

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 September 2010 (30.09.2010)

(10) International Publication Number
WO 2010/111018 A1

(51) International Patent Classification:
A61K 39/00 (2006.01) *C12P 21/08* (2006.01)

(74) Agents: MURASHIGE, Kate., H. et al.; Morrison & Foerster LLP, 12531 High Bluff Drive, Suite 100, San Diego, CA 92130-2040 (US).

(21) International Application Number:
PCT/US2010/026429

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
5 March 2010 (05.03.2010)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/158,143 6 March 2009 (06.03.2009) US

(71) Applicants (for all designated States except US): **AGEN-SYS, INC.** [US/US]; 2225 Colorado Avenue, Santa Monica, CA 90404 (US). **SEATTLE GENETICS, INC.** [US/US]; 21823 30th Drive S.E., Bothell, WA 98021 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **GUDAS, Jean** [US/US]; 2225 Colorado Avenue, Santa Monica, CA 90404 (US). **JAKOBOVITS, Aya** [US/US]; 2225 Colorado Avenue, Santa Monica, CA 90404 (US). **AN, Zili** [US/US]; 2225 Colorado Avenue, Santa Monica, CA 90404 (US). **MORRISON, Robert, Kendall** [GB/US]; 2225 Colorado Avenue, Santa Monica, CA 90404 (US). **MORRISON, Karen, Jene Meyrick** [GB/US]; 2225 Colorado Avenue, Santa Monica, CA 90404 (US). **JIA, Xiao-Chi** [US/US]; 2225 Colorado Avenue, Santa Monica, CA 90404 (US). **BENJAMIN, Dennis** [US/US]; 21823 30th Drive S.E., Bothell, WA 98021 (US). **MOSER, Ruth** [US/US]; 21823 30th Drive S.E., Bothell, WA 98021 (US). **SENTER, Peter** [US/US]; 21823 30th Drive S.E., Bothell, WA 98021 (US).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2010/111018 A1

(54) Title: ANTIBODY DRUG CONJUGATES (ADC) THAT BIND TO 24P4C12 PROTEINS

(57) Abstract: Antibody drug conjugates (ADC's) that bind to 24P4C12 protein and variants thereof are described herein. 24P4C12 exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, the ADC's of the invention provide a therapeutic composition for the treatment of cancer.

**ANTIBODY DRUG CONJUGATES (ADC)
THAT BIND TO 24P4C12 PROTEINS**

**STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY
SPONSORED RESEARCH**

[0001] Not applicable.

FIELD OF THE INVENTION

[0002] The invention described herein relates to antibodies, binding fragments, and antibody drug conjugates (ADCs) thereof, that bind proteins, termed 24P4C12. The invention further relates to prognostic, prophylactic and therapeutic methods and compositions useful in the treatment of cancers that express 24P4C12.

BACKGROUND OF THE INVENTION

[0003] Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.

[0004] Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, ovary, and bladder represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence.

[0005] Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease - second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.

[0006] On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the diagnosis and management of this disease. Although the serum prostate specific antigen (PSA) assay has been a very useful tool, its specificity and general utility is widely regarded as lacking in several important respects.

[0007] Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Prostate Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to androgen independence (Klein et al., 1997, *Nat. Med.* 3:402). More recently identified prostate cancer markers include PCTA-1 (Su et al., 1996, *Proc. Natl. Acad. Sci. USA* 93: 7252), prostate-specific membrane antigen (PSMA) (Pinto et al., *Clin Cancer Res* 1996 Sep 2 (9): 1445-51), STEAP (Hubert, et al., *Proc Natl Acad Sci U S A.* 1999 Dec 7; 96(25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter et al., 1998, *Proc. Natl. Acad. Sci. USA* 95: 1735).

[0008] While previously identified markers such as PSA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy. An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer.

[0009] Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (-2.1% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal cancer) in 2000, accounting for about 11% of all U.S. cancer deaths.

[0010] At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer.

[0011] Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there were an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and eight per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly.

[0012] Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients.

[0013] There were an estimated 164,100 new cases of lung and bronchial cancer in 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women was 42.3 per 100,000.

[0014] Lung and bronchial cancer caused an estimated 156,900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992–1996, mortality from lung cancer declined significantly among men (-1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concern, although the declines in adult tobacco use have slowed, tobacco use in youth is increasing again.

[0015] Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers.

[0016] An estimated 182,800 new invasive cases of breast cancer were expected to occur among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990s to about 110.6 cases per 100,000.

[0017] In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined significantly during

1992–1996 with the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved treatment.

[0018] Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.

[0019] Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments. There is, therefore, a need for efficacious breast cancer treatments.

[0020] There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynecologic cancers. During 1992–1996, ovarian cancer incidence rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

[0021] Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intra-abdominal disease to enhance the effect of chemotherapy. There continues to be an important need for effective treatment options for ovarian cancer.

[0022] There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about -0.9% per year) while rates have increased slightly among women.

[0023] Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for cancers. These include the use of antibodies, vaccines, and small molecules as treatment modalities. Additionally, there is also a need to use these modalities as research tools to diagnose, detect, monitor, and further the state of the art in all areas of cancer treatment and studies.

[0024] The therapeutic utility of monoclonal antibodies (mAbs) (G. Kohler and C. Milstein, *Nature* 256:495-497 (1975)) is being realized. Monoclonal antibodies have now been approved as therapies in transplantation, cancer, infectious disease, cardiovascular disease and inflammation. Different isotypes have different effector functions. Such differences in function are reflected in distinct 3-dimensional structures for the various immunoglobulin isotypes (P.M. Alzari *et al.*, *Annual Rev. Immunol.*, 6:555-580 (1988)).

[0025] Because mice are convenient for immunization and recognize most human antigens as foreign, mAbs against human targets with therapeutic potential have typically been of murine origin. However, murine mAbs have inherent disadvantages as human therapeutics. They require more frequent dosing as mAbs have a shorter circulating half-life in humans than human antibodies. More critically, the repeated administration of murine antibodies to the human immune system causes the human immune system to respond by recognizing the mouse protein as a foreign and generating a human anti-mouse antibody (HAMA) response. Such a HAMA response may result in allergic reaction and the rapid clearing of the murine antibody from the system thereby rendering the treatment by murine antibody useless. To avoid such affects, attempts to create human immune systems within mice have been attempted.

[0026] Initial attempts hoped to create transgenic mice capable of responding to antigens with antibodies having human sequences (See Bruggemann *et al.*, Proc. Nat'l. Acad. Sci. USA 86:6709-6713 (1989)), but were limited by the amount of DNA that could be stably maintained by available cloning vehicles. The use of yeast artificial chromosome (YAC) cloning vectors led the way to introducing large germline fragments of human Ig locus into transgenic mammals. Essentially a majority of the human V, D, and J region genes arranged with the same spacing found in the human genome and the human constant regions were introduced into mice using YACs. One such transgenic mouse strain is known as XenoMouse® mice and is commercially available from Amgen Fremont, Inc. (Fremont CA).

SUMMARY OF THE INVENTION

[0027] The invention provides antibodies, binding fragments, and antibody drug conjugates (ADCs) thereof that bind to 24P4C12 proteins and polypeptide fragments of 24P4C12 proteins. In some embodiments, the invention comprises fully human antibodies conjugated with a therapeutic agent. In certain embodiments, there is a proviso that the entire nucleic acid sequence of Figure 3 is not encoded and/or the entire amino acid sequence of Figure 2 is not prepared. In certain embodiments, the entire nucleic acid sequence of Figure 3 is encoded and/or the entire amino acid sequence of Figure 2 is prepared, either of which are in respective human unit dose forms.

[0028] The invention further provides various immunogenic or therapeutic compositions, such as antibody drug conjugates, and strategies for treating cancers that express 24P4C12 such as cancers of tissues listed in Table I.

BRIEF DESCRIPTION OF THE FIGURES

[0029] Figure 1. Nucleic Acid and Amino Acid Sequences of 24P4C12. Figure 1A. The cDNA and amino acid sequence of 24P4C12 variant 1 (also called “24P4C12 v.1” or “24P4C12 variant 1”) is shown in Figure 1A. The start methionine is underlined. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

[0030] Figure 1B. The cDNA and amino acid sequence of 24P4C12 variant 2 (also called “24P4C12 v.2”) is shown in Figure 1B. The codon for the start methionine is

underlined. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

[0031] Figure 1C. The cDNA and amino acid sequence of 24P4C12 variant 3 (also called “24P4C12 v.3”) is shown in Figure 1C. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

[0032] Figure 1D. The cDNA and amino acid sequence of 24P4C12 variant 4 (also called “24P4C12 v.4”) is shown in Figure 1D. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

[0033] Figure 1E. The cDNA and amino acid sequence of 24P4C12 variant 5 (also called “24P4C12 v.5”) is shown in Figure 1E. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

[0034] Figure 1F. The cDNA and amino acid sequence of 24P4C12 variant 6 (also called “24P4C12 v.6”) is shown in Figure 1F. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

[0035] Figure 1G. The cDNA and amino acid sequence of 24P4C12 variant 7 (also called “24P4C12 v.7”) is shown in Figure 1G. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 6-1802 including the stop codon.

[0036] Figure 1H. The cDNA and amino acid sequence of 24P4C12 variant 8 (also called “24P4C12 v.8”) is shown in Figure 1H. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 6-2174 including the stop codon.

[0037] Figure 1I. The cDNA and amino acid sequence of 24P4C12 variant 9 (also called “24P4C12 v.9”) is shown in Figure 1I. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 6-2144 including the stop codon.

[0038] Figure 2. Nucleic Acid and Amino Acid sequences of 24P4C12 antibodies.

[0039] **Figure 2A.** The cDNA and amino acid sequence of Ha5-1(5)2.1 heavy chain. Double-underlined is the leader sequence, underlined is the heavy chain variable region, and underlined with a dashed line is the human IgG2 constant region.

[0040] **Figure 2B.** The cDNA and amino acid sequence of Ha5-1(5)2.1 light chain. Double-underlined is the leader sequence, underlined is the light chain variable region, and underlined with a dashed line is the human kappa constant region.

[0041] **Figure 3.** Amino Acid sequences of 24P4C12 antibodies.

[0042] **Figure 3A.** The amino acid sequence of Ha5-1(5)2.1 heavy chain. Double-underlined is the leader sequence, underlined is the heavy chain variable region, and underlined with a dashed line is the human IgG2 constant region.

[0043] **Figure 3B.** The amino acid sequence of Ha5-1(5)2.1 light chain. Double-underlined is the leader sequence, underlined is the light chain variable region, and underlined with a dashed line is the human kappa constant region.

[0044] **Figure 4.** Alignment of Ha5-1(5)2.1 antibodies to human Ig germline.

[0045] **Figure 4A.** Alignment of Ha5-1(5)2.1 heavy chain to human Ig germline.

[0046] **Figure 4B.** Alignment of Ha5-1(5)2.1 light chain to human Ig germline.

[0047] **Figure 5.** Ha5-1(5)2.1 MAb binds to cell surface of 24P4C12. PC3-control and PC3-24P4C12 cells were stained with Ha5-1(5)2.1 MAb purified from either hybridoma or from CHO cells transfected with Ha5-1(5)2.1 heavy and light chain vector constructs. Binding was detected by flow cytometry. Results show Ha5-1(5)2.1 produced by CHO cells bind 24P4C12 similarly to the Ha5-1(5)2.1 hybridoma product.

[0048] **Figure 6.** Cell Cytotoxicity by Ha5-1(5)2.1-vcMMAE. Cytotoxicity by Ha5-1(5)2.1 -vcMMAE was evaluated in PC3 cells engineered to express 24P4C12. PC3- Neo or PC3-24P4C12 cells (1000 cells/well) were seeded into a 96 well plate on day 1. The following day an equal volume of medium containing the indicated concentration of Ha5-1(5)2.1-vcMMAE or a Control MAb conjugated with vc-MMAE was added to each well. The cells were allowed to incubate for 4 days at 37 degrees C. At the end of the incubation period, Alamar Blue was added to each well and incubation continued for an additional 4 hours. The resulting fluorescence was detected using a Biotek plate reader with an excitation wavelength of 620 nm and an emission wavelength of 540 nm. The results in show that Ha5-1(5)2.1-vcMMAE mediated cytotoxicity in PC3-24P4C12 cells while a control human IgG conjugated with vcMMAE had no effect. These results

indicate that Ha5-1(5)2.1-vcMMAE can selectively deliver a cytotoxic drug to 24P4C12 expressing cells leading to their killing.

[0049] Figure 7. Ha5-1(5)2.1vcMMAE inhibits the growth of subcutaneous established human androgen-independent prostate cancer xenograft in SCID mice. In this experiment, androgen-independent human prostate cancer PC-3-Hu24P4C12 tumor cells (3.0×10^6 cells/mouse) were injected subcutaneously into male SCID mice. Mice were randomized into Ha5-1(5)2.1-vcMMAE and PBS control groups (n=5 in each group) when tumors reached 100 mm^3 . Mice were treated with a single dose of Ha5-1(5)2.1-vcMMAE (10 mg/kg) or PBS administered intravenously (i.v.) on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $\text{Width}^2 \times \text{Length}/2$, where width is the smallest dimension and length is the largest. The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of PC-3-Hu24P4C12 prostate tumors in SCID mice ($p < 0.01$) and resulted in complete tumor regression in most animals.

[0050] Figure 8. Ha5-1(5)2.1vcMMAE inhibits the growth of orthotopically established human androgen-independent prostate cancer xenograft in SCID mice. LAPC-9AI androgen-independent human prostate cancer cells (2.0×10^6 cells/mouse) were implanted into the prostates of male SCID mice. Fifteen (15) days after implantation when tumors were well established and palpable, the mice were randomized into two groups (n=8 in each group). Mice were treated with either Ha5-1(5)2.1-vcMMAE or isotype control MAb conjugated with vcMMAE administered i.v. at 3 mg/kg every 4 days for a total of 4 doses. At the end of study tumors in the mouse prostate were excised and weighed using an electronic balance. The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of LAPC9-AI human prostate tumors implanted orthotopically in SCID mice ($p < 0.01$).

[0051] Figure 9. Ha5-1(5)2.1vcMMAE inhibits the growth of subcutaneous established human androgen-independent human colon cancer xenograft in SCID mice. HT-29 human colon cancer cells (1.0×10^6 cells/mouse) were injected subcutaneously into SCID mice. Mice were randomized into two groups (n=6 in each group) when tumors reached 100 mm^3 . Ha5-1(5)2.1-vcMMAE (3 mg/kg) or PBS was administered intravenously every 4 days for a total of 4 doses beginning on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was

calculated as $Width^2 \times Length/2$, where width is the smallest dimension and length is the largest. The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of HT-29 human colon tumor xenografts implanted subcutaneously in SCID mice ($p < 0.01$).

[0052] Figure 10. Ha5-1(5)2.1vcMMAE inhibits the growth of subcutaneous established patient-derived colon cancer xenograft in SCID mice. AG-C4, patient-derived colon cancer xenograft tumor pieces, were implanted subcutaneously into SCID mice. Mice were randomized into two groups (n=6 in each group) when tumors reached 100 mm^3 . Ha5-1(5)2.1-vcMMAE (3 mg/kg) or PBS was administered intravenously every 3-4 days for a total of 4 doses starting on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $Width^2 \times Length/2$, where width is the smallest dimension and length is the largest. The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of AG-C4 human colon tumor xenografts implanted subcutaneously in SCID mice ($p < 0.05$).

[0053] Figure 11. Ha5-1(5)2.1vcMMAE inhibits the growth of subcutaneous established human ovarian cancer xenograft in nude mice. OVCAR-5 human ovarian cancer tumor cells (2.0×10^6 cells/mouse) were injected subcutaneously into the nude mice. Mice were randomized into two groups (n=6 in each group) when tumors reached 100 mm^3 . Ha5-1(5)2.1-vcMMAE (5 mg/kg) or PBS was administered intravenously once every 3-4 days for a total of 4 doses starting on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $Width^2 \times Length/2$, where width is the smallest dimension and length is the largest. The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of OVCAR-5 ovarian cancer xenografts implanted subcutaneously in nude mice ($p < 0.01$).

[0054] Figure 12. Ha5-1(5)2.1vcMMAE inhibits the growth of subcutaneous established patient-derived pancreatic cancer xenograft in SCID mice. AG-Panc3 patient-derived pancreatic tumor pieces were implanted subcutaneously into SCID mice. Mice were randomized into two groups (n=6 in each group) when tumors reached 85 mm^3 . Ha5-1(5)2.1-vcMMAE (5 mg/kg) or PBS was administered intravenously once every 3-4 days for a total of 4 doses beginning on Day 0. Tumor growth was monitored using

caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $Width^2 \times Length/2$, where width is the smallest dimension and length is the largest. The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of AG-Panc3 tumor xenografts implanted subcutaneously in SCID mice ($p < 0.01$).

[0055] Figure 13. Efficacy of Ha5-1(5)2.1vcMMAE compared to other 24P4C12 Antibody Drug Conjugates (ADCs) in Prostate Cancer LAPC9-AD Xenografts. LAPC-9AD androgen-dependent human prostate cancer cells (1.5×10^6 cells/mouse) were injected subcutaneously into male SCID mice. Mice were randomized into Ha5-1(5)2.1-vcMMAE, Ha5-1(5)2.1-mcMMAF and other Antibody Drug Conjugate (ADC) groups including a PBS control group ($n=6$ in each group), as shown in graph (Figure 13). When tumors reached 100 mm^3 , Ha5-1(5)2.1-vcMMAE, Ha5-1(5)2.1-mcMMAF and all other ADCs were administered intravenously at 10 mg/kg once on day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $Width^2 \times Length/2$, where width is the smallest dimension and length is the largest. The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of LAPC9-AD prostate cancer xenografts as compared to Ha5-1(5)2.1-mcMMAF ($p=0.0048$). (Figure 13). Other antibodies conjugated to -vcMMAE and -mcMMAF did not have any tumor inhibitory activity which shows that Ha5-1(5)2.1 possesses a significant prominent effect of inhibiting tumor growth and can be used for therapeutic purposes to treat and manage cancers set forth in Table I.

[0056] Figure 14. Detection of 24P4C12 protein in gastric cancer patient specimens by IHC. Expression of 24P4C12 protein by immunohistochemistry was tested in two (2) different tumor specimens from gastric cancer patients. Briefly, formalin fixed, paraffin wax-embedded tissues were cut into 4 micron sections and mounted on glass slides. The sections were de-waxed, rehydrated and treated with trypsin solution (0.05% trypsin (ICN, Aurora, Ohio) in 0.05% calcium chloride, with pH adjusted to 7.8) at 37°C for 10 minutes. Sections were then treated with 3% hydrogen peroxide solution to inactivate endogenous peroxidase activity. Serum-free protein block (Dako, Carpenteria, CA) was used to inhibit non-specific binding prior to incubation with monoclonal mouse anti-24P4C12 antibody or an isotype control. Subsequently, the sections were treated with the Super Sensitive™ Polymer-horseradish peroxidase (HRP) Detection System which consists of an incubation in Super Enhancer™ reagent followed by an incubation with

polymer-HRP secondary antibody conjugate (BioGenex, San Ramon, CA). The sections were then developed using the DAB kit (BioGenex, San Ramon, CA), nuclei were stained using hematoxylin, and analyzed by bright field microscopy. Specific staining was detected in patient specimens using the 24P4C12 immunoreactive antibody, as indicated by the brown staining. (See, **Figures 14(A) and 14(C)**. In contrast, the control antibody did not stain either patient specimen. (See, **Figures 14(B) and 14(D)**. The results show expression of 24P4C12 in the tumor cells of patient gastric cancer tissues. These results indicate that 24P4C12 is expressed in human cancers and that antibodies directed to this antigen (e.g. Ha5-1(5)2.1) are useful for diagnostic and therapeutic purposes. (**Figure 14(A) – 14(D)**).

DETAILED DESCRIPTION OF THE INVENTION

Outline of Sections

- I.) Definitions
- II.) 24P4C12 Antibodies
- III.) Antibody Drug Conjugates Generally
 - III(A). Maytansinoids
 - III(B). Auristatins and dolostatins
 - III(C). Calicheamicin
 - III(D). Other Cytotoxic Agents
- IV.) Antibody Drug Conjugates which Bind 24P4C12
- V.) Linker Units
- VI.) The Stretcher Unit
- VII.) The Amino Acid Unit
- VIII.) The Spacer Unit
- IX.) The Drug Unit
- X.) Drug Loading
- XI.) Methods of Determining Cytotoxic effect of ADCs
- XII.) Treatment of Cancer(s) Expressing 24P4C12
- XIII.) 24P4C12 as a Target for Antibody-based Therapy
- XIV.) 24P4C12 ADC Cocktails
- XV.) Combination Therapy
- XVI.) KITS/Articles of Manufacture

I.) Definitions:

[0057] Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference,

and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced herein are well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook *et al.*, Molecular Cloning: A Laboratory Manual 2nd. edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted.

[0058] When a trade name is used herein, reference to the trade name also refers to the product formulation, the generic drug, and the active pharmaceutical ingredient(s) of the trade name product, unless otherwise indicated by context.

[0059] The terms “advanced cancer”, “locally advanced cancer”, “advanced disease” and “locally advanced disease” mean cancers that have extended through the relevant tissue capsule, and are meant to include stage C disease under the American Urological Association (AUA) system, stage C1 - C2 disease under the Whitmore-Jewett system, and stage T3 - T4 and N+ disease under the TNM (tumor, node, metastasis) system. In general, surgery is not recommended for patients with locally advanced disease, and these patients have substantially less favorable outcomes compared to patients having clinically localized (organ-confined) cancer.

[0060] The abbreviation “AFP” refers to dimethylvaline-valine-dolaisoleuine-dolaproine-phenylalanine-p-phenylenediamine (*see Formula XVI infra*).

[0061] The abbreviation “MMAE” refers to monomethyl auristatin E (*see Formula XI infra*).

[0062] The abbreviation “AEB” refers to an ester produced by reacting auristatin E with paraacetyl benzoic acid (*see Formula XX infra*).

[0063] The abbreviation “AEVB” refers to an ester produced by reacting auristatin E with benzoylvaleric acid (*see Formula XXI infra*).

[0064] The abbreviation “MMAF” refers to dovaline-valine-dolaisoleuine-dolaproine-phenylalanine (*see Formula XVIV infra*).

[0065] Unless otherwise noted, the term “alkyl” refers to a saturated straight or branched hydrocarbon having from about 1 to about 20 carbon atoms (and all

combinations and subcombinations of ranges and specific numbers of carbon atoms therein), with from about 1 to about 8 carbon atoms being preferred. Examples of alkyl groups are methyl, ethyl, *n*-propyl, *iso*-propyl, *n*-butyl, *iso*-butyl, *sec*-butyl, *tert*-butyl, *n*-pentyl, 2-pentyl, 3-pentyl, 2-methyl-2-butyl, *n*-hexyl, *n*-heptyl, *n*-octyl, *n*-nonyl, *n*-decyl, 3-methyl-2-butyl, 3-methyl-1-butyl, 2-methyl-1-butyl, 1-hexyl, 2-hexyl, 3-hexyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 3-methyl-3-pentyl, 2-methyl-3-pentyl, 2,3-dimethyl-2-butyl, and 3,3-dimethyl-2-butyl.

[0066] Alkyl groups, whether alone or as part of another group, can be optionally substituted with one or more groups, preferably 1 to 3 groups (and any additional substituents selected from halogen), including, but not limited to, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SR', -SO₃R', -S(O)₂R', -S(O)R', -OH, =O, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN, where each R' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl, and wherein said -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, and -C₂-C₈ alkynyl groups can be optionally further substituted with one or more groups including, but not limited to, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R'', -OC(O)R'', -C(O)OR'', -C(O)NH₂, -C(O)NHR'', -C(O)N(R'')₂, -NHC(O)R'', -SR'', -SO₃R'', -S(O)₂R'', -S(O)R'', -OH, -N₃, -NH₂, -NH(R''), -N(R'')₂ and -CN, where each R'' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl.

[0067] Unless otherwise noted, the terms "alkenyl" and "alkynyl" refer to straight and branched carbon chains having from about 2 to about 20 carbon atoms (and all combinations and subcombinations of ranges and specific numbers of carbon atoms therein), with from about 2 to about 8 carbon atoms being preferred. An alkenyl chain has at least one double bond in the chain and an alkynyl chain has at least one triple bond in the chain. Examples of alkenyl groups include, but are not limited to, ethylene or vinyl, allyl, -1-but enyl, -2-but enyl, -isobut enyl, -1-pent enyl, -2-pent enyl, -3-methyl-1-but enyl, -2-methyl-2-but enyl, and -

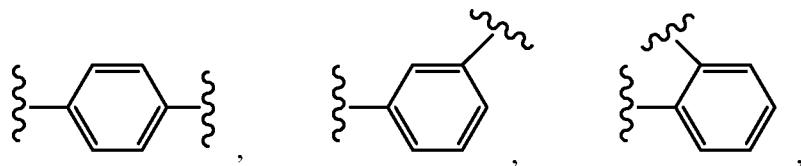
2,3-dimethyl-2- butenyl. Examples of alkynyl groups include, but are not limited to, acetylenic, propargyl, acetylenyl, propynyl, -1-butynyl, -2-butynyl, -1-pentynyl, -2-pentynyl, and -3-methyl-1 butynyl.

[0068] Alkenyl and alkynyl groups, whether alone or as part of another group, can be optionally substituted with one or more groups, preferably 1 to 3 groups (and any additional substituents selected from halogen), including but not limited to, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SR', -SO₃R', -S(O)₂R', -S(O)R', -OH, =O, -N₃, , -NH₂, -NH(R'), -N(R')₂ and -CN, where each R' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl and wherein said -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, and -C₂-C₈ alkynyl groups can be optionally further substituted with one or more substituents including, but not limited to, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R'', -OC(O)R'', -C(O)OR'', -C(O)NH₂, -C(O)NHR'', -C(O)N(R'')₂, -NHC(O)R'', -SR'', -SO₃R'', -S(O)₂R'', -S(O)R'', -OH, -N₃, -NH₂, -NH(R''), -N(R'')₂ and -CN, where each R'' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl.

[0069] Unless otherwise noted, the term "alkylene" refers to a saturated branched or straight chain hydrocarbon radical having from about 1 to about 20 carbon atoms (and all combinations and subcombinations of ranges and specific numbers of carbon atoms therein), with from about 1 to about 8 carbon atoms being preferred and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. Typical alkynes include, but are not limited to, methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decalene, 1,4-cyclohexylene, and the like. Alkylene groups, whether alone or as part of another group, can be optionally substituted with one or more groups, preferably 1 to 3 groups (and any additional substituents selected from halogen), including, but not limited to, -halogen, -O-(C₁-C₈ alkyl),

-O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SR', -SO₃R', -S(O)₂R', -S(O)R', -OH, =O, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN, where each R' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl and wherein said -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, and -C₂-C₈ alkynyl groups can be further optionally substituted with one or more substituents including, but not limited to, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R'', -OC(O)R'', -C(O)OR'', -C(O)NH₂, -C(O)NHR'', -C(O)N(R'')₂, -NHC(O)R'', -SR'', -SO₃R'', -S(O)₂R'', -S(O)R'', -OH, -N₃, -NH₂, -NH(R''), -N(R'')₂ and -CN, where each R'' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl.

[0070] Unless otherwise noted, the term “alkenylene” refers to an optionally substituted alkylene group containing at least one carbon-carbon double bond. Exemplary alkenylene groups include, for example, ethenylene (-CH=CH-) and propenylene (-CH=CHCH₂-).


[0071] Unless otherwise noted, the term “alkynylene” refers to an optionally substituted alkylene group containing at least one carbon-carbon triple bond. Exemplary alkynylene groups include, for example, acetylene (-C≡C-), propargyl (-CH₂C≡C-), and 4-pentynyl (-CH₂CH₂CH₂C≡CH-).

[0072] Unless otherwise noted, the term “aryl” refers to a monovalent aromatic hydrocarbon radical of 6-20 carbon atoms (and all combinations and subcombinations of ranges and specific numbers of carbon atoms therein) derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Some aryl groups are represented in the exemplary structures as “Ar”. Typical aryl groups include, but are not limited to, radicals derived from benzene, substituted benzene, phenyl, naphthalene, anthracene, biphenyl, and the like.

[0073] An aryl group, whether alone or as part of another group, can be optionally substituted with one or more, preferably 1 to 5, or even 1 to 2 groups including, but not limited to, -halogen, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂,

-NHC(O)R', -SR', -SO₃R', -S(O)₂R', -S(O)R', -OH, -NO₂, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN, where each R' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl and wherein said -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), and -aryl groups can be further optionally substituted with one or more substituents including, but not limited to, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R'', -OC(O)R'', -C(O)OR'', -C(O)NH₂, -C(O)NHR'', -C(O)N(R'')₂, -NHC(O)R'', -SR'', -SO₃R'', -S(O)₂R'', -S(O)R'', -OH, -N₃, -NH₂, -NH(R''), -N(R'')₂ and -CN, where each R'' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl.

[0074] Unless otherwise noted, the term "arylene" refers to an optionally substituted aryl group which is divalent (*i.e.*, derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent aromatic ring system) and can be in the ortho, meta, or para configurations as shown in the following structures with phenyl as the exemplary aryl group.

Typical "-(C₁-C₈ alkylene)aryl," "-(C₂-C₈ alkenylene)aryl," and "-(C₂-C₈ alkynylene)aryl" groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like.

