respectively , and cre SegmentInfo ( A ) .numOfOccur 
ate a new SeasonalTrendInfo ( C ) for SegmentInfo ( C ) as 20 SegmentInfo ( A ) .totalNumOfOccur 

SegmentInfo ( B ) .numOfOccur follows : SegmentInfo ( B ) .totalNumOfOccur 
SegmentInfo ( E ) .numOfOccur = 1 
SegmentInfo ( E ) .totalNumOfOccur 

SeasonalTrendInfo ( A ) = SeasonalTrendInfo ( A , B , D ) 
SeasonalTrendInfo ( B , D ) SeasonalTrendInfo ( A , B , D ) 
SeasonalTrendInfo ( C ) = new SeasonalTrendInfo FIG . 6 depicts a set of classification signatures 600 

including the classification signatures 450 and 550 and a 
new classification signature 650 that was generated in The control system may also update the above Seg response to the stack trace ( A , B , E ) . As can be seen in FIG . mentInfo nodes as follows : 6 , the classification signature 450 now includes five nodes : 

30 node 402 , node 502 , node 504 , node 602 , and node 604 . 
Node 504 corresponds to SegmentInfo ( B , D ) , which is the SegmentInfo ( A ) .numOfOccur = 2 

SegmentInfo ( A ) .totalNumOfOccur coalescing node for node 602 and node 604. Node 602 
SegmentInfo ( C ) .numOfOccur corresponds to SegmentInfo ( B ) , which coalesces stack 
SegmentInfo ( C ) .totalNumOfOccur frames b1 - b3 . Node 604 corresponds to SegmentInfo ( D ) , 

35 which is the coalescing node for stack frames d1 - d3 . The 
FIG . 5 depicts a set of classification signatures 500 classification signature 550 has not changed . The classifi 

including the classification signature 450 and a new classi cation signature 650 includes three nodes : node 606 , which 
fication signature 550 that was generated in response to corresponds to SegmentInfo ( A ) shown to coalesce stack 

observing stack trace ( A , C ) for the first time . As can be seen 40 ( B ) shown to coalesce stack frames b1 - b3 , and node 610 , frames al - a3 , node 608 , which corresponds to SegmentInfo 
in FIG . 5 , the classification signature 450 now includes three which corresponds to SegmentInfo ( E ) shown to coalesce nodes : node 402 , nodes 502 , and node 504. Node 402 stack frames el - e3 . corresponds to SegmentInfo ( A , B , D ) , which is the coalesc As shown in FIG . 6 , the classification signature for the ing node of node 502 and node 504. Node 502 corresponds stack trace ( A , B , D ) can be comprised of a single Seg 
to SegmentInfo ( A ) , which coalesces stack frames al - a3 . 45 mentInfo node at the root of the classification signature 450 . Node 504 corresponds to SegmentInfo ( B , D ) , which In other words , stack trace ( A , B , D ) , which is the highest 
coalesces stack frames b1 - d3 . The classification signature intensity stack trace , has the most compact representation . 
550 includes two nodes : node 506 , which corresponds to Meanwhile , stack trace ( A , C ) is assigned the second shortest 
SegmentInfo ( A ) shown to coalesce stack frames al - a3 , and classification signature with the two ordered nodes ( A ) and 
node 508 , which corresponds to SegmentInfo ( C ) shown to 50 ( C ) . Stack trace ( A , B , E ) , which was detected last , is 
coalesce stack frames cl - c3 . assigned the third shortest classification signature with the 
When stack trace ( A , B , E ) is observed for the first time in three ordered nodes ( A ) , ( B ) , and ( E ) . As shown in FIGS . 

thread dump N + 2 , the control system determines that the 4-6 , a ThreadClassification Info object may correspond to a 
entire set of stack frames within the stack segment ( B , D ) are tuple of SegmentInfo nodes and a SegmentInfo node may 
no longer linearly connected . A branch point now exists 55 refer to binary trees ( or sub - trees that are binary ) of other 
between the last stack frame of the set of stack frames SegmentInfo nodes and / or sets of StackFrameInfo objects . represented by ‘ B’and the first stack frame of the set of stack Together , the ThreadClassification Info objects , SegmentInfo 
frames represented by ‘ D ' because , in any given stack trace , nodes , and the StackFrameInfo objects may constitute the 
the next stack frame that follows the last stack frame could production grammar : 
be ( 1 ) the first stack frame of ( D ) or ( 2 ) the first stack frame 60 
of the set of stack frames represented by ' E ' . Thus , the 
control system may split the stack segment ( B , D ) into stack Threadl - > ( A , B , D ) 
segment ( B ) and stack segment ( D ) by creating the nodes Thread2 - > ( A ) ( C ) 

Thread3 - > ( A ) ( B ) ( E ) SegmentInfo ( B ) and SegmentInfo ( D ) and assigning the two ( A , B , D ) - > ( A ) ( B , D ) nodes to be children of SegmentInfo ( B , D ) . For stack trace 65 ( B , D ) - > ( B ) ( D ) 
( A , B , E ) , the control system may initialize stack segment ‘ E ' A- > al , a2,23 
by creating the node SegmentInfo ( E ) and register an ordered 
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-continued At step 704 , embodiments receive a stack trace for each 
thread that was executing during the thread dump . The stack 

B - > b1 , b2,63 trace for a particular thread may correspond to one or more 
C- > c1 , c2 , c3 lines of text that describe the thread's call stack . Each line D - > d1 , d2 , d3 
E - > el , e2 , e3 5 within the stack trace corresponds to a particular stack frame 

on the thread's call stack and may describe the code block 
associated with the stack frame . In some embodiments , the 

As can be seen above , the individual stack frames ai , bi , stack frame may include a source code file and line number 
ci , di , ei are terminals while the SegmentInfo nodes are that points to the code block and a class name and / or method 
non - terminals of the grammar . Some embodiments can parse 10 name associated with the code block . 
the stack frames of a stack trace from the bottom of the stack At decision 706 , embodiments determine whether another 
trace to the top of the stack trace ( oriented as left to right in stack trace needs to be analyzed . If not , the flowchart ends 
the following notation ) . at step 716. In particular , once all of the stack traces of a 

thread dump have been analyzed by the one or more 
15 monitoring processes , some embodiments may update inten 

al , a2,23 , b1 , b2,63 , d1 , d2 , d3 sity statistics encapsulated by one or more objects in ( A ) , b1 , b2 , b3 , d1 , d2 , d3 use production ( A ) - > al , a2 , a3 
( A ) , ( B ) , d1 , d2 , d3 use production ( B ) - > b1 , b2,63 memory . For example , member variables of one or more 
( A ) , ( B ) , ( D ) use production ( D ) - > d1 , d2 , d3 SeasonalTrendInfo objects ( e.g. , raw Measure , 
( A ) , ( B , D ) use production ( B , D ) - > ( B ) ( D ) Deseasonalized Measure , smoothed WeekdaySeasonalFac 
( A , B , D ) use production ( A , B , D ) - > ( A ) , ( B , D ) 20 tor , and / or smoothedWeekendSeasonalFactor ) may be 

use production Threadl - > ( A , B , D ) updated based on what sort of stack traces are obtained from 
the thread dump . 

As can be seen above , some embodiments can analyze the Otherwise , at step 708 , embodiments determine whether 
stack frames via bottom - up syntax analysis , which may be an existing trace signature represents the sequence of stack 
similar to shift - reduce parsing or left to right “ LR ” parsing . 25 frames included by the stack trace . In particular , some 
The analysis can involve shifting and reducing the stack embodiments may use , as a production grammar , an existing 
frames and SegmentInfo nodes to construct a parse tree for set of classification signatures that have been built up based 
the stack trace by working from the leaves to the root of the on the stack frames received from previous thread dumps to 
tree . Some embodiments can synthesize the parse tree for an determine whether the sequence of stack frames can be 
earlier occurrence of the stack traces of a thread and analyze 30 represented by one of the existing signatures . This may 
the stack traces of another occurrence of the thread by involve one or more shift - reduce operations where portions 
reducing ( i.e. , shift - reduce parsing , left to right “ LR ” pars of the stack trace are collapsed into leaf SegmentInfo nodes 
ing ) to the same parse tree . Each node of the classification and the SegmentInfo nodes themselves are collapsed into 
tree can be a compact label for a class of stack traces and the coalescing nodes . If the shift - reduce operations results in an 
root of the classification tree can be a compact label for a 35 ordered - tuple that is registered as a classification signature , 
class of threads . that classification signature represents the sequence of stack 

FIG . 7 illustrates a flowchart 700 of a process for gener frames included by the stack trace . 
ating and / or modifying one or more thread classification At decision 710 , if such a trace ( i.e. , classification ) 
signatures in response to a thread dump according to some signature exists , the flowchart proceeds to step 714. Other 
embodiments . In some embodiments , the process depicted in 40 wise , at step 712 , embodiments generate a new trace signa 
flowchart 700 may be implemented by a computer system ture that represents the sequence of stack frames included by 
with one or more processors ( e.g. , computer system 1700 of the stack trace . In other words , a branch point within a set 
FIG . 17 ) where the one or more processors can execute the of stack frames that were thought to be linearly connected 
steps based on computer code stored in a computer - readable has been discovered . Some embodiments may then generate 
medium . The steps described in FIG . 7 can be performed in 45 one or more SegmentInfo nodes , modify one or more binary 
any order and with or without any of the other steps . trees , and / or modify one or more ordered tuples to generate 

Flowchart 700 begins at step 702 , where embodiments a new classification signature that represents the set of 
perform a thread dump during an execution of a multi ( formerly ) linearly connected stack frames included by the 
threaded program . In particular , some embodiments may stack trace . The technique of generating the new classifica 
correspond to one or more monitoring processes that moni- 50 tion signature is described in further detail below with 
tor a software execution environment in which the multi respect to FIG . 8 . 
threaded program executes . The software execution envi At step 714 , embodiments increment a counter associated 
ronment may support a plurality of multi - threaded processes with the trace signature before returning to decision 706. In 
that include the multi - threaded program . In some cases , the particular certain counters that are members of ThreadClas 
software execution environment may be a virtual machine 55 sificationInfo objects , SegmentInfo objects , and / or Stack 
that supports the taking of thread dumps . In some embodi FrameInfo objects ( e.g. , numOfOccur and / or totalNumOfo 
ments , one or more monitoring processes may execute ccur ) may be incremented to track the number of stack 
within the virtual machine alongside the multi - threaded traces , stack segments , and stack frames by type as they are 
program . In some embodiments , the one or more monitoring received and discovered . 
processes may execute separately from the virtual machine 60 FIG . 8 illustrates a flowchart 800 of a process for gener 
on the same set of machines or on a different set of ating or modifying a thread classification signature in 
machines . The one or more monitoring processes may response to detecting a branch point according to some 
periodically initiate a thread dump of the virtual machine . embodiments . In some embodiments , the process depicted in 
For a particular thread dump , stack traces may be obtained flowchart 800 may be implemented by a computer system 
for each thread that is executing on behalf of the ( e.g. , 65 with one or more processors ( e.g. , computer system 1700 of 
spawned by ) the multi - threaded program at the time the FIG . 17 ) where the one or more processors can execute the 
particular thread dump is taken . steps based on computer code stored in a computer - readable 
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medium . The steps described in FIG . 8 can be performed in encountered first , the longer classification signatures are 
any order and with or without any of the other steps . more likely to represent stack traces that occur less often . 

Flowchart 800 begins at step 802 , where embodiments This may ensure that a higher percentage of stack traces are 
determine whether one or more SegmentInfo nodes have compressed into shorter classification signatures . After step 
been previously generated . If so , the flow chart proceeds to 812 , the flowchart ends at step 820 . 
step 804. Otherwise , the flowchart proceeds to step 814 . At step 814 , embodiments generate a tuple that includes Unless the stack trace currently being analyzed is the first a single binary tree that includes a single node to represent 
stack trace received for the data set , the set of classification the stack trace . Because no SegmentInfo nodes have been signatures will likely contain one or more classification 
signatures previously generated for prior stack traces , where 10 first . As a result , some embodiments may generate a clas found , the currently analyzed stack trace is likely to be the 
the classification signatures include SegmentInfo nodes . sification signature that corresponds to a single binary tree Because types of stack traces received from the same with only one SegmentInfo node . After step 814 , the flow process are likely to share stack segments with each other , 
any type of stack trace received for the first time will likely chart ends at step 820. As different types of stack traces as 
result in the discovery of branch points . encountered in the future , the binary tree may be expanded 

At step 804 , embodiments determine one or more subse with new SegmentInfo nodes to represent newly encoun 
quences of stack frames included in the sequence of stack tered branch points . 
frames included by the stack trace that are not represented by IV . Heap Usage Measurements at Irregular Time Intervals 
any previously generated node . In particular , some embodi Some embodiments may have the control system monitor 
ments may consult existing classification signatures and 20 the time series data for heap allocation ( i.e. , heap usage ) to 
SegmentInfo nodes while attempting to compress the estimate trends and to forecast future memory usage within 
sequence of stack frames contained by the stack trace a virtual machine . By detecting seasonal trends and fore 
through a series of shift - reduce operations . Any subse casting the memory capacity requirements , some embodi 
quences of stack frames of the sequence that cannot be ments can dynamically reallocate shared system memory 
reduced may be determined to be a new type of stack 25 among virtual machines , thereby enabling elasticity in 
segment . In this case , some embodiments may determine resource allocation . Forecasting of capacity requirements 
that a SegmentInfo node that represents the new type of may involve the estimation of the heap's growth rate . To 
stack segment needs to be generated . ensure sample accuracy , heap allocation measurements may 

At step 806 , embodiments generate one or more addi be taken during full garbage collection ( GC ) cycles , which 
tional nodes to represent the one or more subsequences of 30 occur at irregular time intervals . Estimation of heap growth 
stack frames . In particular , a new StackFrameInfo object rate may involve division by random time intervals which is 
may be generated for each stack frame included in the new complicated by the irregular time intervals that intermit 
type of stack segment . A new SegmentInfo node that cor tently get arbitrarily close to zero . The noise in growth rate 
responds to the new type of stack segment may be generated , measurement is a ratio of two Gaussian distributions yield 
where the new SegmentInfo node refers to each of the new 35 ing a Cauchy distribution , which can be hard to filter . The 
StackFrameInfo objects . mean and standard deviation of the Cauchy distribution are 
At step 808 , embodiments incorporate at least one of the undefined in the sense that a large number of data points do 

one or more additional nodes into one or more previously not yield more accurate estimate of the mean and standard 
generated binary trees of one or more previously generated deviation than does a single data point . Increasing the pool 
tuples . One or more binary trees of one or more existing 40 of samples can increase the likelihood of encountering 
classification signatures may be modified and / or expanded sample points with a large absolute value corresponding to 
to account for the newly discovered branch point . In cases division by a time close interval . 
where a stack segment represented by a leaf SegmentInfo It should be noted that , unlike heap size measurements 
node of an existing binary tree is split by the new branch whose sampling intervals are irregular due to the irregularity 
point , that leaf node may become the coalescing node of two 45 of full GC cycles , the thread intensity measurements can be 
new leaf SegmentInfo nodes . sampled at regular intervals to avoid time - close intervals . 