[0075] Unless otherwise noted, the term "heterocycle," refers to a monocyclic, bicyclic, or polycyclic ring system having from 3 to 14 ring atoms (also referred to as ring members) wherein at least one ring atom in at least one ring is a heteroatom selected from N, O, P, or S (and all combinations and subcombinations of ranges and specific numbers of carbon atoms and heteroatoms therein). The heterocycle can have from 1 to 4 ring heteroatoms independently selected from N, O, P, or S. One or more N, C, or S atoms in

a heterocycle can be oxidized. A monocyclic heterocycle preferably has 3 to 7 ring members (e.g., 2 to 6 carbon atoms and 1 to 3 heteroatoms independently selected from N, O, P, or S), and a bicyclic heterocycle preferably has 5 to 10 ring members (e.g., 4 to 9 carbon atoms and 1 to 3 heteroatoms independently selected from N, O, P, or S). The ring that includes the heteroatom can be aromatic or non-aromatic. Unless otherwise noted, the heterocycle is attached to its pendant group at any heteroatom or carbon atom that results in a stable structure.

[0076] Heterocycles are described in Paquette, "Principles of Modern Heterocyclic Chemistry" (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and *J. Am. Chem. Soc.* 82:5566 (1960).

[0077] Examples of "heterocycle" groups include by way of example and not limitation pyridyl, dihydropyridyl, tetrahydropyridyl (piperidyl), thiazolyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, bis-tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thienyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxyathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4H-carbazolyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxyazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, and isatinoyl. Preferred "heterocycle" groups include, but are not limited to, benzofuranyl, benzothiophenyl, indolyl, benzopyrazolyl, coumarinyl, isoquinolinyl, pyrrolyl, thiophenyl, furanyl, thiazolyl, imidazolyl, pyrazolyl, triazolyl, quinolinyl, pyrimidinyl, pyridinyl, pyridonyl, pyrazinyl, pyridazinyl, isothiazolyl, isoxazolyl and tetrazolyl.

[0078] A heterocycle group, whether alone or as part of another group, can be optionally substituted with one or more groups, preferably 1 to 2 groups, including but not limited to, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SR', -SO₃R', -S(O)₂R', -S(O)R', -OH, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN, where each R' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl and wherein said -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, and -aryl groups can be further optionally substituted with one or more substituents including, but not limited to, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R'', -OC(O)R'', -C(O)OR'', -C(O)NH₂, -C(O)NHR'', -C(O)N(R'')₂, -NHC(O)R'', -SR'', -SO₃R'', -S(O)₂R'', -S(O)R'', -OH, -N₃, -NH₂, -NH(R''), -N(R'')₂ and -CN, where each R'' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or aryl.

[0079] By way of example and not limitation, carbon-bonded heterocycles can be bonded at the following positions: position 2, 3, 4, 5, or 6 of a pyridine; position 3, 4, 5, or 6 of a pyridazine; position 2, 4, 5, or 6 of a pyrimidine; position 2, 3, 5, or 6 of a pyrazine; position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole; position 2, 4, or 5 of an oxazole, imidazole or thiazole; position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole; position 2 or 3 of an aziridine; position 2, 3, or 4 of an azetidine; position 2, 3, 4, 5, 6, 7, or 8 of a quinoline; or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline. Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.

[0080] By way of example and not limitation, nitrogen bonded heterocycles can be bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3-pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, or 1H-indazole; position 2 of a isoindole, or isoindoline; position 4 of a morpholine; and position 9 of a

carbazole, or β -carboline. Still more typically, nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1-pyrazolyl, and 1-piperidinyl.

[0081] Unless otherwise noted, the term “carbocycle,” refers to a saturated or unsaturated non-aromatic monocyclic, bicyclic, or polycyclic ring system having from 3 to 14 ring atoms (and all combinations and subcombinations of ranges and specific numbers of carbon atoms therein) wherein all of the ring atoms are carbon atoms. Monocyclic carbocycles preferably have 3 to 6 ring atoms, still more preferably 5 or 6 ring atoms. Bicyclic carbocycles preferably have 7 to 12 ring atoms, *e.g.*, arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo [5,6] or [6,6] system. The term “carbocycle” includes, for example, a monocyclic carbocycle ring fused to an aryl ring (*e.g.*, a monocyclic carbocycle ring fused to a benzene ring). Carbocycles preferably have 3 to 8 carbon ring atoms.

[0082] Carbocycle groups, whether alone or as part of another group, can be optionally substituted with, for example, one or more groups, preferably 1 or 2 groups (and any additional substituents selected from halogen), including, but not limited to, -halogen, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH₂, -C(O)NHR', -C(O)N(R')₂, -NHC(O)R', -SR', -SO₃R', -S(O)₂R', -S(O)R', -OH, =O, -N₃, -NH₂, -NH(R'), -N(R')₂ and -CN, where each R' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl and wherein said -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), and -aryl groups can be further optionally substituted with one or more substituents including, but not limited to, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -halogen, -O-(C₁-C₈ alkyl), -O-(C₂-C₈ alkenyl), -O-(C₂-C₈ alkynyl), -aryl, -C(O)R'', -OC(O)R'', -C(O)OR'', -C(O)NH₂, -C(O)NHR'', -C(O)N(R'')₂, -NHC(O)R'', -SR'', -SO₃R'', -S(O)₂R'', -S(O)R'', -OH, -N₃, -NH₂, -NH(R''), -N(R'')₂ and -CN, where each R'' is independently selected from -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, or -aryl.

[0083] Examples of monocyclic carbocyclic substituents include -cyclopropyl, -cyclobutyl, -cyclopentyl, -1-cyclopent-1-enyl, -1-cyclopent-2-enyl, -1-cyclopent-3-enyl,

cyclohexyl, -1-cyclohex-1-enyl, -1-cyclohex-2-enyl, -1-cyclohex-3-enyl, -cycloheptyl, -cyclooctyl, -1,3-cyclohexadienyl, -1,4-cyclohexadienyl, -1,3-cycloheptadienyl, -1,3,5-cycloheptatrienyl, and -cyclooctadienyl.

[0084] A "carbocyclo," whether used alone or as part of another group, refers to an optionally substituted carbocycle group as defined above that is divalent (i.e., derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent carbocyclic ring system).

[0085] Unless otherwise indicated by context, a hyphen (-) designates the point of attachment to the pendant molecule. Accordingly, the term “-(C₁-C₈ alkylene)aryl” or “-C₁-C₈ alkylene(aryl)” refers to a C₁-C₈ alkylene radical as defined herein wherein the alkylene radical is attached to the pendant molecule at any of the carbon atoms of the alkylene radical and one of the hydrogen atoms bonded to a carbon atom of the alkylene radical is replaced with an aryl radical as defined herein.

[0086] When a particular group is "substituted", that group may have one or more substituents, preferably from one to five substituents, more preferably from one to three substituents, most preferably from one to two substituents, independently selected from the list of substituents. The group can, however, generally have any number of substituents selected from halogen. Groups that are substituted are so indicated.

[0087] It is intended that the definition of any substituent or variable at a particular location in a molecule be independent of its definitions elsewhere in that molecule. It is understood that substituents and substitution patterns on the compounds of this invention can be selected by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art as well as those methods set forth herein.

[0088] Protective groups as used herein refer to groups which selectively block, either temporarily or permanently, one reactive site in a multifunctional compound. Suitable hydroxy-protecting groups for use in the present invention are pharmaceutically acceptable and may or may not need to be cleaved from the parent compound after administration to a subject in order for the compound to be active. Cleavage is through normal metabolic processes within the body. Hydroxy protecting groups are well known in the art, see, Protective Groups in Organic Synthesis by T. W. Greene and P. G. M. Wuts (John Wiley & sons, 3rd Edition) incorporated herein by reference in its entirety and

for all purposes and include, for example, ether (e.g., alkyl ethers and silyl ethers including, for example, dialkylsilylether, trialkylsilylether, dialkylalkoxysilylether), ester, carbonate, carbamates, sulfonate, and phosphate protecting groups. Examples of hydroxy protecting groups include, but are not limited to, methyl ether; methoxymethyl ether, methylthiomethyl ether, (phenyldimethylsilyl)methoxymethyl ether, benzyloxymethyl ether, p-methoxybenzyloxymethyl ether, p-nitrobenzyloxymethyl ether, o-nitrobenzyloxymethyl ether, (4-methoxyphenoxy)methyl ether, guaiacolmethyl ether, t-butoxymethyl ether, 4-pentyloxymethyl ether, siloxymethyl ether, 2-methoxyethoxymethyl ether, 2,2,2-trichloroethoxymethyl ether, bis(2-chloroethoxy)methyl ether, 2-(trimethylsilyl)ethoxymethyl ether, menthoxymethyl ether, tetrahydropyranyl ether, 1-methoxycyclohexyl ether, 4-methoxytetrahydrothiopyranyl ether, 4-methoxytetrahydrothiopyranyl ether S,S-Dioxide, 1-[(2-choro-4-methyl)phenyl]-4-methoxypiperidin-4-yl ether, 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl ether, 1,4-dioxan-2-yl ether, tetrahydrofuranyl ether, tetrahydrothiofuranyl ether; substituted ethyl ethers such as 1-ethoxyethyl ether, 1-(2-chloroethoxy)ethyl ether, 1-[2-(trimethylsilyl)ethoxy]ethyl ether, 1-methyl-1-methoxyethyl ether, 1-methyl-1-benzyloxyethyl ether, 1-methyl-1-benzyloxy-2-fluoroethyl ether, 1-methyl-1phenoxyethyl ether, 2-trimethylsilyl ether, t-butyl ether, allyl ether, propargyl ethers, p-chlorophenyl ether, p-methoxyphenyl ether, benzyl ether, p-methoxybenzyl ether 3,4-dimethoxybenzyl ether, trimethylsilyl ether, triethylsilyl ether, tripropylsilylether, dimethylisopropylsilyl ether, diethylisopropylsilyl ether, dimethylhexylsilyl ether, t-butyldimethylsilyl ether, diphenylmethylsilyl ether, benzoylformate ester, acetate ester, chloroacetate ester, dichloroacetate ester, trichloroacetate ester, trifluoroacetate ester, methoxyacetate ester, triphnaylmethoxyacetate ester, phenylacetate ester, benzoate ester, alkyl methyl carbonate, alkyl 9-fluorenylmethyl carbonate, alkyl ethyl carbonate, alkyl 2,2,2-trichloroethyl carbonate, 1,1,-dimethyl-2,2,2-trichloroethyl carbonate, alkylsulfonate, methanesulfonate, benzylsulfonate, tosylate, methylene acetal, ethylidene acetal, and t-butylmethyldene ketal. Preferred protecting groups are represented by the formulas -R^a, -Si(R^a)(R^a)(R^a), -C(O)R^a, -C(O)OR^a, -C(O)NH(R^a), -S(O)R^a, -S(O)₂OH, P(O)(OH)₂, and -P(O)(OH)OR^a, wherein R^a is C₁-C₂₀ alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, -C₁-C₂₀ alkylene(carbocycle), -C₂-C₂₀ alkenylene(carbocycle), -C₂-C₂₀ alkynylene(carbocycle), -C₆-C₁₀ aryl, -C₁-C₂₀ alkylene(aryl), -C₂-C₂₀ alkenylene(aryl), -C₂-C₂₀ alkynylene(aryl), -

C₁-C₂₀ alkylene(heterocycle), -C₂-C₂₀ alkenylene(heterocycle), or -C₂-C₂₀ alkynylene(heterocycle) wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, aryl, carbocycle, and heterocycle radicals whether alone or as part of another group are optionally substituted.

[0089] “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 24P4C12 (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 24P4C12. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

[0090] The term “analog” refers to a molecule which is structurally similar or shares similar or corresponding attributes with another molecule (*e.g.* a 24P4C12-related protein). For example, an analog of a 24P4C12 protein can be specifically bound by an antibody or T cell that specifically binds to 24P4C12.

[0091] The term “antibody” is used in the broadest sense unless clearly indicated otherwise. Therefore, an “antibody” can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridoma technology. 24P4C12 antibodies comprise monoclonal and polyclonal antibodies as well as fragments containing the antigen-binding domain and/or one or more complementarity determining regions of these antibodies. As used herein, the term “antibody” refers to any form of antibody or fragment thereof that specifically binds 24P4C12 and/or exhibits the desired biological activity and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (*e.g.*, bispecific antibodies), and antibody fragments so long as they specifically bind 24P4C12 and/or exhibit the desired biological activity. Any specific antibody can be used in the methods and compositions provided herein. Thus, in one embodiment the term “antibody” encompasses a molecule comprising at least one variable region from a light chain immunoglobulin molecule and at least one variable region from a heavy chain molecule that in combination form a specific binding site for the target antigen. In one embodiment, the antibody is an IgG antibody. For example, the antibody is a IgG1, IgG2, IgG3, or IgG4 antibody. The antibodies useful in the present methods and compositions

can be generated in cell culture, in phage, or in various animals, including but not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, and apes. Therefore, in one embodiment, an antibody of the present invention is a mammalian antibody. Phage techniques can be used to isolate an initial antibody or to generate variants with altered specificity or avidity characteristics. Such techniques are routine and well known in the art. In one embodiment, the antibody is produced by recombinant means known in the art. For example, a recombinant antibody can be produced by transfecting a host cell with a vector comprising a DNA sequence encoding the antibody. One or more vectors can be used to transfect the DNA sequence expressing at least one VL and one VH region in the host cell. Exemplary descriptions of recombinant means of antibody generation and production include Delves, *ANTIBODY PRODUCTION: ESSENTIAL TECHNIQUES* (Wiley, 1997); Shephard, *et al.*, *MONOCLONAL ANTIBODIES* (Oxford University Press, 2000); Goding, *MONOCLONAL ANTIBODIES: PRINCIPLES AND PRACTICE* (Academic Press, 1993); and *CURRENT PROTOCOLS IN IMMUNOLOGY* (John Wiley & Sons, most recent edition). An antibody of the present invention can be modified by recombinant means to increase efficacy of the antibody in mediating the desired function. Thus, it is within the scope of the invention that antibodies can be modified by substitutions using recombinant means. Typically, the substitutions will be conservative substitutions. For example, at least one amino acid in the constant region of the antibody can be replaced with a different residue. See, *e.g.*, U.S. Patent No. 5,624,821, U.S. Patent No. 6,194,551, Application No. WO 9958572; and Angal, *et al.*, *Mol. Immunol.* 30: 105-08 (1993). The modification in amino acids includes deletions, additions, and substitutions of amino acids. In some cases, such changes are made to reduce undesired activities, *e.g.*, complement-dependent cytotoxicity. Frequently, the antibodies are labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. These antibodies can be screened for binding to normal or defective 24P4C12. See *e.g.*, *ANTIBODY ENGINEERING: A PRACTICAL APPROACH* (Oxford University Press, 1996). Suitable antibodies with the desired biologic activities can be identified using the following *in vitro* assays including but not limited to: proliferation, migration, adhesion, soft agar growth,

angiogenesis, cell-cell communication, apoptosis, transport, signal transduction, and the following *in vivo* assays such as the inhibition of tumor growth. The antibodies provided herein can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they can be screened for the ability to bind to the specific antigen without inhibiting the receptor-binding or biological activity of the antigen. As neutralizing antibodies, the antibodies can be useful in competitive binding assays. They can also be used to quantify the 24P4C12 or its receptor.

[0092] The term "antigen-binding portion" or "antibody fragment" of an antibody (or simply "antibody portion"), as used herein, refers to one or more fragments of a 24P4C12 antibody that retain the ability to specifically bind to an antigen (e.g., 24P4C12 and variants; Figure 1). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term "antigen-binding portion" of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the V_L, V_H, C_L and C_{H1} domains; (ii) a F(ab')₂ fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the V_H and C_{H1} domains; (iv) a Fv fragment consisting of the V_L and V_H domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) *Nature* 341:544-546), which consists of a V_H domain; and (vi) an isolated complementarily determining region (CDR). Furthermore, although the two domains of the Fv fragment, V_L and V_H, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the V_L and V_H regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) *Science* 242:423-426; and Huston et al. (1988) *Proc. Natl. Acad. Sci. USA* 85:5879-5883). Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.

[0093] As used herein, any form of the "antigen" can be used to generate an antibody that is specific for 24P4C12. Thus, the eliciting antigen may be a single epitope, multiple epitopes, or the entire protein alone or in combination with one or more immunogenicity enhancing agents known in the art. The eliciting antigen may be an isolated full-length

protein, a cell surface protein (*e.g.*, immunizing with cells transfected with at least a portion of the antigen), or a soluble protein (*e.g.*, immunizing with only the extracellular domain portion of the protein). The antigen may be produced in a genetically modified cell. The DNA encoding the antigen may be genomic or non-genomic (*e.g.*, cDNA) and encodes at least a portion of the extracellular domain. As used herein, the term “portion” refers to the minimal number of amino acids or nucleic acids, as appropriate, to constitute an immunogenic epitope of the antigen of interest. Any genetic vectors suitable for transformation of the cells of interest may be employed, including but not limited to adenoviral vectors, plasmids, and non-viral vectors, such as cationic lipids. In one embodiment, the antibody of the methods and compositions herein specifically bind at least a portion of the extracellular domain of the 24P4C12 of interest.

[0094] The antibodies or antigen binding fragments thereof provided herein may be conjugated to a “bioactive agent.” As used herein, the term “bioactive agent” refers to any synthetic or naturally occurring compound that binds the antigen and/or enhances or mediates a desired biological effect to enhance cell-killing toxins. In one embodiment, the binding fragments useful in the present invention are biologically active fragments. As used herein, the term “biologically active” refers to an antibody or antibody fragment that is capable of binding the desired antigenic epitope and directly or indirectly exerting a biologic effect. Direct effects include, but are not limited to the modulation, stimulation, and/ or inhibition of a growth signal, the modulation, stimulation, and/ or inhibition of an anti-apoptotic signal, the modulation, stimulation, and/ or inhibition of an apoptotic or necrotic signal, modulation, stimulation, and/ or inhibition the ADCC cascade, and modulation, stimulation, and/ or inhibition the CDC cascade.

[0095] “Bispecific” antibodies are also useful in the present methods and compositions. As used herein, the term “bispecific antibody” refers to an antibody, typically a monoclonal antibody, having binding specificities for at least two different antigenic epitopes. In one embodiment, the epitopes are from the same antigen. In another embodiment, the epitopes are from two different antigens. Methods for making bispecific antibodies are known in the art. For example, bispecific antibodies can be produced recombinantly using the co-expression of two immunoglobulin heavy chain/light chain pairs. See, *e.g.*, Milstein *et al.*, *Nature* 305:537-39 (1983). Alternatively, bispecific antibodies can be prepared using chemical linkage. See, *e.g.*,

Brennan, *et al.*, *Science* 229:81 (1985). Bispecific antibodies include bispecific antibody fragments. See, *e.g.*, Hollinger, *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 90:6444-48 (1993), Gruber, *et al.*, *J. Immunol.* 152:5368 (1994).

[0096] The monoclonal antibodies described herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they specifically bind the target antigen and/or exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison *et al.*, *Proc. Natl. Acad. Sci. USA* 81: 6851-6855 (1984)).

[0097] The term "Chemotherapeutic Agent" refers to all chemical compounds that are effective in inhibiting tumor growth. Non-limiting examples of chemotherapeutic agents include alkylating agents; for example, nitrogen mustards, ethyleneimine compounds and alkyl sulphonates; antimetabolites, for example, folic acid, purine or pyrimidine antagonists; mitotic inhibitors, for example, anti-tubulin agents such as vinca alkaloids, auristatins and derivatives of podophyllotoxin; cytotoxic antibiotics; compounds that damage or interfere with DNA expression or replication, for example, DNA minor groove binders; and growth factor receptor antagonists. In addition, chemotherapeutic agents include cytotoxic agents (as defined herein), antibodies, biological molecules and small molecules.

[0098] The term "compound" refers to and encompasses the chemical compound itself as well as, whether explicitly stated or not, and unless the context makes clear that the following are to be excluded: amorphous and crystalline forms of the compound, including polymorphic forms, where these forms may be part of a mixture or in isolation; free acid and free base forms of the compound, which are typically the forms shown in the structures provided herein; isomers of the compound, which refers to optical isomers, and tautomeric isomers, where optical isomers include enantiomers and diastereomers, chiral isomers and non-chiral isomers, and the optical isomers include isolated optical isomers as well as mixtures of optical isomers including racemic and non-racemic mixtures; where an isomer may be in isolated form or in a mixture with one or more other

isomers; isotopes of the compound, including deuterium- and tritium-containing compounds, and including compounds containing radioisotopes, including therapeutically- and diagnostically-effective radioisotopes; multimeric forms of the compound, including dimeric, trimeric, etc. forms; salts of the compound, preferably pharmaceutically acceptable salts, including acid addition salts and base addition salts, including salts having organic counterions and inorganic counterions, and including zwitterionic forms, where if a compound is associated with two or more counterions, the two or more counterions may be the same or different; and solvates of the compound, including hemisolvates, monosolvates, disolvates, etc., including organic solvates and inorganic solvates, said inorganic solvates including hydrates; where if a compound is associated with two or more solvent molecules, the two or more solvent molecules may be the same or different. In some instances, reference made herein to a compound of the invention will include an explicit reference to one or of the above forms, *e.g.*, salts and/or solvates; however, this reference is for emphasis only, and is not to be construed as excluding other of the above forms as identified above.

[0099] As used herein, the term “conservative substitution” refers to substitutions of amino acids known to those of skill in this art and may be made generally without altering the biological activity of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, *e.g.*, Watson, *et al.*, MOLECULAR BIOLOGY OF THE GENE, The Benjamin/Cummings Pub. Co., p. 224 (4th Edition 1987)). Such exemplary substitutions are preferably made in accordance with those set forth in Table II and Table(s) III(a-b). For example, such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and valine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the

significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in particular environments (see, *e.g.* Table III(a) herein; pages 13-15 "Biochemistry" 2nd ED. Lubert Stryer ed (Stanford University); Henikoff *et al.*, PNAS 1992 Vol 89 10915-10919; Lei *et al.*, J Biol Chem 1995 May 19; 270(20):11882-6). Other substitutions are also permissible and may be determined empirically or in accord with known conservative substitutions.

[00100] The term "cytotoxic agent" refers to a substance that inhibits or prevents the expression activity of cells, function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes, chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not limited to auristatins (*e.g.*, auristatin E, auristatin F, MMAE and MMAF), auromycins, maytansinoids, ricin, ricin A-chain, combrestatin, duocarmycins, dolastatins, doxorubicin, daunorubicin, taxols, cisplatin, cc1065, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, *Pseudomonas exotoxin* (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, *Sapaonaria officinalis* inhibitor, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes such as At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹² or ²¹³, P³² and radioactive isotopes of Lu including Lu¹⁷⁷. Antibodies may also be conjugated to an anti-cancer pro-drug activating enzyme capable of converting the pro-drug to its active form.

[00101] As used herein, the term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (V_H) connected to a light chain variable domain (V_L) in the same polypeptide chain (V_H-V_L). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, *e.g.*, EP 404,097; WO 93/11161; and Hollinger *et al.*, Proc. Natl. Acad. Sci. USA 90:6444-48 (1993).

[00102] The term “deplete,” in the context of the effect of a 24P4C12 binding agent on 24P4C12-expressing cells, refers to a reduction in the number of or elimination of the 24P4C12-expressing cells.

[00103] The term “gene product” is used herein to indicate a peptide/protein or mRNA. For example, a “gene product of the invention” is sometimes referred to herein as a “cancer amino acid sequence”, “cancer protein”, “protein of a cancer listed in Table I”, a “cancer mRNA”, “mRNA of a cancer listed in Table I”, etc. In one embodiment, the cancer protein is encoded by a nucleic acid of Figure 1. The cancer protein can be a fragment, or alternatively, be the full-length protein encoded by nucleic acids of Figure 1. In one embodiment, a cancer amino acid sequence is used to determine sequence identity or similarity. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Figure 1. In another embodiment, the sequences are sequence variants as further described herein.

[00104] “Heteroconjugate” antibodies are useful in the present methods and compositions. As used herein, the term “heteroconjugate antibody” refers to two covalently joined antibodies. Such antibodies can be prepared using known methods in synthetic protein chemistry, including using crosslinking agents. See, *e.g.*, U.S. Patent No. 4,676,980.

[00105] The term “homolog” refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions.

[00106] In one embodiment, the antibody provided herein is a “human antibody.” As used herein, the term “human antibody” refers to an antibody in which essentially the entire sequences of the light chain and heavy chain sequences, including the complementary determining regions (CDRs), are from human genes. In one embodiment, human monoclonal antibodies are prepared by the trioma technique, the human B-cell technique (see, *e.g.*, Kozbor, *et al.*, *Immunol. Today* 4: 72 (1983), EBV transformation technique (see, *e.g.*, Cole *et al.* **MONOCLONAL ANTIBODIES AND CANCER THERAPY** 77-96 (1985)), or using phage display (see, *e.g.*, Marks *et al.*, *J. Mol. Biol.* 222:581 (1991)). In a specific embodiment, the human antibody is generated in a transgenic mouse. Techniques for making such partially to fully human antibodies are known in the art and any such techniques can be used. According to one particularly

preferred embodiment, fully human antibody sequences are made in a transgenic mouse engineered to express human heavy and light chain antibody genes. An exemplary description of preparing transgenic mice that produce human antibodies found in Application No. WO 02/43478 and United States Patent 6,657,103 (Abgenix) and its progeny. B cells from transgenic mice that produce the desired antibody can then be fused to make hybridoma cell lines for continuous production of the antibody. See, *e.g.*, U.S. Patent Nos. 5,569,825; 5,625,126; 5,633,425; 5,661,016; and 5,545,806; and Jakobovits, *Adv. Drug Del. Rev.* 31:33-42 (1998); Green, *et al.*, *J. Exp. Med.* 188:483-95 (1998).

[00107] As used herein, the term "humanized antibody" refers to forms of antibodies that contain sequences from non-human (*e.g.*, murine) antibodies as well as human antibodies. Such antibodies are chimeric antibodies which contain minimal sequence derived from non-human immunoglobulin. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. See *e.g.*, Cabilly U.S. Patent No. 4,816,567; Queen *et al.* (1989) *Proc. Nat'l Acad. Sci. USA* 86:10029-10033; and *ANTIBODY ENGINEERING: A PRACTICAL APPROACH* (Oxford University Press 1996).

[00108] The terms "inhibit" or "inhibition of" as used herein means to reduce by a measurable amount, or to prevent entirely.

[00109] The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their *in situ* environment. For example, a polynucleotide is said to be "isolated" when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the 24P4C12 genes or that encode polypeptides other than 24P4C12 gene product or fragments thereof. A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 24P4C12 polynucleotide. A

protein is said to be “isolated,” for example, when physical, mechanical or chemical methods are employed to remove the 24P4C12 proteins from cellular constituents that are normally associated with the protein. A skilled artisan can readily employ standard purification methods to obtain an isolated 24P4C12 protein. Alternatively, an isolated protein can be prepared by chemical means.

[00110] Suitable “labels” include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents teaching the use of such labels include U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. In addition, the antibodies provided herein can be useful as the antigen-binding component of fluorobodies. See *e.g.*, Zeytun *et al.*, *Nat. Biotechnol.* 21:1473-79 (2003).

[00111] The term “mammal” refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal is a human.

[00112] The terms “metastatic cancer” and “metastatic disease” mean cancers that have spread to regional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage TxNxM+ under the TNM system.

[00113] The term "modulator" or "test compound" or "drug candidate" or grammatical equivalents as used herein describe any molecule, *e.g.*, protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the cancer phenotype or the expression of a cancer sequence, *e.g.*, a nucleic acid or protein sequences, or effects of cancer sequences (*e.g.*, signaling, gene expression, protein interaction, etc.) In one aspect, a modulator will neutralize the effect of a cancer protein of the invention. By "neutralize" is meant that an activity of a protein is inhibited or blocked, along with the consequent effect on the cell. In another aspect, a modulator will neutralize the effect of a gene, and its corresponding protein, of the invention by normalizing levels of said protein. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein, or downstream effector pathways. In one embodiment, the modulator suppresses a cancer phenotype, *e.g.* to a normal tissue fingerprint. In another embodiment, a modulator induced a cancer phenotype. Generally, a plurality of assay

mixtures is run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, *i.e.*, at zero concentration or below the level of detection.

[00114] Modulators, drug candidates, or test compounds encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Modulators also comprise biomolecules such as peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides. One class of modulators are peptides, for example of from about five to about 35 amino acids, with from about five to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. Preferably, the cancer modulatory protein is soluble, includes a non-transmembrane region, and/or, has an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, *i.e.*, to cysteine. In one embodiment, a cancer protein of the invention is conjugated to an immunogenic agent as discussed herein. In one embodiment, the cancer protein is conjugated to BSA. The peptides of the invention, *e.g.*, of preferred lengths, can be linked to each other or to other amino acids to create a longer peptide/protein. The modulatory peptides can be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. In a preferred embodiment, peptide/protein-based modulators are antibodies, and fragments thereof, as defined herein.