At step 810 , embodiments generate one or more addi Even so , the same techniques described herein for trending 
tional binary trees , wherein at least one or more the one or of heap allocation can be applied to seasonal trending and 
more binary trees include at least one of the one or more forecasting of thread and stack segment intensity measure 
additional nodes . In many cases , the one or more additional 50 ments . In some embodiments , the techniques can adjust for 
binary trees may be single level trees having a single node . variable latencies due to the CPU scheduling of the threads 
One of the newly generated binary trees may include the and the interference of the full GC cycles . The techniques 
new SegmentInfo node generated in step 806 . can also adjust for the variable sampling intervals due to the 
At step 812 , embodiments generate an additional tuple variable computation time required to classify the stack 

that includes the one or more additional binary trees to 55 segments . In situations where a particular thread or stack 
represent the stack trace . The additional tuple may corre segment has not been observed in a thread dump , some 
spond to the classification signature that represents the embodiments may leave the numOfOccur member variable 
newly discovered type of stack trace . Some tuples may be of the associated ThreadClassificationInfo object or the 
ordered sets of single - level binary trees that each contain a associated SegmentInfo object as zero , which may indicate 
single node and may look similar to a list of nodes . Other 60 that no measurement for the particular thread or stack 
tuples may correspond to a single multi - level binary tree . segment is available . Such embodiments may not update the 
Still yet other tuples may include single - level binary trees rawMeasure variable of a SeasonalTrendInfo object . Such 
and multi - level binary trees in combination . In general , as embodiments may update the rawMeasure member variable 
more and more types of stack traces are discovered , each of a SeasonalTrendInfo object only when the numOfOccur 
subsequent classification signature that is generated may 65 member variable of the associated ThreadClassification Info 
correspond to longer and longer ordered tuples . However , object or the associated SegmentInfo object is not zero . Such 
because common types of stack traces are more likely to be embodiments may track the number of thread dumps ‘ N ’ 
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since the last update of the raw Measure . The thread intensity nential Smoothing for Predicting Demand , ” Cambridge , 
measurements may correspond to a series with irregular time Arthur D. Little Inc. ( 1956 ) , p . 15 ; C. C. Holt , “ Forecasting 
intervals . Trends and Seasonal by Exponentially Weighted Averages , " 

A Holt - Winter triple exponential filter , published in 1957 Office of Naval Research Memorandum , no . 52 , ( 1957 ) ; P. 
and 1960 , can be used for seasonal trending and forecasting . 5 R. Winters , “ Forecasting Sales by Exponentially Weighted 
C. C. Holt , “ Forecasting Trends and Seasonal by Exponen Moving Averages , ” Management Science , vol . 6 , no . 3 , p . tially Weighted Averages , ” Office of Naval Research Memo 324-342 , ( 1960 ) ; D. J. Wright , " Forecasting data published 
randum , no . 52 ( 1957 ) is incorporated by reference herein . at irregular time intervals using an extension of Holt's P.R. Winters , “ Forecasting Sales by Exponentially Weighted method , ” Management Science , vol . 32 , no . 4 , pp . 499-510 Moving Averages , ” Management Science , vol . 6 , no . 3 , p . 10 ( 1986 ) ; T. Hanzak , “ Improved Holt Method for Irregular 324-342 ( 1960 ) is incorporated by reference herein . Wright 
extended the Holt - Winter formulae in 1986 to support Time Series , ” WDS'08 Proceedings Part I , pp . 62-67 ( 2008 ) ; 
irregular time intervals . D. J. Wright , “ Forecasting data and S. Maung , S. W. Butler and S. A. Henck , “ Method and 
published at irregular time intervals using an extension of Apparatus for process Endpoint Prediction based on Actual 
Holt's method , ” Management Science , vol . 32 , no . 4 , pp . 15 Thickness Measurements , ” U.S. Pat . No. 5,503,707 ( 1996 ) . 
499-510 ( 1986 ) is incorporated by reference herein . In 2008 , V. Correlating Thread Intensity and Heap Usage 
Hanzak proposed an adjustment factor for time - close inter Various embodiments provide techniques for identifying 
vals . T. Hanzak , “ Improved Holt Method for Irregular Time heap - hoarding stack traces ( i.e. , classes of threads ) within 
Series , ” WDS'08 Proceedings Part I , pp . 62-67 ( 2008 ) is multi - threaded applications by correlating trends between 
incorporated by reference herein . 20 intensity statistics of various classes of threads spawned by 

The adjustment factor for time close intervals , which is the application and heap usage statistics . In doing so , some 
meant to compensate for higher relative intensity of noise embodiments may identify , based on heap usage statistics , 
due to a random time - close interval in the rate estimate , can seasons where high heap usage tends to be high ( i.e. , high 
inadvertently dampen the rate of change estimates if the time heap usage seasons ) within a time period during which one 
interval decreases monotonically during a congestion caused 25 or more multi - threaded applications are executing within a 
by memory leaks or deadlocks . Non - linear or polynomial software execution environment . As explained above , some 
time complexity of full GC algorithms can result in decreas embodiments may then identify and collect intensity statis 
ing thread runtime intervals as congestion worsens . In case tics for multiple classes of threads through the analysis of 
of memory leaks , as the time interval decreases , the run time thread dumps obtained from the software execution envi 
can decrease but the measurement time can increase because 30 ronment in the same time period of the high heap usage 
the virtual machine can be frozen longer due to full GCs seasons . Some embodiments may then identify “ heap - hoard 
being performed more often . If the virtual machine is frozen ing ” classes of threads ( i.e. , heap hoarding stack traces ) from 
during a full GC , new requests can be queued up outside the amongst the identified classes of threads by ranking the 
virtual machine . The backlog can accelerate the rate of classes of threads by the degree of correlation between their 
change of the heap usage during the subsequent run time . In 35 intensity statistics and the high heap usage trends . 
some embodiments , Hanzak's adjustment for time - close Some embodiments may refer to such classes of threads 
intervals is used for trending and forecasting of heap allo as heap - hoarding because there is a high probability that the 
cation and to track the accelerating heap growth rate . code being executed by such threads is inefficient in terms 

In an embodiment of the invention , Holt - Winter triple of heap memory usage . Stated another way , erroneously 
exponential filter can be applied for seasonal trending and 40 written code and / or unoptimized code executed by these 
forecasting of heap usage to efficiently achieve elasticity in threads may cause the threads to hoard a large amount of 
memory allocation . The standard Holt - Winter triple expo heap memory , thereby contributing significantly to the high 
nential filter , which can be applied to demand forecasting heap usage trend . 
from regular time series , can be specially adjusted to work It should be noted that such memory hotspots are impor 
for the random time intervals with irregular time - close 45 tant from the perspective of operating cloud - based services 
intervals . Embodiments of the invention can apply the over long periods of time in a production environment . 
Wright formula for irregular time intervals and Hanzak's Accordingly , by enabling the continuous detection and miti 
adjustment for time - close intervals for trending and fore gation of such hotspots , some embodiments may directly 
casting of heap allocation . A non - trivial selection of a impact the operational efficiency of the cloud services . It 
structure of the filters suitable for the irregular time intervals 50 should also be noted that such embodiments may be advan 
resulting from full GCs can be performed . The structure of tageous over using memory profiler tools to profile such 
the Holt - Winter - Wright - Hanzak filters can be derived from applications because such tools may add too much overhead 
first principles to systematically devise the adaptations to to the application . Accordingly , memory profiler tools may 
match the time series generated by full GC cycles . not be practical for continuously profiling an application that 

In some embodiments , formulae for exponential moving 55 is executing in a production environment . 
averages are applied to smooth out time - series data , locally A. Inefficient Heap Usage in Code 
linear trend , seasonal trend , error residual of forecast , and One common cause of inefficient memory usage is due to 
absolute deviation of forecast for monitoring and forecasting local variables defined in the stack frames of a thread . In 
of resource utilization measures such as heap memory usage general , when a running thread instantiates an object , that 
and thread intensity . In some embodiments , the formulae can 60 object occupies heap memory until the number of stack 
be based on Brown's exponential filter proposed in 1956 , frames that refer ( directly or indirectly ) to the object falls to 
Holt's double exponential filter proposed in 1957 , Winters ’ zero , at which point the heap memory is freed at the next 
triple exponential filter proposed in 1960 , Wright's exten garbage collection . Accordingly , local variables that refer 
sion for irregular time intervals proposed in 1986 , Hanzak's ences large objects from stack frames that remain active over 
adjustment factor for time - close intervals proposed in 2008 , 65 a long period of time may inadvertently contribute signifi 
and outlier detection and clipping . The following publica cantly to heap memory usage because they don't allow the 
tions are included by reference herein : R. G. Brown , “ Expo objects to be garbage collected . 
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Some embodiments suppose that a fraction ‘ p of the total B. Initializing Seasonal Factors for Weekday and Week 
heap usage ‘ G ’ bytes can be attributed to a class of threads end Periods 
' C ' . Further , some embodiments may also suppose that the To identify the heap - hoarding stack traces , some embodi 
average heap usage among this class of threads ' C ' ( i.e. , ments may ( 1 ) identify the high heap usage seasons by 
heap usage per thread ) is ‘ M ' bytes . In this instance , let ‘ T : 5 estimating the seasonal trends of heap usage statistics of the 
denote the expected number of threads of the class of threads execution environment and ( 2 ) estimate , for each of one or 
' C ' . The following relation gives “ Tc ' , which is defined as more classes of threads , the seasonal trends of the thread 
the thread intensity in the statistical model : intensity statistics of the class of threads . Some techniques 

for determining the seasonal trends of the heap usage 
10 statistics and the seasonal trends of the thread intensity 

statistics , for regular or irregular time intervals , are disclosed 
TCE in the patent application Ser . Nos . 14 / 109,578 , 14 / 109,546 , 

and 14 / 705,304 , which are herein incorporated by reference 
for all purposes . In response to identifying heap - hoarding classes of To determine a seasonal trend of a statistic , the period and 

threads , certain embodiments may report ( e.g. , via a notifi intervals to which the seasonal trend is mapped may be 
cation or an alert ) the classes of threads to developers , defined . In particular , a period can be partitioned into a 
performance engineers , and other relevant personnel . As a plurality of non - overlapping intervals . Each interval of the 
result , code associated with such types of threads may be period can be associated with a seasonal index . For example , 
subject to detailed code review and code profiling . In some 20 if the period is a day and the interval is an hour , then there 
cases , certain associated stack frames may be inspected . For should be 24 seasonal indices to cover the period . As another 
example , an investigation may involve taking a heap dump example , if the period is a year and the interval is a month , 
during the time when the heap usage is near a seasonal peak there should be 12 seasonal indices . 
to inspect the stack frames included in the stack traces of Some embodiments can model the weekdays , weekends , 
heap - hoarding threads . The stack frames can contain the 25 and holidays as separate periods . If the weekday and week 
local variables referencing the objects contributing to the end periods are separated , then there can be 5 cycles of the 
high heap usage ( e.g. , objects occupying large amounts of weekday periods interleaved with 1 cycle of the weekend 
heap memory ) . This kind of code inspection and optimiza period such that after processing 5 consecutive weekday 

periods , a single weekend period is processed . Accordingly , tion can be done by visual code review , automatic code 
review , profiling of the identified threads , just - in - time com 30 the frequency of the consecutive weekday periods will be 

one weekday period every 24 hours while the frequency of piler optimization , dynamic byte - code injection , or combi the weekend period will be one weekend period every 7 nations of these techniques . In some embodiments , heap days . In embodiments where the individual holidays ( e.g. , hoarding classes of threads may be reported to other the Christmas and New Year Holidays ) are modeled as automatic code optimization tools to leverage their code 35 separate periods , the frequency of a particular holiday period 
optimization functionalities . is once a year . 

Some embodiments may automatically redesign or A seasonal index can be a multiplicative seasonal factor or 
rewrite application code to make its usage of memory more an additive seasonal term that is applied to the interval 
efficient . For example , some embodiments can automati associated with the seasonal index . For example , in an 
cally rewrite code so that local variables release large objects 40 embodiment that represents seasonal indices using multipli 
as soon as possible without changing the behavior or cor cative seasonal factors , if the interval ‘ 9-10 AM ’ is associ 
rectness of the application . In some cases , this may involve ated with a seasonal factor of 1.3 , then any measurement 
deep analysis of the code paths involved in the heap sampled during the 9-10 AM interval can be adjusted higher 
hoarding threads . by 30 % ( i.e. , multiplied by 1.3 ) . In embodiments where 

For example , consider the following code : 45 seasonal indices are represented by additive seasonal terms , fileOS.write ( buffer.toString ( ) . getBytes ( ) ) ; the additive seasonal terms are added to measurements . 
Some embodiments may determine that the above code is A season classifies a set of intervals by some criteria . For 

inefficient with respect to memory usage because three example , given a period of one year , the 12 intervals 
objects : buffer , buffer.toString ( ) , and buffer.toString ( ) . get January , Feburary , March , April , May , June , July , August , 
Bytes ( ) , are held by local variables in a stack frame of a 50 September , October , November , and December can be clas heap - hoarding thread . In particular , the local variables pre sified into four northern meteorological seasons as follows : 
vent the three objects from being garbage collected while the December , January , and February are classified as the 
thread is blocking in a file system call . winter season . 
Some embodiments can modify the code as shown below March , April , and May are classified as the spring season . 

so that at least two objects : buffer and buffer.toString ( ) , can June , July , and August are classified as the summer 
be garbage collected while the thread is blocking in a file 
system call : September , October , and November are classified as the 

fall season . 
Some embodiments may partition weekday periods into String templ = buffer.toString ( ) ; 60 96 15 - minute intervals . In this regard , 96 seasonal indices = new StringBuffer ( ) ; // allow garbage collection of the old buffer 

byte [ ] temp2 = templ.getBytes ( ) ; are derived , where each of the 96 weekday seasonal indices 
templ = null ; // allow garbage collection of the string ( i.e. , weekday factors ) maps to a different one of the 96 
fileOS.write ( temp2 ) ; // this is a blocking call weekday intervals . Similarly , some embodiments may par temp2 = null ; // allow garbage collection of the bytes array tition weekend periods into 192 15 - minute intervals , thereby 

65 deriving 192 seasonal indices with each of the 192 weekend 
Some embodiments can use non - intrusive ways to inspect seasonal indices ( i.e. , weekend factors ) mapping to a dif 

the stack frames of the heap - hoarding stack traces . ferent one of the 192 weekend intervals . 

55 
season . 

buffer 
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In order to separate out seasonal patterns of the weekday N , is the number of samples in the cycle p of the period ; and 
periods and those of the weekend periods , certain embodi t ; is the time of the sample number i in the cycle p of the 
ments may apply multi - period trending filters to the week period 
day periods separately from applying such filters to the To initialize the seasonal factors of a period , some 
weekend periods . Some embodiments may then renormalize 5 embodiments may compute the seasonal factors for each of 
the weekday factors and the weekend factors so that a the seasonal indices S , in the period using the following 

formula : seasonal factor of 1 represents a common reference level for 
both the weekday periods and the weekend periods . As a 
result , a seasonal factor that is larger than 1 may represent 
a higher than average heap usage during an interval to which 10 $ 1 = ( 7 / Do + X1-2 / D2 + 3421 / D.m + ... + X [ + ( P - 1 ) + L / Dp - 1 ) , 
the seasonal factor applies . Meanwhile , another seasonal 1 = 0 , 1 , ... , L - 1 factor that is smaller than 1 may represent a lower than 
average heap usage during another interval to which the 
other seasonal factor applies . In particular , a seasonal factor for a particular interval In some embodiments , techniques for multi - period trend- 15 may be equal to the ratio of the average heap usage of that ing can be extended to separate out holidays ( e.g. , Labor interval across the entire dataset ( calculated by averaging the Day , Christmas Day , New Year's Day , etc. ) as separate average heap usage of all of the same intervals ( e.g. , all 9-10 periods , where holidays periods repeat with a frequency of AM intervals ) in the entire dataset ( e.g. , a dataset that spans once every 12 months . Meanwhile , the weekday period an entire week ) and the average heap usage of the period repeats with a frequency of once every 24 hours and the 20 across the entire dataset . 
weekend period repeats with a frequency of once every 7 C. Renormalization 
days . In such embodiments , the seasonal factors for holiday As mentioned above , some embodiments may renormal periods , the seasonal factors for the weekday periods , and ize the weekday seasonal factors and the weekend seasonal the seasonal factors for the weekend periods may all be factors so that a seasonal factor of ' 1 ' represents a common renormalized together so that a seasonal factor of 1 repre reference level for both weekday periods and weekend sents a common reference level for weekday periods , week periods . end periods , and holiday periods . In general , certain embodiments may perform renormal Given a period ( e.g. , a weekday period , a weekend period , ization by computing a weighted average of seasonal factors or a holiday / one - year period , etc. ) , let P denote the number across all periods and dividing each of the seasonal factors of cycles of the period covered by a given measurement 30 by the weighted average . Consider the following example 
dataset ( e.g. , a time series of heap usage measurements involving the seasonal indices of multiple periods of differ spanning a particular period of time ) and let K denote the ing lengths , where each period is partitioned into 15 minute number of intervals within the number of periods covered by intervals : 
the given data set . If L denotes the number of seasonal seasonal indices for a weekday : Di , i = 1 , 2 , 96 indices in a period , then K = P * L . For example , if there are at 35 seasonal indices for a weekend : E ;, i = 1 , 2 , ... , 192 least 3 years of data within the dataset , a period corresponds seasonal indices for 10 individual holidays : Hk.ie i = to a year , and an interval corresponds to a month , then the 1 , 2 , ... , 96 ; k = 1 , 2 , .. 10 number of available cycles P of the period is 3 and the Suppose that in a particular year , there are 253 weekdays 
number of available monthly intervals is 36 . ( excluding holidays ) , 50.5 weekends , and 10 holidays , Some embodiments may calculate the average heap usage where 253 + 50.5 * 2 + 10 = 364 days . In this example , some for each interval of the period based on data spanning embodiments may use the following formula to calculate the multiple cycles of the period . In particular , some embodi weighted average ‘ A ’ of the seasonal factors , where the 
ments may enumerate the intervals from 0 to ( K - 1 ) and weights are proportional to the number of cycles of each calculate an average heap usage for each of the enumerated period ( e.g. , the weekday period , the weekend period , and 10 intervals xx using the following formula : individual holiday periods ) in a year . 