[00115] The term "monoclonal antibody", as used herein, refers to an antibody obtained from a population of substantially homogeneous antibodies, *i.e.*, the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly

specific, being directed against a single antigenic epitope. In contrast, conventional (polyclonal) antibody preparations typically include a multitude of antibodies directed against (or specific for) different epitopes. In one embodiment, the polyclonal antibody contains a plurality of monoclonal antibodies with different epitope specificities, affinities, or avidities within a single antigen that contains multiple antigenic epitopes. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler *et al.*, *Nature* 256: 495 (1975), or may be made by recombinant DNA methods (see, *e.g.*, U.S. Pat. No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson *et al.*, *Nature* 352: 624-628 (1991) and Marks *et al.*, *J. Mol. Biol.* 222: 581-597 (1991), for example. These monoclonal antibodies will usually bind with at least a K_d of about 1 μM , more usually at least about 300 nM, typically at least about 30 nM, preferably at least about 10 nM, more preferably at least about 3 nM or better, usually determined by ELISA.

[00116] A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.

[00117] "Pharmaceutically acceptable" refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals.

[00118] The term "polynucleotide" means a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term is often used interchangeably with "oligonucleotide". A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T), as shown for example in Figure 1, can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil (U) instead of thymidine (T).

[00119] The term “polypeptide” means a polymer of at least about 4, 5, 6, 7, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with “peptide” or “protein”.

[00120] A “recombinant” DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation *in vitro*.

[00121] As used herein, the term "single-chain Fv" or "scFv" or "single chain" antibody refers to antibody fragments comprising the V_H and V_L domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the V_H and V_L domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun, THE PHARMACOLOGY OF MONOCLONAL ANTIBODIES, vol. 113, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994).

[00122] As used herein, the terms “specific”, “specifically binds” and “binds specifically” refer to the selective binding of the antibody to the target antigen epitope. Antibodies can be tested for specificity of binding by comparing binding to appropriate antigen to binding to irrelevant antigen or antigen mixture under a given set of conditions. If the antibody binds to the appropriate antigen at least 2, 5, 7, and preferably 10 times more than to irrelevant antigen or antigen mixture then it is considered to be specific. In one embodiment, a specific antibody is one that only binds the 24P4C12 antigen, but does not bind to the irrelevant antigen. In another embodiment, a specific antibody is one that binds human 24P4C12 antigen but does not bind a non-human 24P4C12 antigen with 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater amino acid homology with the 24P4C12 antigen. In another embodiment, a specific antibody is one that binds human 24P4C12 antigen and binds murine 24P4C12 antigen, but with a higher degree of binding the human antigen. In another embodiment, a specific antibody is one that binds human 24P4C12 antigen and binds primate 24P4C12 antigen, but with a higher degree of binding the human antigen. In another embodiment, the specific antibody binds to human 24P4C12 antigen and any non-human 24P4C12 antigen, but with a higher degree of binding the human antigen or any combination thereof.

[00123] As used herein “to treat” or “therapeutic” and grammatically related terms, refer to any improvement of any consequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are the byproducts of an alternative therapeutic modality; as is readily appreciated in the art, full eradication of disease is a preferred but albeit not a requirement for a treatment act.

[00124] The term “variant” refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein (e.g. the 24P4C12 protein shown in Figure 1.) An analog is an example of a variant protein. Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants.

[00125] The “24P4C12-related proteins” of the invention include those specifically identified herein (see, Figure 1A – 1I), as well as allelic variants, conservative substitution variants, analogs and homologs that can be isolated/generated and characterized without undue experimentation following the methods outlined herein or readily available in the art. Fusion proteins that combine parts of different 24P4C12 proteins or fragments thereof, as well as fusion proteins of a 24P4C12 protein and a heterologous polypeptide are also included. Such 24P4C12 proteins are collectively referred to as the 24P4C12-related proteins, the proteins of the invention, or 24P4C12. The term “24P4C12-related protein” refers to a polypeptide fragment or a 24P4C12 protein sequence of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 amino acids; or, at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 330, 335, 339 or more amino acids.

II.) 24P4C12 Antibodies

[00126] Another aspect of the invention provides antibodies that bind to 24P4C12-related proteins (See Figure 1). Preferred antibodies specifically bind to a 24P4C12-related protein and do not bind (or bind weakly) to peptides or proteins that are not 24P4C12-related proteins under physiological conditions. For example, antibodies that bind 24P4C12 can bind 24P4C12-related proteins such as 24P4C12 variants and the homologs or analogs thereof.

[00127] 24P4C12 antibodies of the invention are particularly useful in cancer (see, *e.g.*, Table I) prognostic assays, imaging, and therapeutic methodologies. Similarly, such antibodies are useful in the treatment, and/or prognosis of colon and other cancers, to the extent 24P4C12 is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (*e.g.*, single chain antibodies) are therapeutically useful in treating cancers in which the expression of 24P4C12 is involved, such as advanced or metastatic colon cancers or other advanced or metastatic cancers.

[00128] Various methods for the preparation of antibodies, specifically monoclonal antibodies, are well known in the art. For example, antibodies can be prepared by immunizing a suitable mammalian host using a 24P4C12-related protein, peptide, or fragment, in isolated or immunoconjugated form (*Antibodies: A Laboratory Manual*, CSH Press, Eds., Harlow, and Lane (1988); Harlow, *Antibodies*, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins of 24P4C12 can also be used, such as a 24P4C12 GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of Figure 1 is produced, and then used as an immunogen to generate appropriate antibodies. In another embodiment, a 24P4C12-related protein is synthesized and used as an immunogen.

[00129] In addition, naked DNA immunization techniques known in the art are used (with or without purified 24P4C12-related protein or 24P4C12 expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly *et al.*, 1997, *Ann. Rev. Immunol.* 15: 617-648).

[00130] The amino acid sequence of a 24P4C12 protein as shown in Figure 1 can be analyzed to select specific regions of the 24P4C12 protein for generating antibodies. For example, hydrophobicity and hydrophilicity analyses of a 24P4C12 amino acid sequence are used to identify hydrophilic regions in the 24P4C12 structure. Regions of a 24P4C12 protein that show immunogenic structure, as well as other regions and domains, can readily be identified using various other methods known in the art, such as Chou-Fasman, Garnier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis. Hydrophilicity profiles can be generated using the method of Hopp, T.P. and Woods, K.R., 1981, *Proc. Natl. Acad. Sci. U.S.A.* 78:3824-3828. Hydropathicity profiles can be generated using the method of Kyte, J. and Doolittle, R.F., 1982, *J. Mol. Biol.* 157:105-132. Percent (%) Accessible Residues profiles can be generated using the method of

Janin J., 1979, *Nature* 277:491-492. Average Flexibility profiles can be generated using the method of Bhaskaran R., Ponnuswamy P.K., 1988, *Int. J. Pept. Protein Res.* 32:242-255. Beta-turn profiles can be generated using the method of Deleage, G., Roux B., 1987, *Protein Engineering* 1:289-294. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Preferred methods for the generation of 24P4C12 antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carrier protein. In some circumstances, direct conjugation using, for example, carbodiimide reagents are used; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, are effective. Administration of a 24P4C12 immunogen is often conducted by injection over a suitable time period and with use of a suitable adjuvant, as is understood in the art. During the immunization schedule, titers of antibodies can be taken to determine adequacy of antibody formation.

[00131] 24P4C12 monoclonal antibodies can be produced by various means well known in the art. For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known. Immortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a 24P4C12-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from *in vitro* cultures or from ascites fluid.

[00132] The antibodies or fragments of the invention can also be produced by recombinant means. Regions that bind specifically to the desired regions of a 24P4C12 protein can also be produced in the context of chimeric or complementarity-determining region (CDR) grafted antibodies of multiple species origin. Humanized or human 24P4C12 antibodies can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the non-human antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones *et al.*, 1986, *Nature* 321: 522-525; Riechmann *et al.*, 1988, *Nature* 332: 323-327; Verhoeyen *et al.*, 1988, *Science*

239: 1534-1536). See also, Carter *et al.*, 1993, Proc. Natl. Acad. Sci. USA 89: 4285 and Sims *et al.*, 1993, J. Immunol. 151: 2296.

[00133] In a preferred embodiment, the antibodies of the present invention comprise fully human 24P4C12 antibodies (24P4C12 MAbs). Various methods in the art provide means for producing fully human 24P4C12 MAbs. For example, a preferred embodiment provides for techniques using transgenic mice, inactivated for antibody production, engineered with human heavy and light chains loci referred to as Xenomouse (Amgen Fremont, Inc.). An exemplary description of preparing transgenic mice that produce human antibodies can be found in U.S. 6,657,103. *See, also*, U.S. Patent Nos. 5,569,825; 5,625,126; 5,633,425; 5,661,016; and 5,545,806; and Mendez, *et. al.* Nature Genetics, 15: 146-156 (1998); Kellerman, S.A. & Green, L.L., Curr. Opin. Biotechnol 13, 593-597 (2002).

[00134] In addition, human antibodies of the invention can be generated using the HuMAb mouse (Medarex, Inc.) which contains human immunoglobulin gene miniloci that encode unarranged human heavy (mu and gamma) and kappa light chain immunoglobulin sequences, together with targeted mutations that inactivate the endogenous mu and kappa chain loci (see e.g., Lonberg, *et al.* (1994) Nature 368(6474): 856-859).

[00135] In another embodiment, fully human antibodies of the invention can be raised using a mouse that carries human immunoglobulin sequences on transgenes and transchromosomes, such as a mouse that carries a human heavy chain transgene and a human light chain transchromosome. Such mice, referred to herein as "KM mice", such mice are described in Tomizuka *et al.* (2000) Proc. Natl. Acad. Sci. USA 97:722-727 and PCT Publication WO 02/43478 to Tomizuka, *et al.*

[00136] Human monoclonal antibodies of the invention can also be prepared using phage display methods for screening libraries of human immunoglobulin genes. Such phage display methods for isolating human antibodies are established in the art. See for example: U.S. Pat. Nos. 5,223,409; 5,403,484; and 5,571,698 to Ladner *et al.*; U.S. Pat. Nos. 5,427,908 and 5,580,717 to Dower *et al.*; U.S. Pat. Nos. 5,969,108 and 6,172,197 to McCafferty *et al.*; and U.S. Pat. Nos. 5,885,793; 6,521,404; 6,544,731; 6,555,313; 6,582,915 and 6,593,081 to Griffiths *et al.*

[00137] Human monoclonal antibodies of the invention can also be prepared using SCID mice into which human immune cells have been reconstituted such that a human antibody response can be generated upon immunization. Such mice are described in, for example, U.S. Pat. Nos. 5,476,996 and 5,698,767 to Wilson et al.

[00138] In a preferred embodiment, an 24P4C12 MAbs of the invention comprises heavy and light chain variable regions of an antibody designated Ha5-1(5)2.1 produced by a hybridoma deposited under the American Type Culture Collection (ATCC) Accession No.: PTA-8602 (See, Figure 3), or heavy and light variable regions comprising amino acid sequences that are homologous to the amino acid sequences of the heavy and light chain variable regions of Ha5-1(5)2.1, and wherein the antibodies retain the desired functional properties of the 24P4C12 MAbs of the invention. The heavy chain variable region of Ha5-1(5)2.1 consists of the amino acid sequence ranging from 20th Q residue to the 143th S residue of SEQ ID NO: 20, and the light chain variable region of Ha5-1(5)2.1 consists of the amino acid sequence ranging from 23th D residue to the 130th R residue of SEQ ID NO: 22. As the constant region of the antibody of the invention, any subclass of constant region can be chosen. In one embodiment, human IgG2 constant region as the heavy chain constant region and human Ig kappa constant region as the light chain constant region can be used.

[00139] For example, the invention provides an isolated monoclonal antibody, or antigen binding portion thereof, comprising a heavy chain variable region and a light chain variable region, wherein:

[00140] (a) the heavy chain variable region comprises an amino acid sequence that is at least 80% homologous to heavy chain variable region amino acid sequence set forth in Figure 3; and

[00141] (b) the light chain variable region comprises an amino acid sequence that is at least 80% homologous to the light chain variable region amino acid sequence set forth in Figure 3.

[00142] In other embodiments, the V_H and/or V_L amino acid sequences may be 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homologous to the V_H and V_L sequences set forth in Figure 3.

[00143] In another embodiment, the invention provides an isolated monoclonal antibody, or antigen binding portion thereof, comprising a humanized heavy chain variable region and a humanized light chain variable region, wherein:

[00144] (a) the heavy chain variable region comprises complementarity determining regions (CDRs) having the amino acid sequences of the heavy chain variable region CDRs set forth in Figure 3;

[00145] (b) the light chain variable region comprises CDRs having the amino acid sequences of the light chain variable region CDRs set forth in Figure 3.

[00146] Engineered antibodies of the invention include those in which modifications have been made to framework residues within V_H and/or V_L (e.g. to improve the properties of the antibody). Typically such framework modifications are made to decrease the immunogenicity of the antibody. For example, one approach is to "backmutate" one or more framework residues to the corresponding germline sequence. More specifically, an antibody that has undergone somatic mutation may contain framework residues that differ from the germline sequence from which the antibody is derived. Such residues can be identified by comparing the antibody framework sequences to the germline sequences from which the antibody is derived. To return the framework region sequences to their germline configuration, the somatic mutations can be "backmutated" to the germline sequence by, for example, site-directed mutagenesis or PCR-mediated mutagenesis (e.g., "backmutated" from leucine to methionine). Such "backmutated" antibodies are also intended to be encompassed by the invention.

[00147] Another type of framework modification involves mutating one or more residues within the framework region, or even within one or more CDR regions, to remove T-cell epitopes to thereby reduce the potential immunogenicity of the antibody. This approach is also referred to as "deimmunization" and is described in further detail in U.S. Patent Publication No. 2003/0153043 by Carr et al.

[00148] In addition or alternative to modifications made within the framework or CDR regions, antibodies of the invention may be engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity. Furthermore, a 24P4C12 MAb of the invention may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be

modified to alter its glycosylation, again to alter one or more functional properties of the MAb. Each of these embodiments is described in further detail below.

[00149] In one embodiment, the hinge region of CH1 is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased. This approach is described further in U.S. Pat. No. 5,677,425 by Bodmer et al. The number of cysteine residues in the hinge region of CH1 is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the 24P4C12 MAb.

[00150] In another embodiment, the Fc hinge region of an antibody is mutated to decrease the biological half life of the 24P4C12 MAb. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcal protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Pat. No. 6,165,745 by Ward et al.

[00151] In another embodiment, the 24P4C12 MAb is modified to increase its biological half life. Various approaches are possible. For example, mutations can be introduced as described in U.S. Pat. No. 6,277,375 to Ward. Alternatively, to increase the biological half life, the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Pat. Nos. 5,869,046 and 6,121,022 by Presta et al.

[00152] In yet other embodiments, the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector function(s) of the 24P4C12 MAb. For example, one or more amino acids selected from amino acid specific residues can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260, both by Winter et al.

[00153] Reactivity of 24P4C12 antibodies with a 24P4C12-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 24P4C12-related proteins, 24P4C12-expressing cells or extracts thereof. A 24P4C12 antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule.

Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-specific antibodies specific for two or more 24P4C12 epitopes are generated using methods generally known in the art. Homodimeric antibodies can also be generated by cross-linking techniques known in the art (e.g., Wolff *et al.*, Cancer Res. 53: 2560-2565).

[00154] In yet another preferred embodiment, the 24P4C12 MAb of the invention is an antibody comprising heavy and light chain of an antibody designated Ha5-1(5)2.1. The heavy chain of Ha5-1(5)2.1 consists of the amino acid sequence ranging from 20th Q residue to the 469th K residue of SEQ ID NO: 20 and the light chain of Ha5-1(5)2.1 consists of amino acid sequence ranging from 23th D residue to the 236th C residue of SEQ ID NO: 22 sequence. The sequence of which is set forth in Figure 2 and Figure 3. In a preferred embodiment, Ha5-1(5)2.1 is conjugated to a cytotoxic agent.

[00155] The hybridoma producing the antibody designated Ha5-1(5)2.1 was sent (via Federal Express) to the American Type Culture Collection (ATCC), P.O. Box 1549, Manassas, VA 20108 on 08-August-2007 and assigned Accession number PTA-8602.

III.) Antibody-Drug Conjugates Generally

[00156] In another aspect, the invention provides antibody-drug conjugates (ADCs), comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, a drug, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). In another aspect, the invention further provides methods of using the ADCs. In one aspect, an ADC comprises any of the above 24P4C12 MAbs covalently attached to a cytotoxic agent or a detectable agent.

[00157] The use of antibody-drug conjugates for the local delivery of cytotoxic or cytostatic agents, i.e. drugs to kill or inhibit tumor cells in the treatment of cancer (Syrigos and Epenetos (1999) Anticancer Research 19:605-614; Niculescu-Duvaz and Springer (1997) Adv. Drg Del. Rev. 26:151-172; U.S. patent 4,975,278) allows targeted delivery of the drug moiety to tumors, and intracellular accumulation therein, where systemic administration of these unconjugated drug agents may result in unacceptable levels of toxicity to normal cells as well as the tumor cells sought to be eliminated

(Baldwin et al., (1986) *Lancet* pp. (Mar. 15, 1986):603-05; Thorpe, (1985) "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review," in *Monoclonal Antibodies '84: Biological And Clinical Applications*, A. Pinchera et al. (ed.s), pp. 475-506). Maximal efficacy with minimal toxicity is sought thereby. Both polyclonal antibodies and monoclonal antibodies have been reported as useful in these strategies (Rowland et al., (1986) *Cancer Immunol. Immunother.*, 21:183-87). Drugs used in these methods include daunomycin, doxorubicin, methotrexate, and vindesine (Rowland et al., (1986) *supra*). Toxins used in antibody-toxin conjugates include bacterial toxins such as diphtheria toxin, plant toxins such as ricin, small molecule toxins such as geldanamycin (Mandler et al (2000) *Jour. of the Nat. Cancer Inst.* 92(19):1573-1581; Mandler et al (2000) *Bioorganic & Med. Chem. Letters* 10:1025-1028; Mandler et al (2002) *Bioconjugate Chem.* 13:786-791), maytansinoids (EP 1391213; Liu et al., (1996) *Proc. Natl. Acad. Sci. USA* 93:8618-8623), and calicheamicin (Lode et al (1998) *Cancer Res.* 58:2928; Hinman et al (1993) *Cancer Res.* 53:3336-3342). The toxins may effect their cytotoxic and cytostatic effects by mechanisms including tubulin binding, DNA binding, or topoisomerase inhibition. Some cytotoxic drugs tend to be inactive or less active when conjugated to large antibodies or protein receptor ligands.

[00158] Examples of antibody drug conjugates are, ZEVALIN® (ibritumomab tiuxetan, Biogen/Idec) which is an antibody-radioisotope conjugate composed of a murine IgG1 kappa monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes and ¹¹¹In or ⁹⁰Y radioisotope bound by a thiourea linker-chelator (Wiseman et al (2000) *Eur. Jour. Nucl. Med.* 27(7):766-77; Wiseman et al (2002) *Blood* 99(12):4336-42; Witzig et al (2002) *J. Clin. Oncol.* 20(10):2453-63; Witzig et al (2002) *J. Clin. Oncol.* 20(15):3262-69).

[00159] Additionally, MYLOTARG™ (gemtuzumab ozogamicin, Wyeth Pharmaceuticals), an antibody drug conjugate composed of a hu CD33 antibody linked to calicheamicin, was approved in 2000 for the treatment of acute myeloid leukemia by injection (Drugs of the Future (2000) 25(7):686; US Patent Nos. 4970198; 5079233; 5585089; 5606040; 5693762; 5739116; 5767285; 5773001).

[00160] In addition, Cantuzumab mertansine (Immunogen, Inc.), an antibody drug conjugate composed of the huC242 antibody linked via the disulfide linker SPP to the

maytansinoid drug moiety, DM1, is advancing into Phase II trials for the treatment of cancers that express CanAg, such as colon, pancreatic, gastric, and others.

[00161] Additionally, MLN-2704 (Millennium Pharm., BZL Biologics, Immunogen Inc.), an antibody drug conjugate composed of the anti-prostate specific membrane antigen (PSMA) monoclonal antibody linked to the maytansinoid drug moiety, DM1, is under development for the potential treatment of prostate tumors.

[00162] Finally, the auristatin peptides, auristatin E (AE) and monomethylauristatin (MMAE), synthetic analogs of dolastatin, were conjugated to chimeric monoclonal antibodies cBR96 (specific to Lewis Y on carcinomas) and cAC10 (specific to CD30 on hematological malignancies) (Doronina et al (2003) *Nature Biotechnology* 21(7):778-784) and are under therapeutic development.

[00163] Further, chemotherapeutic agents useful in the generation of ADCs are described herein. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), *momordica charantia* inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the trichothecenes. See, e.g., WO 93/21232 published October 28, 1993. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCl), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al (1987) *Science*, 238:1098. Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody (WO94/11026).

[00164] Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, maytansinoids, dolastatins, auristatins, a trichothecene, and CC1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein.

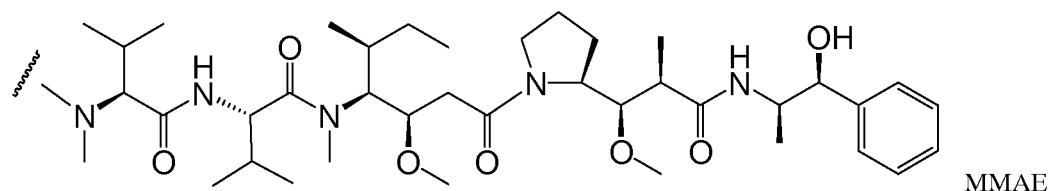
III(A). Maytansinoids

[00165] Maytansine compounds suitable for use as maytansinoid drug moieties are well known in the art, and can be isolated from natural sources according to known methods, produced using genetic engineering techniques (see Yu et al (2002) PNAS 99:7968-7973), or maytansinol and maytansinol analogues prepared synthetically according to known methods.

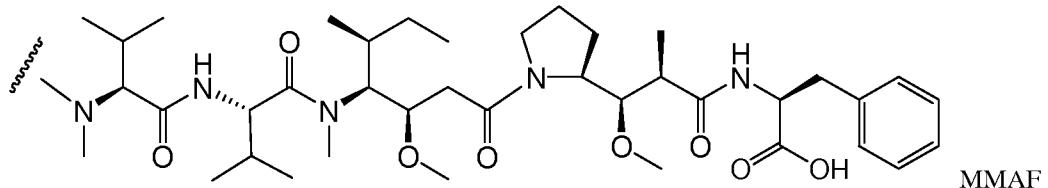
[00166] Exemplary maytansinoid drug moieties include those having a modified aromatic ring, such as: C-19-dechloro (US 4256746) (prepared by lithium aluminum hydride reduction of ansamycin P2); C-20-hydroxy (or C-20-demethyl) +/-C-19-dechloro (US Pat. Nos. 4361650 and 4307016) (prepared by demethylation using Streptomyces or Actinomyces or dechlorination using LAH); and C-20-demethoxy, C-20-acyloxy (-OCOR), +/-dechloro (U.S. Pat. No. 4,294,757) (prepared by acylation using acyl chlorides). and those having modifications at other positions

[00167] Exemplary maytansinoid drug moieties also include those having modifications such as: C-9-SH (US 4424219) (prepared by the reaction of maytansinol with H₂S or P₂S₅); C-14-alkoxymethyl(demethoxy/CH₂ OR)(US 4331598); C-14-hydroxymethyl or acyloxymethyl (CH₂OH or CH₂OAc) (US 4450254) (prepared from Nocardia); C-15-hydroxy/acyloxy (US 4364866) (prepared by the conversion of maytansinol by Streptomyces); C-15-methoxy (US Pat. Nos. 4313946 and 4315929) (isolated from Trewia nudiflora); C-18-N-demethyl (US Pat. Nos. 4362663 and 4322348) (prepared by the demethylation of maytansinol by Streptomyces); and 4,5-deoxy (US 4371533) (prepared by the titanium trichloride/LAH reduction of maytansinol).

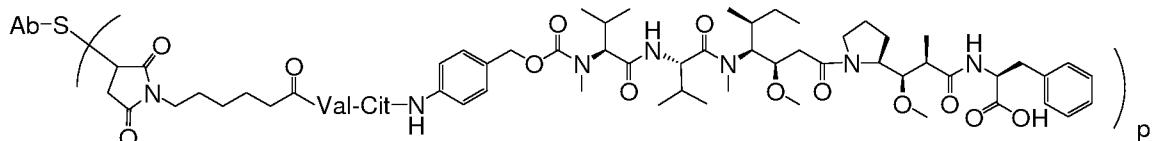
[00168] ADCs containing maytansinoids, methods of making same, and their therapeutic use are disclosed, for example, in U.S. Patent Nos. 5,208,020; 5,416,064; 6,441163 and European Patent EP 0 425 235 B1, the disclosures of which are hereby expressly incorporated by reference. Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996) described ADCs comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor

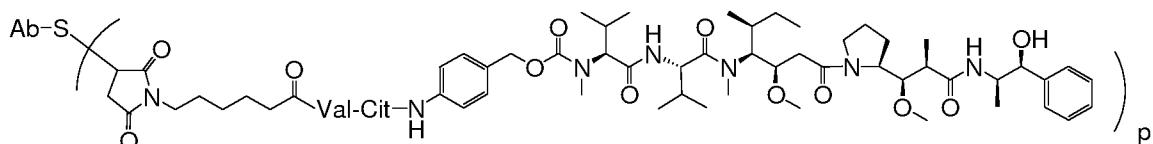

activity in an in vivo tumor growth assay. Chari et al., *Cancer Research* 52:127-131 (1992) describe ADCs in which a maytansinoid was conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to another murine monoclonal antibody TA.1 that binds the HER-2/neu oncogene. The cytotoxicity of the TA.1-maytansinoid conjugate was tested in vitro on the human breast cancer cell line SK-BR-3, which expresses 3×10^5 HER-2 surface antigens per cell. The drug conjugate achieved a degree of cytotoxicity similar to the free maytansinoid drug, which could be increased by increasing the number of maytansinoid molecules per antibody molecule. The A7-maytansinoid conjugate showed low systemic cytotoxicity in mice.

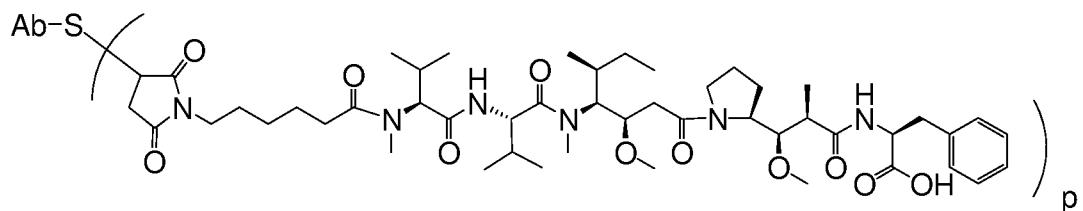
III(B). Auristatins and dolastatins


[00169] In some embodiments, the ADC comprises an antibody of the invention conjugated to dolastatins or dolostatin peptidic analogs and derivatives, the auristatins (US Patent Nos. 5635483; 5780588). Dolastatins and auristatins have been shown to interfere with microtubule dynamics, GTP hydrolysis, and nuclear and cellular division (Woyke et al (2001) *Antimicrob. Agents and Chemother.* 45(12):3580-3584) and have anticancer (US 5663149) and antifungal activity (Pettit et al (1998) *Antimicrob. Agents Chemother.* 42:2961-2965). The dolastatin or auristatin drug moiety may be attached to the antibody through the N (amino) terminus or the C (carboxyl) terminus of the peptidic drug moiety (WO 02/088172).

[00170] Exemplary auristatin embodiments include the N-terminus linked monomethylauristatin drug moieties DE and DF, disclosed in “Senter et al, *Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 623*, presented March 28, 2004 and described in United States Patent Publication No. 2005/0238648, the disclosure of which is expressly incorporated by reference in its entirety.


[00171] An exemplary auristatin embodiment is MMAE (wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody drug conjugate).


[00172] Another exemplary auristatin embodiment is MMAF, wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody drug conjugate (US 2005/0238649):


[00173] Additional exemplary embodiments comprising MMAE or MMAF and various linker components (described further herein) have the following structures and abbreviations (wherein Ab means antibody and p is 1 to about 8):

Ab-MC-vc-PAB-MMAF

Ab-MC-vc-PAB-MMAE

Ab-MC-MMAF

[00174] Typically, peptide-based drug moieties can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments. Such peptide bonds can be prepared, for example, according to the liquid phase synthesis method (see E. Schröder and K. Lübke, “The Peptides”, volume 1, pp 76-136, 1965, Academic Press) that is well known in the field of peptide chemistry. The auristatin/dolastatin drug moieties may be prepared according to the methods of: US 5635483; US 5780588; Pettit et al (1989) J. Am. Chem. Soc. 111:5463-5465; Pettit et al (1998) Anti-Cancer Drug

Design 13:243-277; Pettit, G.R., et al. Synthesis, 1996, 719-725; Pettit et al (1996) J. Chem. Soc. Perkin Trans. 1 5:859-863; and Doronina (2003) Nat Biotechnol 21(7):778-784.

III(C). Calicheamicin

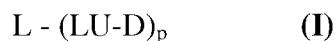
[00175] In other embodiments, the ADC comprises an antibody of the invention conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. patents 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company). Structural analogues of calicheamicin which may be used include, but are not limited to, γ_1^I , α_2^I , α_3^I , N-acetyl- γ_1^I , PSAG and θ_1^I (Hinman et al., Cancer Research 53:3336-3342 (1993), Lode et al., Cancer Research 58:2925-2928 (1998) and the aforementioned U.S. patents to American Cyanamid). Another anti-tumor drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.