25 

40 

45 

1 1 
Xk = Xt ; a A = Nk 253 L Di +50.5 L E +10 Mi i = 1 364 

50 

55 

k = 0 , 1 , K - 1 ; N , is the number of samples in the interval 
k ; and t ; is the time of the sample number i in the interval k 
Some embodiments may also calculate the average heap 

usage of each cycle of the period based on the data spanning 
multiple cycles of the period . In particular , some embodi 
ments may enumerate the cycles of the period from 0 to 
( P - 1 ) and calculate an average heap usage for each of the 
enumerated cycles D of the period using the following 
formula : 

Some embodiments can derive the new renormalized 
seasonal factors for each period by dividing each seasonal 
factor Di , E ;, and Hki by A. 
Returning to the steps for identifying the heap - hoarding 

stack traces , after initializing the seasonal indices S , using 
the above formulae , some embodiments can renormalize the 
weekday and weekend factors by dividing each weekend 
factor Bk and each weekday factor C , by a normalization 
factor as follows : 

60 

1 Dp Xt ;, p = 0 , 1 , ... , P - 1 ; +5 ( B + C K + 5L i = 1 65 
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After renormalization of the weekday and weekend sea 
sonal factors , a seasonal factor of 1 should represent a factors < -c ( smoothedWeekdaySeasonalFactor , 
common reference level for both weekday factors and smoothed WeekdaySeasonalFactor , 

smoothed WeekdaySeasonalFactor ) 
weekend factors . 
D. Smooth - Spline Fitting 
As mentioned above , some embodiments may fit a Next , some embodiments may apply a spline to smooth 

smooth - spline across multiple periods to provide smooth out the array of the weekday factors . For example , some 
transitions between the cycles of a period ( e.g. , between two embodiments may invoke the R smooth.spline function with 
weekday periods ) or between the cycles of two adjacent a smoothing parameter of 0.3 to smooth out the factors : 
periods ( e.g. , between a weekday period and a weekend ) . In 
particular , fitting a spline can involve concatenating the extended Weekday Indices < 1 : ( 3 * 96 ) 
seasonal indices of one or more periods to smooth transi f < - smooth.spline ( extended WeekdayIndices , factors , spar 0.3 ) 
tions between the periods . 

In general , when certain embodiments ( e.g. , a filter ) reach Some embodiments may then designate the middle the end of the cycle of a period A , and begin a new cycle of 
the period A ,, such as when repeating the weekday cycles at sequence ( i.e. , the middle 96 weekday factors ) within the 

array as the smoothed weekday factors . For example , some the transition from a Monday to a Tuesday , a Tuesday to a embodiments may obtain the smoothed weekday factors by Wednesday , a Wednesday to a Thursday , and a Thursday to executing the following code in the R programming lan a Friday , such embodiments concatenate three guage : sequences of the seasonal indices A , and fit the smooth 
spline across the whole sequence . Some embodiments may 
then take the middle segment of the smoothed sequence to sandwichWeekdayIndices < - ( 96 + 1 ) :( 96 * 2 ) 
represent the new smoothed seasonal indices A. smoothed WeekdaySeasonalFactor < - predict ( f , 

sandwich Weekday Indices ) $ y When certain embodiments ( e.g. , a filter ) reach the end of 25 
the cycle of a period A , and begin a new cycle of an adjacent 
period Bi , such as when transitioning from a Friday to a In a fashion similar to smoothing the weekday factors , 
Saturday , some embodiments may concatenate one sequence some embodiments may apply a spline to smooth the 
of the seasonal indices Ai , one sequence of the seasonal weekend factors . In particular , some embodiments may 
indices B ;, and one sequence of the seasonal indices Cid of a compose an array of seasonal factors by concatenating a 
period that follows the period Bi , and fit the smooth - spline sequence of weekend factors between two sequences of 
across the whole sequence . Some embodiments may then weekday factors . For example , some embodiments may 
take the middle segment of the smoothed sequence to generate the array by executing the following code in the R 
represent the new smoothed seasonal indices B ;. Some programming language : 
embodiments may also take the first segment of the 
smoothed sequence to represent the smoothed seasonal factors < - c ( smoothedWeekdaySeasonalFactor , 
indices A ; smoothedWeekendSeasonalFactor , 
When certain embodiments ( e.g. , a filter ) reach the end of smoothed WeekdaySeasonalFactor ) 

the cycle of a period B ; and begin a new cycle of an adjacent 40 
period Ci , such as when transitioning from a Sunday to a Next , some embodiments may apply a spline to smooth 
Monday , some embodiments can concatenate one sequence out the array of the weekday and weekend factors . For 
of the seasonal indices A , of a period that precedes the period example , some embodiments may invoke the R smooth 
B ;, one sequence of the seasonal indices Big .spline function with a smoothing parameter of 0.3 to 
sequence of the seasonal indices Ci , and fit the smooth- 45 smooth out the factors : 
spline across the whole sequence . Some embodiments may 
then take the middle segment of the smoothed sequence to 
represent the new smoothed seasonal indices B ;. Some extendedWeekend Indices < - 1 : ( 2 * 96 + 192 ) 
embodiments may also take the third segment of the f < - smooth.spline ( extended WeekendIndices , factors , spar = 0.3 ) 
smoothed sequence to represent the new smoothed seasonal 50 
indices Ci : Some embodiments may then designate the middle 
With regards to cloud services , load cycles during week sequence ( i.e. , the middle 192 seasonal factors within the 

ends and holidays are often different from those during array , which are weekend factors ) within the array as the 
weekdays . Conventional seasonal trending solutions may smoothed weekend factors . For example , some embodi 
typically represent only one period of seasonal indices . In 55 ments may obtain the smoothed weekend factors by execut 
order to separate the seasonal indices of weekends from the ing the following code in the R programming language : 
seasonal indices of regular weekdays , such conventional 
solutions may depend on the range of a period being 
extended to an entire week or an entire month . Additionally , sandwich WeekendIndices < ( 96 + 1 ) :( 96 + 192 ) 
such conventional solutions may handle holidays separately . 60 smoothedWeekendSeasonalFactor < - predict ( f , 

Returning to the steps for identifying the heap - hoarding sandwichWeekendIndices ) $ y 
stack traces , to smooth the weekday seasonal factors , some 
embodiments can compose an array of seasonal factors by It should be noted that some embodiments may represent 
concatenating three sequences of the weekday factors . For the 96 weekday seasonal indices and 192 weekend seasonal 
example , some embodiments may generate the array by 65 indices separately in order to separate seasonal patterns 
executing the following code in the R programming lan observed during weekdays from those observed during 
guage : weekends . In some embodiments , sequentially filtering 

35 

and one 
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time - series of heap usage statistics can involve five sets of embodiments may obtain the smoothed weekday factors by 
exponential filters , including one for heap usage measure executing the following code in the R programming lan 
ments , one for seasonal factors , one for the linear trend , one guage : 
for the acceleration trend , and one for the residual . 
As mentioned above , to ensure sample accuracy , heap 

allocation measurements may be taken during full garbage sandwichWeekday Indices < - ( 96 + 1 ) :( 96 * 2 ) 
collection ( GC ) cycles that occur at irregular time intervals . smoothed WeekdaySeasonalFactor < - predict ( f , 
In situations where heap usage is especially high , sampling sandwichWeekday Indices ) $ y 
intervals may become arbitrarily close to zero due to con 
stant garbage collecting . Because forecasting involves esti In a different instance , when reaching the end of a mation of the rate of change , if the irregular time intervals weekday period that precedes a weekend period ( i.e. when get arbitrarily close to zero , the rate of change may become transitioning from a Friday to a Saturday ) , some embodi a random variable of Cauchy distribution , whose mean and ments can compose an array of seasonal factors by concat standard deviation are undefined . Thus , some embodiments 15 enating a sequence of weekend seasonal factors between two may employ the adaptations of Holt's double exponential sequences of weekday seasonal factors . For example , some filter , Winters ' triple exponential filter , Wright's extension embodiments may generate the array by executing the for irregular time intervals , Hanzak’s adjustment factor for following code in the R programming language : 
time - close intervals , and outlier detection and clipping with 
adaptive scaling of outlier cutoff to overcome the Cauchy 20 
distribution problem for determining the seasonal trends of factors < -c ( smoothedWeekdaySeasonalFactor , 
statistics determined in association with full GCs . In some smoothedWeekendSeasonalFactor , 

smoothedWeekdaySeasonalFactor ) embodiments , the five sets of exponential filters an be 
sequentially applied to the times - series to estimate the 
weekday factors and weekend factors . Next , some embodiments may apply a spline to smooth 

When certain embodiments ( e.g. , a filter ) reach the end of out the array of the weekday and weekend factors . For a processing cycle for the weekday and weekend period , example , embodiments may invoke the R before processing the next cycle of the period or transition smooth.spline function with a smoothing parameter of 0.3 to ing to a different period ( e.g. , transition from a weekday smooth out the factors : period to a weekend period ) , such embodiments can divide 30 
each weekend factor Bk and weekday factor C , by the 
normalization factor as follows : extendedWeekendIndices < - 1 : ( 2 * 96 + 192 ) 

f < - smooth.spline ( extended WeekendIndices , factors , spar = 0.3 ) 

25 

some 

7 

K - 1 L - 1 35 1 

K + 5L 
k = 0 
?? , +5 ?? Some embodiments may then designate the left sequence 

( i.e. , the first 96 seasonal factors within the array , which are 
weekday factors ) within the array as the smoothed weekday 

After the end of each period , some embodiments may factors . For example , some embodiments may obtain the 
apply a spline to smooth the seasonal factors . For instance , 40 smoothed weekday factors by executing the following code 
when reaching the end of a weekday period that precedes in the R programming language : 
another weekday period ( i.e. , when transitioning from a 
Monday to a Tuesday , a Tuesday to a Wednesday , a Wednes 

leftside Weekend Indices < - 1:96 day to a Thursday , or a Thursday to a Friday ) , some smoothed WeekdaySeasonalFactor < - predictíf , embodiments can compose an array of seasonal factors by 45 leftsideWeekendIndices ) $ y concatenating three sequences of the weekday factors . For 
example , some embodiments may generate the array by 
executing the following code in the R programming lan In a different instance , when reaching the end of a 
guage : weekend period ( i.e. , transitioning from a Sunday to a 

Monday ) , some embodiments can compose an array of 
seasonal factors by concatenating a sequence of weekend factors < - c ( smoothedWeekdaySeasonalFactor , seasonal factors between two sequences of weekday sea smoothed WeekdaySeasonalFactor , 

smoothed Weekday SeasonalFactor ) sonal factors . For example , some embodiments may gener 
ate the array by executing the following code in the R 

Next , some embodiments may apply a spline to smooth programming language : 
out the array of the weekday factors . For example , some 
embodiments may invoke the R smooth.spline function with factors < -c ( smoothedWeekdaySeasonalFactor , a smoothing parameter of 0.3 to smooth out the factors : smoothed WeekendSeasonalFactor , 

smoothed WeekdaySeasonalFactor ) 

50 

55 

60 

extended WeekdayIndices < - 1 : ( 3 * 96 ) 
f < - smooth.spline ( extended Weekday Indices , factors , spar = 0.3 ) Next , some embodiments may apply a spline to smooth 

out the array of the weekday and weekend factors . For 
Some embodiments may then designate the middle 65 example , embodiments may invoke the R 

sequence ( i.e. , the middle 96 weekday factors ) within the smooth.spline function with a smoothing parameter of 0.3 to 
array as the smoothed weekday factors . For example , some smooth out the factors : 

some 
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extendedWeekendIndices < - 1 : ( 2 * 96 + 192 ) 
f < - smooth.spline ( extended WeekendIndices , factors , spar = 0.3 ) Dp Xt ; ; P = 0 , 1 , ... , P - 1 ; 

Some embodiments may then designate the middle 5 
sequence ( i.e. , the middle 192 seasonal factors within the 
array , which are weekend factors ) within the array as the 
smoothed weekend factors . For example , some embodi 
ments may obtain the smoothed weekend factors by execut 
ing the following code in the R programming language : 

N , is the number of samples in the cycle p of the period ; 
and t ; is the time of the sample number i in the cycle p of 

the period 
Some embodiments can then compute the sequence Y = < 

Y , Yp , 1 , ... , Yp , 2-1 > of seasonal indices for each cycle 
p of the period using the formula below : 

10 

2,09 

sandwich WeekendIndices < - ( 96 + 1 ) :( 96 + 192 ) 
smoothed WeekendSeasonalFactor < - predict ( f , 
sandwich WeekendIndices ) $ y 15 Y poj j = k modulo Q ; k = 0 , 1 , ... , K - 1 Dp 

p = 0 , 1 , ... , P - 1 Some embodiments may also designate the right sequence 
( i.e. , the last 96 seasonal factors within the array , which are 
weekday factors ) within the array as the smoothed weekday 
factors . For example , some embodiments may obtain the 
smoothed weekday factors by executing the following code 
in the R programming language : 

20 Some embodiments can then apply null hypothesis testing 
to detect whether there are seasonal cycles in the period . In 
this regard , the null hypothesis that is to be tested may 
correspond to the assumption that the correlation coefficient 
?u , between the seasonal indices of a most recent cycle ‘ u ’ 
and the seasonal indices of a preceding cycle ‘ v ’ is zero . In 
particular , some embodiments may determine the correla 
tion coefficient ru , using the following formulae below : 

25 rightsideWeekendIndices < - ( 96 + 192+ 1 ) :( 2 * 96 + 192 ) 
smoothed WeekdaySeasonalFactor < - predict ( f , 
rightside WeekendIndices ) $ y 

30 
Y pi 

( Voj- Mean ( y ) ? 
j = 0 35 

Q - 1 

= 0 
lu , v 

40 

It should be noted that , some embodiments may execute 
the renormalization and the smooth - spline fitting described Mean ( Yp ) = 
above each time the sequential filters reach either ( 1 ) the end 
of a cycle of a period and begin a new cycle of the same 
period ( e.g. , the sequential filters reach the end of a Monday ) Variance ( Yp ) 
or ( 2 ) the end of a cycle of a period and begin a new cycle 
of an adjacent period ( e.g. , the sequential filters reach the 
end of a Friday ) . ( 94.j - Mean ( Yu ) Yv , j - Mean ( y ) ) E. Testing for Seasonal Cycles 
Some embodiments can test the existence of seasonal 

11 V Variacle ( Y ) Variacle ( Y ) cycles for one or more candidate period of a data set to 
determine whether a separate sequence of seasonal indices 
for the period should be represented . In general , to deter Some embodiments may employ various techniques to 
mine whether a data set exhibits a seasonal cycle of a determine whether the correlation coefficient ruv is large 
particular period , some embodiments may perform the fol enough to indicate , above a level of significance , that there lowing steps . 45 is a common seasonal cycle between the cycles ‘ u ' and ' v ' . 

Let Q denote the number of seasonal indices in a period , For example , some embodiments may employ the Student - t P denote the number of available cycles of a period , and K test , the permutation test , or the Fisher transformation . 
denote the number of available intervals across the cycles of To test the hypothesis , some embodiments may define one a period , where K = P * Q . or more test statistics , which may be a function of the 
Some embodiments can calculate the average measure in 50 parameter . In this case , the correlation coefficient fu , v is to be 

each interval of the cycles of a period . To do so , some tested . The following test statistics t has Student's t - distri embodiments may enumerate the intervals from 0 to ( K - 1 ) bution , with ‘ n - 2 degrees of freedom and is a function of and calculate an average measure of each interval of the Puv . Some embodiments define the null hypothesis , ru , v period using the formula below : which assumes that the seasonal indices are not correlated 
55 between the cycles of a period . Some embodiments may 

search for evidence to reject the null hypothesis ( i.e. , ru , v = 0 ) 
by accepting an alternative hypothesis . 

XK = Nk Xt ; 

= 0 , 

60 n - 2 
k = 0 , 1 , . t = " uv 1 – rav K - 1 ; N , is the number of samples in the interval 
k ; and t is the time of the sample number i in the interval k 
Some embodiments can then calculate the average mea 

sure of each cycle of the period . To do so , some embodi Let F ( t ) denote the probability distribution . Given the 
ments may enumerate the cycles of the period from 0 to 65 level of significance of 0.1 , let to.9 , ( 1-2 ) denote the value of 
( P - 1 ) and calculate an average measure of each cycle of the the random variable t such that F ( t ) = 0.9 . The alternative 
period using the formula below : hypothesis is the one - sided condition : 



n - 2 

1 - HomeV > 10.9 , ( n = 2 ) 

5 

15 
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N , is the number of weekdays in the cycle p of the one 
year period ; 

and H ( p , i ) is the index of the ith weekday in the cycle p of 
the one year period . 

Some embodiments define a function G , G : ( MonthxInte 
If this condition is true , the alternative hypothesis is ger ) - > Index , which maps an ordered pair including the 

accepted , which indicates that there is a common seasonal index of the month and an integer that corresponds to the 
cycle between cycles years ‘ u’and ‘ v ’ . If there are common index of a weekday or a weekend within that month . Using 
seasonal cycles between the most recent cycle and the the following formula , some embodiments may calculate the 
preceding cycles , then some embodiments may proceed to 10 average heap usage of each monthly interval of the period 
compute the seasonal factors for each of the seasonal indices from the average heap usage of the weekdays or weekends 
of the cycle . Some embodiments apply the above formula to within that month : 
detect the existence of an annual seasonal cycle of the heap 
usage by the software execution environment , as described 
below . 