III(D). Other Cytotoxic Agents

[00176] Other antitumor agents that can be conjugated to the antibodies of the invention include BCNU, streptozocin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. patents 5,053,394, 5,770,710, as well as esperamicins (U.S. patent 5,877,296).

[00177] Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), *momordica charantia* inhibitor, curcin, crotin, *sapaonaria officinalis* inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the trichothecenes. See, for example, WO 93/21232 published October 28, 1993.

[00178] The present invention further contemplates an ADC formed between an antibody and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).


[00179] For selective destruction of the tumor, the antibody may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated antibodies. Examples include At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³², Pb²¹² and radioactive isotopes of Lu. When the conjugate is used for detection, it may comprise a radioactive atom for scintigraphic studies, for example tc^{99m} or I¹²³, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.

[00180] The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc^{99m} or I¹²³, Re¹⁸⁶, Re¹⁸⁸ and In¹¹¹ can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal,CRC Press 1989) describes other methods in detail.

IV.) Antibody-Drug Conjugate Compounds which bind 24P4C12

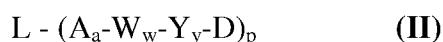
[00181] The present invention provides, *inter alia*, antibody-drug conjugate compounds for targeted delivery of drugs. The inventors have made the discovery that the antibody-drug conjugate compounds have potent cytotoxic and/or cytostatic activity against cells expressing 24P4C12. The antibody-drug conjugate compounds comprise an Antibody unit covalently linked to at least one Drug unit. The Drug units can be covalently linked directly or via a Linker unit (-LU-).

[00182] In some embodiments, the antibody drug conjugate compound has the following formula:

or a pharmaceutically acceptable salt or solvate thereof; wherein:

L is the Antibody unit, e.g., 24P4C12 MAb of the present invention, and

(LU-D) is a Linker unit-Drug unit moiety, wherein:


LU- is a Linker unit, and

-D is a drug unit having cytostatic or cytotoxic activity against a target cell; and

p is an integer from 1 to 20.

[00183] In some embodiments, p ranges from 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, or 1 to 2. In some embodiments, p ranges from 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4 or 2 to 3. In other embodiments, p is 1, 2, 3, 4, 5 or 6. In some embodiments, p is 2 or 4.

[00184] In some embodiments, the antibody drug conjugate compound has the following formula:

or a pharmaceutically acceptable salt or solvate thereof, wherein:

L is the Antibody unit, e.g., 24P4C12 MAb; and

-A_a-W_w-Y_y- is a Linker unit (LU), wherein:

-A- is a Stretcher unit,

a is 0 or 1,

each -W- is independently an Amino Acid unit,

w is an integer ranging from 0 to 12,

-Y- is a self-immolative spacer unit,

y is 0, 1 or 2;

-D is a drug units having cytostatic or cytotoxic activity against the target cell; and

p is an integer from 1 to 20.

[00185] In some embodiments, a is 0 or 1, w is 0 or 1, and y is 0, 1 or 2. In some embodiments, a is 0 or 1, w is 0 or 1, and y is 0 or 1. In some embodiments, p ranges from 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, or 1 to 2. In some embodiments, p ranges from 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4 or 2 to 3. In other embodiments, p is 1, 2, 3, 4, 5 or 6. In some embodiments, p is 2 or 4. In some embodiments, when w is not zero, y is 1 or 2. In some embodiments, when w is 1 to 12, y is 1 or 2. In some embodiments, w is 2 to 12 and y is 1 or 2. In some embodiments, a is 1 and w and y are 0.

[00186] For compositions comprising a plurality antibodies, the drug loading is represented by p, the average number of drug molecules per Antibody. Drug loading may

range from 1 to 20 drugs (D) per Antibody. The average number of drugs per antibody in preparation of conjugation reactions may be characterized by conventional means such as mass spectroscopy, ELISA assay, and HPLC. The quantitative distribution of Antibody-Drug-Conjugates in terms of p may also be determined. In some instances, separation, purification, and characterization of homogeneous Antibody-Drug-conjugates where p is a certain value from Antibody-Drug-Conjugates with other drug loadings may be achieved by means such as reverse phase HPLC or electrophoresis. In exemplary embodiments, p is from 2 to 8.

[00187] The generation of Antibody-drug conjugate compounds can be accomplished by any technique known to the skilled artisan. Briefly, the Antibody-drug conjugate compounds comprise 24P4C12 MAb as the Antibody unit, a drug, and optionally a linker that joins the drug and the binding agent. In a preferred embodiment, the Antibody is 24P4C12 MAb comprising heavy and light chain variable regions of an antibody designated Ha5-1(5)2.1 described above. In more preferred embodiment, the Antibody is 24P4C12 MAb comprising heavy and light chain of an antibody designated Ha5-1(5)2.1 described above. A number of different reactions are available for covalent attachment of drugs and/or linkers to binding agents. This is often accomplished by reaction of the amino acid residues of the binding agent, e.g., antibody molecule, including the amine groups of lysine, the free carboxylic acid groups of glutamic and aspartic acid, the sulphydryl groups of cysteine and the various moieties of the aromatic amino acids. One of the most commonly used non-specific methods of covalent attachment is the carbodiimide reaction to link a carboxy (or amino) group of a compound to amino (or carboxy) groups of the antibody. Additionally, bifunctional agents such as dialdehydes or imidoesters have been used to link the amino group of a compound to amino groups of an antibody molecule. Also available for attachment of drugs to binding agents is the Schiff base reaction. This method involves the periodate oxidation of a drug that contains glycol or hydroxy groups, thus forming an aldehyde which is then reacted with the binding agent. Attachment occurs via formation of a Schiff base with amino groups of the binding agent. Isothiocyanates can also be used as coupling agents for covalently attaching drugs to binding agents. Other techniques are known to the skilled artisan and within the scope of the present invention.

[00188] In certain embodiments, an intermediate, which is the precursor of the linker, is reacted with the drug under appropriate conditions. In certain embodiments, reactive groups are used on the drug and/or the intermediate. The product of the reaction between the drug and the intermediate, or the derivatized drug, is subsequently reacted with the 24P4C12 MAb under appropriate conditions.

[00189] Each of the particular units of the Antibody-drug conjugate compounds is described in more detail herein. The synthesis and structure of exemplary Linker units, Stretcher units, Amino Acid units, self-immolative Spacer unit, and Drug units are also described in U.S. Patent Application Publication Nos. 2003-0083263, 2005-0238649 and 2005-0009751, each of which is incorporated herein by reference in its entirety and for all purposes.

V.) Linker Units

[00190] Typically, the antibody-drug conjugate compounds comprise a Linker unit between the drug unit and the antibody unit. In some embodiments, the linker is cleavable under intracellular conditions, such that cleavage of the linker releases the drug unit from the antibody in the intracellular environment. In yet other embodiments, the linker unit is not cleavable and the drug is released, for example, by antibody degradation.

[00191] In some embodiments, the linker is cleavable by a cleaving agent that is present in the intracellular environment (*e.g.*, within a lysosome or endosome or caveolea). The linker can be, *e.g.*, a peptidyl linker that is cleaved by an intracellular peptidase or protease enzyme, including, but not limited to, a lysosomal or endosomal protease. In some embodiments, the peptidyl linker is at least two amino acids long or at least three amino acids long. Cleaving agents can include cathepsins B and D and plasmin, all of which are known to hydrolyze dipeptide drug derivatives resulting in the release of active drug inside target cells (*see, e.g.*, Dubowchik and Walker, 1999, *Pharm. Therapeutics* 83:67-123). Most typical are peptidyl linkers that are cleavable by enzymes that are present in 24P4C12-expressing cells. For example, a peptidyl linker that is cleavable by the thiol-dependent protease cathepsin-B, which is highly expressed in cancerous tissue, can be used (*e.g.*, a Phe-Leu or a Gly-Phe-Leu-Gly linker (SEQ ID NO: 25)). Other examples of such linkers are described, *e.g.*, in U.S. Patent No. 6,214,345, incorporated herein by reference in its entirety and for all purposes. In a specific

embodiment, the peptidyl linker cleavable by an intracellular protease is a Val-Cit linker or a Phe-Lys linker (*see, e.g.*, U.S. Patent 6,214,345, which describes the synthesis of doxorubicin with the val-cit linker). One advantage of using intracellular proteolytic release of the therapeutic agent is that the agent is typically attenuated when conjugated and the serum stabilities of the conjugates are typically high.

[00192] In other embodiments, the cleavable linker is pH-sensitive, *i.e.*, sensitive to hydrolysis at certain pH values. Typically, the pH-sensitive linker hydrolyzable under acidic conditions. For example, an acid-labile linker that is hydrolyzable in the lysosome (*e.g.*, a hydrazone, semicarbazone, thiosemicarbazone, cis-aconitic amide, orthoester, acetal, ketal, or the like) can be used. (*See, e.g.*, U.S. Patent Nos. 5,122,368; 5,824,805; 5,622,929; Dubowchik and Walker, 1999, *Pharm. Therapeutics* 83:67-123; Neville *et al.*, 1989, *Biol. Chem.* 264:14653-14661.) Such linkers are relatively stable under neutral pH conditions, such as those in the blood, but are unstable at below pH 5.5 or 5.0, the approximate pH of the lysosome. In certain embodiments, the hydrolyzable linker is a thioether linker (such as, *e.g.*, a thioether attached to the therapeutic agent via an acylhydrazone bond (*see, e.g.*, U.S. Patent No. 5,622,929)).

[00193] In yet other embodiments, the linker is cleavable under reducing conditions (*e.g.*, a disulfide linker). A variety of disulfide linkers are known in the art, including, for example, those that can be formed using SATA (N-succinimidyl-S-acetylthioacetate), SPDP (N-succinimidyl-3-(2-pyridyldithio)propionate), SPDB (N-succinimidyl-3-(2-pyridyldithio)butyrate) and SMPT (N-succinimidyl-oxycarbonyl-alpha-methyl-alpha-(2-pyridyl-dithio)toluene), SPDB and SMPT. (*See, e.g.*, Thorpe *et al.*, 1987, *Cancer Res.* 47:5924-5931; Wawrzynczak *et al.*, In *Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer* (C. W. Vogel ed., Oxford U. Press, 1987. *See also* U.S. Patent No. 4,880,935.)

[00194] In yet other specific embodiments, the linker is a malonate linker (Johnson *et al.*, 1995, *Anticancer Res.* 15:1387-93), a maleimidobenzoyl linker (Lau *et al.*, 1995, *Bioorg-Med-Chem.* 3(10):1299-1304), or a 3'-N-amide analog (Lau *et al.*, 1995, *Bioorg-Med-Chem.* 3(10):1305-12).

[00195] In yet other embodiments, the linker unit is not cleavable and the drug is released by antibody degradation. (See U.S. Publication No. 2005/0238649 incorporated by reference herein in its entirety and for all purposes).

[00196] Typically, the linker is not substantially sensitive to the extracellular environment. As used herein, “not substantially sensitive to the extracellular environment,” in the context of a linker, means that no more than about 20%, typically no more than about 15%, more typically no more than about 10%, and even more typically no more than about 5%, no more than about 3%, or no more than about 1% of the linkers, in a sample of antibody-drug conjugate compound, are cleaved when the antibody-drug conjugate compound presents in an extracellular environment (*e.g.*, in plasma). Whether a linker is not substantially sensitive to the extracellular environment can be determined, for example, by incubating with plasma the antibody-drug conjugate compound for a predetermined time period (*e.g.*, 2, 4, 8, 16, or 24 hours) and then quantitating the amount of free drug present in the plasma.

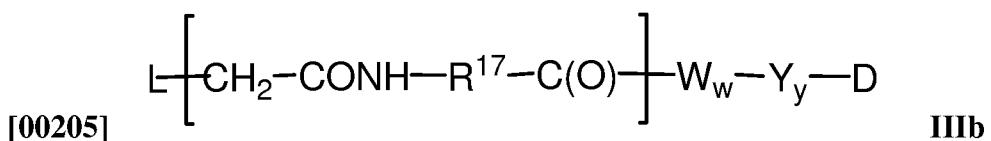
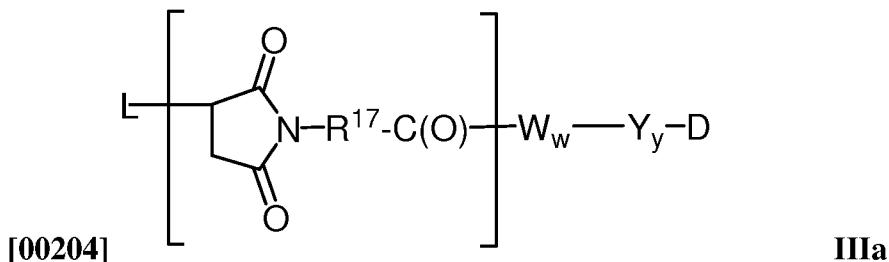
[00197] In other, non-mutually exclusive embodiments, the linker promotes cellular internalization. In certain embodiments, the linker promotes cellular internalization when conjugated to the therapeutic agent (*i.e.*, in the milieu of the linker-therapeutic agent moiety of the antibody-drug conjugate compound as described herein). In yet other embodiments, the linker promotes cellular internalization when conjugated to both the auristatin compound and the 24P4C12 MAb.

[00198] A variety of exemplary linkers that can be used with the present compositions and methods are described in WO 2004-010957, U.S. Publication No. 2006/0074008, U.S. Publication No. 20050238649, and U.S. Publication No. 2006/0024317 (each of which is incorporated by reference herein in its entirety and for all purposes).

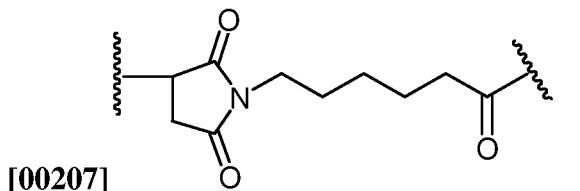
[00199] A “Linker unit” (LU) is a bifunctional compound that can be used to link a Drug unit and a Antibody unit to form an antibody-drug conjugate compound. In some embodiments, the Linker unit has the formula:

wherein:-A- is a Stretcher unit,
a is 0 or 1,
each -W- is independently an Amino Acid unit,
w is an integer ranging from 0 to 12,
-Y- is a self-immolative Spacer unit, and
y is 0, 1 or 2.

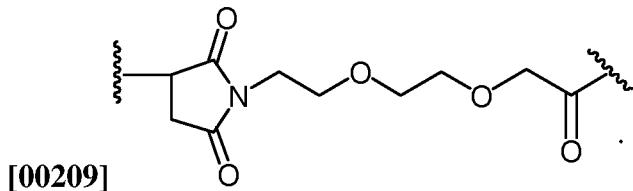
[00200] In some embodiments, a is 0 or 1, w is 0 or 1, and y is 0, 1 or 2. In some embodiments, a is 0 or 1, w is 0 or 1, and y is 0 or 1. In some embodiments, when w is 1 to 12, y is 1 or 2. In some embodiments, w is 2 to 12 and y is 1 or 2. In some embodiments, a is 1 and w and y are 0.



VI.) The Stretcher Unit

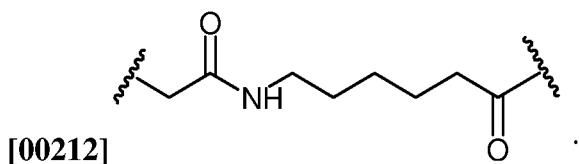
[00201] The Stretcher unit (A), when present, is capable of linking an Antibody unit to an Amino Acid unit (-W-), if present, to a Spacer unit (-Y-), if present; or to a Drug unit (-D). Useful functional groups that can be present on a 24P4C12 MAb (e.g. Ha5-1(5)2.1), either naturally or via chemical manipulation include, but are not limited to, sulfhydryl, amino, hydroxyl, the anomeric hydroxyl group of a carbohydrate, and carboxyl. Suitable functional groups are sulfhydryl and amino. In one example, sulfhydryl groups can be generated by reduction of the intramolecular disulfide bonds of a 24P4C12 MAb. In another embodiment, sulfhydryl groups can be generated by reaction of an amino group of a lysine moiety of a 24P4C12 MAb with 2-iminothiolane (Traut's reagent) or other sulfhydryl generating reagents. In certain embodiments, the 24P4C12 MAb is a recombinant antibody and is engineered to carry one or more lysines. In certain other embodiments, the recombinant 24P4C12 MAb is engineered to carry additional sulfhydryl groups, *e.g.*, additional cysteines.


[00202] In one embodiment, the Stretcher unit forms a bond with a sulfur atom of the Antibody unit. The sulfur atom can be derived from a sulfhydryl group of an antibody. Representative Stretcher units of this embodiment are depicted within the square brackets of Formulas IIIa and IIIb, wherein L-, -W-, -Y-, -D, w and y are as defined above, and R¹⁷ is selected from -C₁-C₁₀ alkylene-, -C₁-C₁₀ alkenylene-, -C₁-C₁₀ alkynylene-, carbocyclo-, -O-(C₁-C₈ alkylene)-, O-(C₁-C₈ alkenylene)-, -O-(C₁-C₈ alkynylene)-, -arylene-, -C₁-C₁₀ alkylene-arylene-, -C₂-C₁₀ alkenylene-arylene, -C₂-C₁₀ alkynylene-arylene, -arylene-C₁-C₁₀ alkylene-, -arylene-C₂-C₁₀ alkenylene-, -arylene-C₂-C₁₀ alkynylene-, -C₁-C₁₀ alkylene-(carbocyclo)-, -C₂-C₁₀ alkenylene-(carbocyclo)-, -C₂-C₁₀ alkynylene-(carbocyclo)-, -(carbocyclo)-C₁-C₁₀ alkylene-, -(carbocyclo)-C₂-C₁₀ alkenylene-, -(carbocyclo)-C₂-C₁₀ alkynylene-, -heterocyclo-, -C₁-C₁₀ alkylene-(heterocyclo)-, -C₂-C₁₀ alkenylene-(heterocyclo)-, -(heterocyclo)-C₁-

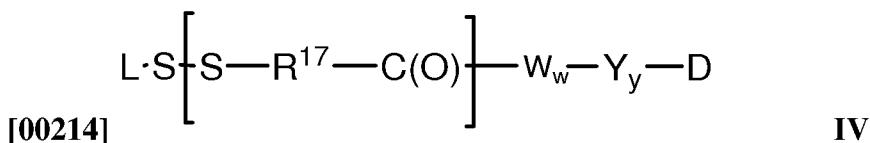
C_{10} alkylene-, -(heterocyclo)- C_2 - C_{10} alkenylene-, -(heterocyclo)- C_1 - C_{10} alkynylene-, -(CH_2CH_2O) r -, or -(CH_2CH_2O) r - CH_2 -, and r is an integer ranging from 1-10, wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, aryl, carbocycle, carbocyclo, heterocyclo, and arylene radicals, whether alone or as part of another group, are optionally substituted. In some embodiments, said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, aryl, carbocycle, carbocyclo, heterocyclo, and arylene radicals, whether alone or as part of another group, are unsubstituted. In some embodiments, R^{17} is selected from - C_1 - C_{10} alkylene-, - carbocyclo-, - O -(C_1 - C_8 alkylene)-, -arylene-, - C_1 - C_{10} alkylene-arylene-, -arylene- C_1 - C_{10} alkylene-, - C_1 - C_{10} alkylene-(carbocyclo)-, -(carbocyclo)- C_1 - C_{10} alkylene-, - C_3 - C_8 heterocyclo-, - C_1 - C_{10} alkylene-(heterocyclo)-, -(heterocyclo)- C_1 - C_{10} alkylene-, -(CH_2CH_2O) r -, and -(CH_2CH_2O) r - CH_2 -, and r is an integer ranging from 1-10, wherein said alkylene groups are unsubstituted and the remainder of the groups are optionally substituted.


[00203] It is to be understood from all the exemplary embodiments that even where not denoted expressly, from 1 to 20 drug moieties can be linked to an Antibody ($p = 1$ -20).

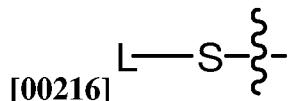
[00206] An illustrative Stretcher unit is that of Formula IIIa wherein R^{17} is -(CH_2) 5 :-

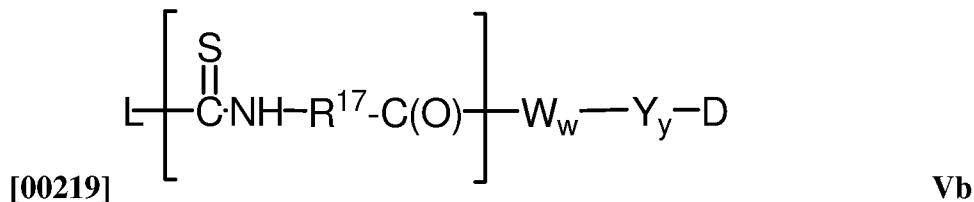
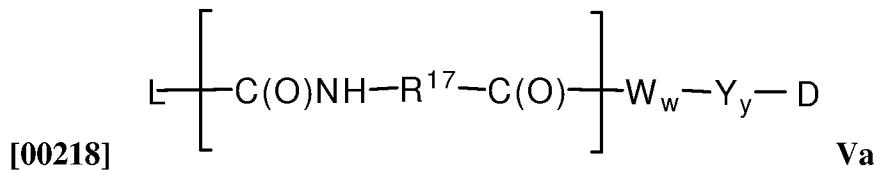


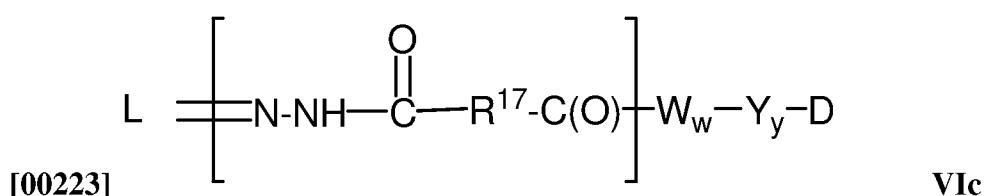
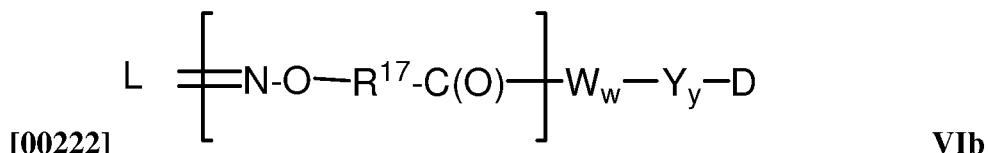
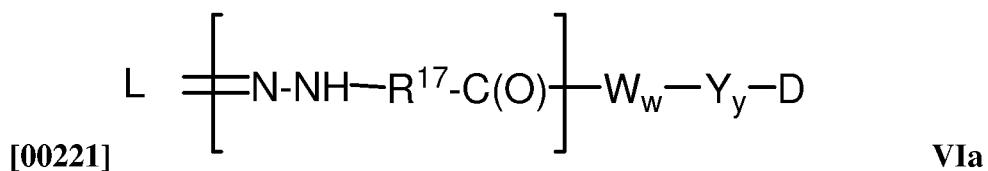
[00208] Another illustrative Stretcher unit is that of Formula IIIa wherein R^{17} is -(CH_2CH_2O) r - CH_2 -, and r is 2:



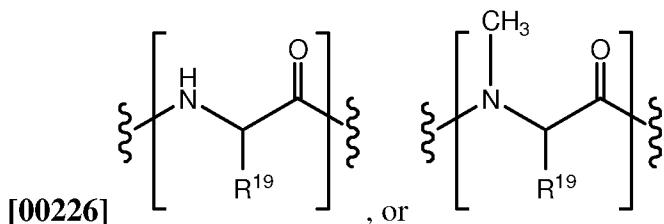
[00210] An illustrative Stretcher unit is that of Formula IIIa wherein R¹⁷ is -arylene- or arylene-C₁-C₁₀ alkylene-. In some embodiments, the aryl group is an unsubstituted phenyl group.

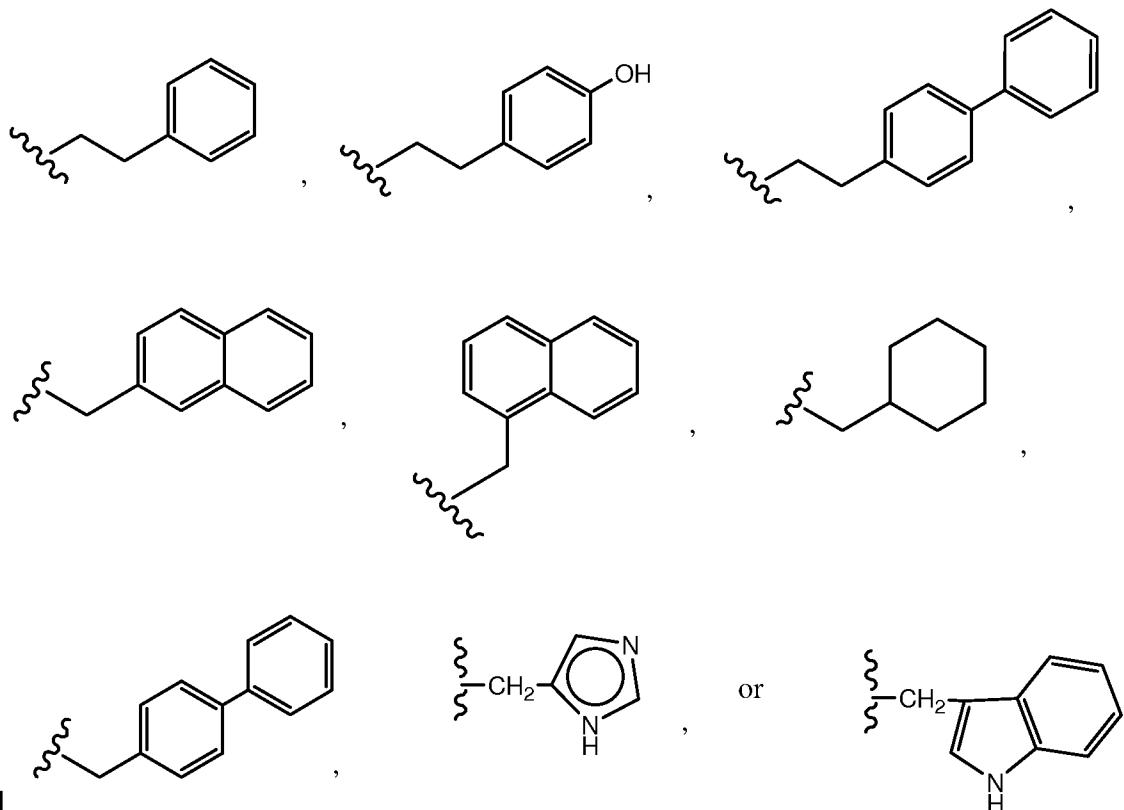

[00211] Still another illustrative Stretcher unit is that of Formula IIIb wherein R¹⁷ is -(CH₂)₅:



[00213] In certain embodiments, the Stretcher unit is linked to the Antibody unit via a disulfide bond between a sulfur atom of the Antibody unit and a sulfur atom of the Stretcher unit. A representative Stretcher unit of this embodiment is depicted within the square brackets of Formula IV, wherein R¹⁷, L-, -W-, -Y-, -D, w and y are as defined above.




[00215] It should be noted that throughout this application, the S moiety in the formula below refers to a sulfur atom of the Antibody unit, unless otherwise indicated by context.

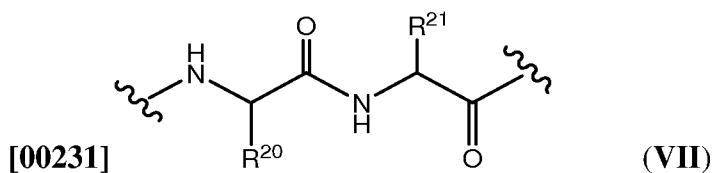
[00217] In yet other embodiments, the Stretcher contains a reactive site that can form a bond with a primary or secondary amino group of an Antibody. Examples of these reactive sites include, but are not limited to, activated esters such as succinimide esters, 4-nitrophenyl esters, pentafluorophenyl esters, tetrafluorophenyl esters, anhydrides, acid chlorides, sulfonyl chlorides, isocyanates and isothiocyanates. Representative Stretcher units of this embodiment are depicted within the square brackets of Formulas Va and Vb, wherein -R¹⁷-, L-, -W-, -Y-, -D, w and y are as defined above;


[00220] In some embodiments, the Stretcher contains a reactive site that is reactive to a modified carbohydrate's (-CHO) group that can be present on an Antibody. For example, a carbohydrate can be mildly oxidized using a reagent such as sodium periodate and the resulting (-CHO) unit of the oxidized carbohydrate can be condensed with a Stretcher that contains a functionality such as a hydrazide, an oxime, a primary or secondary amine, a hydrazine, a thiosemicarbazone, a hydrazine carboxylate, and an arylhydrazide such as those described by Kaneko *et al.*, 1991, *Bioconjugate Chem.* 2:133-41. Representative Stretcher units of this embodiment are depicted within the square brackets of Formulas VIa, VIb, and VIc, wherein -R¹⁷-, L-, -W-, -Y-, -D, w and y are as defined as above.