F. Detecting Annual Seasonal Cycle for Heap Usage Y Gim ; ) , m = 0 , 1 , ... , Q - 1 ; 
When analyzing multiple years of heap usage statistics of 

a software execution environment , some embodiments may 
detect more than one seasonal trend at different time scales . Mm is the number of weekdays in the month m ; 
For example , such embodiments may detect , a multi - year G ( m , i ) is the index of the ith weekday in the month m ; 
time - series of heap usage statistics , a yearly seasonal trend and p is the index of the cycle of the year period . 
and a daily seasonal trend , which are both superimposed In particular , the above formula produces Y = < Y , 
onto a multi - seasonal trend . Thus , some embodiments may Y , Ypg > , which correspond to 12 monthly averages 
adopt an appropriate time scale to analyze the yearly sea- 25 for each cycle of the year - long period p . The average heap 
sonal trend , where the time scale has a period correspond to usage for a month can be divided by the yearly average heap 
1 year and an interval correspond to 1 month . As such , the usage to obtain a multiplicative factor for the monthly indice 
year - long period may be partitioned into 12 month - long that corresponds to that month . In such embodiments , if the 
intervals . multiplicative factor for a particular month is determined to 

To determine whether the data set exhibits an annual 30 be greater than 1 , then the heap usage in that month is above 
seasonal cycle , some embodiments may first determine average . On the other hand , if the multiplicative factor for a multiplicative factors for the monthly indices in the data set . particular month is determined to be less than 1 , then the In a particular instance , let P denote the number of heap usage in that month is below average . available years ( i.e. , the number of cycles of the one - year After determining the multiplicative factors for the period ) in the data set . Additionally , let Q denote the number 35 monthly indices , some embodiments can apply null hypoth of available months ( i.e. , the number of intervals within the 
number of cycles ) in the data set . Accordingly , Q = 12 * P . Let esis testing to detect whether there are annual seasonal 
K denote the number of available weekdays or weekends in cycles . In this regard , the null hypothesis that is to be tested 
the data set . Let the index k range from 0 to ( K - 1 ) to may correspond to the assumption that the correlation coef 
represent an enumeration of the available weekdays or 40 ficient ru , between the monthly indices of the most recent 
weekends . Let N , denote the number of samples in the kth year ‘ u ' and the monthly indices of a preceding year ‘ ' is 
weekday or weekend . Using the following formula , some zero . In particular , some embodiments may determine the 
embodiments can apply the following formula to calculate correlation coefficient ?u , using the following formulae 
the average heap usage of each weekday or weekend in the below : 
dataset : 

P , 0 
p , l : 

45 

12 

Mean ( Y ) = ?? » 1 
Xk = Xt ; Nk i = 1 50 

Variance ( Yp ) = 3 Pns – Mean ( 7. ) j = 1 

12 

luv 

k = 0 , 1 , ... , K - 1 and N , is the number of samples in the day 
k 
Some embodiments can define a function H , H : ( Yearx ( Yu.j - Mean ( Y ) ( Y ,, j - Mean ( Y ) ) 

Integer ) Index , which maps an ordered pair including the 55 
index of the year and an integer that corresponds to the index 11 V Variacle ( Yu ) Variacle ( Y ) 
of a weekday or weekend within that year . Using the 
following formula , some embodiments may then calculate 
the average heap usage of each year from the average heap Some embodiments may employ various techniques to 
usage of the weekdays or weekends within that year : 60 determine whether the correlation coefficient ruy is large 

enough to indicate , above a level of significance , that there 
is a common seasonal cycle between the years ‘ u ' and ' v ' . 
For example , some embodiments may employ the Student - t 

Zp = XH ( p , i ) , p = 0 , 1 , ... , P - 1 ; test , the permutation test , or the Fisher transformation . 
The following test statistics t has Student's t - distribution , 

with ‘ n - 2 ' degrees of freedom , if the null hypothesis is true 
( i.e. , ry = 0 ) . 

1 

Np i = 1 65 
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n - 2 Vo = { N | Sn = MAX ( Sn , S ) n = 0 , ... , ( P - 1 ) } 1 = ?u , v . 1 -12 , 
Vw + 1 = 

5 

Vw U { I | S ; > T and [ [ J = ( K + 1 ) mod P , K = MAX ( Vw ) ] or [ 1 = Let F ( t ) denote the probability distribution . Given the 
level of significance of 0.1 , let to.9 , ( n - 2 ) denote the value of 
the random variable t such that F ( t ) = 0.9 . The alternative 
hypothesis is the one - sided condition : 

( L - 1 + P ) mod P , L = MIN ( Vw ) ] ] } 

10 

V = Vw 
n - 2 W = 0 ... ( P - 1 ) 

ruv > 10.9 , ( n - 2 ) 1 - re , v 
15 It should be noted that the above recursion involves an 

The condition that accepts the alternative hypothesis unbound variable s that can be used to break a tie . In some indicates that there is a common seasonal cycle between the embodiments , s = 1 by default . years ‘ u ' and ' V ' . 
G. Determining Annual High Heap Usage Season In certain embodiments , the closure V of the seasonal 
If it is determined that there are common seasonal cycles 20 indices classifies an annual high heap usage season . The 

between the most recent year and preceding years , some threshold T can be set to a percentage , such as 85 percent of 
embodiments can compute the seasonal factors for each the range of the seasonal factors . For example , suppose the 
month enumerated by the monthly seasonal index 0 to 11 by seasonal factors for the 12 monthly seasonal indices in one 
employing the following formula : year - long period are as given in the following table . 

January February March April May June July August September October November December 

0.76 0.82 1.0 1.2 1.29 1.34 1.26 1.12 1.01 0.99 0.95 0.9 

30 

S , = = ( x , + Yes + 12 + Ynt : 2.12 + ... + Yn + ( P - 1 ) +12 ) , n = 0 , 1 , ... , 11 

35 

In an alternative embodiment , the monthly indices Y , of 
the most recent year ( i.e. , cycle ) can be used as the monthly 
seasonal indices , as indicated by the following formula : that spans 

The range of the multiplicative seasonal factors is ( 1.34 
0.76 ) , which is 0.58 . Accordingly , 85 percent of the range of 
the seasonal factors is ( 0.76 + 0.85 * 0.58 ) , which is 1.253 . 
Given the 85 percent threshold T , T = 1.25 . As a result , such 
embodiments may classify May , June , and July as the annual 
high heap usage season . 

Some embodiments can select a segment of the dataset 
the most recent cycle of the year - long period . For 

example , among the cycles : 2013 , 2014 , 2015 , and 2016 , 
such embodiments may select the segment of data covering 
2015 to 2016. The selected data segment can span 2 or more 
weeks of heap usage statistics that are inside the annual high 
heap usage season . For example , if the seasonal factors are 
as given in the following table , the data segment can be 
selected from November 2015 , December 2015 , and January 
2016 . 

40 5 , = Ypn = 0,1 , ... , 11 
To classify the annual high heap usage season , some 

embodiments can identify the seasonal index N correspond 
ing to the month that has the largest seasonal factor in the 
year - long period . Such embodiments can then use the index 
N as a seed . Starting from N , such embodiments can scan the 
seasonal indices less than or greater than N ( i.e. , seasonal 

45 

January February March April May June July August September October November December 
1.26 1.12 1.01 0.99 0.95 0.9 0.76 0.82 1.0 1.2 1.29 1.34 

55 

indices 0 , 1,2 ... N - 1 , N + 1 , N + 2 ) that have seasonal factors H. Regression for Filter Constants and Time Zone Offset 
greater than a threshold T. In some embodiments , T is Some embodiments can incorporate an estimate of a time 
greater than 1. Some embodiments may classify more than zone offset . If a time zone offset is not available , some 
one disjoint high heap usage season if there is more than one embodiments can perform a non - linear regression for a 
N such that Sy = MAX ( S . ) . The function MAX ( S. , s ) selects segment of the data set to estimate the time zone offset and 
the sth element of a sequence of indices N , Sy = MAX ( Sn ) . use it for filtering the data . By providing an estimation of the 
The parameter s is used to break the tie in case there is more 60 time zone offset , some embodiments can improve the esti 

mation of the seasonal indices in the transitions between the than one N such that Sy = MAX ( Sn ) . Some embodiments periods . may classify each disjoint high heap usage season and repeat In particular , some embodiments can perform a non - linear the correlation analysis for each season . In some embodi regression with the filter constants ( i.e. , regression param 
ments , a method to classify the set of monthly seasonal 65 eters , which are independent variables ) : measureFilterCon 
indices for a high heap usage season is defined by the stant a , rateFilterConstant B , accelerationFilterConstant k , 
following recursion : seasonalFactorFilterConstant y , errorResidualFilterConstant 
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8 , and timeZoneOffset tz to minimize the mean square error Let H denote a sequence of N seasonal factors for heap 
( MSE ) and / or the mean absolute deviation ( MAD ) of the usage . Let T denote a sequence of N seasonal factors for the 
residual of the 1 - step forecasts . In some embodiments , the thread intensity of a class of threads . The correlation coef 
time stamps may be shifted by the time zone offset tz in the ficient of the two sequences of seasonal factors is given by 
regression . Some embodiments may apply a non - linear 5 CorrelationCoefficient ( H , T ) , as defined below : 
multivariate regression using an optimization routine ( e.g. , 
the optim routine provided by the R programming lan 
guage ) . Some embodiments may derive the weekday and Mean ( H ) H ; weekend seasonal factors using the optimal values of a , ß , 
K , Y , , and tz , as indicated in the following formulae 
employed by such embodiments : Mean ( T ) T ; 

N 

10 ZWI ZWI 
1/2 

15 MSE = f ( a , b , K , 7 , 8 , tz , x? ) ( enin Variance ( H ) ( H ; - Mean ( H ) ) 2 N - 1 
i = 1 n = 1 

N. N 1 
MAD = f ( a , b , K , y , 8 , tz , xt ) = Jenin ! Variance ( T ) ( T ; - Mean ( T ) ) N 

n = 1 

20 

i = 1 

25 

40 

( H ; - Mean ( H ) ) ( T ; - Mean ( T ) ) Some embodiments include the time zone offset as a 
CorrelationCoefficient ( H , T ) = regression parameter so that the transitions between cycles ( N - 1 ) V Variacle ( H ) Variacle ( T ) 

of a period or between two adjacent periods can be as 
accurate as possible . 

I. Ranking Classes of Threads by Degree of Correlation Some embodiments may derive weekday and weekend 
Once the annual high heap usage season has been deter seasonal factors for heap usage by taking a regression of the 

mined , some embodiments may calculate and / or obtain heap usage statistics included in the most recent annual high 
weekday / weekend factors that represent daily / weekly sea heap usage season . Let's denote the time interval of this 
sonal cycles covered by a recent ( e.g. , most recent ) annual 30 segment of the data set by ( t1 , t2 ) . To analyze the correlation 
high heap usage season . It should be noted that the daily / between the seasonal factors for the intensity statistics of a 
weekly seasonal cycles in this segment of the data set ( i.e. , class of threads with the seasonal factors for the heap usage , 

some embodiments can take the seasonal factors from the during an annual high heap usage season ) may be more 
pronounced than at other times ( i.e. , outside the annual high same time interval ( t1 , t2 ) in the seasonal factor time - series 
heap usage season ) . Thus , the determination of degrees of 35 in the SeasonalTrendInfo associated with the class of 
correlation between seasonal trends in heap usage and threads . In particular , the seasonal factor time - series can be 
seasonal trends in the intensity statistics of one or more stored in the smoothed WeekdaySeasonalFactor member 

variable and the smoothed WeekendSeasonalFactor member classes of threads may be based on this segment of the data variable in the associated SeasonalTrendingInfo object . set . Stated another way , for correlation analysis , some Some embodiments can iterate over the ThreadClassifi 
embodiments can derive the seasonal trends of various cationInfo objects of all of the classes of threads and classes of threads using the same time intervals as the time recursively traverse the SegmentInfo objects in each of the 
intervals covered by the most recent annual high heap usage ThreadClassificationInfo object to collect SeasonalTrend 

Info objects contained within the ThreadClassificationInfo 
It should be noted that to determine seasonal trends for the 45 objects and the SegmentInfo objects . In computing a Cor 

intensity statistics of a particular class of threads , some relationCoefficient ( H , T ) between the heap usage and each of 
embodiments may employ techniques that were used for the classes of threads using the formulae identified above , 
determining seasonal trends in heap usage , as described some embodiments can retrieve the weekday factors or the 
above . In other words , seasonal trending of thread intensity weekend factors in each of the SeasonalTrendInfo objects . 
statistics and heap usage statistics may both involve using 50 Once a degree of correlation has been calculated for each 
the same number of seasonal indices for the weekday and class of thread , some embodiments may rank the classes of 
weekend periods ( e.g. , 96 seasonal indices for a weekday the threads by their degrees of correlation with heap usage 
period and 192 seasonal indices for a weekend period ) . seasonal trends . The top ranking classes of threads may then 
Upon determining the seasonal trends for heap usage and be classified as heap - hoarding classes of threads . Some 

the seasonal trends of intensity statistics for one or more 55 embodiments may then analyze stack traces and code asso 
classes of threads , some embodiments may then compute , ciated with the heap - hoarding classes of threads to identify 
for each of the one or more classes of threads , the degree of inefficient memory usage that can be rectified and / or 
correlation between the seasonal trends for heap usage and improved , either manually or automatically . 
the seasonal trends for the intensity statistics of the class of It should be noted that some embodiments can be 
threads . In particular , the degree of correlation may be 60 extended to determine correlation coefficients based on 
computed for the sequences of the 96 seasonal factors or the periods other than weekday and weekend periods ( e.g. , 
192 seasonal factors . It should be noted that computing the end - of - quarter periods ) . 
degree of correlation between seasonal trends may be more FIG . 9 illustrates a flowchart 900 of a process for iden 
efficient than computing a degree of correlation between a tifying code that is likely to be contributing to high heap 
sequence of heap usage measures and a sequence of thread 65 usage within a software execution environment according to 
intensity measures because sequences of measures may be some embodiments . In some embodiments , the process 
much longer . depicted in flowchart 900 may be implemented by a com 

season . 



10 

15 

US 10,534,643 B2 
41 42 

puter system with one or more processors ( e.g. , computer period may have 192 heap usage seasonal factors and 576 
system 1700 of FIG . 17 ) where the one or more processors thread intensity seasonal factors . 
can execute the steps based on computer code stored in a At step 908 , embodiments correlate the heap information 
computer - readable medium . The steps described in FIG . 9 with the thread information to identify one or more lines of 
can be performed in any order and with or without any of the 5 code of the one or more processes that correspond to the 
other steps . heap usage exceeding the threshold . The steps of correlating 

Flow chart 900 begins at step 902 , where embodiments the heap information with the thread information are dis 
determine a length of time when heap usage by one or more cussed in further detail below with respect to FIG . 10 . 
processes exceeds a threshold . The length of time may At step 910 , responsive to identifying the one or more 
correspond to the annual high heap usage season while the lines of code , embodiments initiate one or more actions 
threshold may correspond to a percentage of the range of associated with the one or more lines of code . For example , 
seasonal factors assigned to intervals ( e.g. , 15 minute inter embodiments may generate an alert associated with the one 
vals ) across one or more periods ( e.g. , the weekday period or more lines of code that is sent to relevant personnel or a 
and the weekend period ) . In some embodiments , the thresh code optimization tool . In response , the identified lines of 
old may be set by choosing a percentage . Once the percent code may be investigated and / or optimized . Alternatively , 
age is chosen , the threshold may be given by the sum of the some embodiments may optimize the one or more lines of 
smallest seasonal factor and the product of the range of code to use heap memory in a more efficient fashion . 
seasonal factors and the percentage . For example , if the FIG . 10 illustrates a flowchart 1000 of a process for 
chosen percentage is 85 percent , the smallest seasonal factor 20 calculating of degrees of correlation between various classes 
is 0.76 , and the largest seasonal factor is 1.34 , the threshold of threads and high heap usage according to some embodi 
may be given by ( 0.76 + 0.85 * ( 1.34-0.76 ) ) , which 1.253 . As ments . In some embodiments , the process depicted in flow 
a result , any interval with a multiplicative seasonal factor chart 1000 may be implemented by a computer system with 
that exceeds 1.25 may be determined to be part of the length one or more processors ( e.g. , computer system 1700 of FIG . 
of time when heap usage exceeds the threshold . 25 17 ) where the one or more processors can execute the steps 

At step 904 , embodiments determine heap information of based on computer code stored in a computer - readable 
the one or more processes during the length of time . The medium . The steps described in FIG . 10 can be performed heap information may correspond to the amount of heap in any order and with or without any of the other steps . memory being used by the one or more processes within a 
software execution environment at different points during 30 obtain one or more thread dumps of one or more processes . Flowchart 1000 begins at step 1002 , where embodiments 
the length of time . For example , the heap information may As mentioned above , a control system may periodically be based on heap usage measurements obtained from the cause the software execution environment to take thread software execution environment at irregular intervals ( e.g. , dumps , where each thread dump comprises one or more during full GCs ) . Additionally , the software execution envi ronment may correspond to a production environment that 35 stack traces of threads spawned by one or more processes 
comprises one or more virtual machines ( e.g. , JVMs ) and the executing within the software execution environment . 
one or more processes may support one or more cloud At step 1004 , embodiments obtain one or more classes of 
services . threads by receiving one or more threads from one or more 

At step 906 , embodiments determine thread information thread dumps and classifying each of the received threads 
of the one or more processes during the length of time . In 40 based on a stack trace that corresponds to the received 
some embodiments , the thread information may comprise , thread . Once all of the thread dumps have been received and 
for each of one or more classes of threads determined from processed , embodiments may analyze each of the one or 
analyzed thread dumps , a thread intensity seasonal factor for more classes of threads to determine a degree of correlation 
each of the plurality of intervals . between each of the classes of threads and high heap usage 

In some embodiments , the heap information may include 45 in steps 1006-1016 . 
a heap usage seasonal factor for each of the plurality of At decision 1006 , embodiments determine whether there 
intervals . In particular , the length of time may span one or is another class of threads of the one or more classes of 
more cycles of a first period having a first length ( e.g. , the threads to determine a degree of correlation with high heap 
weekday period ) and one or more cycles of a second period usage . If so , embodiments may proceed to step 1008 . 
having a second length ( e.g. , the weekend period ) . Each 50 Otherwise , embodiments may proceed to step 1018 . 
period may be split into a plurality of intervals . For example , At optional step 1008 , embodiments calculate a mean of 
the weekday period may be split into 96 15 minute intervals the heap usage seasonal factors of the plurality of intervals . 
while the weekend period may be split into 192 15 minute At step 1010 , embodiments calculate a mean of the thread 
intervals . intensity seasonal factors of the class of threads and of the 

It should be noted that each of the plurality of intervals 55 plurality of intervals . At optional step 1012 , embodiments 
may be mapped to a particular season ( i.e. , seasonal indice ) calculate a variance of the heap usage seasonal factors of the 
of one of the periods . For each seasonal indice , some plurality of intervals . At step 1014 , embodiments calculate a 
embodiments may determine a heap usage seasonal factor variance of the thread intensity seasonal factors of the class 
and , for each class of thread that is determined , a thread of threads and of the plurality of intervals . At step 1016 , 
intensity seasonal factor , which may result in each interval 60 embodiments calculate the degree of correlation between the 
being associated with a heap usage seasonal factor and a class of threads and the heap usage exceeding the threshold . 
plurality of thread intensity seasonal factors ( one for each At step 1018 , embodiments select , from the one or more 
class of threads ) . For example , assuming three different classes of threads , a given class of threads that has a highest 
classes of threads are discovered , the weekday period may degree of correlation to the heap usage exceeding the 
have 96 heap usage seasonal factors and 288 thread intensity 65 threshold . In particular , once a degree of correlation has 
seasonal factors ( 96 thread intensity seasonal factors for been calculated for each class of thread , some embodiments 
each of the three classes of threads ) while the weekend may rank the classes of the threads by their degrees of 
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correlation with heap usage seasonal trends . The top ranking proportional to the variance of the sample . Employing the 
class of threads may then be selected as the given class of WLS estimator may depend on the weights being deter 
threads . mined by prior knowledge of the data . For example , the prior 

At step 1020 , embodiments identify , based on the given knowledge may specify ( 1 ) the accuracy of the different 
class of threads , one or more lines of code that are likely to 5 instruments used to measure different sample points , ( 2 ) the 
be contributing significantly to high heap usage . In particu variance among the redundant measurements corresponding lar , some embodiments may then analyze file names and to the same time instant , or ( 3 ) the variance among the lines specified by stack traces to locate lines of code asso nearest neighbor group of measurements . If the weights ciated with the heap - hoarding classes of threads . It should be cannot be determined by prior knowledge , the WLS estima noted that each thread of the one or more processes that 10 tor may run one iteration of the ordinary least - squares belongs to the given class of threads executes the one or regression to estimate the residuals and use the inverse of the more lines of code . 
VI . Overcoming Weak - Exogeneity and Heteroscedasticity residuals as the weights to iteratively rerun the regression to 
in Forecasting produce a stable estimate of the linear model . In comparison 
As mentioned above , to ensure sample accuracy , heap 15 with certain embodiments described below , however , the 

allocation measurements may be taken during full garbage time - complexity of the WLS algorithm is relatively high . 
collection ( GC ) cycles that occur at irregular time intervals . In the patent application Ser . No. 14 / 109,546 , which is 
In situations where heap usage is especially high , sampling incorporated by reference herein for all purposes , a set of 
intervals may become arbitrarily close to zero due to con equations to filter the rate of change ren of the measure is 
stant garbage collecting . As a result , time - series data based 20 disclosed . This filter monitors the trend of the measure : 
on the heap allocation measurements may exhibit weak 
exogeneity , where the process of generating the residual is 
somewhat dependent on the process of generating the time Xa -n - 1 intervals of full GC samples , and heteroscedasticity , where In - In - 1 the variance of the residual is not constant over time . 

Conventionally , generating an ordinary least - squares 
regression of a linear trend assumes that the predictor 
variable and the response variable are generated by a process 
that is both exogenous and homoscedastic . However , with 
regards to a data set based on measurements taken during 30 Rin = Vin'in + ( 1 – Vin ) Gin 
full GCs , the predictor variable ( i.e. , the irregular time 
intervals ) and the response variable ( i.e. , the heap usage Since the rate of change measurements taken during a full GC ) are not independent 
because the frequency at which full GCs are taken may 
increase when heap usage increases . Some embodiments 35 Xa -X - 1 may use robust and resistant regression methods to over in - th - 1 come the weak - exogeneity and heteroscedasticity of the data 
set . 

Certain embodiments may utilize robust least - squares involves a division by the length of time interval ( th - t'n - 1 ) , regression to overcome the weak - exogeneity and heterosce- 40 some embodiments may adjust the filter parameter to give a dasticity exhibited in such data sets . In particular , some relatively small weight to a sample when the length of time embodiments may ( 1 ) decompose a time - series of measure 
ments into a de - seasonalized measure component ( i.e. , a interval t - tm - 1 is relatively short . 
de - seasonalized component ) and a seasonal factor compo The filter parameter v is adjusted by the adjustment 
nent ( i.e. , a seasonal effector ) , ( 2 ) apply a robust linear 45 factors on in the following equations : 
regression to the de - seasonalized measure component , ( 3 ) 
apply a smooth - spline filter to the seasonal factor compo 
nent , and ( 4 ) reconstitute the linear regression line and the 
smoothed seasonal factors into a seasonal and linear trend Vin - 1 + on - l bin 
model . bn = ( 1 - Blin - in - 1 ) The least - trimmed squares ( LTS ) estimator is a robust 
regression technique that is resistant to the influence of in - 1 – in - 2 

In -tn - 1 outliers . Given a set of N samples , the LTS estimator 
minimizes the sum of the smallest 50 % of squared residuals 
by trimming out 50 % of samples corresponding to the 55 
largest squared residuals as outliers . The LTS estimator runs The rate filter parameter is used to filter the smoothed rate 
one iteration of ordinary least - square regression of all N of change as follows . If seasonal trending is not employed , 
samples to sort the residuals to select the smallest N / 2 some embodiments may use the value ry to update the 
residuals ( i.e. , trimmed samples ) . The LTS estimator then average , as shown in the formula below : 
iteratively reruns the regressions by updating the trimmed 60 
samples to reduce the mean of the squared residuals . In R , V , + 1 - v . ) 
comparison with certain embodiments described below , 
however , the time - complexity of the LTS algorithm may be On the other hand , if seasonal trending is employed , some 
relatively high . embodiments may use one of the following formulae 

The generalized weighted least - squares ( WLS ) estimator 65 depending on whether the times fall in a weekend or on a 
is a robust regression technique that multiplies the squared weekday period , where Bç , and Cz , are the seasonal factors of 
error residual of each sample by a weight that is inversely weekend and weekday periods , respectively . 

n - 1 

Vin - 1 Van = 

50 
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equations are disclosed in the patent application Ser . No. 
14 / 109,546 , which is incorporated by reference herein for all 

In - 1 and in fall in the weekend season purposes . 
xn - 1 

Bin Tn - 1 

Xin - 1 , In - 1 and in fall in the weekday season 5 

Can axin ??? - 1 
* n - 1 

n - + M. = 

In - 1 falls on the weekday and 
In falls in a weekend ( Xinh in 

X in - 1 ( in - In - 1 ) 

+ M ( in – In - 1 ) ] Ctn - L 
Xin - 1 + Rin - 1 ( in – In - 1 ) 

in - 1 Bin Cint 
Xin - 1 

1 In - 1 falls in a weekend and 
10 Cn BT Tn - 1 In falls on a weekday 

Some embodiments may generate the error residual of the 
forecasted measure using the following formula : 

Next , some embodimer the deseasonal 
ized raw growth rate using the following formula : 

may dete 
eta ta 

15 
E " = Ver + ( 1-4 . ) . 

in In 

Axin DW , le , 1+ ( 1-W.DE 
In -tn - 1 Because there is a correlation between the smoothed 

20 absolute error residual D , generated by the filter and the 
Some embodiments may then update the moving average variance of the residual of the least - squares regression , some 

using the formula : embodiments may use the inverse of the smoothed absolute 
error residual 1 / DOM as the weight for the generalized 
weighted least - squares regression . In doing so , some 

25 embodiments may alleviate the heteroscedasticity condition In particular , a rate filter parameter Vz , generated by the by giving a relatively small weight to a sample value that has above equations represents a weight that is based on the a relatively large deviation from the expected value . The length of the time interval that occurred in between the expected value can represent a convolution of the near particular sample and another sample immediately previous neighbor group of samples . 
to the particular sample . There is a one - to - one correspon- 30 The following example code ( written in the R program 
dence between the rate filter parameter and the measurement ming language ) shows how a trimmed subset of the samples 
data in the time series . FIG . 11 depicts a graph that plots the and the weights of the samples can be computed . As shown 
filter parameter V , against the sampling time interval across in the example code belov some embodiments may use the 
the whole time range for an example data set . While the time R function “ rim ” , which enables certain embodiments to 
range is divided into 6 overlapping sub - ranges , the graph in 35 specify the trimmed subset of the samples and the weights 
each sub - range shows that there is a linear relation between of the samples for generating a weighted least - squares 
the sample time interval and the filter parameter . As can be regression . It should be noted that the rateFilterParameter , 
seen in the graph , the filter parameter ( i.e. , the weight for the seasonalFactor , absoluteErrorResidual , measure , and time 
sample ) is small when the sample time interval is small . This vectors in the example code are time - series with the same 
adjustment dynamically reduces the weight of the samples in 40 time range . 
the filter depending on the density of the sample points 
around the current sample point . trimmingParameter < - c ( rateFilterParameter , which ( normSeasonalFactor Some embodiments use the rate filter parameter to trim 1.0 ) ) 
the data points . Trimming the data points can help to even threshold1 < - median ( trimmingParameter , na.rm = · TRUE ) 

threshold2 < - median ( rate FilterParameter , na.rm = out the density of the sample points across the whole time TRUE ) 
threshold3 < - mean ( rateFilterParameter , na.rm = - TRUE ) range and thus improve the robustness of the linear regres trimmingThreshold < - max ( threshold1 , threshold2 , threshold3 ) 

sion algorithm . With regards to the data points that represent lengthOfTimmingParameter < - length ( trimmingParameter ) 
the measurements of heap usage in a software execution # can set up a list of graduated thresholds to give less weight to older data listOfTrimmingThresholds < - c ( trimmingThreshold * 1.1 , environment during full GC cycles , data points that are close 50 trimmingThreshold * 1.05 , together may correspond to a period of higher heap usage trimmingThreshold , 
( e.g. , during load spikes ) where full GCs are performed trimmingThreshold * 0.95 , trimmingThreshold * 0.9 ) 
more often . numberOfTrimmingThresholds < - length ( listOfTrimmingThresholds ) 

# select the exclusion set of the data points which are time close together 
Some embodiments compare a rate filter parameter # may use graduated thresholds to give less weight to older data for what 

against a threshold and exclude ( i.e. , trim ) the corresponding 55 # known as discounted least - squares regression data point from the robust linear regression if the rate filter prevSplitPoint < -0 parameter is smaller than the threshold . Some embodiments for ( num in 1 : numberOfTrimmingThresholds ) { 
can use the median or mean of the rate filter parameters as splitPoint < - trunc ( lengthOfTimmingParameter 
a threshold . In particular , some embodiments can trim the numberOfTrimming Thresholds ) 

excludeIndices < - c ( excludeIndices , data points that are close together as such data points may 60 which ( rateFilterParameter [ ( prevSplitPoint + 1 ) : splitPoint ] < represent the load surges or outliers . As a result , some listOfTrimmingThresholds [ num ] ) + prevSplitPoint ) 
embodiments may alleviate the weak - exogeneity condition prevSplitPoint < splitPoint 
by evening out the density of the data points along the time 
axis , which reduces the correlation between the irregular include Indices < - 1 : length ( rateFilterParameter ) 

includeIndices < - includeIndices [ -excludeIndices ] time - intervals and the residuals . # use the inverse absolute error residual for weights 
The time series D , for the forecast error residual and F , minErrorResidual < - min ( absoluteErrorResidual ) 

for the forecasted measure generated by the following 
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-continued flowchart 1400 may be implemented by a computer system 
with one or more processors ( e.g. , computer system 1700 of 

if ( minErrorResidual 0 ) { FIG . 17 ) where the one or more processors can execute the 
absoluteErrorResidual [ absolute ErrorResidual 0 ] steps based on computer code stored in a computer - readable minErrorResidual < - 1.0 5 medium . The steps described in FIG . 14 can be performed 

weights < - ( minErrorResidual / absolute ErrorResidual ) in any order and with or without any of the other steps . 
# use regression methods robust to heteroscedasticity and weak - exogeneity Flowchart 1400 begins at step 1402 , where embodiments 
# use trimmed indices “ includeIndices ” to compensate for the receive a signal comprising a plurality of measures sampled weak - exogeneity 
# use weights to compensate for the heteroscedasticity over a span of time from an environment in which one or 
# in generalized weighted least - squares 10 more processes are being executed . In some embodiments , 
linear < - tryCatch ( rlm ( measure ~ time , weights = weights , the plurality of measures may be heap usage measurements 

method = “ M ” , subset = includeIndices ) , taken by a control system that is monitoring heap usage function ( e ) return ( null ) ) within a software execution environment ( e.g. , a production 
environment ) , where the software execution environment 

The rate filter parameter is given as a time - series of values 15 includes one or more executing processes . 
denoted by vt , for each timestamp to corresponding to the At step 1404 , embodiments extract a seasonal effector and 
timestamp of the data point . If v , < z , where z is a threshold , a de - seasonalized component from the signal 1404. In some 
then the corresponding data point x , is excluded from the embodiments , the seasonal effector may correspond to the 
linear regression . Generally , some embodiments can use any seasonal factors determined for each interval of the period 
value at the N - percentile ( e.g. , the median , which is the 20 assigned to the data set . In some embodiments , the de 
50 - percentile ) of the rate filter parameters as the threshold z . seasonalized component may be obtained by applying the 

In some embodiments , the absolute error residual is given seasonal factors to the signal . 
as a time - series D. , for each timestamp t , corresponding to At step 1406 , embodiments apply one or more spline 
the timestamp of the data point . The weight W , of the functions to the seasonal effector to generate a first model . 
sample at timestamp t , can be inversely proportional to De 25 In this regard , some embodiments may give relatively small 
Some embodiments can compensate for the variance weights to sample values that deviate drastically from the 
changes among the data points that represent the short - term expected value , where the expected value represents a 
load surges or outliers . convolution of the near - neighbor group of samples . 