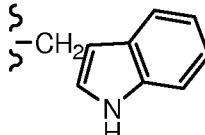

VII.) The Amino Acid Unit

[00224] The Amino Acid unit (-W-), when present, links the Stretcher unit to the Spacer unit if the Spacer unit is present, links the Stretcher unit to the Drug moiety if the Spacer unit is absent, and links the Antibody unit to the Drug unit if the Stretcher unit and Spacer unit are absent.

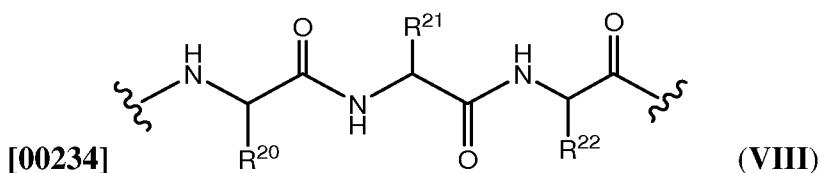
[00225] W_w can be, for example, a monopeptide, dipeptide, tripeptide, tetrapeptide, pentapeptide, hexapeptide, heptapeptide, octapeptide, nonapeptide, decapeptide, undecapeptide or dodecapeptide unit. Each -W- unit independently has the formula denoted below in the square brackets, and w is an integer ranging from 0 to 12:


[00227] wherein R^{19} is hydrogen, methyl, isopropyl, isobutyl, *sec*-butyl, benzyl, *p*-hydroxybenzyl, -CH₂OH, -CH(OH)CH₃, -CH₂CH₂SCH₃, -CH₂CONH₂, -CH₂COOH, -CH₂CH₂CONH₂, -CH₂CH₂COOH, -(CH₂)₃NHC(=NH)NH₂, -(CH₂)₃NH₂, -(CH₂)₃NHCOCH₃, -(CH₂)₃NHCHO, -(CH₂)₄NHC(=NH)NH₂, -(CH₂)₄NH₂, -(CH₂)₄NHCOCH₃, -(CH₂)₄NHCHO, -(CH₂)₃NHCONH₂, -(CH₂)₄NHCONH₂, -CH₂CH₂CH(OH)CH₂NH₂, 2-pyridylmethyl-, 3-pyridylmethyl-, 4-pyridylmethyl-, phenyl, cyclohexyl,

[00228]

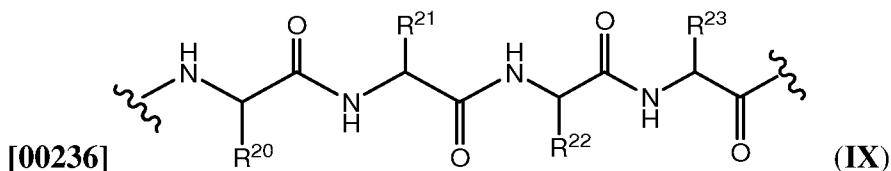

[00229] In some embodiments, the Amino Acid unit can be enzymatically cleaved by one or more enzymes, including a cancer or tumor-associated protease, to liberate the Drug unit (-D), which in one embodiment is protonated *in vivo* upon release to provide a Drug (D).

[00230] In certain embodiments, the Amino Acid unit can comprise natural amino acids. In other embodiments, the Amino Acid unit can comprise non-natural amino acids. Illustrative Ww units are represented by formulas (VII)-(IX):



[00232] wherein R^{20} and R^{21} are as follows:

R^{20}	R^{21}
Benzyl	$(\text{CH}_2)_4\text{NH}_2$;
methyl	$(\text{CH}_2)_4\text{NH}_2$;
isopropyl	$(\text{CH}_2)_4\text{NH}_2$;
isopropyl	$(\text{CH}_2)_3\text{NHCONH}_2$;


benzyl	(CH ₂) ₃ NHCONH ₂ ;
isobutyl	(CH ₂) ₃ NHCONH ₂ ;
<i>sec</i> -butyl	(CH ₂) ₃ NHCONH ₂ ;
	(CH ₂) ₃ NHCONH ₂ ;
benzyl	methyl;
benzyl	(CH ₂) ₃ NHC(=NH)NH ₂ ;

[00233]

[00235] wherein R²⁰, R²¹ and R²² are as follows:

<u>R²⁰</u>	<u>R²¹</u>	<u>R²²</u>
benzyl	benzyl	(CH ₂) ₄ NH ₂ ;
isopropyl	benzyl	(CH ₂) ₄ NH ₂ ; and
H	benzyl	(CH ₂) ₄ NH ₂ ;

[00237] wherein R²⁰, R²¹, R²² and R²³ are as follows:

<u>R²⁰</u>	<u>R²¹</u>	<u>R²²</u>	<u>R²³</u>
H	benzyl	isobutyl	H; and
methyl	isobutyl	methyl	isobutyl.

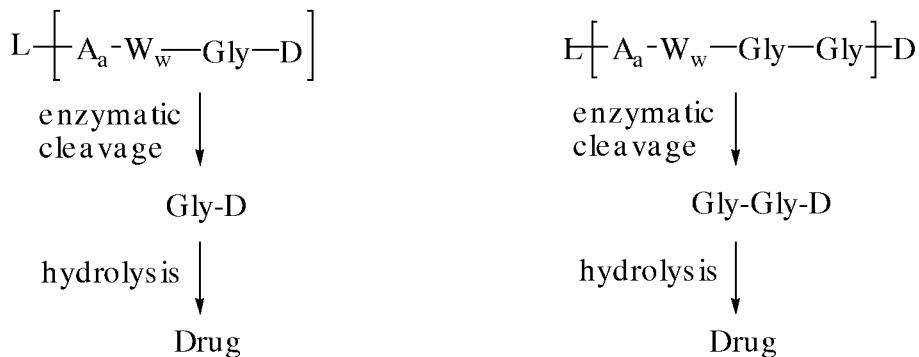
[00238] Exemplary Amino Acid units include, but are not limited to, units of formula VII where: R²⁰ is benzyl and R²¹ is -(CH₂)₄NH₂; R²⁰ is isopropyl and R²¹ is -(CH₂)₄NH₂; or R²⁰ is isopropyl and R²¹ is -(CH₂)₃NHCONH₂. Another exemplary Amino Acid unit is a unit of formula VIII wherein R²⁰ is benzyl, R²¹ is benzyl, and R²² is -(CH₂)₄NH₂.

[00239] Useful -W_w- units can be designed and optimized in their selectivity for enzymatic cleavage by a particular enzyme, for example, a tumor-associated protease. In one embodiment, a -W_w- unit is that whose cleavage is catalyzed by cathepsin B, C and D, or a plasmin protease.

[00240] In one embodiment, -W_w- is a dipeptide, tripeptide, tetrapeptide or pentapeptide. When R¹⁹, R²⁰, R²¹, R²² or R²³ is other than hydrogen, the carbon atom to which R¹⁹, R²⁰, R²¹, R²² or R²³ is attached is chiral.

[00241] Each carbon atom to which R¹⁹, R²⁰, R²¹, R²² or R²³ is attached is independently in the (S) or (R) configuration.

[00242] In one aspect of the Amino Acid unit, the Amino Acid unit is valine-citrulline (vc or val-cit). In another aspect, the Amino Acid unit is phenylalanine-lysine (i.e., fk). In yet another aspect of the Amino Acid unit, the Amino Acid unit is N-methylvaline-citrulline. In yet another aspect, the Amino Acid unit is 5-aminovaleric acid, homo phenylalanine lysine, tetraisoquinolinecarboxylate lysine, cyclohexylalanine lysine, isonepecotic acid lysine, beta-alanine lysine, glycine serine valine glutamine and isonepecotic acid.


VIII.) The Spacer Unit

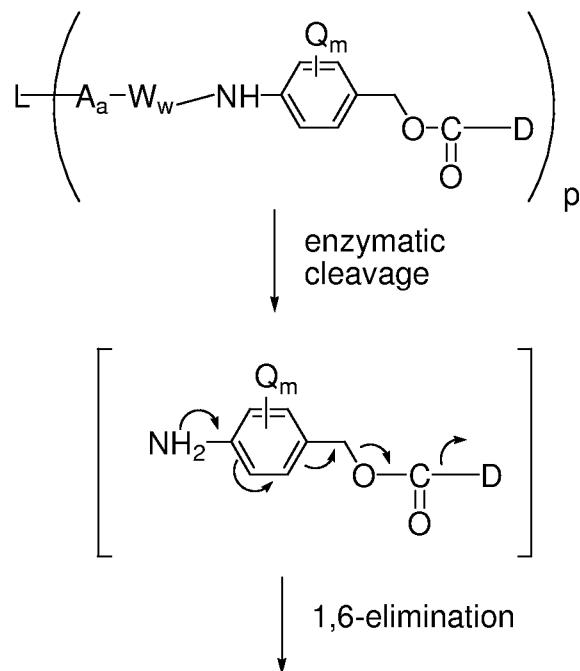
[00243] The Spacer unit (-Y-), when present, links an Amino Acid unit to the Drug unit when an Amino Acid unit is present. Alternately, the Spacer unit links the Stretcher unit to the Drug unit when the Amino Acid unit is absent. The Spacer unit also links the Drug unit to the Antibody unit when both the Amino Acid unit and Stretcher unit are absent.

[00244] Spacer units are of two general types: non self-immolative or self-immolative. A non self-immolative Spacer unit is one in which part or all of the Spacer unit remains bound to the Drug moiety after cleavage, particularly enzymatic, of an Amino Acid unit from the antibody-drug conjugate. Examples of a non self-immolative Spacer unit include, but are not limited to a (glycine-glycine) Spacer unit and a glycine Spacer unit (both depicted in Scheme 1) (infra). When a conjugate containing a glycine-glycine Spacer unit or a glycine Spacer unit undergoes enzymatic cleavage via an enzyme (e.g., a tumor-cell associated-protease, a cancer-cell-associated protease or a lymphocyte-associated protease), a glycine-glycine-Drug moiety or a glycine-Drug moiety is cleaved

from L-Aa-Ww-. In one embodiment, an independent hydrolysis reaction takes place within the target cell, cleaving the glycine-Drug moiety bond and liberating the Drug.

Scheme 1

[00245] In some embodiments, a non self-immolative Spacer unit (-Y-) is -Gly-. In some embodiments, a non self-immolative Spacer unit (-Y-) is -Gly-Gly-.

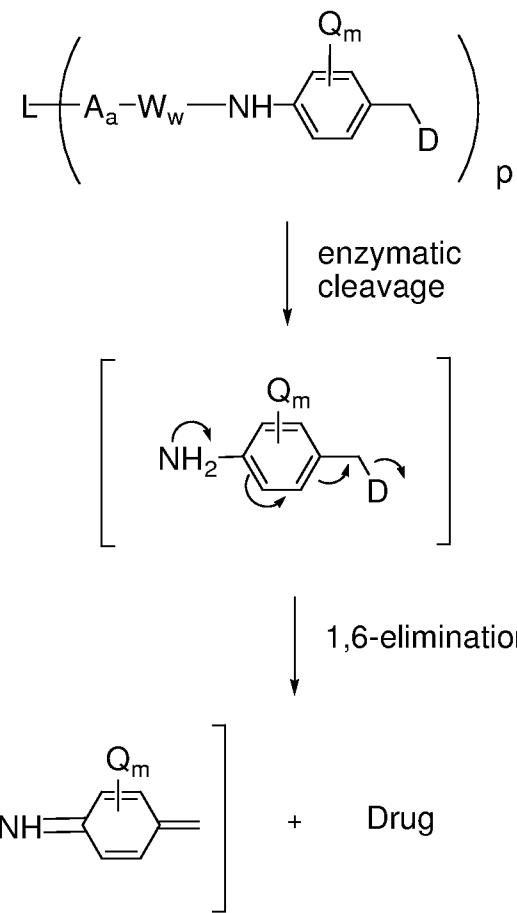

[00246] In one embodiment, a Drug-Linker conjugate is provided in which the Spacer unit is absent (y=0), or a pharmaceutically acceptable salt or solvate thereof.

[00247] Alternatively, a conjugate containing a self-immolative Spacer unit can release -D. As used herein, the term “self-immolative Spacer” refers to a bifunctional chemical moiety that is capable of covalently linking together two spaced chemical moieties into a stable tripartite molecule. It will spontaneously separate from the second chemical moiety if its bond to the first moiety is cleaved.

[00248] In some embodiments, -Y_y- is a p-aminobenzyl alcohol (PAB) unit (see Schemes 2 and 3) whose phenylene portion is substituted with Q_m wherein Q is -C₁-C₈ alkyl, -C₁-C₈ alkenyl, -C₁-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₁-C₈ alkenyl), -O-(C₁-C₈ alkynyl), -halogen, - nitro or -cyano; and m is an integer ranging from 0-4. The alkyl, alkenyl and alkynyl groups, whether alone or as part of another group, can be optionally substituted.

[00249] In some embodiments, -Y- is a PAB group that is linked to -W_w- via the amino nitrogen atom of the PAB group, and connected directly to -D via a carbonate, carbamate or ether group. Without being bound by any particular theory or mechanism, Scheme 2 depicts a possible mechanism of Drug release of a PAB group which is attached directly to -D via a carbamate or carbonate group as described by Toki *et al.*, 2002, *J. Org. Chem.* 67:1866-1872.

Scheme 2

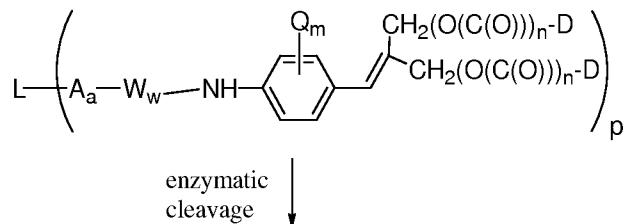

[00250]

Drug

[00251] In Scheme 2, Q is -C₁-C₈ alkyl, -C₁-C₈ alkenyl, -C₁-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₁-C₈ alkenyl), -O-(C₁-C₈ alkynyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; and p ranges from 1 to about 20. The alkyl, alkenyl and alkynyl groups, whether alone or as part of another group, can be optionally substituted.

[00252] Without being bound by any particular theory or mechanism, Scheme 3 depicts a possible mechanism of Drug release of a PAB group which is attached directly to -D via an ether or amine linkage, wherein D includes the oxygen or nitrogen group that is part of the Drug unit.

Scheme 3

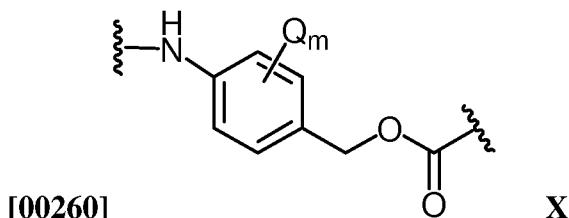


[00253] In Scheme 3, Q is -C₁-C₈ alkyl, -C₁-C₈ alkenyl, -C₁-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₁-C₈ alkenyl), -O-(C₁-C₈ alkynyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; and p ranges from 1 to about 20. The alkyl, alkenyl and alkynyl groups, whether alone or as part of another group, can be optionally substituted.

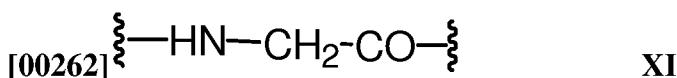
[00254] Other examples of self-immolative spacers include, but are not limited to, aromatic compounds that are electronically similar to the PAB group such as 2-aminoimidazol-5-methanol derivatives (Hay *et al.*, 1999, *Bioorg. Med. Chem. Lett.* 9:2237) and ortho or para-aminobenzylacetals. Spacers can be used that undergo cyclization upon amide bond hydrolysis, such as substituted and unsubstituted 4-aminobutyric acid amides (Rodrigues *et al.*, 1995, *Chemistry Biology* 2:223), appropriately substituted bicyclo[2.2.1] and bicyclo[2.2.2] ring systems (Storm *et al.*, 1972, *J. Amer. Chem. Soc.* 94:5815) and 2-aminophenylpropionic acid amides (Amsberry *et al.*, 1990, *J. Org. Chem.* 55:5867). Elimination of amine-containing drugs that are substituted at the α -position of glycine (Kingsbury *et al.*, 1984, *J. Med. Chem.* 27:1447) are also examples of self-immolative spacers.

[00255] In one embodiment, the Spacer unit is a branched bis(hydroxymethyl)-styrene (BHMS) unit as depicted in Scheme 4, which can be used to incorporate and release multiple drugs.

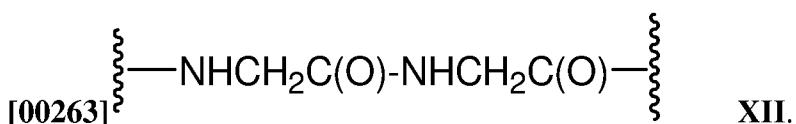
Scheme 4

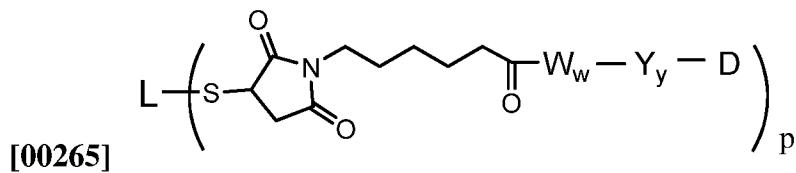


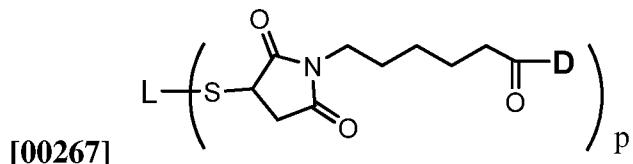
[00256] 2 drugs

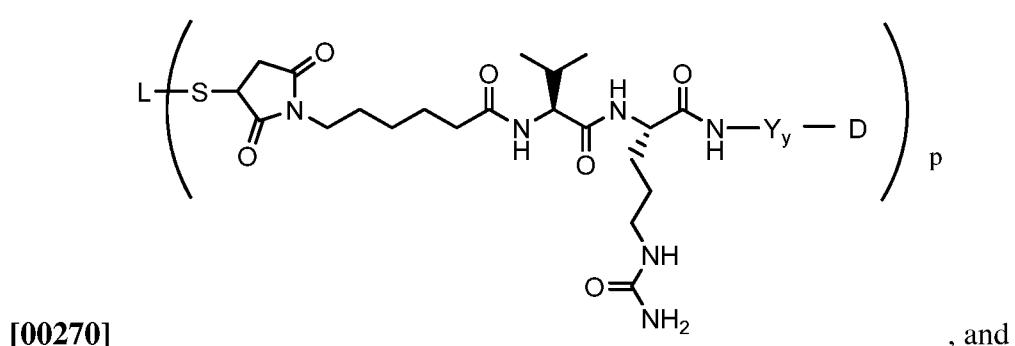
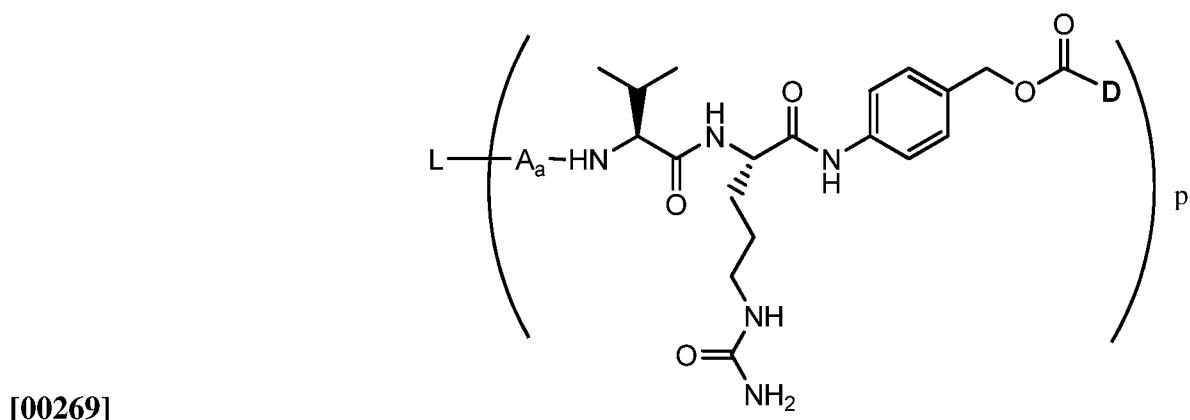

[00257] In Scheme 4, Q is -C₁-C₈ alkyl, -C₁-C₈ alkenyl, -C₁-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₁-C₈ alkenyl), -O-(C₁-C₈ alkynyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; n is 0 or 1; and p ranges from 1 to about 20. The alkyl, alkenyl and alkynyl groups, whether alone or as part of another group, can be optionally substituted.

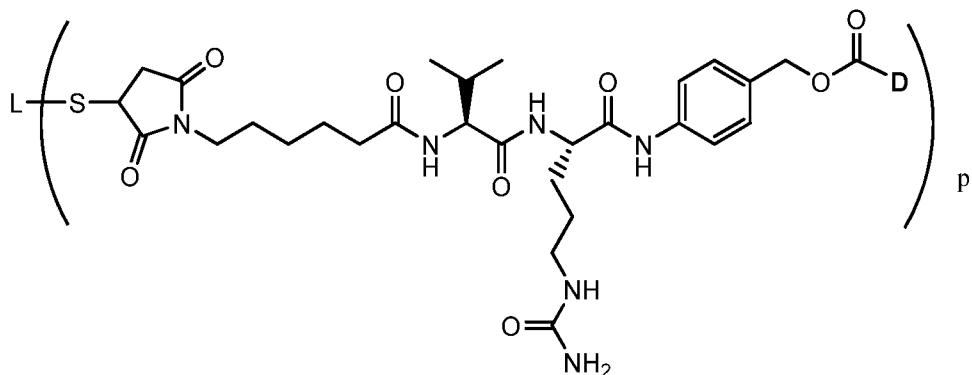
[00258] In some embodiments, the -D moieties are the same. In yet another embodiment, the -D moieties are different.


[00259] In one aspect, Spacer units (-Y_y) are represented by Formulas (X)-(XII):


[00261] wherein Q is -C₁-C₈ alkyl, -C₁-C₈ alkenyl, -C₁-C₈ alkynyl, -O-(C₁-C₈ alkyl), -O-(C₁-C₈ alkenyl), -O-(C₁-C₈ alkynyl), -halogen, -nitro or -cyano; and m is an integer ranging from 0-4. The alkyl, alkenyl and alkynyl groups, whether alone or as part of another group, can be optionally substituted.


and



[00264] Embodiments of the Formula I and II comprising antibody-drug conjugate compounds can include:



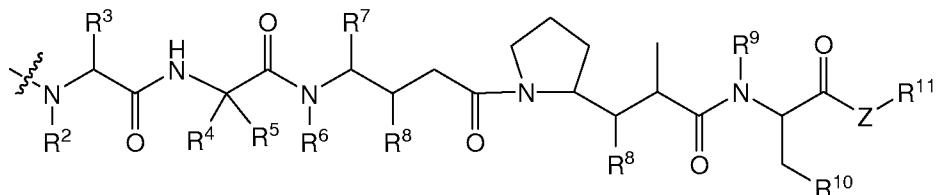
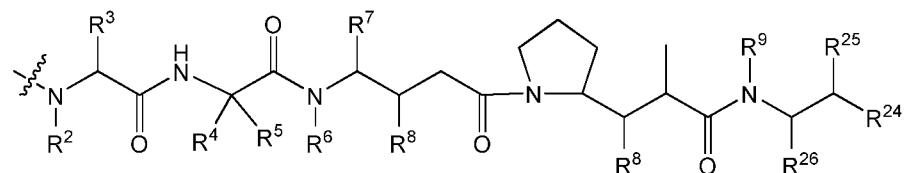
[00266] wherein w and y are each 0, 1 or 2, and,

[00268] wherein w and y are each 0,

IX.) The Drug Unit

[00271] The Drug moiety (D) can be any cytotoxic, cytostatic or immunomodulatory (*e.g.*, immunosuppressive) or drug. D is a Drug unit (moiety) having an atom that can form a bond with the Spacer unit, with the Amino Acid unit, with the Stretcher unit or with the Antibody unit. In some embodiments, the Drug unit D has a nitrogen atom that can form a bond with the Spacer unit. As used herein, the terms “Drug unit” and “Drug moiety” are synonymous and used interchangeably.

[00272] Useful classes of cytotoxic or immunomodulatory agents include, for example, antitubulin agents, DNA minor groove binders, DNA replication inhibitors, and alkylating agents.



[00273] In some embodiments, the Drug is an auristatin, such as auristatin E (also known in the art as a derivative of dolastatin-10) or a derivative thereof. The auristatin can be, for example, an ester formed between auristatin E and a keto acid. For example, auristatin E can be reacted with paraacetyl benzoic acid or benzoylvaleric acid to produce AEB and AEVB, respectively. Other typical auristatins include AFP, MMAF, and MMAE. The synthesis and structure of exemplary auristatins are described in U.S. Patent Application Publication Nos. 2003-0083263, 2005-0238649 and 2005-0009751; International Patent Publication No. WO 04/010957, International Patent Publication No. WO 02/088172, and U.S. Patent Nos. 6,323,315; 6,239,104; 6,034,065; 5,780,588; 5,665,860; 5,663,149; 5,635,483; 5,599,902; 5,554,725; 5,530,097; 5,521,284; 5,504,191; 5,410,024; 5,138,036; 5,076,973; 4,986,988; 4,978,744; 4,879,278; 4,816,444; and 4,486,414, each of which is incorporated by reference herein in its entirety and for all purposes.

[00274] Auristatins have been shown to interfere with microtubule dynamics and nuclear and cellular division and have anticancer activity. Auristatins bind tubulin and can exert a cytotoxic or cytostatic effect on a 24P4C12-expressing cell. There are a number of different assays, known in the art, which can be used for determining whether an auristatin or resultant antibody-drug conjugate exerts a cytostatic or cytotoxic effect on a desired cell line.

[00275] Methods for determining whether a compound binds tubulin are known in the art. See, for example, Muller et al., *Anal. Chem.* 2006, 78, 4390-4397; Hamel et al., *Molecular Pharmacology*, 1995 47: 965-976; and Hamel et al., *The Journal of Biological Chemistry*, 1990 265:28, 17141-17149. For purposes of the present invention, the relative affinity of a compound to tubulin can be determined. Some preferred auristatins of the present invention bind tubulin with an affinity ranging from 10 fold lower (weaker affinity) than the binding affinity of MMAE to tubulin to 10 fold, 20 fold or even 100 fold higher (higher affinity) than the binding affinity of MMAE to tubulin.

[00276]

In some embodiments, -D is an auristatin of the formula **D_E** or **D_F**:

or a pharmaceutically acceptable salt or solvate form thereof;
wherein, independently at each location:

the wavy line indicates a bond;

R² is -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl;

R³ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, -carbocycle, -C₁-C₂₀ alkylene (carbocycle), -C₂-C₂₀ alkenylene(carbocycle), -C₂-C₂₀ alkynylene(carbocycle), -aryl, -C₁-C₂₀ alkylene(aryl), -C₂-C₂₀ alkenylene(aryl), -C₂-C₂₀ alkynylene(aryl), heterocycle, -C₁-C₂₀ alkylene(heterocycle), -C₂-C₂₀ alkenylene(heterocycle), or -C₂-C₂₀ alkynylene(heterocycle);

R⁴ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, carbocycle, -C₁-C₂₀ alkylene (carbocycle), -C₂-C₂₀ alkenylene(carbocycle), -C₂-C₂₀ alkynylene(carbocycle), aryl, -C₁-C₂₀ alkylene(aryl), -C₂-C₂₀ alkenylene(aryl), -C₂-C₂₀ alkynylene(aryl), -heterocycle, -C₁-C₂₀ alkylene(heterocycle), -C₂-C₂₀ alkenylene(heterocycle), or -C₂-C₂₀ alkynylene(heterocycle);

R⁵ is -H or -C₁-C₈ alkyl;

or **R⁴** and **R⁵** jointly form a carbocyclic ring and have the formula -(CR^aR^b)_s- wherein R^a and R^b are independently -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, or -carbocycle and s is 2, 3, 4, 5 or 6,

R⁶ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl;

R⁷ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, carbocycle, -C₁-C₂₀ alkylene (carbocycle), -C₂-C₂₀ alkenylene(carbocycle), -C₂-C₂₀ alkynylene(carbocycle), -aryl, -C₁-C₂₀ alkylene(aryl), -C₂-C₂₀ alkenylene(aryl), -C₂-C₂₀ alkynylene(aryl), heterocycle, -C₁-C₂₀ alkylene(heterocycle), -C₂-C₂₀ alkenylene(heterocycle), or -C₂-C₂₀ alkynylene(heterocycle);

each **R⁸** is independently -H, -OH, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, -O-(C₁-C₂₀ alkyl), -O-(C₂-C₂₀ alkenyl), -O-(C₁-C₂₀ alkynyl), or -carbocycle;

R⁹ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl;

R²⁴ is -aryl, -heterocycle, or -carbocycle;

R²⁵ is -H, C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, -carbocycle, -O-(C₁-C₂₀ alkyl),

-O-(C₂-C₂₀ alkenyl), -O-(C₂-C₂₀ alkynyl), or **OR¹⁸** wherein **R¹⁸** is -H, a hydroxyl protecting group, or a direct bond where **OR¹⁸** represents =O;

R²⁶ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl, -aryl, -heterocycle, or -carbocycle;

R¹⁰ is -aryl or -heterocycle;

Z is -O, -S, -NH, or -NR¹², wherein **R¹²** is -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl;

R¹¹ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, -aryl, -heterocycle, -(R¹³O)_m-R¹⁴, or -(R¹³O)_m-CH(R¹⁵)₂;

m is an integer ranging from 1-1000;

R¹³ is -C₂-C₂₀ alkylene, -C₂-C₂₀ alkenylene, or -C₂-C₂₀ alkynylene;

R¹⁴ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl;

each occurrence of **R¹⁵** is independently -H, -COOH, -(CH₂)_n-N(R¹⁶)₂, -(CH₂)_n-SO₃H, -(CH₂)_n-SO₃-C₁-C₂₀ alkyl, -(CH₂)_n-SO₃-C₂-C₂₀ alkenyl, or -(CH₂)_n-SO₃-C₂-C₂₀ alkynyl;

each occurrence of **R¹⁶** is independently -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl or -(CH₂)_n-COOH; and

n is an integer ranging from 0 to 6;

wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, aryl, carbocycle, and heterocycle radicals, whether alone or as part of another group, are optionally substituted.