To decrease the influence of outliers and short - term surges At step 1408 , embodiments apply a linear regression 
in heap usage on the linear regression , some embodiments 30 technique to the de - seasonalized component to generate a 
may combine the technique of evening out the density of second model . In particular , to compensate for relatively 
data points with the technique of assign smaller weights to short time intervals experienced during high heap usage , 
deviating samples values . In doing so , some embodiments some embodiments may adjust a filter parameter to give a 
may increase the robustness of the linear regression , which relatively small weight to a sample taken during a short 
may facilitate the capturing of long - term trends ( e.g. , in heap 35 interval . Some embodiments may use a rate filter parameter 
usage ) . It should be noted that using the two techniques to trim the data points included in the data set . Trimming the 
together may provide a better fit of the linear regression line data points can help to even out the density of the sample 
to the data and may be more efficient than using conven points across the whole time range and thus improve the 
tional an LTS estimator or an WLS estimator , which gen robustness of the linear regression algorithm . 
erally involves several iterations of regression . At step 1410 , embodiments generate a forecast of the 

To further improve the robustness of the regression , some signal based on the first model and the second model . In 
embodiments may additionally identify the transient states some embodiments , the forecast of the signal may corre 
and remove the sample points that fall in the transient states spond to a regression line that is generated using the 
and remove run - to - run segments that are outliers ( e.g. , data techniques described in steps 1406 and 1408. In particular , 
segments that correspond to the software execution envi- 45 the generated forecast may have a better fit to the signal . 
ronment experiencing a memory leak , an out of memory At step 1412 , embodiments initiate , based at least in part 
event , or a very high growth rate ) on the forecast , one or more actions associated with the 

FIG . 12 displays three trend graphs each derived by a environment . For example , if the forecast indicates that heap 
different linear regression technique for the heap usage in a usage will increase in the future , some embodiments may 
production environment . The blue color trend line 1205 can 50 allocate additional resources ( e.g. , memory , RAM ) to the 
be derived by standard linear regression algorithm that software execution environment . 
assigns equal weights to each sample point . The brown color FIG . 15 depicts a simplified diagram of a distributed 
trend line 1210 can be derived by a conventional robust system 1500 for implementing an embodiment . In the illus 
regression algorithm . The red color line 1215 represents a trated embodiment , distributed system 1500 includes one or 
regression provided by a present embodiment described 55 more client computing devices 1502 , 1504 , 1506 , and 1508 , 
above , which lies close to the brown color trend line . which are configured to execute and operate a client appli 

FIG . 13 displays an additional graph that illustrate how a cation such as a web browser , proprietary client ( e.g. , Oracle 
conventional regression technique may provide incorrect Forms ) , or the like over one or more network ( s ) 1510. Server 
results . As shown in the graph , the brown color trend line 1512 may be communicatively coupled with remote client 
1305 , which represents a conventional regression technique , 60 computing devices 1502 , 1504 , 1506 , and 1508 via network 
fits closely to the two clusters of high density sample points . 1510 . 
In contrast , the red color line 1215 correctly traces the trend In various embodiments , server 1512 may be adapted to 
in the sample points to provide a long term projection of the run one or more services or software applications . In certain 
heap usage in the software execution environment . embodiments , server 1512 may also provide other services 

FIG . 14 illustrates a flowchart 1400 of a process for 65 or software applications can include non - virtual and virtual 
generating of a forecast of a signal according to some environments . In some embodiments , these services may be 
embodiments . In some embodiments , the process depicted in offered as web - based or cloud services or under a Software 
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as a Service ( SaaS ) model to the users of client computing etooth® , and / or any other wireless protocol ) , and / or any 
devices 1502 , 1504 , 1506 , and / or 1508. Users operating combination of these and / or other networks . 
client computing devices 1502 , 1504 , 1506 , and / or 1508 Server 1512 may be composed of one or more general 
may in turn utilize one or more client applications to interact purpose computers , specialized server computers ( including , 
with server 1512 to utilize the services provided by these 5 by way of example , PC ( personal computer ) servers , 
components . UNIX servers , mid - range servers , mainframe computers , 

In the configuration depicted in FIG . 15 , software com rack - mounted servers , etc. ) , server farms , server clusters , or 
ponents 1518 , 1520 and 1522 of system 1500 are shown as any other appropriate arrangement and / or combination . 
being implemented on server 1512. In other embodiments , Server 1512 can include one or more virtual machines 
one or more of the components of system 1500 and / or the 10 running virtual operating systems , or other computing archi 
services provided by these components may also be imple tectures involving virtualization . One or more flexible pools 
mented by one or more of the client computing devices of logical storage devices can be virtualized to maintain 
1502 , 1504 , 1506 , and / or 1508. Users operating the client virtual storage devices for the server . Virtual networks can 
computing devices may then utilize one or more client be controlled by server 1512 using software defined net 
applications to use the services provided by these compo- 15 working . In various embodiments , server 1512 may be 
nents . These components may be implemented in hardware , adapted to run one or more services or software applications 
firmware , software , or combinations thereof . It should be described in the foregoing disclosure . For example , server 
appreciated that various different system configurations are 1512 may correspond to a server for performing processing 
possible , which may be different from distributed system as described above according to an embodiment of the 
1500. The embodiment shown in FIG . 15 is thus one 20 present disclosure . 
example of a distributed system for implementing an Server 1512 may run an operating system including any 
embodiment system and is not intended to be limiting . of those discussed above , as well as any commercially 

Client computing devices 1502 , 1504 , 1506 , and / or 1508 available server operating system . Server 1512 may also run 
may include various types of computing systems . For any of a variety of additional server applications and / or 
example , a client computing device may include portable 25 mid - tier applications , including HTTP ( hypertext transport 
handheld devices ( e.g. , an iPhone® , cellular telephone , an protocol ) servers , FTP ( file transfer protocol ) servers , CGI 
iPad® , computing tablet , a personal digital assistant ( PDA ) ) ( common gateway interface ) servers , JAVA® servers , data 
or wearable devices ( e.g. , a Google Glass® head mounted base servers , and the like . Exemplary database servers 
display ) , running software such as Microsoft Windows include without limitation those commercially available 
Mobile® , and / or a variety of mobile operating systems such 30 from Oracle , Microsoft , Sybase , IBM ( International Busi 
as iOS , Windows Phone , Android , BlackBerry 10 , Palm OS , ness Machines ) , and the like . 
and the like . The devices may support various applications In some implementations , server 1512 may include one or 
such as various Internet - related apps , e - r short message more applications to analyze and consolidate data feeds 
service ( SMS ) applications , and may use various other and / or event updates received from users of client comput 
communication protocols . The client computing devices 35 ing devices 1502 , 1504 , 1506 , and 1508. As an example , 
may also include general purpose personal computers data feeds and / or event updates may include , but are not 
including , by way of example , personal computers and / or limited to , Twitter® feeds , Facebook® updates or real - time 
laptop computers running various versions of Microsoft updates received from one or more third party information 
Windows® , Apple Macintosh® , and / or Linux operating sources and continuous data streams , which may include 
systems . The client computing devices can be workstation 40 real - time events related to sensor data applications , financial 
computers running any of a variety of commercially - avail tickers , network performance measuring tools ( e.g. , network 
able UNIX® or UNIX - like operating systems , including monitoring and traffic management applications ) , click 
without limitation the variety of GNU / Linux operating sys stream analysis tools , automobile traffic monitoring , and the 
tems , such as for example , Google Chrome OS . Client like . Server 1512 may also include one or more applications 
computing devices may also include electronic devices such 45 to display the data feeds and / or real - time events via one or 
as a thin - client computer , an Internet - enabled gaming sys more display devices of client computing devices 1502 , 
tem ( e.g. , a Microsoft Xbox gaming console with or without 1504 , 1506 , and 1508 . 
a Kinect® gesture input device ) , and / or a personal messag Distributed system 1500 may also include one or more 
ing device , capable of communicating over network ( s ) 1510 . databases 1514 and 1516. These databases may provide a 

Although distributed system 1500 in FIG . 15 is shown 50 mechanism for storing information such as user interactions 
with four client computing devices , any number of client information , usage patterns information , adaptation rules 
computing devices may be supported . Other devices , such as information , and other information used by embodiments of 
devices with sensors , etc. , may interact with server 1512 . the present disclosure . Databases 1514 and 1516 may reside 

Network ( s ) 1510 in distributed system 1500 may be any in a variety of locations . By way of example , one or more of 
type of network familiar to those skilled in the art that can 55 databases 1514 and 1516 may reside on a non - transitory 
support data communications using any of a variety of storage medium local to ( and / or resident in ) server 1512 . 
available protocols , including without limitation TCP / IP Alternatively , databases 1514 and 1516 may be remote from 
( transmission control protocol / Internet protocol ) , SNA ( sys server 1512 and in communication with server 1512 via a 
tems network architecture ) , IPX ( Internet packet exchange ) , network - based or dedicated connection . In one set of 
AppleTalk , and the like . Merely by way of example , network 60 embodiments , databases 1514 and 1516 may reside in a 
( s ) 1510 can be a local area network ( LAN ) , networks based storage - area network ( SAN ) . Similarly , any necessary files 
on Ethernet , Token - Ring , a wide - area network , the Internet , for performing the functions attributed to server 1512 may 
a virtual network , a virtual private network ( VPN ) , an be stored locally on server 1512 and / or remotely , as appro 
intranet , an extranet , a public switched telephone network priate . In one set of embodiments , databases 1514 and 1516 
( PSTN ) , an infra - red network , a wireless network ( e.g. , a 65 may include relational databases , such as databases provided 
network operating under any of the Institute of Electrical by Oracle that are adapted to store , update , and retrieve data 
and Electronics ( IEEE ) 802.11 suite of protocols , Blu in response to SQL - formatted commands . 
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In some embodiments , a cloud environment may provide software application , or other service provided by a cloud 
one or more services . FIG . 16 is a simplified block diagram vendor to a user , or as otherwise known in the art . For 
of one or more components of a system environment 1600 example , a service can include password - protected access to 
in which services may be offered as cloud services , in remote storage on the cloud through the Internet . As another 
accordance with an embodiment of the present disclosure . In 5 example , a service can include a web service - based hosted 
the illustrated embodiment in FIG . 16 , system environment relational database and a script - language middleware engine 
1600 includes one or more client computing devices 1604 , for private use by a networked developer . As another 
1606 , and 1608 that may be used by users to interact with a example , a service can include access to an email software 
cloud infrastructure system 1602 that provides cloud ser application hosted on a cloud vendor's web site . 
vices . Cloud infrastructure system 1602 may comprise one 10 In certain embodiments , cloud infrastructure system 1602 
or more computers and / or servers that may include those may include a suite of applications , middleware , and data 
described above for server 1612 . base service offerings that are delivered to a customer in a 

It should be appreciated that cloud infrastructure system self - service , subscription - based , elastically scalable , reli 
1602 depicted in FIG . 16 may have other components than able , highly available , and secure manner . An example of 
those depicted . Further , the embodiment shown in FIG . 16 15 such a cloud infrastructure system is the Oracle Public 
is only one example of a cloud infrastructure system that Cloud provided by the present assignee . 
may incorporate an embodiment of the present disclosure . In Cloud infrastructure system 1602 may also provide “ big 
some other embodiments , cloud infrastructure system 1602 data ” elated computation and analysis services . The term 
may have more or fewer components than shown in the “ big data ” is generally used to refer to extremely large data 
figure , may combine two or more components , or may have 20 sets that can be stored and manipulated by analysts and 
a different configuration or arrangement of components . researchers to visualize large amounts of data , detect trends , 

Client computing devices 1604 , 1606 , and 1608 may be and / or otherwise interact with the data . This big data and 
devices similar to those described above . Client computing related applications can be hosted and / or manipulated by an 
devices 1604 , 1606 , and 1608 may be configured to operate infrastructure system on many levels and at different scales . 
a client application such as a web browser , a proprietary 25 Tens , hundreds , or thousands of processors linked in parallel 
client application ( e.g. , Oracle Forms ) , or some other appli can act upon such data in order to present it or simulate 
cation , which may be used by a user of the client computing external forces on the data or what it represents . These data 
device to interact with cloud infrastructure system 1602 to sets can involve structured data , such as that organized in a 
use services provided by cloud infrastructure system 1602 . database or otherwise acc ccording to a structured model , 
Although exemplary system environment 1600 is shown 30 and / or unstructured data ( e.g. , emails , images , data blobs 
with three client computing devices , any number of client ( binary large objects ) , web pages , complex event process 
computing devices may be supported . Other devices such as ing ) . By leveraging an ability of an embodiment to relatively 
devices with sensors , etc. may interact with cloud infrastruc quickly focus more ( or fewer ) computing resources upon an 
ture system 1602 . objective , the cloud infrastructure system may be better 
Network ( s ) 1610 may facilitate communications and 35 available to carry out tasks on large data sets based on 

exchange of data between client computing devices 1604 , demand from a business , government agency , research orga 
1606 , and 1608 and cloud infrastructure system 1602. Each nization , private individual , group of like - minded individu 
network may be any type of network familiar to those skilled als or organizations , or other entity . 
in the art that can support data communications using any of In various embodiments , cloud infrastructure system 1602 
a variety of commercially - available protocols , including 40 may be adapted to automatically provision , manage and 
those described above for network ( s ) 1610 . track a customer's subscription to services offered by cloud 

In certain embodiments , services provided by cloud infra infrastructure system 1602. Cloud infrastructure system 
structure system 1602 may include a host of services that are 1602 may provide the cloud services via different deploy 
made available to users of the cloud infrastructure system on ment models . For example , services may be provided under 
demand . Various other services may also be offered includ- 45 a public cloud model in which cloud infrastructure system 
ing without limitation online data storage and backup solu 1602 is owned by an organization selling cloud services 
tions , Web - based e - mail services , hosted office suites and ( e.g. , owned by Oracle Corporation ) and the services are 
document collaboration services , database processing , man made available to the general public or different industry 
aged technical support services , and the like . Services pro enterprises . As another example , services may be provided 
vided by the cloud infrastructure system can dynamically 50 under a private cloud model in which cloud infrastructure 
scale to meet the needs of its users . system 1602 is operated solely for a single organization and 

In certain embodiments , a specific instantiation of a may provide services for one or more entities within the 
service provided by cloud infrastructure system 1602 may organization . The cloud services may also be provided under 
be referred to herein as a “ service instance . ” In general , any a community cloud model in which cloud infrastructure 
service made available to a user via a communication 55 system 1602 and the services provided by cloud infrastruc 
network , such as the Internet , from a cloud service provid ture system 1602 are shared by several organizations in a 
er's system is referred to as a “ cloud service . ” Typically , in related community . The cloud services may also be provided 
a public cloud environment , servers and systems that make under a hybrid cloud model , which is a combination of two 
up the cloud service provider's system are different from the or more different models . 
customer's own on - premises servers and systems . For 60 In some embodiments , the services provided by cloud 
example , a cloud service provider's system may host an infrastructure system 1602 may include one or more services 
application , and a user may , via a communication network provided under Software as a Service ( SaaS ) category , 
such as the Internet , on demand , order and use the applica Platform as a Service ( PaaS ) category , Infrastructure as a 
tion . Service ( IaaS ) category , or other categories of services 

In some examples , a service in a computer network cloud 65 including hybrid services . A customer , via a subscription 
infrastructure may include protected computer network order , may order one or more services provided by cloud 
access to storage , a hosted database , a hosted web server , a infrastructure system 1602. Cloud infrastructure system 
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1602 then performs processing to provide the services in the and optimized combinations of hardware , such as servers , 
customer's subscription order . storage , and networking resources to execute the services 

In some embodiments , the services provided by cloud provided by the PaaS platform and the SaaS platform , and 
infrastructure system 1602 may include , without limitation , other resources . 
application services , platform services and infrastructure 5 In some embodiments , resources in cloud infrastructure 
services . In some examples , application services may be system 1602 may be shared by multiple users and dynami 
provided by the cloud infrastructure system via a SaaS cally re - allocated per demand . Additionally , resources may platform . The SaaS platform may be configured to provide be allocated to users in different time zones . For example , cloud services that fall under the SaaS category . For cloud infrastructure system 1602 may enable a first set of example , the SaaS platform may provide capabilities to 10 users in a first time zone to utilize resources of the cloud build and deliver a suite of on - demand applications on an 
integrated development and deployment platform . The SaaS infrastructure system for a specified number of hours and 

then enable the re - allocation of the same resources to platform may manage and control the underlying software 
and infrastructure for providing the SaaS services . By uti another set of users located in a different time zone , thereby 
lizing the services provided by the SaaS platform , customers 15 maximizing the utilization of resources . 
can utilize applications executing on the cloud infrastructure In certain embodiments , a number of internal shared 
system . Customers can acquire the application services services 1632 may be provided that are shared by different 
without the need for customers to purchase separate licenses components or modules of cloud infrastructure system 1602 
and support . Various different SaaS services may be pro to enable provision of services by cloud infrastructure 
vided . Examples include , without limitation , services that 20 system 1602. These internal shared services may include , 
provide solutions for sales performance management , enter without limitation , a security and identity service , an inte 
prise integration , and business flexibility for large organi gration service , an enterprise repository service , an enter 
zations . prise manager service , a virus scanning and white list 

In some embodiments , platform services may be provided service , a high availability , backup and recovery service , 
by cloud infrastructure system 1602 via a PaaS platform . 25 service for enabling cloud support , an email service , a 
The PaaS platform may be configured to provide cloud notification service , a file transfer service , and the like . 
services that fall under the PaaS category . Examples of In certain embodiments , cloud infrastructure system 1602 
platform services may include without limitation services may provide comprehensive management of cloud services 
that enable organizations ( such as Oracle ) to consolidate ( e.g. , SaaS , PaaS , and IaaS services ) in the cloud infrastruc 
existing applications on a shared , common architecture , as 30 ture system . In one embodiment , cloud management func 
well as the ability to build new applications that leverage the tionality may include capabilities for provisioning , manag 
shared services provided by the platform . The PaaS platform ing and tracking a customer's subscription received by cloud 
may manage and control the underlying software and infra infrastructure system 02 , and the like . 
structure for providing the PaaS services . Customers can In one embodiment , as depicted in FIG . 16 , cloud man 
acquire the PaaS services provided by cloud infrastructure 35 agement functionality may be provided by one or more 
system 1602 without the need for customers to purchase modules , such as an order management module 1620 , an 
separate licenses and support . Examples of platform services order orchestration module 1622 , an order provisioning 
include , without limitation , Oracle Java Cloud Service module 1624 , an order management and monitoring module 
( ICS ) , Oracle Database Cloud Service ( DBCS ) , and others . 1626 , and an identity management module 1628. These 
By utilizing the services provided by the PaaS platform , 40 modules may include or be provided using one or more 

customers can employ programming languages and tools computers and / or servers , which may be general purpose 
supported by the cloud infrastructure system and also con computers , specialized server computers , server farms , 
trol the deployed services . In some embodiments , platform server clusters , or any other appropriate arrangement and / or 
services provided by the cloud infrastructure system may combination . 
include database cloud services , middleware cloud services 45 In an exemplary operation , at step 1634 , a customer using 
( e.g. , Oracle Fusion Middleware services ) , and Java cloud a client device , such as client computing devices 1604 , 1606 
services . In one embodiment , database cloud services may or 1608 , may interact with cloud infrastructure system 1602 
support shared service deployment models that enable orga by requesting one or more services provided by cloud 
nizations to pool database resources and offer customers a infrastructure system 1602 and placing an order for a 
Database as a Service in the form of a database cloud . 50 subscription for one or more services offered by cloud 
Middleware cloud services may provide a platform for infrastructure system 1602. In certain embodiments , the 
customers to develop and deploy various business applica customer may access a cloud User Interface ( UI ) such as 
tions , and Java cloud services may provide a platform for cloud UI 1612 , cloud UI 1614 and / or cloud UI 1616 and 
customers to deploy Java applications , in the cloud infra place a subscription order via these Uls . The order infor 
structure system . 55 mation received by cloud infrastructure system 1602 in 

Various different infrastructure services may be provided response to the customer placing an order may include 
by an IaaS platform in the cloud infrastructure system . The information identifying the customer and one or more ser 
infrastructure services facilitate the management and control vices offered by the cloud infrastructure system 1602 that the 
of the underlying computing resources , such as storage , customer intends to subscribe to . 
networks , and other fundamental computing resources for 60 At step 1636 , the order information received from the 
customers utilizing services provided by the SaaS platform customer may be stored in an order database 1618. If this is 
and the PaaS platform . a new order , a new record may be created for the order . In 

In certain embodiments , cloud infrastructure system 1602 one embodiment , order database 1618 can be one of several 
may also include infrastructure resources 1630 for providing databases operated by cloud infrastructure system 1618 and 
the resources used to provide various services to customers 65 operated in conjunction with other system elements . 
of the cloud infrastructure system . In one embodiment , At step 1638 , the order information may be forwarded to 
infrastructure resources 1630 may include pre - integrated an order management module 1620 that may be configured 
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to perform billing and accounting functions related to the of peripheral subsystems via a bus subsystem 1702. These 
order , such as verifying the order , and upon verification , peripheral subsystems may include a processing accelera 
booking the order . tion unit 1706 , an I / O subsystem 1708 , a storage subsystem 

At step 1640 , information regarding the order may be 1718 and a communications subsystem 1724. Storage sub 
communicated to an order orchestration module 1622 that is 5 system 1718 may include tangible computer - readable stor 
configured to orchestrate the provisioning of services and age media 1722 and a system memory 1710 . 
resources for the order placed by the customer . In some Bus subsystem 1702 provides a mechanism for letting the 
instances , order orchestration module 1622 may use the various components and subsystems of computer system 
services of order provisioning module 1624 for the provi 1700 communicate with each other as intended . Although 
sioning . In certain embodiments , order orchestration module 10 bus subsystem 1702 is shown schematically as a single bus , 
1622 enables the management of business processes asso alternative embodiments of the bus subsystem may utilize 
ciated with each order and applies business logic to deter multiple buses . Bus subsystem 1702 may be any of several 
mine whether an order should proceed to provisioning . types of bus structures including a memory bus or memory 
As shown in the embodiment depicted in FIG . 16 , at step controller , a peripheral bus , and a local bus using any of a 

1642 , upon receiving an order for a new subscription , order 15 variety of bus architectures . For example , such architectures 
orchestration module 1622 sends a request to order provi may include an Industry Standard Architecture ( ISA ) bus , 
sioning module 1624 to allocate resources and configure Micro Channel Architecture ( MCA ) bus , Enhanced ISA 
resources needed to fulfill the subscription order . Order ( EISA ) bus , Video Electronics Standards Association 
provisioning module 1624 enables the allocation of ( VESA ) local bus , and Peripheral Component Interconnect 
resources for the services ordered by the customer . Order 20 ( PCI ) bus , which can be implemented as a Mezzanine bus 
provisioning module 1624 provides a level of abstraction manufactured to the IEEE P1386.1 standard , and the like . 
between the cloud services provided by cloud infrastructure Processing subsystem 1704 controls the operation of 
system 1600 and the physical implementation layer that is computer system 1700 and may comprise one or more 
used to provision the resources for providing the requested processing units 1732 , 1734 , etc. A processing unit may 
services . This enables order orchestration module 1622 to be 25 include be one or more processors , including single core or 
isolated from implementation details , such as whether or not multicore processors , one or more cores of processors , or 
services and resources are actually provisioned on the fly or combinations thereof . In some embodiments , processing 
pre - provisioned and only allocated / assigned upon request . subsystem 1704 can include one or more special purpose 

At step 1644 , once the services and resources are provi co - processors such as graphics processors , digital signal 
sioned , a notification may be sent to the subscribing cus- 30 processors ( DSPs ) , or the like . In some embodiments , some 
tomers indicating that the requested service is now ready for or all of the processing units of processing subsystem 1704 
use . In some instance , information ( e.g. a link ) may be sent can be implemented using customized circuits , such as 
to the customer that enables the customer to start using the application specific integrated circuits ( ASICs ) , or field 
requested services . programmable gate arrays ( FPGAs ) . 
At step 1646 , a customer's subscription order may be 35 In some embodiments , the processing units in processing 

managed and tracked by an order management and moni subsystem 1704 can execute instructions stored in system 
toring module 1626. In some instances , order management memory 1710 or on computer readable storage media 1722 . 
and monitoring module 1626 may be configured to collect In various embodiments , the processing units can execute a 
usage statistics regarding a customer use of subscribed variety of programs or code instructions and can maintain 
services . For example , statistics may be collected for the 40 multiple concurrently executing programs or processes . At 
amount of storage used , the amount data transferred , the any given time , some or all of the program code to be 
number of users , and the amount of system up time and executed can be resident in system memory 1710 and / or on 
system down time , and the like . computer - readable storage media 1722 including potentially 

In certain embodiments , cloud infrastructure system 1600 on one or more storage devices . Through suitable program 
may include an identity management module 1628 that is 45 ming , processing subsystem 1704 can provide various func 
configured to provide identity services , such as access tionalities . 
management and authorization services in cloud infrastruc In certain embodiments , a processing acceleration unit 
ture system 1600. In some embodiments , identity manage 1706 may be provided for performing customized process 
ment module 1628 may control information about customers ing or for off - loading some of the processing performed by 
who wish to utilize the services provided by cloud infra- 50 processing subsystem 1704 so as to accelerate the overall 
structure system 1602. Such information can include infor processing performed by computer system 1700 . 
mation that authenticates the identities of such customers I / O subsystem 1708 may include devices and mechanisms 
and information that describes which actions those custom for inputting information to computer system 1700 and / or 
ers are authorized to perform relative to various system for outputting information from or via computer system 
resources ( e.g. , files , directories , applications , communica- 55 1700. In general , use of the term “ input device ” is intended 
tion ports , memory segments , etc. ) Identity management to include all possible types of devices and mechanisms for 
module 1628 may also include the management of descrip inputting information to computer system 1700. User inter 
tive information about each customer and about how and by face input devices may include , for example , a keyboard , 
whom that descriptive information can be accessed and pointing devices such as a mouse or trackball , a touchpad or 
modified . 60 touch screen incorporated into a display , a scroll wheel , a 

FIG . 17 illustrates an exemplary computer system 1700 click wheel , a dial , a button , a switch , a keypad , audio input 
that may be used to implement an embodiment of the present devices with voice command recognition systems , micro 
disclosure . In some embodiments , computer system 1700 phones , and other types of input devices . User interface 
may be used to implement any of the various servers and input devices may also include motion sensing and / or ges 
computer systems described above . As shown in FIG . 17 , 65 ture recognition devices such as the Microsoft Kinecte 
computer system 1700 includes various subsystems includ motion sensor that enables users to control and interact with 
ing a processing unit 1704 that communicates with a number an input device , the Microsoft Xbox® 360 game controller , 
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devices that provide an interface for receiving input using data and / or program modules that are presently being oper 
gestures and spoken commands . User interface input devices ated and executed by processing subsystem 1704. In some 
may also include eye gesture recognition devices such as the implementations , system memory 1710 may include mul 
Google Glass® blink detector that detects eye activity ( e.g. , tiple different types of memory , such as static random access 
“ blinking ” while taking pictures and / or making a menu 5 memory ( SRAM ) or dynamic random access memory 
selection ) from users and transforms the eye gestures as ( DRAM ) . 
input into an input device ( e.g. , Google Glass® ) . Addition By way of example , and not limitation , as depicted in 
ally , user interface input devices may include voice recog FIG . 17 , system memory 1710 may store application pro 
nition sensing devices that enable users to interact with grams 1712 , which may include client applications , Web 
voice recognition systems ( e.g. , Siri® navigator ) , through 10 browsers , mid - tier applications , relational database manage 
voice commands . ment systems ( RDBMS ) , etc. , program data 1714 , and an 
Other examples of user interface input devices include , operating system 1716. By way of example , operating 

without limitation , three dimensional ( 3D ) mice , joysticks or system 1716 may include various versions of Microsoft 
pointing sticks , gamepads and graphic tablets , and audio / Windows® , Apple Macintosh® , and / or Linux operating 
visual devices such as speakers , digital cameras , digital 15 systems , a variety of commercially - available UNIX® or 
camcorders , portable media players , webcams , image scan UNIX - like operating systems ( including without limitation 
ners , fingerprint scanners , barcode reader 3D scanners , 3D the variety of GNU / Linux operating systems , the Google 
printers , laser rangefinders , and eye gaze tracking devices . Chrome® OS , and the like ) and / or mobile operating systems 
Additionally , user interface input devices may include , for such as iOS , Windows® Phone , Android OS , Black 
example , medical imaging input devices such as computed 20 Berry® 10 OS , and Palm® OS operating systems . 
tomography , magnetic resonance imaging , position emission Computer - readable storage media 1722 may store pro 
tomography , medical ultrasonography devices . User inter gramming and data constructs that provide the functionality 
face input devices may also include , for example , audio of some embodiments . Software ( programs , code modules , 
input devices such as MIDI keyboards , digital musical instructions ) that when executed by processing subsystem 
instruments and the like . 25 1704 a processor provide the functionality described above 
User interface output devices may include a display may be stored in storage subsystem 1718. By way of 

subsystem , indicator lights , or non - visual displays such as example , computer - readable storage media 1722 may 
audio output devices , etc. The display subsystem may be a include non - volatile memory such as a hard disk drive , a 
cathode ray tube ( CRT ) , a flat - panel device , such as that magnetic disk drive , an optical disk drive such as a CD 
using a liquid crystal display ( LCD ) or plasma display , a 30 ROM , DVD , a Blu - Ray® disk , or other optical media . 
projection device , a touch screen , and the like . In general , Computer - readable storage media 1722 may include , but is 
use of the term " output device ” is intended to include all not limited to , Zip® drives , flash memory cards , universal 
possible types of devices and mechanisms for outputting serial bus ( USB ) flash drives , secure digital ( SD ) cards , 
information from computer system 1700 to a user or other DVD disks , digital video tape , and the like . Computer 
computer . For example , user interface output devices may 35 readable storage media 1722 may also include , solid - state 
include , without limitation , a variety of display devices that drives ( SSD ) based on non - volatile memory such as flash 
visually convey text , graphics and audio / video information memory based SSDs , enterprise flash drives , solid state 
such as monitors , printers , speakers , headphones , automo ROM , and the like , SSDs based on volatile memory such as 
tive navigation systems , plotters , voice output devices , and solid state RAM , dynamic RAM , static RAM , DRAM - based 
modems . 40 SSDs , magnetoresistive RAM ( MRAM ) SSDs , and hybrid 

Storage subsystem 1718 provides a repository or data SSDs that use a combination of DRAM and flash memory 
store for storing information that is used by computer system based SSDs . Computer - readable media 1722 may provide 
1700. Storage subsystem 1718 provides a tangible non storage of computer - readable instructions , data structures , 
transitory computer - readable storage medium for storing the program modules , and other data for computer system 1700 . 
basic programming and data constructs that provide the 45 In certain embodiments , storage subsystem 1700 may also 
functionality of some embodiments . Software ( programs , include a computer - readable storage media reader 1720 that 
code modules , instructions ) that when executed by process can further be connected to computer - readable storage 
ing subsystem 1704 provide the functionality described media 1722. Together and , optionally , in combination with 
above may be stored in storage subsystem 1718. The soft system memory 1710 , computer - readable storage media 
ware may be executed by one or more processing units of 50 1722 may comprehensively represent remote , local , fixed , 
processing subsystem 1704. Storage subsystem 1718 may and / or removable storage devices plus storage media for 
also provide a repository for storing data used in accordance storing computer - readable information . 
with the present disclosure . In certain embodiments , computer system 1700 may 

Storage subsystem 1718 may include one or more non provide support for executing one or more virtual machines . 
transitory memory devices , including volatile and non- 55 Computer system 1700 may execute a program such as a 
volatile memory devices . As shown in FIG . 17 , storage hypervisor for facilitating the configuring and managing of 
subsystem 1718 includes a system memory 1710 and a the virtual machines . Each virtual machine may be allocated 
computer - readable storage media 1722. System memory memory , compute ( e.g. , processors , cores ) , 1/0 , and net 

include a number of memories including a volatile working resources . Each virtual machine typically runs its 
main random access memory ( RAM ) for storage of instruc- 60 own operating system , which may be the same as or different 
tions and data during program execution and a non - volatile from the operating systems executed by other virtual 
read only memory ( ROM ) or flash memory in which fixed machines executed by computer system 1700. Accordingly , 
instructions are stored . In some implementations , a basic multiple operating systems may potentially be run concur 
input / output system ( BIOS ) , containing the basic routines rently by computer system 1700. Each virtual machine 
that help to transfer information between elements within 65 generally runs independently of the other virtual machines . 
computer system 1700 , such as during start - up , may typi Communications subsystem 1724 provides an interface to 
cally be stored in the ROM . The RAM typically contains other computer systems and networks . Communications 

1710 may 
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subsystem 1724 serves as an interface for receiving data passed within the scope of the present disclosure . The 
from and transmitting data to other systems from computer modifications include any relevant combination of the dis 
system 1700. For example , communications subsystem closed features . Embodiments of the present disclosure are 
1724 may enable computer system 1700 to establish a not restricted to operation within certain specific data pro 
communication channel to one or more client computing 5 cessing environments , but are free to operate within a 
devices via the Internet for receiving and sending informa plurality of data processing environments . Additionally , 
tion from and to the client computing devices . although embodiments of the present disclosure have been 

Communication subsystem 1724 may support both wired described using a particular series of transactions and steps , 
and / or wireless communication protocols . For example , in it should be apparent to those skilled in the art that the scope 
certain embodiments , communications subsystem 1724 may 10 of the present disclosure is not limited to the described series 
include radio frequency ( RF ) transceiver components for of transactions and steps . Various features and aspects of the 
accessing wireless voice and / or data networks ( e.g. , using above - described embodiments may be used individually or 
cellular telephone technology , advanced data network tech jointly . 
nology , such as 3G , 4G or EDGE ( enhanced data rates for Further , while embodiments of the present disclosure 
global evolution ) , WiFi ( IEEE 802.11 family standards , or 15 have been described using a particular combination of 
other mobile communication technologies , or any combina hardware and software , it should be recognized that other 
tion thereof ) , global positioning system ( GPS ) receiver combinations of hardware and software are also within the 
components , and / or other components . In some embodi scope of the present disclosure . Embodiments of the present 
ments communications subsystem 1724 can provide wired disclosure may be implemented only in hardware , or only in 
network connectivity ( e.g. , Ethernet ) in addition to or 20 software , or using combinations thereof . The various pro 
instead of a wireless interface . cesses described herein can be implemented on the same 

Communication subsystem 1724 can receive and transmit processor or different processors in any combination . 
data in various forms . For example , in some embodiments , Accordingly , where components or modules are described as 
communications subsystem 1724 may receive input com being configured to perform certain operations , such con 
munication in the form of structured and / or unstructured 25 figuration can be accomplished , e.g. , by designing electronic 
data feeds 1726 , event streams 1728 , event updates 1730 , circuits to perform the operation , by programming program 
and the like . For example , communications subsystem 1724 mable electronic circuits ( such as microprocessors ) to per 
may be configured to receive ( or send ) data feeds 1726 in form the operation , or any combination thereof . Processes 
real - time from users of social media networks and / or other can communicate using a variety of techniques including but 
communication services such as Twitter® feeds , Facebook® 30 not limited to conventional techniques for interprocess com 
updates , web feeds such as Rich Site Summary ( RSS ) feeds , munication , and different pairs of processes may use differ 
and / or real - time updates from one or more third party ent techniques , or the same pair of processes may use 
information sources . different techniques at different times . 