Auristatins of the formula **D_E** include those wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, aryl, carbocycle, and heterocycle radicals are unsubstituted.

Auristatins of the formula **D_E** include those wherein the groups of R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, and R⁹ are unsubstituted and the groups of R¹⁹, R²⁰ and R²¹ are optionally substituted as described herein.

Auristatins of the formula **D_E** include those wherein

R² is C₁-C₈ alkyl;

R³, R⁴ and **R⁷** are independently selected from -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, monocyclic C₃-C₆ carbocycle, -C₁-C₂₀ alkylene(monocyclic C₃-C₆ carbocycle), -C₂-C₂₀ alkenylene(monocyclic C₃-C₆ carbocycle), -C₂-C₂₀ alkynylene(monocyclic C₃-C₆ carbocycle), C₆-C₁₀ aryl, -C₁-C₂₀ alkylene(C₆-C₁₀ aryl), -C₂-C₂₀ alkenylene(C₆-C₁₀ aryl), -C₂-C₂₀ alkynylene(C₆-C₁₀ aryl), heterocycle, -C₁-C₂₀ alkylene(heterocycle), -C₂-C₂₀ alkenylene(heterocycle), or -C₂-C₂₀

alkynylene(heterocycle); wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, carbocycle, aryl and heterocycle radicals are optionally substituted;

R⁵ is -H;

R⁶ is -C₁-C₈ alkyl;

each **R**⁸ is independently selected from -OH, -O-(C₁-C₂₀ alkyl), -O-(C₂-C₂₀ alkenyl), or

-O-(C₂-C₂₀ alkynyl) wherein said alkyl, alkenyl, and alkynyl radicals are optionally substituted;

R⁹ is -H or -C₁-C₈ alkyl;

R²⁴ is optionally substituted -phenyl;

R²⁵ is -OR¹⁸; wherein **R**¹⁸ is H, a hydroxyl protecting group, or a direct bond where OR¹⁸ represents =O;

R²⁶ is selected from -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, or -carbocycle; wherein said alkyl, alkenyl, alkynyl and carbocycle radicals are optionally substituted; or a pharmaceutically acceptable salt or solvate form thereof.

Auristatins of the formula **D_E** include those wherein

R² is methyl;

R³ is -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, or C₂-C₈ alkynyl, wherein said alkyl, alkenyl and alkynyl radicals are optionally substituted;

R⁴ is -H, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, monocyclic C₃-C₆ carbocycle, -C₆-C₁₀ aryl, -C₁-C₈ alkylene(C₆-C₁₀ aryl), -C₂-C₈ alkenylene(C₆-C₁₀ aryl), -C₂-C₈ alkynylene(C₆-C₁₀ aryl), -C₁-C₈ alkylene (monocyclic C₃-C₆ carbocycle), -C₂-C₈ alkenylene (monocyclic C₃-C₆ carbocycle), -C₂-C₈ alkynylene(monocyclic C₃-C₆ carbocycle); wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, aryl and carbocycle radicals whether alone or as part of another group are optionally substituted;

R⁵ is -H;

R⁶ is methyl;

R⁷ is -C₁-C₈ alkyl, -C₂-C₈ alkenyl or -C₂-C₈ alkynyl;

each **R**⁸ is methoxy;

R⁹ is -H or -C₁-C₈ alkyl;

R²⁴ is -phenyl;

R²⁵ is -OR¹⁸; wherein **R**¹⁸ is H, a hydroxyl protecting group, or a direct bond where OR¹⁸ represents =O;

R²⁶ is methyl;

or a pharmaceutically acceptable salt form thereof.

Auristatins of the formula **D_E** include those wherein:

R² is methyl; **R**³ is -H or -C₁-C₃ alkyl; **R**⁴ is -C₁-C₅ alkyl; **R**⁵ is -H; **R**⁶ is methyl; **R**⁷ is isopropyl or sec-butyl; **R**⁸ is methoxy; **R**⁹ is -H or -C₁-C₈ alkyl; **R**²⁴ is phenyl; **R**²⁵ is -OR¹⁸; wherein **R**¹⁸ is -H, a hydroxyl protecting group, or a direct bond where OR¹⁸ represents =O; and **R**²⁶ is methyl; or a pharmaceutically acceptable salt or solvate form thereof.

Auristatins of the formula **D_E** include those wherein:

R² is methyl or C₁-C₃ alkyl,

R³ is -H or -C₁-C₃ alkyl;

R⁴ is -C₁-C₅ alkyl;

R⁵ is H;

R⁶ is C₁-C₃ alkyl;

R⁷ is -C₁-C₅ alkyl;

R⁸ is -C₁-C₃ alkoxy;

R⁹ is -H or -C₁-C₈ alkyl;

R²⁴ is phenyl;

R²⁵ is -OR¹⁸; wherein **R**¹⁸ is -H, a hydroxyl protecting group, or a direct bond where OR¹⁸ represents =O; and

R²⁶ is -C₁-C₃ alkyl;

or a pharmaceutically acceptable salt form thereof.

Auristatins of the formula **D_F** include those wherein

R² is methyl;

R³, **R**⁴, and **R**⁷ are independently selected from -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, monocyclic C₃-C₆ carbocycle, -C₁-C₂₀ alkylene(monocyclic C₃-C₆ carbocycle), -C₂-C₂₀ alkenylene(monocyclic C₃-C₆ carbocycle), -C₂-C₂₀ alkynylene(monocyclic C₃-C₆ carbocycle), -C₆-C₁₀ aryl, -C₁-C₂₀ alkylene(C₆-C₁₀ aryl), -C₂-C₂₀ alkenylene(C₆-C₁₀ aryl), -C₂-C₂₀ alkynylene(C₆-C₁₀ aryl), heterocycle, -C₁-C₂₀ alkylene(heterocycle), -C₂-C₂₀ alkenylene(heterocycle), or -C₂-C₂₀

alkynylene(heterocycle); wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynylene, carbocycle, aryl and heterocycle radicals whether alone or as part of another group are optionally substituted;

R⁵ is -H;

R⁶ is methyl;

each **R**⁸ is methoxy;

R⁹ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl; wherein said alkyl, alkenyl and alkynyl radical are optionally substituted;

R¹⁰ is optionally substituted aryl or optionally substituted heterocycle;

Z is -O-, -S-, -NH-, or -NR¹², wherein **R**¹² is -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl, each of which is optionally substituted;

R¹¹ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl, -aryl, -heterocycle, -(R¹³O)_m-R¹⁴, or -(R¹³O)_m-CH(R¹⁵)₂, wherein said alkyl, alkenyl, alkynyl, aryl and heterocycle radicals are optionally substituted;

m is an integer ranging from 1-1000 or m = 0;

R¹³ is -C₂-C₂₀ alkylene, -C₂-C₂₀ alkenylene, or -C₂-C₂₀ alkynylene, each of which is optionally substituted;

R¹⁴ is -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, or -C₂-C₂₀ alkynyl wherein said alkyl, alkenyl and alkynyl radicals are optionally substituted;

each occurrence of **R**¹⁵ is independently -H, -COOH, -(CH₂)_n-N(R¹⁶)₂, -(CH₂)_n-SO₃H, -(CH₂)_n-SO₃-C₁-C₂₀ alkyl, -(CH₂)_n-SO₃-C₂-C₂₀ alkenyl, or -(CH₂)_n-SO₃-C₂-C₂₀ alkynyl wherein said alkyl, alkenyl and alkynyl radicals are optionally substituted;

each occurrence of **R**¹⁶ is independently -H, -C₁-C₂₀ alkyl, -C₂-C₂₀ alkenyl, -C₂-C₂₀ alkynyl or -(CH₂)_n-COOH wherein said alkyl, alkenyl and alkynyl radicals are optionally substituted;

n is an integer ranging from 0 to 6;

or a pharmaceutically acceptable salt thereof.

In certain of these embodiments, **R**¹⁰ is optionally substituted phenyl.

Auristatins of the formula **D_F** include those wherein the groups of **R**², **R**³, **R**⁴, **R**⁵, **R**⁶, **R**⁷, **R**⁸, and **R**⁹ are unsubstituted and the groups of **R**¹⁰ and **R**¹¹ are as described herein.

Auristatins of the formula **D_F** include those wherein said alkyl, alkenyl, alkynyl, alkylene, alkenylene, alkynyklene, aryl, carbocycle, and heterocycle radicals are unsubstituted

Auristatins of the formula **D_F** include those wherein

R² is -C₁-C₃ alkyl; **R³** is -H or -C₁-C₃ alkyl; **R⁴** is -C₁-C₅ alkyl; **R⁵** is -H; **R⁶** is -C₁-C₃ alkyl; **R⁷** is -C₁-C₅ alkyl; **R⁸** is -C₁-C₃ alkoxy; **R⁹** is -H or -C₁-C₈ alkyl; **R¹⁰** is optionally substituted phenyl; **Z** is -O-, -S-, or -NH-; **R¹¹** is as defined herein; or a pharmaceutically acceptable salt thereof.

Auristatins of the formula **D_F** include those wherein

R² is methyl; **R³** is -H or -C₁-C₃ alkyl; **R⁴** is -C₁-C₅ alkyl; **R⁵** is -H; **R⁶** is methyl; **R⁷** is isopropyl or sec-butyl; **R⁸** is methoxy; **R⁹** is -H or -C₁-C₈ alkyl; **R¹⁰** is optionally substituted phenyl; **Z** is -O-, -S-, or -NH-; and **R¹¹** is as defined herein; or a pharmaceutically acceptable salt thereof.

Auristatins of the formula **D_F** include those wherein

R² is methyl; **R³** is -H or -C₁-C₃ alkyl; **R⁴** is -C₁-C₅ alkyl; **R⁵** is -H; **R⁶** is methyl; **R⁷** is isopropyl or sec-butyl; **R⁸** is methoxy; **R⁹** is -H or -C₁-C₈ alkyl; **R¹⁰** is phenyl; and **Z** is -O- or -NH- and **R¹¹** is as defined herein, preferably hydrogen; or a pharmaceutically acceptable salt form thereof.

Auristatins of the formula **D_F** include those wherein

R² is -C₁-C₃ alkyl; **R³** is -H or -C₁-C₃ alkyl; **R⁴** is -C₁-C₅ alkyl; **R⁵** is -H; **R⁶** is -C₁-C₃ alkyl; **R⁷** is -C₁-C₅ alkyl; **R⁸** is -C₁-C₃ alkoxy; **R⁹** is -H or -C₁-C₈ alkyl; **R¹⁰** is phenyl; and **Z** is -O- or -NH- and **R¹¹** is as defined herein, preferably hydrogen; or a pharmaceutically acceptable salt form thereof.

Auristatins of the formula **D_E** or **D_F** include those wherein **R³**, **R⁴** and **R⁷** are independently isopropyl or sec-butyl and **R⁵** is -H. In an exemplary embodiment, **R³** and **R⁴** are each isopropyl, **R⁵** is H, and **R⁷** is sec-butyl. The remainder of the substituents are as defined herein.

Auristatins of the formula **D_E** or **D_F** include those wherein **R²** and **R⁶** are each methyl, and **R⁹** is H. The remainder of the substituents are as defined herein.

Auristatins of the formula **D_E** or **D_F** include those wherein each occurrence of **R⁸** is -OCH₃. The remainder of the substituents are as defined herein.

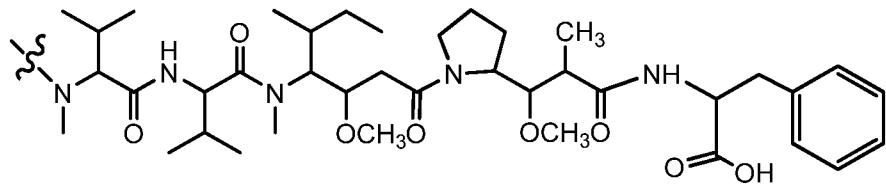
Auristatins of the formula **D_E** or **D_F** include those wherein R³ and R⁴ are each isopropyl, R² and R⁶ are each methyl, R⁵ is H, R⁷ is sec-butyl, each occurrence of R⁸ is -OCH₃, and R⁹ is H. The remainder of the substituents are as defined herein.

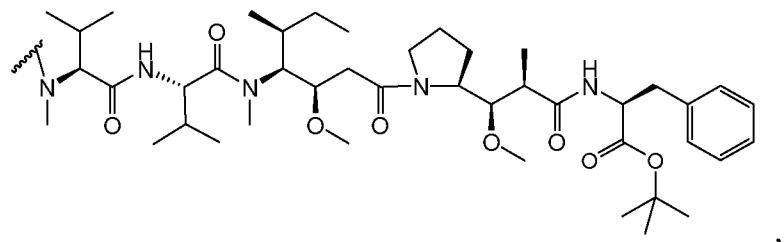
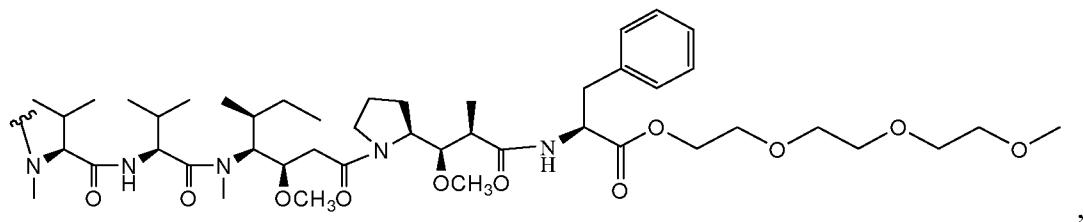
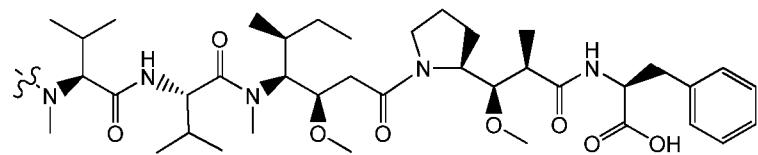
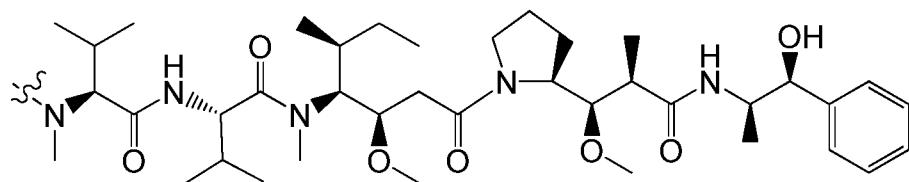
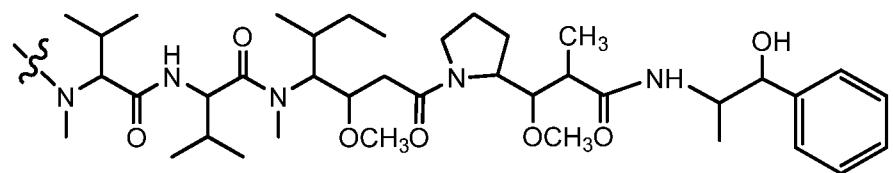
Auristatins of the formula **D_F** include those wherein Z is -O- or -NH-. The remainder of the substituents are as defined herein.

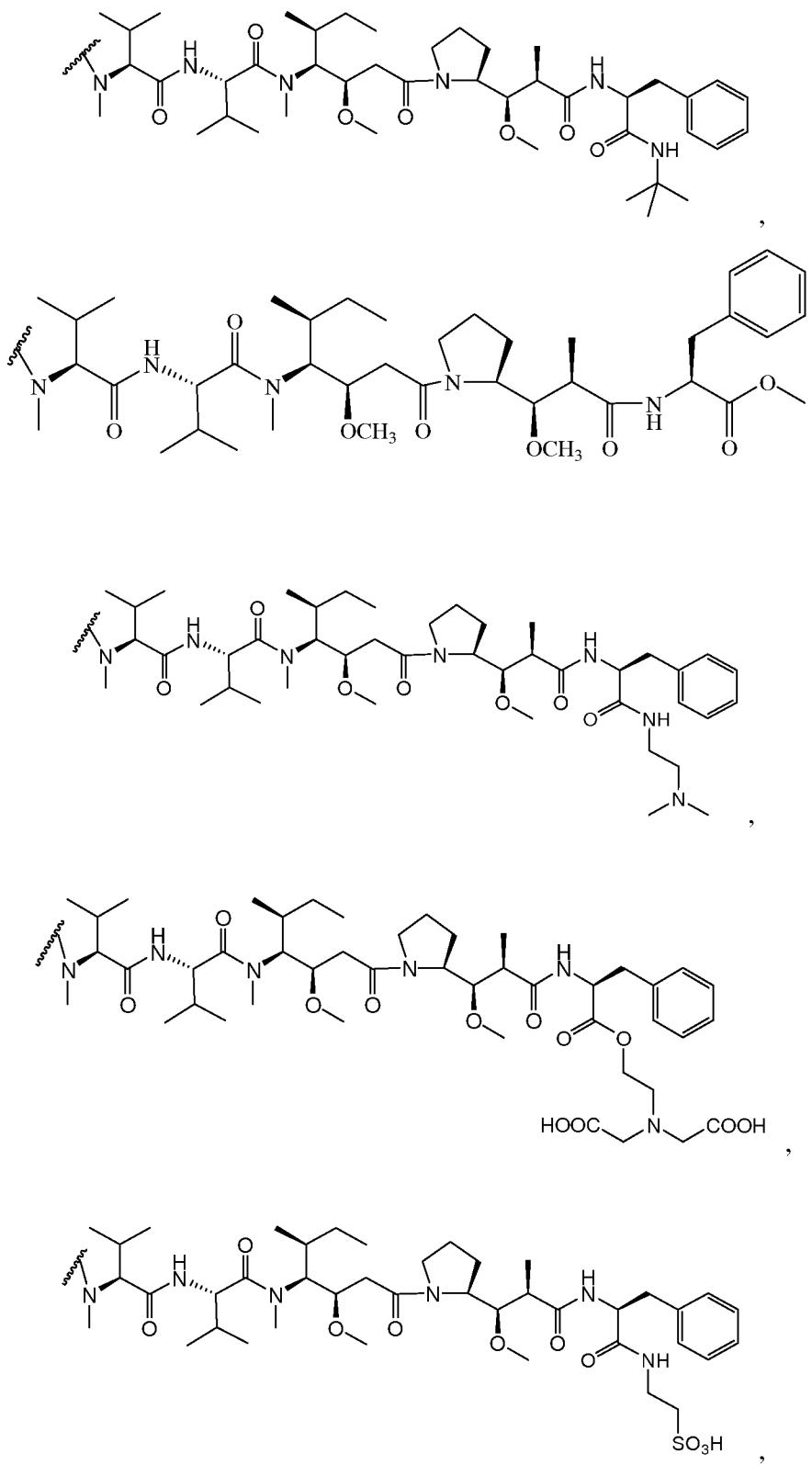
Auristatins of the formula **D_F** include those wherein R¹⁰ is aryl. The remainder of the substituents are as defined herein.

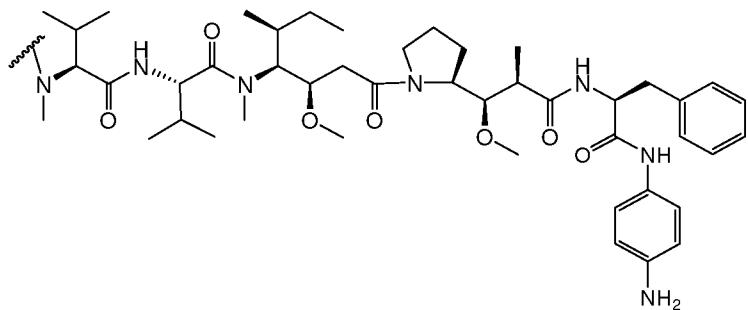
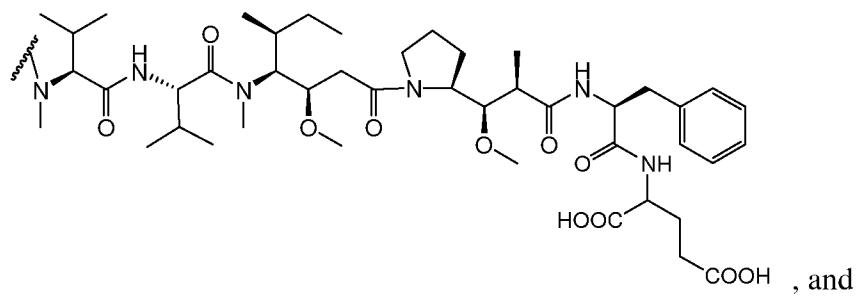
Auristatins of the formula **D_F** include those wherein R¹⁰ is -phenyl. The remainder of the substituents are as defined herein.

Auristatins of the formula **D_F** include those wherein Z is -O-, and R¹¹ is H, methyl or t-butyl. The remainder of the substituents are as defined herein.

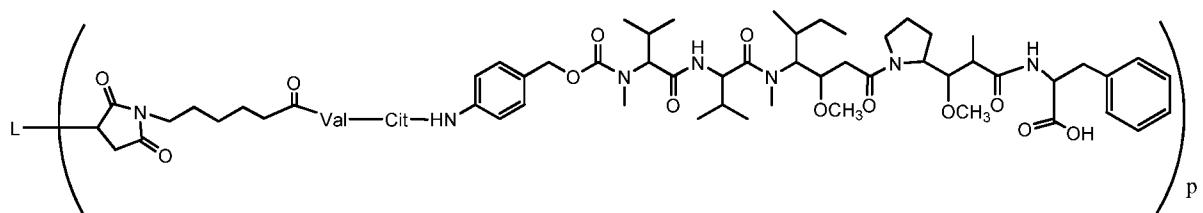

Auristatins of the formula **D_F** include those wherein, when Z is -NH-, R¹¹ is -(R¹³O)_m-CH(R¹⁵)₂, wherein R¹⁵ is -(CH₂)_n-N(R¹⁶)₂, and R¹⁶ is -C₁-C₈ alkyl or -(CH₂)_n-COOH. The remainder of the substituents are as defined herein.

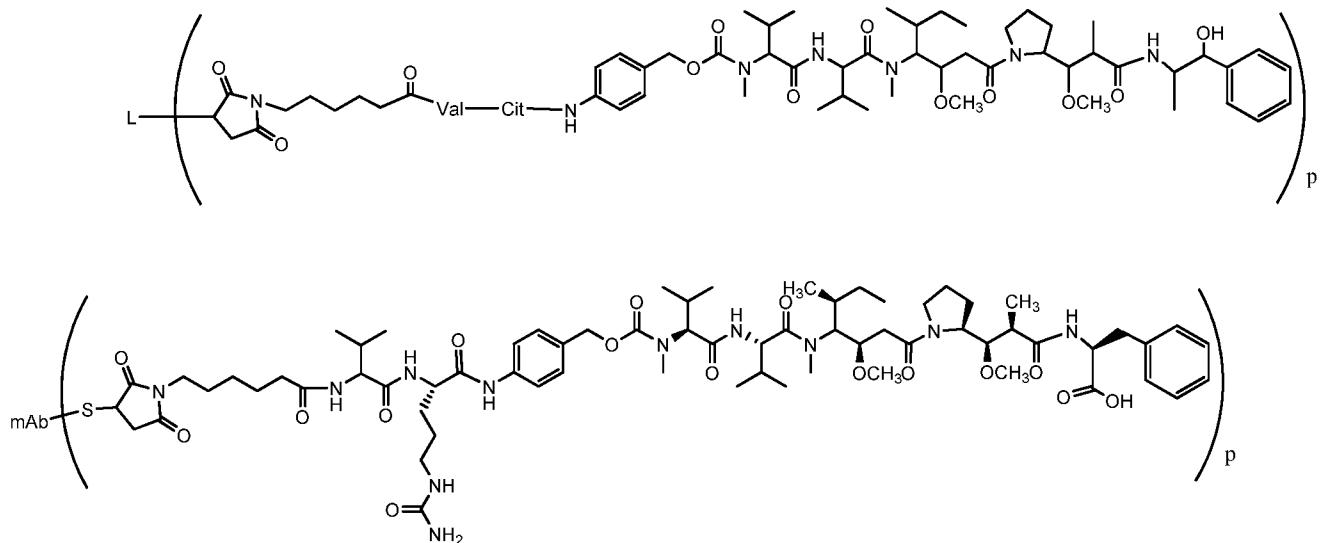





Auristatins of the formula **D_F** include those wherein when Z is -NH-, R¹¹ is -(R¹³O)_m-CH(R¹⁵)₂, wherein R¹⁵ is -(CH₂)_n-SO₃H. The remainder of the substituents are as defined herein.


In preferred embodiments, when D is an auristatin of formula **D_E**, w is an integer ranging from 1 to 12, preferably 2 to 12, y is 1 or 2, and a is preferably 1.



In some embodiments, when D is an auristatin of formula **D_F**, a is 1 and w and y are 0.

Illustrative Drug units (-D) include the drug units having the following structures:

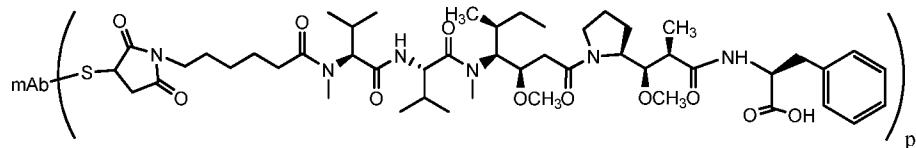



or pharmaceutically acceptable salts or solvates thereof.

In one aspect, hydrophilic groups, such as but not limited to triethylene glycol esters (TEG) can be attached to the Drug Unit at R¹¹. Without being bound by theory, the hydrophilic groups assist in the internalization and non-agglomeration of the Drug Unit.

In some embodiments, the Drug unit is not TZT-1027. In some embodiments, the Drug unit is not auristatin E, dolastatin 10, or auristatin PE.

Exemplary antibody-drug conjugate compounds have the following structures wherein “L” or “mAb-s-“ represents an 24P4C12 MAb designated Ha5-1(5)2.1 set forth herein:


L-MC-vc-PAB-MMAF

or

Error! Objects cannot be created from editing field codes.

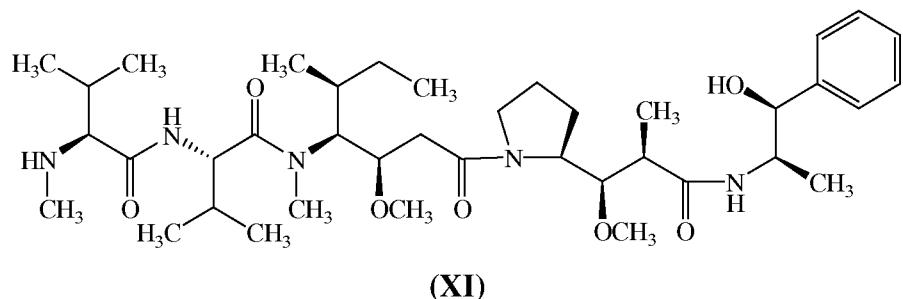
L-MC-vc-PAB-MMAE.

or

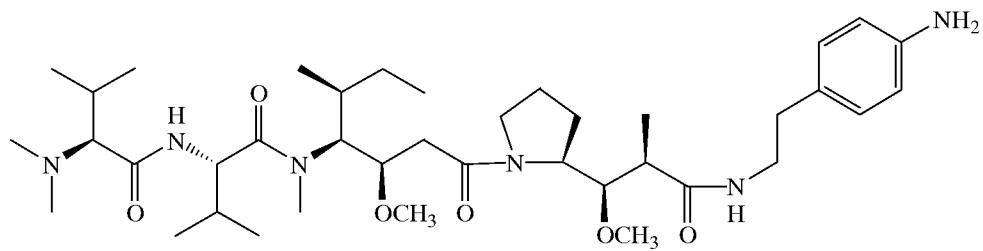
L-MC-MMAF

or pharmaceutically acceptable salt thereof.

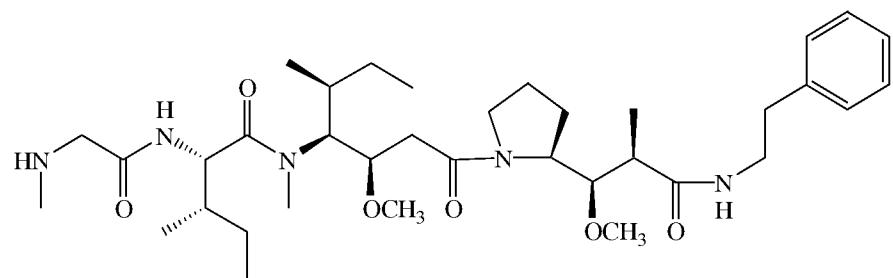
In some embodiments, the Drug Unit is a calicheamicin, camptothecin, a maytansinoid, or an anthracycline. In some embodiments the drug is a taxane, a topoisomerase inhibitor, a vinca alkaloid, or the like.

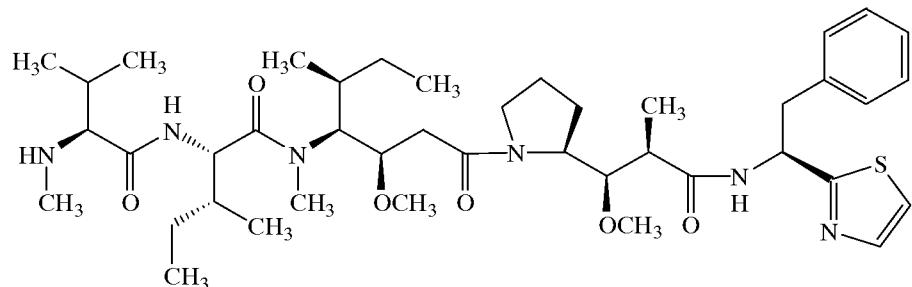

In some typical embodiments, suitable cytotoxic agents include, for example, DNA minor groove binders (*e.g.*, enediynes and lexitropsins, a CBI compound; see also U.S. Patent No. 6,130,237), duocarmycins, taxanes (*e.g.*, paclitaxel and docetaxel), puromycins, and vinca alkaloids. Other cytotoxic agents include, for example, CC-1065, SN-38, topotecan, morpholino-doxorubicin, rhizoxin, cyanomorpholino-doxorubicin,

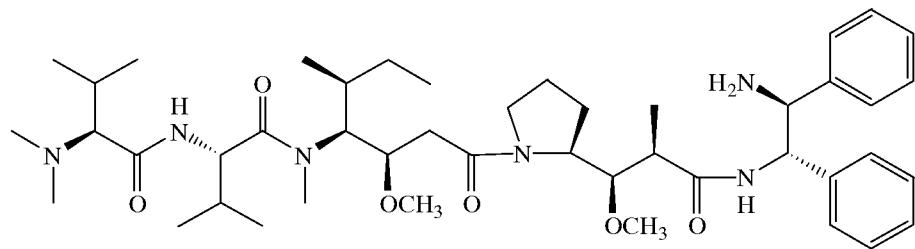
echinomycin, combretastatin, netropsin, epothilone A and B, estramustine, cryptophysins, cemadotin, maytansinoids, discodermolide, eleutherobin, and mitoxantrone.

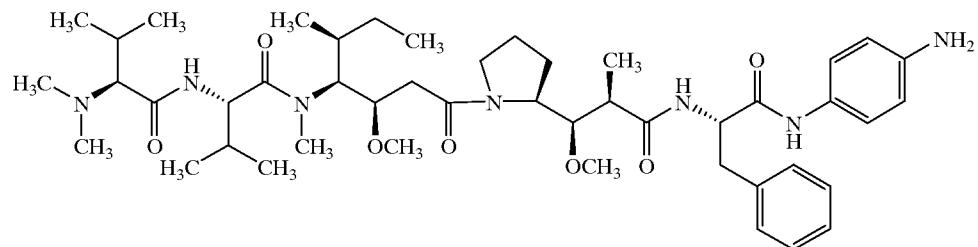

In some embodiments, the Drug is an anti-tubulin agent. Examples of anti-tubulin agents include, auristatins, taxanes (e.g., Taxol® (paclitaxel), Taxotere® (docetaxel)), T67 (Tularik) and vinca alkyloids (e.g., vincristine, vinblastine, vindesine, and vinorelbine). Other antitubulin agents include, for example, baccatin derivatives, taxane analogs (e.g., epothilone A and B), nocodazole, colchicine and colcimid, estramustine, cryptophycins, cemadotin, maytansinoids, combretastatins, discodermolide, and eleutherobin.

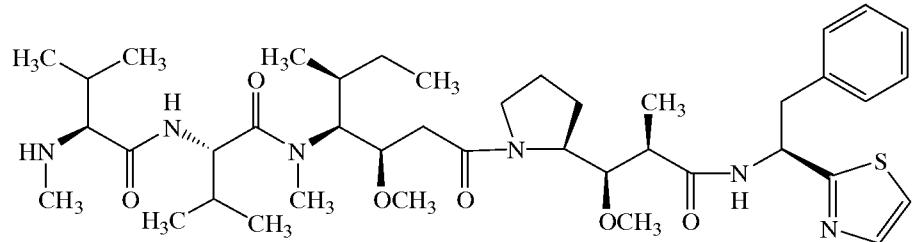
In certain embodiments, the cytotoxic agent is a maytansinoid, another group of anti-tubulin agents. For example, in specific embodiments, the maytansinoid is maytansine or DM-1 (ImmunoGen, Inc.; see also Chari *et al.*, 1992, Cancer Res. 52:127-131).

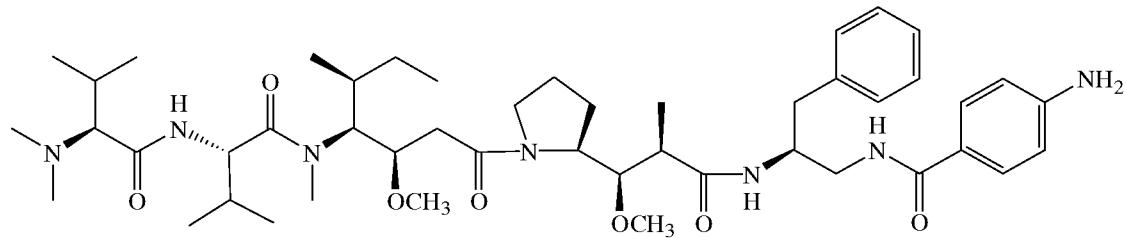

In certain embodiments, the cytotoxic or cytostatic agent is a dolastatin. In certain embodiments, the cytotoxic or cytostatic agent is of the auristatin class. Thus, in a specific embodiment, the cytotoxic or cytostatic agent is MMAE (Formula **XI**). In another specific embodiment, the cytotoxic or cytostatic agent is AFP (Formula **XVI**).

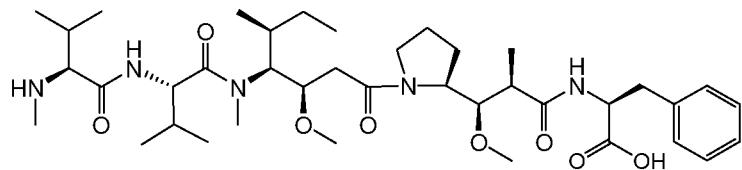

In certain embodiments, the cytotoxic or cytostatic agent is a compound of formulas **XII-XXI** or pharmaceutically acceptable salt thereof:

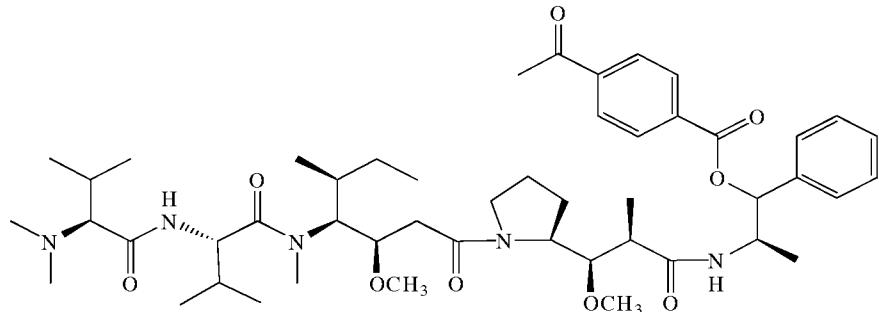

(XII)

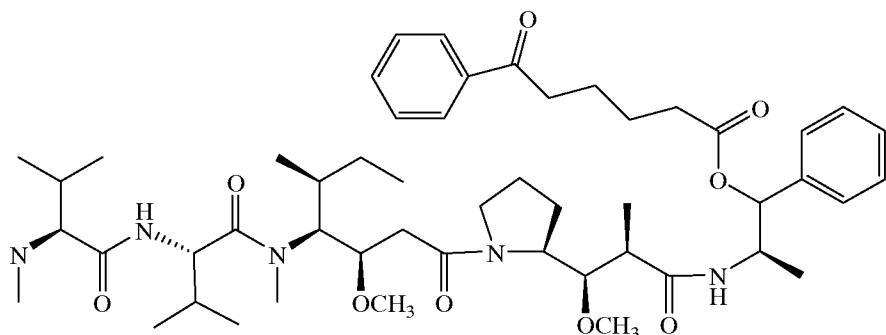

(XIII)


(XIV)


(XV)


(XVI)


(XVII)


(XVIII)

(XVIV)

(XX)

(XXI)

X.) Drug Loading

[00277] Drug loading is represented by p and is the average number of Drug moieties per antibody in a molecule. Drug loading may range from 1 to 20 drug moieties (D) per antibody. ADCs of the invention include collections of antibodies conjugated with a range of drug moieties, from 1 to 20. The average number of drug moieties per antibody in preparations of ADC from conjugation reactions may be characterized by conventional means such as mass spectroscopy and, ELISA assay. The quantitative distribution of

ADC in terms of p may also be determined. In some instances, separation, purification, and characterization of homogeneous ADC where p is a certain value from ADC with other drug loadings may be achieved by means such as electrophoresis.

[00278] For some antibody-drug conjugates, p may be limited by the number of attachment sites on the antibody. For example, where the attachment is a cysteine thiol, as in the exemplary embodiments above, an antibody may have only one or several cysteine thiol groups, or may have only one or several sufficiently reactive thiol groups through which a linker may be attached. In certain embodiments, higher drug loading, e.g. p > 5, may cause aggregation, insolubility, toxicity, or loss of cellular permeability of certain antibody-drug conjugates. In certain embodiments, the drug loading for an ADC of the invention ranges from 1 to about 8; from about 2 to about 6; from about 3 to about 5; from about 3 to about 4; from about 3.1 to about 3.9; from about 3.2 to about 3.8; from about 3.2 to about 3.7; from about 3.2 to about 3.6; from about 3.3 to about 3.8; or from about 3.3 to about 3.7. Indeed, it has been shown that for certain ADCs, the optimal ratio of drug moieties per antibody may be less than 8, and may be about 2 to about 5. See US 2005-0238649 A1 (herein incorporated by reference in its entirety).

[00279] In certain embodiments, fewer than the theoretical maximum of drug moieties are conjugated to an antibody during a conjugation reaction. An antibody may contain, for example, lysine residues that do not react with the drug-linker intermediate or linker reagent, as discussed below. Generally, antibodies do not contain many free and reactive cysteine thiol groups which may be linked to a drug moiety; indeed most cysteine thiol residues in antibodies exist as disulfide bridges. In certain embodiments, an antibody may be reduced with a reducing agent such as dithiothreitol (DTT) or tricarbonylethylphosphine (TCEP), under partial or total reducing conditions, to generate reactive cysteine thiol groups. In certain embodiments, an antibody is subjected to denaturing conditions to reveal reactive nucleophilic groups such as lysine or cysteine.

[00280] The loading (drug/antibody ratio) of an ADC may be controlled in different ways, e.g., by: (i) limiting the molar excess of drug-linker intermediate or linker reagent relative to antibody, (ii) limiting the conjugation reaction time or temperature, (iii) partial or limiting reductive conditions for cysteine thiol modification, (iv) engineering by recombinant techniques the amino acid sequence of the antibody such that the number and position of cysteine residues is modified for control of the number and/or position of

linker-drug attachements (such as thioMab or thioFab prepared as disclosed herein and in WO2006/034488 (herein incorporated by reference in its entirety)).

[00281] It is to be understood that where more than one nucleophilic group reacts with a drug-linker intermediate or linker reagent followed by drug moiety reagent, then the resulting product is a mixture of ADC compounds with a distribution of one or more drug moieties attached to an antibody. The average number of drugs per antibody may be calculated from the mixture by a dual ELISA antibody assay, which is specific for antibody and specific for the drug. Individual ADC molecules may be identified in the mixture by mass spectroscopy and separated by HPLC, e.g. hydrophobic interaction chromatography (see, e.g., Hamblett, K.J., et al. "Effect of drug loading on the pharmacology, pharmacokinetics, and toxicity of an anti-CD30 antibody-drug conjugate," Abstract No. 624, American Association for Cancer Research, 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004; Alley, S.C., et al. "Controlling the location of drug attachment in antibody-drug conjugates," Abstract No. 627, American Association for Cancer Research, 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004). In certain embodiments, a homogeneous ADC with a single loading value may be isolated from the conjugation mixture by electrophoresis or chromatography.

XI.) Methods of Determining Cytotoxic effect of ADCs

[00282] Methods of determining whether a Drug or Antibody-Drug conjugate exerts a cytostatic and/or cytotoxic effect on a cell are known. Generally, the cytotoxic or cytostatic activity of a Antibody Drug conjugate can be measured by: exposing mammalian cells expressing a target protein of the Antibody Drug conjugate in a cell culture medium; culturing the cells for a period from about 6 hours to about 5 days; and measuring cell viability. Cell-based *in vitro* assays can be used to measure viability (proliferation), cytotoxicity, and induction of apoptosis (caspase activation) of the Antibody Drug conjugate.

[00283] For determining whether a Antibody Drug conjugate exerts a cytostatic effect, a thymidine incorporation assay may be used. For example, cancer cells expressing a target antigen at a density of 5,000 cells/well of a 96-well plated can be cultured for a 72-hour period and exposed to 0.5 μ Ci of 3 H-thymidine during the final 8 hours of the 72-

hour period. The incorporation of ^3H -thymidine into cells of the culture is measured in the presence and absence of the Antibody Drug conjugate.

[00284] For determining cytotoxicity, necrosis or apoptosis (programmed cell death) can be measured. Necrosis is typically accompanied by increased permeability of the plasma membrane; swelling of the cell, and rupture of the plasma membrane. Apoptosis is typically characterized by membrane blebbing, condensation of cytoplasm, and the activation of endogenous endonucleases. Determination of any of these effects on cancer cells indicates that a Antibody Drug conjugate is useful in the treatment of cancers.

[00285] Cell viability can be measured by determining in a cell the uptake of a dye such as neutral red, trypan blue, or ALAMARTM blue (*see, e.g.*, Page *et al.*, 1993, *Intl. J. Oncology* 3:473-476). In such an assay, the cells are incubated in media containing the dye, the cells are washed, and the remaining dye, reflecting cellular uptake of the dye, is measured spectrophotometrically. The protein-binding dye sulforhodamine B (SRB) can also be used to measure cytotoxicity (Skehan *et al.*, 1990, *J. Natl. Cancer Inst.* 82:1107-12).

[00286] Alternatively, a tetrazolium salt, such as MTT, is used in a quantitative colorimetric assay for mammalian cell survival and proliferation by detecting living, but not dead, cells (*see, e.g.*, Mosmann, 1983, *J. Immunol. Methods* 65:55-63).

[00287] Apoptosis can be quantitated by measuring, for example, DNA fragmentation. Commercial photometric methods for the quantitative *in vitro* determination of DNA fragmentation are available. Examples of such assays, including TUNEL (which detects incorporation of labeled nucleotides in fragmented DNA) and ELISA-based assays, are described in *Biochemica*, 1999, no. 2, pp. 34-37 (Roche Molecular Biochemicals).

[00288] Apoptosis can also be determined by measuring morphological changes in a cell. For example, as with necrosis, loss of plasma membrane integrity can be determined by measuring uptake of certain dyes (*e.g.*, a fluorescent dye such as, for example, acridine orange or ethidium bromide). A method for measuring apoptotic cell number has been described by Duke and Cohen, *Current Protocols in Immunology* (Coligan *et al.* eds., 1992, pp. 3.17.1-3.17.16). Cells also can be labeled with a DNA dye (*e.g.*, acridine orange, ethidium bromide, or propidium iodide) and the cells observed for chromatin condensation and margination along the inner nuclear membrane. Other morphological changes that can be measured to determine apoptosis include, *e.g.*, cytoplasmic condensation, increased membrane blebbing, and cellular shrinkage.

[00289] The presence of apoptotic cells can be measured in both the attached and “floating” compartments of the cultures. For example, both compartments can be collected by removing the supernatant, trypsinizing the attached cells, combining the preparations following a centrifugation wash step (e.g., 10 minutes at 2000 rpm), and detecting apoptosis (e.g., by measuring DNA fragmentation). (See, e.g., Piazza *et al.*, 1995, *Cancer Research* 55:3110-16).

[00290] *In vivo*, the effect of a 24P4C12 therapeutic composition can be evaluated in a suitable animal model. For example, xenogenic cancer models can be used, wherein cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Klein *et al.*, 1997, *Nature Medicine* 3: 402-408). For example, PCT Patent Application WO98/16628 and U.S. Patent 6,107,540 describe various xenograft models of human prostate cancer capable of recapitulating the development of primary tumors, micrometastasis, and the formation of osteoblastic metastases characteristic of late stage disease. Efficacy can be predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like.

[00291] *In vivo* assays that evaluate the promotion of apoptosis are useful in evaluating therapeutic compositions. In one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which apoptotic foci are found in the tumors of the treated mice provides an indication of the therapeutic efficacy of the composition.

[00292] The therapeutic compositions used in the practice of the foregoing methods can be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient’s immune system. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington’s Pharmaceutical Sciences 16th Edition, A. Osal., Ed., 1980).

[00293] Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effective routes of administration include, but are not limited to, intravenous, parenteral,

intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. Therapeutic protein preparations can be lyophilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterile water prior to injection.

[00294] Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the art.

XII.) Treatment of Cancer(s) Expressing 24P4C12

[00295] The identification of 24P4C12 as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in cancers such as those listed in Table I, opens a number of therapeutic approaches to the treatment of such cancers.

[00296] Of note, targeted antitumor therapies have been useful even when the targeted protein is expressed on normal tissues, even vital normal organ tissues. A vital organ is one that is necessary to sustain life, such as the heart or colon. A non-vital organ is one that can be removed whereupon the individual is still able to survive. Examples of non-vital organs are ovary, breast, and prostate.

[00297] Expression of a target protein in normal tissue, even vital normal tissue, does not defeat the utility of a targeting agent for the protein as a therapeutic for certain tumors in which the protein is also overexpressed. For example, expression in vital organs is not in and of itself detrimental. In addition, organs regarded as dispensable, such as the prostate and ovary, can be removed without affecting mortality. Finally, some vital organs are not affected by normal organ expression because of an immunoprivilege. Immunoprivileged organs are organs that are protected from blood by a blood-organ barrier and thus are not accessible to immunotherapy. Examples of immunoprivileged organs are the brain and testis.

[00298] Accordingly, therapeutic approaches that inhibit the activity of a 24P4C12 protein are useful for patients suffering from a cancer that expresses 24P4C12. These

therapeutic approaches generally fall into three classes. The first class modulates 24P4C12 function as it relates to tumor cell growth leading to inhibition or retardation of tumor cell growth or inducing its killing. The second class comprises various methods for inhibiting the binding or association of a 24P4C12 protein with its binding partner or with other proteins. The third class comprises a variety of methods for inhibiting the transcription of a 24P4C12 gene or translation of 24P4C12 mRNA.

[00299] Accordingly, Cancer patients can be evaluated for the presence and level of 24P4C12 expression, preferably using immunohistochemical assessments of tumor tissue, quantitative 24P4C12 imaging, or other techniques that reliably indicate the presence and degree of 24P4C12 expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art.

XIII.) 24P4C12 as a Target for Antibody-based Therapy

[00300] 24P4C12 is an attractive target for antibody-based therapeutic strategies. A number of antibody strategies are known in the art for targeting both extracellular and intracellular molecules (see, *e.g.*, complement and ADCC mediated killing as well as the use of intrabodies). Because 24P4C12 is expressed by cancer cells of various lineages relative to corresponding normal cells, systemic administration of 24P4C12-immunoreactive compositions are prepared that exhibit excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and tissues. Antibodies specifically reactive with domains of 24P4C12 are useful to treat 24P4C12-expressing cancers systemically, preferably as antibody drug conjugates (*i.e.* ADCs) wherein the conjugate is with a toxin or therapeutic agent.

[00301] Those skilled in the art understand that antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a 24P4C12 sequence shown in Figure 1. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, *e.g.*, Slevers *et al.* *Blood* 93:11 3678-3684 (June 1, 1999)). When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugating them to antibodies specific for a molecule expressed by that cell

(e.g. 24P4C12), the cytotoxic agent will exert its known biological effect (*i.e.* cytotoxicity) on those cells.

[00302] A wide variety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the art. In the context of cancers, typical methods entail administering to an mammal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/or therapeutic agent linked to a targeting agent (e.g. a 24P4C12 MAb, preferably Ha5-1(5)2.1) that binds to an antigen (e.g. 24P4C12) expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 24P4C12, comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a 24P4C12 epitope, and, exposing the cell to the antibody drug conjugate (ADC). Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic and/or therapeutic agent.

[00303] Cancer immunotherapy using 24P4C12 antibodies can be done in accordance with various approaches that have been successfully employed in the treatment of other types of cancer, including but not limited to colon cancer (Arlen *et al.*, 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki *et al.*, 1997, Blood 90:3179-3186, Tsunenari *et al.*, 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk *et al.*, 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi *et al.*, 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), leukemia (Zhong *et al.*, 1996, Leuk. Res. 20:581-589), colorectal cancer (Moun *et al.*, 1994, Cancer Res. 54:6160-6166; Velders *et al.*, 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard *et al.*, 1991, J. Clin. Immunol. 11:117-127). Some therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such as the conjugation of Y⁹⁰ or I¹³¹ to anti-CD20 antibodies (e.g., ZevalinTM, IDEC Pharmaceuticals Corp. or BexxarTM, Coulter Pharmaceuticals) respectively, while others involve co-administration of antibodies and other therapeutic agents, such as HerceptinTM (trastuzumab) with paclitaxel (Genentech, Inc.). In a preferred embodiment, the antibodies will be conjugated a cytotoxic agent, *supra*, preferably an aurastatin derivative designated MMAE (Seattle Genetics).

[00304] Although 24P4C12 antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Fan *et al.* (Cancer Res. 53:4637-4642, 1993), Prewett *et al.* (International J. of Onco. 9:217-224, 1996), and Hancock *et al.* (Cancer Res. 51:4575-4580, 1991) describe the use of various antibodies together with chemotherapeutic agents.

[00305] 24P4C12 monoclonal antibodies that treat colon and other cancers (Table I) include those that initiate a potent immune response against the tumor or those that are directly cytotoxic. In this regard, 24P4C12 monoclonal antibodies (MAbs) can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addition, 24P4C12 MAbs that exert a direct biological effect on tumor growth are useful to treat cancers that express 24P4C12. Mechanisms by which directly cytotoxic MAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) by which a particular 24P4C12 MAb exerts an anti-tumor effect is evaluated using any number of *in vitro* assays that evaluate cell death such as ADCC, complement-mediated cell lysis, and so forth, as is generally known in the art.

[00306] Accordingly, preferred monoclonal antibodies used in the therapeutic methods of the invention are those that are either fully human and that bind specifically to the target 24P4C12 antigen with high affinity.

XIV.) 24P4C12 ADC Cocktails

[00307] Therapeutic methods of the invention contemplate the administration of single 24P4C12 ADCs as well as combinations, or cocktails, of different MAbs (i.e. 24P4C12 MAbs or Mabs that bind another protein). Such MAb cocktails can have certain

advantages inasmuch as they contain MAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic MAbs with MAbs that rely on immune effector functionality. Such MAbs in combination can exhibit synergistic therapeutic effects. In addition, 24P4C12 MAbs can be administered concomitantly with other therapeutic modalities, including but not limited to various chemotherapeutic and biologic agents, androgen-blockers, immune modulators (*e.g.*, IL-2, GM-CSF), surgery or radiation. In a preferred embodiment, the 24P4C12 MAbs are administered in conjugated form.

[00308] 24P4C12 ADC formulations are administered via any route capable of delivering the antibodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of the 24P4C12 ADC preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range, including but not limited to, 0.1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 mg/kg body weight. In general, doses in the range of 10-1000 mg MAb per week are effective and well tolerated.

[00309] Based on clinical experience with the Herceptin® (Trastuzumab) in the treatment of metastatic breast cancer, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the MAb preparation represents an acceptable dosing regimen. Preferably, the initial loading dose is administered as a 90-minute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated. As appreciated by those of skill in the art, various factors can influence the ideal dose regimen in a particular case. Such factors include, for example, the binding affinity and half life of the MAbs used, the degree of 24P4C12 expression in the patient, the extent of circulating shed 24P4C12 antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient.

[00310] Optionally, patients should be evaluated for the levels of 24P4C12 in a given sample (*e.g.* the levels of circulating 24P4C12 antigen and/or 24P4C12 expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such

evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the evaluation of other parameters (for example, urine cytology and/or ImmunoCyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy).

[00311] An object of the present invention is to provide 24P4C12 ADCs, which inhibit or retard the growth of tumor cells expressing 24P4C12. A further object of this invention is to provide methods to inhibit angiogenesis and other biological functions and thereby reduce tumor growth in mammals, preferably humans, using such 24P4C12 ADCs, and in particular using such 24P4C12 ADCs combined with other drugs or immunologically active treatments.

XV.) Combination Therapy

[00312] In one embodiment, there is synergy when tumors, including human tumors, are treated with 24P4C12 ADCs in conjunction with chemotherapeutic agents or radiation or combinations thereof. In other words, the inhibition of tumor growth by a 24P4C12 ADC is enhanced more than expected when combined with chemotherapeutic agents or radiation or combinations thereof. Synergy may be shown, for example, by greater inhibition of tumor growth with combined treatment than would be expected from a treatment of only 24P4C12 ADC or the additive effect of treatment with a 24P4C12 ADC and a chemotherapeutic agent or radiation. Preferably, synergy is demonstrated by remission of the cancer where remission is not expected from treatment either from a 24P4C12 ADC or with treatment using an additive combination of a 24P4C12 ADC and a chemotherapeutic agent or radiation.

[00313] The method for inhibiting growth of tumor cells using a 24P4C12 ADC and a combination of chemotherapy or radiation or both comprises administering the 24P4C12 ADC before, during, or after commencing chemotherapy or radiation therapy, as well as any combination thereof (*i.e.* before and during, before and after, during and after, or before, during, and after commencing the chemotherapy and/or radiation therapy). For example, the 24P4C12 ADC is typically administered between 1 and 60 days, preferably between 3 and 40 days, more preferably between 5 and 12 days before commencing radiation therapy and/or chemotherapy. However, depending on the treatment protocol

and the specific patient needs, the method is performed in a manner that will provide the most efficacious treatment and ultimately prolong the life of the patient.

[00314] The administration of chemotherapeutic agents can be accomplished in a variety of ways including systemically by the parenteral and enteral routes. In one embodiment, the 24P4C12 ADCs and the chemotherapeutic agent are administered as separate molecules. Particular examples of chemotherapeutic agents or chemotherapy include cisplatin, dacarbazine (DTIC), dactinomycin, mechlorethamine (nitrogen mustard), streptozocin, cyclophosphamide, carmustine (BCNU), lomustine (CCNU), doxorubicin (adriamycin), daunorubicin, procarbazine, mitomycin, cytarabine, etoposide, methotrexate, 5-fluorouracil, vinblastine, vincristine, bleomycin, paclitaxel (taxol), docetaxel (taxotere), aldesleukin, asparaginase, busulfan, carboplatin, cladribine, dacarbazine, flouxuridine, fludarabine, hydroxyurea, ifosfamide, interferon alpha, leuprolide, megestrol, melphalan, mercaptopurine, plicamycin, mitotane, pegaspargase, pentostatin, pipobroman, plicamycin, streptozocin, tamoxifen, teniposide, testolactone, thioguanine, thiotepa, uracil mustard, vinorelbine, chlorambucil, taxol and combinations thereof.

[00315] The source of radiation, used in combination with a 24P4C12 ADC, can be either external or internal to the patient being treated. When the source is external to the patient, the therapy is known as external beam radiation therapy (EBRT). When the source of radiation is internal to the patient, the treatment is called brachytherapy (BT).

[00316] The above described therapeutic regimens may be further combined with additional cancer treating agents and/or regimes, for example additional chemotherapy, cancer vaccines, signal transduction inhibitors, agents useful in treating abnormal cell growth or cancer, antibodies (e.g. Anti-CTLA-4 antibodies as described in WO/2005/092380 (Pfizer)) or other ligands that inhibit tumor growth by binding to IGF-1R, and cytokines.

[00317] When the mammal is subjected to additional chemotherapy, chemotherapeutic agents described above may be used. Additionally, growth factor inhibitors, biological response modifiers, anti-hormonal therapy, selective estrogen receptor modulators (SERMs), angiogenesis inhibitors, and anti-androgens may be used. For example, anti-hormones, for example anti-estrogens such as Nolvadex (tamoxifen) or, anti-androgens

such as Casodex (4'-cyano-3-(4-fluorophenylsulphonyl)-2-hydroxy-2-methyl-3- '-(trifluoromethyl)propionanilide) may be used.