In certain embodiments , communications subsystem 1724 The specification and drawings are , accordingly , to be 
may be configured to receive data in the form of continuous 35 regarded in an illustrative rather than a restrictive sense . It 
data streams , which may include event streams 1728 of will , however , be evident that additions , subtractions , dele 
real - time events and / or event updates 1730 , that may be tions , and other modifications and changes may be made 
continuous or unbounded in nature with no explicit end . thereunto without departing from the broader spirit and 
Examples of applications that generate continuous data may scope as set forth in the claims . Thus , although specific 
include , for example , sensor data applications , financial 40 embodiments have been described , these are not intended to 
tickers , network performance measuring tools ( e.g. network be limiting . Various modifications and equivalents are 
monitoring and traffic management applications ) , click within the scope of the following claims . 
stream analysis tools , automobile traffic monitoring , and the What is claimed is : 
like . 1. A computer - implemented method comprising : 

Communications subsystem 1724 may also be configured 45 determining , by one or more computer systems , a length 
to output the structured and / or unstructured data feeds 1726 , of time when heap usage by one or more processes 
event streams 1728 , event updates 1730 , and the like to one exceeds a threshold , wherein the length of time spans 
or more databases that may be in communication with one at least one period , wherein the at least one period is 
or more streaming data source computers coupled to com divided into a plurality of intervals , and wherein each 
puter system 1700 . of the plurality of intervals is mapped to a season of a 

Computer system 1700 can be one of various types , plurality of seasons ; 
including a handheld portable device ( e.g. , an iPhone® determining heap information of the one or more pro 
cellular phone , an iPad® computing tablet , a PDA ) , a cesses during the length of time , the heap information 
wearable device ( e.g. , a Google Glass® head mounted comprising heap usage information and a heap usage 
display ) , a personal computer , a workstation , a mainframe , 55 seasonal factor for each of the plurality of intervals in 
a kiosk , a server rack , or any other data processing system . the length of time , wherein the heap usage seasonal 

Due to the ever - changing nature of computers and net factor for each of the plurality of intervals corresponds 
works , the description of computer system 1700 depicted in to a smoothed heap usage seasonal factor associated 
FIG . 17 is intended only as a specific example . Many other with the season to which each of the plurality of 
configurations having more or fewer components than the 60 intervals is mapped ; 
system depicted in FIG . 17 are possible . Based on the determining thread information of the one or more pro 
disclosure and teachings provided herein , a person of ordi cesses during the length of time , wherein determining 
nary skill in the art will appreciate other ways and / or the thread information comprises determining one or 
methods to implement the various embodiments . more classes of threads and wherein the thread infor 

Although specific embodiments of the present disclosure 65 mation comprises , for each of the one or more classes 
have been described , various modifications , alterations , of threads , thread intensity information and a thread 
alternative constructions , and equivalents are also encom intensity seasonal factor for each of the plurality of 
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intervals , wherein the thread intensity seasonal factor wherein each of the plurality of intervals is mapped to one 
for each of the plurality of intervals and for each of the of the first plurality of seasons or one of the second 
one or more classes of threads corresponds to a plurality of seasons ; 
smoothed thread intensity seasonal factor associated wherein , for each of the plurality of intervals , the 
with the season to which each of the plurality of 5 smoothed heap usage seasonal factor is associated with intervals is mapped ; the one of the first plurality of seasons or the one of the correlating the heap information with the thread informa second plurality of seasons that the interval is mapped tion to identify one or more lines of code of the one or 
more processes that correspond to the heap usage wherein , for each of the plurality of intervals , and for each exceeding the threshold ; and of the one or more classes of threads , the smoothed responsive to identifying the one or more lines of code , 
initiating one or more actions associated with the one or thread intensity seasonal factor of the class of threads 

is associated with the one of the first plurality of more lines of code . 
2. The method of claim 1 , wherein correlating the heap seasons or the one of the second plurality of seasons 

information with the thread information comprises : that the interval is mapped to . 
for each of the one or more classes of threads , determin 6. The method of claim 5 : 

ing , based at least in part on the heap usage seasonal wherein the smoothed heap usage seasonal factors of the 
factors of the plurality of intervals and the thread first type are determined by : 
intensity seasonal factors of the class of threads and the for each of the first plurality of seasons , determining a 
plurality of intervals , a degree of correlation between 20 heap usage seasonal factor of the first type by 
the class of threads and the heap usage exceeding the comparing an average heap usage of the season of 
threshold ; the first plurality of seasons with an average heap 

selecting , from the one or more classes of threads , a given usage of the period having the first length ; 
class of threads that has a highest degree of correlation for each of the heap usage seasonal factors of the first 
to the heap usage exceeding the threshold amongst the 25 type , dividing the heap usage seasonal factor of the 
one or more classes of threads ; and first type by a normalization factor to obtain a 

identifying , based at least in part on the given class of renormalized heap usage seasonal factor of the first 
threads , the one or more lines of code . type ; 

3. The method of claim 2 , wherein determining the degree applying a first spline function to the renormalized heap 
of correlation between the class of threads and the heap 30 usage seasonal factors of the first type to obtain the 
usage exceeding the threshold comprises : smoothed heap usage seasonal factors of the first 

calculating a mean of the heap usage seasonal factors of 
the plurality of intervals ; wherein the smoothed heap usage seasonal factors of the 

calculating a mean of the thread intensity seasonal factors second type are determined by : 
of the class of threads and the plurality of intervals ; for each of the second plurality of seasons , determining 

calculating a variance of the heap usage seasonal factors a heap usage seasonal factor of the second type by 
of the plurality of intervals ; comparing an average heap usage of the season of 

calculating a variance of the thread intensity seasonal the second plurality of seasons with an average heap 
factors of the class of threads and the plurality of usage of the period having the second length ; 
intervals ; and for each of the heap usage seasonal factors of the 

calculating the degree of correlation based at least in part second type , dividing the heap usage seasonal factors 
on the mean of the heap usage seasonal factors of the of the second type by the normalization factor to 
plurality of intervals , the mean of the thread intensity obtain a renormalized heap usage seasonal factor of 
seasonal factors of the class of threads and the plurality the second type ; and 
of intervals , the variance of the heap usage seasonal 45 applying a second spline function to the renormalized 
factors of the plurality of intervals , and the variance of heap usage seasonal factors of the second type to 
the thread intensity seasonal factors of the class of obtain the smoothed heap usage seasonal factors of 
threads and the plurality of intervals . the second type . 

4. The method of claim 2 , wherein each thread of the one 7. The method of claim 1 , wherein determining the one or 
or more processes that belongs to the given class of threads 50 more classes of threads comprises : 
executes the one or more lines of code . obtaining one or more thread dumps of the one or more 

5. The method of claim 1 : processes , wherein each of the thread dumps are taken 
wherein the length of time spans one or more first cycles at a different point in time while the one or more 

of a first period having a first length and one or more processes are executing ; and 
second cycles of a second period having a second 55 for each of one or more threads of the one or more thread 
length ; dumps , classifying the thread based at least in part on 

wherein the first period having the first length is divided a stack trace that corresponds to the thread , the stack 
into a first plurality of seasons each associated with the trace indicating code executed by the thread when the 
smoothed heap usage seasonal factor of a first type and thread dump was taken . 
the smoothed thread intensity seasonal factor of a first 60 8. The method of claim 7 , wherein classifying the thread 
type for each of the one or more classes of threads ; based at least in part on the stack trace comprises : 

wherein the second period having the second length is determining whether a class of threads that corresponds to 
divided into a second plurality of seasons each associ a combination of stack frames included in the stack 
ated with the smoothed heap usage seasonal factor of a trace exists ; 
second type and the smoothed thread intensity seasonal 65 responsive to determining that the class of threads that 
factor of a second type for each of the one or more corresponds to the combination of stack frames 
classes of threads ; included in the stack trace does not exist , creating a 
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new class of threads that corresponds to the combina tion comprising heap usage information and a heap 
tion of stack frames included in the stack trace ; and usage seasonal factor for each of the plurality of 

incrementing one or more counters associated with the intervals in the length of time , wherein the heap 
class of threads that corresponds to the combination of usage seasonal factor for each of the plurality of 
stack frames included in the stack trace . intervals is associated with the season to which each 

9. The method of claim 1 , wherein for each of the one or of the plurality of intervals is mapped , and wherein 
more classes of threads , for each of the plurality of intervals , the heap information is determined based at least in 
the thread intensity information for the interval indicates an part on a first smooth - spline fitting on the heap usage 
average number of threads belonging to the class of threads seasonal factors for the plurality of intervals ; 
that are executing during throughout the interval . determine thread information of the one or more pro 

10. The method of claim 1 , wherein the one or more cesses during the length of time , wherein determin 
actions includes at least one of : ing the thread information comprises determining 

generating an alert associated with the one or more lines one or more classes of threads and wherein the 
of code ; or thread information comprises , for each of the one or 

optimizing the one or more lines of code . more classes of threads , thread intensity information 
11. The method of claim 10 , wherein optimizing the one and a thread intensity seasonal factor for each of the 

or more lines of code comprises modifying the one or more plurality of intervals , wherein the thread intensity 
lines of code to reduce an amount of heap memory used or seasonal factor for each of the plurality of intervals 
reduce a duration of a usage of the heap memory . is associated with the season the each of the plurality 

12. The method of claim 1 , wherein : of intervals is mapped to , and wherein the thread 
the length of time spans a first period and a second period ; information is determined based at least in part on 
the second period immediately follows the first period ; performing a second smooth - spline fitting on the 
the first period is associated with a plurality of first heap thread intensity seasonal factors for the plurality of 
usage seasonal factors and a plurality of first thread intervals ; 
intensity seasonal factors ; correlate the heap information with the thread infor 

the second period is associated with a plurality of second mation based at least in part on the smooth - spline 
heap usage seasonal factors and a plurality of second fitted heap usage seasonal factors and the smooth 
thread intensity seasonal factors ; spline fitted thread intensity seasonal factors to iden 

the method further comprises : tify one or more lines of code of the one or more 
forming a sequence of heap usage seasonal factors 30 processes that correspond to the heap usage exceed 
based at least in part on concatenating the first ing the threshold ; and 
plurality of heap usage seasonal factors and the responsive to identifying the one or more lines of code , 
second plurality of heap usage seasonal cto initiate one or more actions associated with the one 

forming a sequence of thread intensity seasonal factors or more lines of code . 
based at least in part on concatenating the first 35 15. The system of claim 14 , wherein correlating the heap 
plurality of thread intensity seasonal factors and the information with the thread information comprises : 
second plurality of thread intensity seasonal factors ; for each of the one or more classes of threads , determin 

performing a first smooth - spline fitting on the sequence ing , based at least in part on the heap usage seasonal 
of heap usage seasonal factors to generate a sequence factors of the plurality of intervals and the thread 
of smoothed heap usage seasonal factors to be 40 intensity seasonal factors of the class of threads and the 
included in the heap information ; and plurality of intervals , a degree of correlation between 

performing a second smooth - spline fitting on the the class of threads and the heap usage exceeding the 
sequence of thread intensity seasonal factors to gen threshold ; 
erate a sequence of smoothed thread intensity sea selecting , from the one or more classes of threads , a given 
sonal factors to be included in the thread informa- 45 class of threads that has a highest degree of correlation 
tion ; to the heap usage exceeding the threshold amongst the 

and the correlation of the heap information with the thread one or more classes of threads ; and 
information is based at least in part on the sequence of identifying , based at least in part on the given class of 
smoothed heap usage seasonal factors and the sequence threads , the one or more lines of code . 
of smoothed thread intensity seasonal factors . 16. The system of claim 15 , wherein determining the 

13. The method of claim 12 , wherein the first period is degree of correlation between the class of threads and the 
associated with a weekday , and wherein the second period is heap usage exceeding the threshold comprises : 
associated with at least one of : a weekend , or a holiday . calculating a mean of the heap usage seasonal factors of 

14. A system comprising : the plurality of intervals ; 
one or more processors ; and calculating a mean of the thread intensity seasonal factors 
a memory accessible to the one or more processors , the of the class of threads and the plurality of intervals ; 
memory storing one or more instructions that , upon calculating a variance of the heap usage seasonal factors 
execution by the one or more processors , causes the one of the plurality of intervals ; 
or more processors to : calculating a variance of the thread intensity seasonal 
determine a length of time when heap usage by one or 60 factors of the class of threads and the plurality of 
more processes exceeds a threshold , wherein the intervals ; and 
length of time spans at least one period , wherein the calculating the degree of correlation based at least in part 
at least one period is divided into a plurality of on the mean of the heap usage seasonal factors of the 
intervals , and wherein each of the plurality of inter plurality of intervals , the mean of the thread intensity 
vals is mapped to a season of a plurality of seasons ; 65 seasonal factors of the class of threads and the plurality 

determine heap information of the one or more pro of intervals , the variance of the heap usage seasonal 
cesses during the length of time , the heap informa factors of the plurality of intervals , and the variance of 
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the thread intensity seasonal factors of the class of comparing an average heap usage of the season of 
threads and the plurality of intervals . the second plurality of seasons with an average heap 

17. The system of claim 14 : usage of the period having the second length ; and 
wherein the length of time spans one or more first cycles for each of the heap usage seasonal factors of the 

of a first period having a first length and one or more second type , dividing the heap usage seasonal factors 
second cycles of a second period having a second of the second type by the normalization factor to 
length ; obtain a renormalized heap usage seasonal factor of 

the second type ; and wherein the first period having the first length is divided 
into a first plurality of seasons each associated with a applying a second spline function to the renormalized 
smoothed heap usage seasonal factor of a first type and 10 heap usage seasonal factors of the second type to obtain 
a smoothed thread intensity seasonal factor of a first the smoothed heap usage seasonal factors of the second 
type for each of the one or more classes of threads ; type . 

wherein the second period having the second length is 19. The system of claim 14 , wherein the one or more 
actions includes at least one of : divided into a second plurality of seasons each associ 

ated with a smoothed heap usage seasonal factor of a generating an alert associated with the one or more lines 
of code ; or second type and a smoothed thread intensity seasonal 

factor of a second type for each of the one or more optimizing the one or more lines of code . 
classes of threads ; 20. A non - transitory computer - readable medium storing 

wherein each of the plurality of intervals is mapped to one one or more instructions that , upon execution by one or more 
of the first plurality of seasons or one of the second 20 processors , cause the one or more processors to : 
plurality of seasons ; determine a length of time when heap usage by one or 

wherein , for each of the plurality of intervals , the heap more processes exceeds a threshold , wherein the length 
usage seasonal factor of the interval corresponds to a of time spans at least one period , wherein the at least 
smoothed heap usage seasonal factor that is associated one period is divided into a plurality of intervals , and 
with the one of the first plurality of seasons or the one wherein each of the plurality of intervals is mapped to 
of the second plurality of seasons that the interval is a season of a plurality of seasons ; 
mapped to ; and determine heap information of the one or more processes 

wherein , for each of the plurality of intervals , for each of during the length of time , the heap information com 
the one or more classes of threads , the thread intensity prising heap usage information and a heap usage sea 
seasonal factor of the class of threads of the interval 30 sonal factor for each of the plurality of intervals in the 
corresponds to a smoothed thread intensity seasonal length of time , wherein the heap usage seasonal factor 
factor of the class of threads that is associated with the for each of the plurality of intervals corresponds to a 
one of the first plurality of seasons or the one of the smoothed heap usage seasonal factor associated with 
second plurality of seasons that the interval is mapped the season to which each of the plurality of intervals is 

mapped ; to . 
determine thread information of the one or more pro 18. The system of claim 17 : 

wherein the smoothed heap usage seasonal factors of the cesses during the length of time , wherein determining 
first type are determined by : the thread information comprises determining one or 

more classes of threads and wherein the thread infor for each of the first plurality of seasons , determining a 
heap usage seasonal factor of the first type by 40 mation comprises , for each of the one or more classes 
comparing an average heap usage of the season of of threads , thread intensity information and a thread 
the first plurality of seasons with an average heap intensity seasonal factor for each of the plurality of 
usage of the period having the first length ; intervals , wherein the thread intensity seasonal factor 

for each of the heap usage seasonal factors of the first for each of the plurality of intervals and for each of the 
type , dividing the heap usage seasonal factor of the 45 one or more classes of threads corresponds to a 
first type by a normalization factor to obtain a smoothed thread intensity seasonal factor associated 
renormalized heap usage seasonal factor of the first with the season to which each of the plurality of 

intervals is mapped ; type ; 
applying a first spline function to the renormalized heap correlate the heap information with the thread information 

to identify one or more lines of code of the one or more usage seasonal factors of the first type to obtain the 50 
smoothed heap usage seasonal factors of the first processes that correspond to the heap usage exceeding 

the threshold ; and 
wherein the smoothed heap usage seasonal factors of the onsive to identifying the one or more lines of code , 

initiate one or more actions associated with the one or second type are determined by : 
for each of the second plurality of seasons , determining 55 more lines of code . 

a heap usage seasonal factor of the second type by 
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