[00318] The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent well.

XVI.) Kits/Articles of Manufacture

[00319] For use in the laboratory, prognostic, prophylactic, diagnostic and therapeutic applications described herein, kits are within the scope of the invention. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method, along with a label or insert comprising instructions for use, such as a use described herein. For example, the container(s) can comprise an antibody that is or can be detectably labeled. Kits can comprise a container comprising a Drug Unit. The kit can include all or part of the amino acid sequences in Figure 2, or Figure 3 or analogs thereof, or a nucleic acid molecule that encodes such amino acid sequences.

[00320] The kit of the invention will typically comprise the container described above and one or more other containers associated therewith that comprise materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use.

[00321] A label can be present on or with the container to indicate that the composition is used for a specific therapy or non-therapeutic application, such as a prognostic, prophylactic, diagnostic or laboratory application, and can also indicate directions for either *in vivo* or *in vitro* use, such as those described herein. Directions and or other information can also be included on an insert(s) or label(s) which is included with or on the kit. The label can be on or associated with the container. A label a can be on a container when letters, numbers or other characters forming the label are molded or etched into the container itself; a label can be associated with a container when it is

present within a receptacle or carrier that also holds the container, *e.g.*, as a package insert. The label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as a cancer of a tissue set forth in Table I.

[00322] The terms “kit” and “article of manufacture” can be used as synonyms.

[00323] In another embodiment of the invention, an article(s) of manufacture containing compositions, such as antibody(s), or antibody drug conjugates (ADCs) *e.g.*, materials useful for the diagnosis, prognosis, prophylaxis and/or treatment of cancers of tissues such as those set forth in Table I is provided. The article of manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass, metal or plastic. The container can hold amino acid sequence(s), small molecule(s), nucleic acid sequence(s), cell population(s) and/or antibody(s). In another embodiment a container comprises an antibody, binding fragment thereof or specific binding protein for use in evaluating protein expression of 24P4C12 in cells and tissues, or for relevant laboratory, prognostic, diagnostic, prophylactic and therapeutic purposes; indications and/or directions for such uses can be included on or with such container, as can reagents and other compositions or tools used for these purposes.

[00324] The container can alternatively hold a composition that is effective for treating, diagnosis, prognosing or prophylaxing a condition and can have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agents in the composition can be an antibody capable of specifically binding 24P4C12 or an antibody drug conjugate specifically binding to 24P4C12.

[00325] The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and/or dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package inserts with indications and/or instructions for use.

EXAMPLES:

[00326] Various aspects of the invention are further described and illustrated by way of the several examples that follow, none of which is intended to limit the scope of the invention.

Example 1The 24P4C12 Antigen

[00327] The novel 24P4C12 gene sequence was discovered using Suppression Subtractive Hybridization (SSH) methods known in the art. The 24P4C12 SSH sequence of 160 bp was identified from a LAPC xenograft SSH experiment using standard methods. A full length cDNA clone for 24P4C12 was isolated from a LAPC-9 AD minus benign prostatic hyperplasia experiment. The cDNA is 2587 bp in length and encodes a 710 amino acid ORF (*See*, Figure 1A). For further reference see, U.S. patent No. 6,943,235 (Agensys, Inc., Santa Monica, CA), U.S. Patent No. 7,220,823 (Agensys, Inc., Santa Monica, CA), U.S. Patent No. 7,227,008 (Agensys, Inc., Santa Monica, CA), and U.S. Patent No. 7,244,827 (Agensys, Inc., Santa Monica, CA). For exemplary embodiments of the 24P4C12 antigen and variants thereof, see Figure 1.

Example 2Generation of 24P4C12 Monoclonal Antibodies (MAbs)

[00328] In one embodiment, therapeutic Monoclonal Antibodies (“MAbs”) to 24P4C12 and 24P4C12 variants comprise those that react with epitopes specific for each protein or specific to sequences in common between the variants that would bind, internalize, disrupt or modulate the biological function of 24P4C12 or 24P4C12 variants, for example, those that would disrupt the interaction with ligands, substrates, and binding partners. Immunogens for generation of such MAbs include those designed to encode or contain the extracellular domains or the entire 24P4C12 protein sequence, regions predicted to contain functional motifs, and regions of the 24P4C12 protein variants predicted to be antigenic from computer analysis of the amino acid sequence. Immunogens include peptides and recombinant proteins such as tag5-24P4C12, a purified mammalian cell derived His tagged protein. In addition, cells engineered to express high

levels of 24P4C12, such as RAT1-24P4C12 or 300.19-24P4C12, are used to immunize mice.

[00329] MAbs to 24P4C12 were generated using XenoMouse technology[®] (Amgem Fremont) wherein the murine heavy and kappa light chain loci have been inactivated and a majority of the human heavy and kappa light chain immunoglobulin loci have been inserted. The MAb designated Ha5-1(5)2.1 was generated from immunization of human $\gamma 2$ producing XenoMice with RAT(E)-24P4C12 cells.

[00330] The 24P4C12 MAb Ha5-1(5)2.1 specifically binds to recombinant 24P4C12 expressing cells (PC3-24P4C12) and multiple cancer cell lines expressing 24P4C12.

[00331] The hybridoma producing an antibody designated Ha5-1(5)2.1 was sent (via Federal Express) to the American Type Culture Collection (ATCC), P.O. Box 1549, Manassas, VA 20108 on 08-August-2007 and assigned Accession numbers PTA-8602.

[00332] DNA coding sequences for 24P4C12 MAb Ha5-1(5)2.1 was determined after isolating mRNA from the respective hybridoma cells with Trizol reagent (Life Technologies, Gibco BRL).

[00333] Anti-24P4C12 Ha5-1(5)2.1 heavy and light chain variable nucleic acid sequences were sequenced from the hybridoma cells using the following protocol. Ha5-1(5)2.1 secreting hybridoma cells were lysed with Trizol reagent (Life Technologies, Gibco BRL). Total RNA was purified and quantified. First strand cDNAs was generated from total RNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. First strand cDNA was amplified using human immunoglobulin variable heavy chain primers, and human immunoglobulin variable light chain primers. PCR products were sequenced and the variable heavy and light chain regions determined.

[00334] The nucleic acid and amino acid sequences of the variable heavy and light chain regions are listed in Figure 2 and Figure 3. Alignment of Ha5-1(5)2.1 MAb to human Ig germline is set forth in Figure 4A-4B.

Example 3

Expression of Ha5-1(5)2.1 using Recombinant DNA Methods

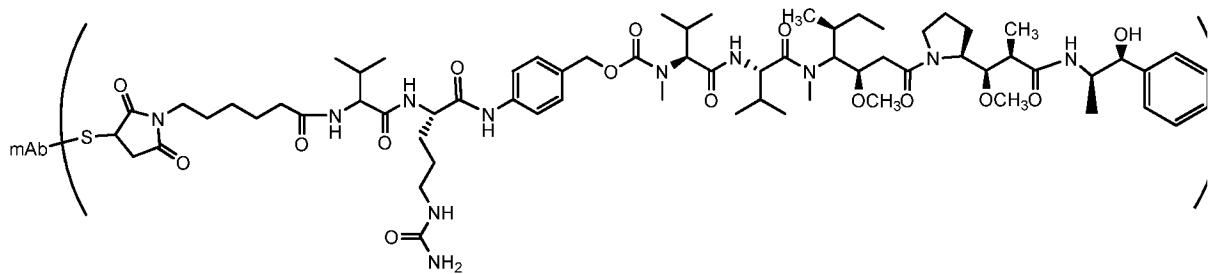
[00335] To express Ha5-1(5)2.1 MAb recombinantly in transfected cells, Ha5-1(5)2.1 MAb variable heavy and light chain sequences were cloned upstream of the human heavy chain IgG2 and light chain Ig κ constant regions, respectively. The complete Ha5-1(5)2.1

MAb human heavy chain and light chain cassettes were cloned downstream of the CMV promoter/enhancer in a cloning vector. A polyadenylation site was included downstream of the MAb coding sequence. The recombinant Ha5-1(5)2.1 MAb expressing constructs were transfected into 293T, Cos and CHO cells. The Ha5-1(5)2.1 MAb secreted from recombinant cells was evaluated for binding to cell surface 24P4C12 by flow cytometry (Figure 5). PC3-control and PC3-24P4C12 cells were stained with Ha5-1(5)2.1 MAb from either hybridoma or from CHO cells transfected with Ha5-1(5)2.1 heavy and light chain vector constructs.

[00336] Binding was detected by flow cytometry. Results show that the recombinantly expressed Ha5-1(5)2.1 expressed in CHO cells binds 24P4C12 similarly to the Ha5-1(5)2.1 purified from hybridoma (Figure 5).

Example 4

Antibody Drug Conjugation of Ha5-1(5)2.1 MAb


[00337] The Ha5-1(5)2.1 Mab (Figure 2) was conjugated to an auristatin derivative designated MMAE (Formula XI) using a vc (Val-Cit) linker described herein to create the antibody drug conjugate (ADC) of the invention designated Ha5-1(5)2.1vcMMAE using the following protocols. The conjugation of the vc (Val-Cit) linker to the MMAE (Seattle Genetics, Seattle, WA) was completed using the general method set forth in Table V to create the cytotoxic vcMMAE (*see*, US/2006/0074008).

[00338] Next, the antibody drug conjugate (ADC) of the invention designated H5-1(5)2.1vcMMAE was made using the following protocols.

[00339] Briefly, a 10 mg/mL solution of the Ha5-1(5)2.1 MAb in 20 mM histidine at pH 5.2 is added with a 15% volume of 0.5 M Tris at pH 8.8 to adjust the pH of the solution to 8.0-8.2. Then, EDTA and sodium chloride are added to 5 mM and 250 mM final concentration, respectively, in the reaction mixture. The MAb is then partially reduced by adding 2.3 molar equivalents of TCEP (relative to moles of MAb) and then stirred at 37°C for 3 hours. The partially reduced MAb solution is then cooled to 22°C and 5.1 molar equivalents of vcMMAE (relative to moles of antibody) are added as a 7 mg/mL solution in DMSO. The mixture is stirred for 30 minutes at 22°C, then for 15 additional minutes following the addition of 2 molar equivalents of N-acetylcysteine relative to vcMMAE. Excess quenched vcMMAE and other reaction components are

removed by ultrafiltration/diafiltration of the antibody drug conjugate (ADC) with 10 diavolumes of 20 mM histidine, pH 5.2.

[00340] The resulting antibody drug conjugate (ADC) is designated Ha5-1(5)2.1vcMMAE and has the following formula:

[00341]

Wherein MAb is Ha5-1(5)2.1 (Figure 2 and Figure 3) and p is from 1 to 8. The p value of the antibody drug conjugate set forth in this Example was about 3.6.

Example 5
Characterization of HA5-1(5)2.1vcMMAE

[00342] Antibody Drug Conjugates that bind 24P4C12 were generated using the procedures set forth in the example entitled “Antibody Drug Conjugation of Ha5-1(5)2.1 MAb” and were screened, identified, and characterized using a combination of assays known in the art.

A. Affinity Determination by FACS

[00343] Ha5-1(5)2.1vcMMAE was tested for its binding affinity to 24P4C12 endogenously expressed on LNCaP cells. Briefly, eleven (11) dilutions of Ha5-1(5)2.1vcMMAE are incubated with LNCaP cells (50,000 cells per well) overnight at 4°C at a final concentration of 160 nM to 0.011 nM. At the end of the incubation, cells are washed and incubated with anti-hIgG-PE detection antibody for 45 min at 4°C. After washing the unbound detection antibodies, the cells are analyzed by FACS. Mean Fluorescence Intensity (MFI) values were obtained as listed in (Table IV(A)). MFI values were entered into Graphpad Prism software and analyzed using the one site binding (hyperbola) equation of $Y=B_{max} \cdot X / (K_d + X)$ to generate Ha5-1(5)2.1vcMMAE saturation curves shown in (Table IV(B)). Bmax is the MFI value at maximal binding of Ha5-

1(5)2.1vcMMAE to 24P4C12; Kd is Ha5-1(5)2.1vcMMAE binding affinity which is the concentration of Ha5-1(5)2.1vcMMAE required to reach half-maximal binding.

[00344] The calculated affinity (Kd) of Ha5-1(5)2.1vcMMAE is 1.05 nM on 24P4C12 endogenously expressed on the surface of LNCaP cells.

Example 6

Cell Cytotoxicity Mediated by Ha5-1(5)2.1vcMMAE

[00345] The ability of Ha5-1(5)2.1-vcMMAE to mediate 24P4C12-dependent cytotoxicity was evaluated in PC3 cells engineered to express 24P4C12. PC3-Neo or PC3-24P4C12 cells (1000 cells/well) were seeded into a 96 well plate on day 1. The following day an equal volume of medium containing the indicated concentration of Ha5-1(5)2.1-vcMMAE or a Control MAb conjugated with vc-MMAE (i.e. Control-vcMMAE) was added to each well. The cells were allowed to incubate for 4 days at 37 degrees C. At the end of the incubation period, Alamar Blue was added to each well and incubation continued for an additional 4 hours. The resulting fluorescence was detected using a Biotek plate reader with an excitation wavelength of 620 nm and an emission wavelength of 540 nm.

[00346] The results in Figure 6 show that Ha5-1(5)2.1-vcMMAE mediated cytotoxicity in PC3-24P4C12 cells while a control human IgG conjugated with vcMMAE had no effect. The specificity of Ha5-1(5)2.1-vcMMAE was further demonstrated by the lack of toxicity for PC3-Neo cells that do not express 24P4C12. Thus, these results indicate that Ha5-1(5)2.1-vcMMAE can selectively deliver a cytotoxic drug to 24P4C12 expressing cells leading to their killing.

Example 7

Ha5-1(5)2.1vcMMAE Inhibit Growth of Tumors *In Vivo*

[00347] The significant expression of 24P4C12 on the cell surface of tumor tissues, together with its restrictive expression in normal tissues makes 24P4C12 a good target for antibody therapy and similarly, therapy via ADC. Thus, the therapeutic efficacy of Ha5-1(5)2.1vcMMAE in human ovarian, prostate, colon, and pancreatic cancer xenograft mouse models is evaluated.

[00348] Antibody drug conjugate efficacy on tumor growth and metastasis formation is studied in mouse cancer xenograft models (e.g. subcutaneous and orthotopically).

[00349] Subcutaneous (s.c.) tumors are generated by injection of 5×10^4 - 10^6 cancer cells mixed at a 1:1 dilution with Matrigel (Collaborative Research) in the right flank of male SCID mice. To test ADC efficacy on tumor formation, i.e. ADC injections are started on the same day as tumor-cell injections. As a control, mice are injected with either purified human IgG or PBS; or a purified MAb that recognizes an irrelevant antigen not expressed in human cells. In preliminary studies, no difference is found between control IgG or PBS on tumor growth. Tumor sizes are determined by caliper measurements, and the tumor volume is calculated as length x width x height. Mice with subcutaneous tumors greater than 1.5 cm in diameter are sacrificed.

[00350] Ovarian tumors often metastasize and grow within the peritoneal cavity. Accordingly, intraperitoneal growth of ovarian tumors in mice are performed by injection of 2 million cells directly into the peritoneum of female mice. Mice are monitored for general health, physical activity, and appearance until they become moribund. At the time of sacrifice, the peritoneal cavity can be examined to determine tumor burden and lungs harvested to evaluate metastasis to distant sites. Alternatively, death can be used as an endpoint. The mice are then segregated into groups for the appropriate treatments, with 24P4C12 or control MAbs being injected i.p.

[00351] An advantage of xenograft cancer models is the ability to study neovascularization and angiogenesis. Tumor growth is partly dependent on new blood vessel development. Although the capillary system and developing blood network is of host origin, the initiation and architecture of the neovasculature is regulated by the xenograft tumor (Davidoff *et al.*, Clin Cancer Res. (2001) 7:2870; Solesvik *et al.*, Eur J Cancer Clin Oncol. (1984) 20:1295). The effect of antibody and small molecule on neovascularization is studied in accordance with procedures known in the art, such as by IHC analysis of tumor tissues and their surrounding microenvironment.

[00352] Ha5-1(5)2.1ADC inhibits formation colon, pancreatic, ovarian, and prostate cancer xenografts. These results indicate the utility of Ha5-1(5)2.1ADC in the treatment of local and advanced stages of cancer and preferably those cancers set forth in Table I.

24P4C12 ADCs:

[00353] Monoclonal antibodies were raised against 24P4C12 as described in the Example entitled “Generation of 24P4C12 Monoclonal Antibodies (MAbs).” Further the MAbs are conjugated to a toxin as described in the Example entitled “Antibody Drug Conjugation of Ha5-1(5)2.1 MAb” to form AGS-5M2.1vcMMAE. The Ha5-1(5)2.1vcMMAE is characterized by FACS, and other methods known in the art to determine its capacity to bind 24P4C12.

Cell Lines and Xenografts:

[00354] The PC3-24P4C12, LAPC9, HT-29, AG-C4, OVCAR5-24P4C12, and AG-Panc3 cells are maintained in DMEM and RPMI respectively, supplemented with L-glutamine and 10% FBS. LAPC9, AG-C4, and AG-PAnC3 xenografts are maintained by serial propagation in SCID mice.

Ha5-1(5)2.1vcMMAE inhibits the Growth of Subcutaneous established human androgen-independent prostate cancer xenograft in SCID mice

[00355] In this experiment, androgen-independent human prostate cancer PC3-24P4C12 tumor cells (3.0×10^6 cells/mouse) were injected subcutaneously into male SCID mice. Mice were randomized into Ha5-1(5)2.1-vcMMAE and PBS control groups (n=5 in each group) when tumors reached 100 mm^3 . Mice were treated with a single dose of Ha5-1(5)2.1-vcMMAE (10 mg/kg) or PBS administered intravenously (i.v.) on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $\text{Width}^2 \times \text{Length}/2$, where width is the smallest dimension and length is the largest.

[00356] The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of PC-3-Hu24P4C12 prostate tumors in SCID mice ($p < 0.01$) and resulted in complete tumor regression in most animals. (Figure 7)

Ha5-1(5)2.1vcMMAE inhibits the Growth of Orthotopically established human androgen-independent prostate cancer xenograft in SCID mice

[00357] In another experiment, LAPC-9AI androgen-independent human prostate cancer cells (2.0×10^6 cells/mouse) were implanted into the prostates of male SCID mice. Fifteen (15) days after implantation when tumors were well established and palpable, the

mice were randomized into two groups (n=8 in each group). Mice were treated with either Ha5-1(5)2.1-vcMMAE or isotype control MAb conjugated with vcMMAE administered i.v. at 3 mg/kg every 4 days for a total of 4 doses. At the end of study tumors in the mouse prostate were excised and weighed using an electronic balance.

[00358] The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of LAPC9-AI human prostate tumors implanted orthotopically in SCID mice (p< 0.01). (Figure 8).

Ha5-1(5)2.1vcMMAE inhibits the Growth of Subcutaneous established human androgen-independent human colon cancer xenograft in SCID mice

[00359] In another experiment, HT-29 human colon cancer cells (1.0 x 10⁶ cells/mouse) were injected subcutaneously into SCID mice. Mice were randomized into two groups (n=6 in each group) when tumors reached 100 mm³. Ha5-1(5)2.1-vcMMAE (3 mg/kg) or PBS was administered intravenously every 4 days for a total of 4 doses beginning on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as *Width*² x *Length*/2, where width is the smallest dimension and length is the largest.

[00360] The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of HT-29 human colon tumor xenografts implanted subcutaneously in SCID mice (p< 0.01). (Figure 9).

Ha5-1(5)2.1vcMMAE inhibits the Growth of Subcutaneous established human androgen-independent patient-derived colon cancer xenograft in SCID mice

[00361] In another experiment, AG-C4, patient-derived colon cancer xenograft tumor pieces, were implanted subcutaneously into SCID mice. Mice were randomized into two groups (n=6 in each group) when tumors reached 100 mm³. Ha5-1(5)2.1-vcMMAE (3 mg/kg) or PBS was administered intravenously every 3-4 days for a total of 4 doses starting on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as *Width*² x *Length*/2, where width is the smallest dimension and length is the largest.

[00362] The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of AG-C4 human colon tumor xenografts implanted subcutaneously in SCID mice ($p < 0.05$). (Figure 10).

Ha5-1(5)2.1vcMMAE inhibits the Growth of Subcutaneous established human ovarian cancer xenograft in nude mice

[00363] In another experiment, OVCAR-5 human ovarian cancer tumor cells (2.0×10^6 cells/mouse) were injected subcutaneously into the nude mice. Mice were randomized into two groups ($n=6$ in each group) when tumors reached 100 mm^3 . Ha5-1(5)2.1-vcMMAE (5 mg/kg) or PBS was administered intravenously once every 3-4 days for a total of 4 doses starting on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $Width^2 \times Length/2$, where width is the smallest dimension and length is the largest.

[00364] The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of OVCAR-5 ovarian cancer xenografts implanted subcutaneously in nude mice ($p < 0.01$). (Figure 11).

Ha5-1(5)2.1vcMMAE inhibits the Growth of Subcutaneous established patient-derived pancreatic cancer xenograft in SCID mice

[00365] In this experiment, AG-Panc3 patient-derived pancreatic tumor pieces were implanted subcutaneously into SCID mice. Mice were randomized into two groups ($n=6$ in each group) when tumors reached 85 mm^3 . Ha5-1(5)2.1-vcMMAE (5 mg/kg) or PBS was administered intravenously once every 3-4 days for a total of 4 doses beginning on Day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $Width^2 \times Length/2$, where width is the smallest dimension and length is the largest.

[00366] The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of AG-Panc3 tumor xenografts implanted subcutaneously in SCID mice ($p < 0.01$). (Figure 12).

[00367] The results of these experiments show that 24P4C12 ADC designated Ha5-1(5)2.1vcMMAE can be used for therapeutic purposes to treat and manage cancers set forth in Table I.

Efficacy of Ha5-1(5)2.1vcMMAE compared to other 24P4C12 Antibody Drug Conjugates (ADCs) in Prostate Cancer LAPC9-AD Xenografts

[00368] In another experiment, LAPC-9AD androgen-dependent human prostate cancer cells (1.5×10^6 cells/mouse) were injected subcutaneously into male SCID mice. Mice were randomized into Ha5-1(5)2.1-vcMMAE, Ha5-1(5)2.1-mcMMAF and other Antibody Drug Conjugate (ADC) groups including a PBS control group (n=6 in each group), as shown in graph (Figure 13). When tumors reached 100 mm^3 , Ha5-1(5)2.1-vcMMAE, Ha5-1(5)2.1-mcMMAF and all other ADCs were administered intravenously at 10 mg/kg once on day 0. Tumor growth was monitored using caliper measurements every 3 to 4 days as indicated. Tumor volume was calculated as $\text{Width}^2 \times \text{Length}/2$, where width is the smallest dimension and length is the largest.

[00369] The results show that treatment with Ha5-1(5)2.1-vcMMAE significantly inhibited the growth of LAPC9-AD prostate cancer xenografts as compared to Ha5-1(5)2.1-mcMMAF (p=0.0048). (Figure 13). Other antibodies conjugated to -vcMMAE and -mcMMAF did not have any tumor inhibitory activity which shows that Ha5-1(5)2.1 possesses a significant prominent effect of inhibiting tumor growth and can be used for therapeutic purposes to treat and manage cancers set forth in Table I.

Example 8

Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas through use of 24P4C12 ADCs

[00370] 24P4C12 ADCs are used in accordance with the present invention which specifically bind to 24P4C12, and are used in the treatment of certain tumors, preferably those listed in Table I. In connection with each of these indications, two clinical approaches are successfully pursued.

[00371] I.) Adjunctive therapy: In adjunctive therapy, patients are treated with 24P4C12 ADCs in combination with a chemotherapeutic or anti-neoplastic agent and/or radiation therapy or a combination thereof. Primary cancer targets, such as those listed in Table I, are treated under standard protocols by the addition of 24P4C12 ADCs to standard first and second line therapy. Protocol designs address effectiveness as assessed by the following examples, including but not limited to, reduction in tumor mass of primary or metastatic lesions, increased progression free survival, overall survival,

improvement of patients health, disease stabilization, as well as the ability to reduce usual doses of standard chemotherapy and other biologic agents. These dosage reductions allow additional and/or prolonged therapy by reducing dose-related toxicity of the chemotherapeutic or biologic agent. 24P4C12 ADCs are utilized in several adjunctive clinical trials in combination with the chemotherapeutic or anti-neoplastic agents.

[00372] II.) Monotherapy: In connection with the use of the 24P4C12 ADCs in monotherapy of tumors, the 24P4C12 ADCs are administered to patients without a chemotherapeutic or anti-neoplastic agent. In one embodiment, monotherapy is conducted clinically in end-stage cancer patients with extensive metastatic disease. Protocol designs address effectiveness as assessed by the following examples, including but not limited to, reduction in tumor mass of primary or metastatic lesions, increased progression free survival, overall survival, improvement of patients health, disease stabilization, as well as the ability to reduce usual doses of standard chemotherapy and other biologic agents.

Dosage

[00373] Dosage regimens may be adjusted to provide the optimum desired response. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the antibody and the particular therapeutic or prophylactic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.

[00374] An exemplary, non limiting range for a therapeutically effective amount of an 24P4C12 ADC administered in combination according to the invention is about 0.5 to about 10 mg/kg, about 1 to about 5 mg/kg, at least 1 mg/kg, at least 2 mg/kg, at least 3 mg/kg, or at least 4 mg/kg. Other exemplary non-limiting ranges are for example about

0.5 to about 5 mg/kg, or for example about 0.8 to about 5 mg/kg, or for example about 1 to about 7.5mg/kg. The high dose embodiment of the invention relates to a dosage of more than 10 mg/kg. It is to be noted that dosage values may vary with the type and severity of the condition to be alleviated, and may include single or multiple doses. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.

Clinical Development Plan (CDP)

[00375] The CDP follows and develops treatments of 24P4C12 ADCs in connection with adjunctive therapy or monotherapy. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trials are open label comparing standard chemotherapy with standard therapy plus 24P4C12 ADCs. As will be appreciated, one non-limiting criteria that can be utilized in connection with enrollment of patients is 24P4C12 expression levels in their tumors as determined by biopsy.

[00376] As with any protein or antibody infusion-based therapeutic, safety concerns are related primarily to (i) cytokine release syndrome, *i.e.*, hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (*i.e.*, development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 24P4C12. Standard tests and follow-up are utilized to monitor each of these safety concerns. 24P4C12 MAbs are found to be safe upon human administration.

Example 9

Detection of 24P4C12 protein in gastric cancer patient specimens by IHC

[00377] Expression of 24P4C12 protein by immunohistochemistry was tested in two (2) different tumor specimens from gastric cancer patients. Briefly, formalin fixed, paraffin wax-embedded tissues were cut into 4 micron sections and mounted on glass slides. The sections were de-waxed, rehydrated and treated with trypsin solution (0.05% trypsin (ICN, Aurora, Ohio) in 0.05% calcium chloride, with pH adjusted to 7.8) at 37°C for 10 minutes. Sections were then treated with 3% hydrogen peroxide solution to

inactivate endogenous peroxidase activity. Serum-free protein block (Dako, Carpenteria, CA) was used to inhibit non-specific binding prior to incubation with monoclonal mouse anti-24P4C12 antibody or an isotype control. Subsequently, the sections were treated with the Super SensitiveTM Polymer-horseradish peroxidase (HRP) Detection System which consists of an incubation in Super EnhancerTM reagent followed by an incubation with polymer-HRP secondary antibody conjugate (BioGenex, San Ramon, CA). The sections were then developed using the DAB kit (BioGenex, San Ramon, CA), nuclei were stained using hematoxylin, and analyzed by bright field microscopy. Specific staining was detected in patient specimens using the 24P4C12 immunoreactive antibody, as indicated by the brown staining. (See, **Figures 14(A) and 14(C)**. In contrast, the control antibody did not stain either patient specimen. (See, **Figures 14(B) and 14(D)**. The results show expression of 24P4C12 in the tumor cells of patient gastric cancer tissues. These results indicate that 24P4C12 is expressed in human cancers and that antibodies directed to this antigen (e.g. Ha5-1(5)2.1) are useful for diagnostic and therapeutic purposes. (**Figure 14(A) – 14(D)**).

[00378] Throughout this application, various website data content, publications, patent applications and patents are referenced. (Websites are referenced by their Uniform Resource Locator, or URL, addresses on the World Wide Web.) The disclosures of each of these references are hereby incorporated by reference herein in their entireties.

[00379] The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are functionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention.

Tables

Table I: Tissues that express 24P4C12 when malignant.

Colon
Pancreas
Ovarian
Breast
Lung
Prostate
Gastric

TABLE II: Amino Acid Abbreviations

SINGLE LETTER	THREE LETTER	FULL NAME
F	Phe	phenylalanine
L	Leu	leucine
S	Ser	serine
Y	Tyr	tyrosine
C	Cys	cysteine
W	Trp	tryptophan
P	Pro	proline
H	His	histidine
Q	Gln	glutamine
R	Arg	arginine
I	Ile	isoleucine
M	Met	methionine
T	Thr	threonine
N	Asn	asparagine
K	Lys	lysine
V	Val	valine
A	Ala	alanine
D	Asp	aspartic acid
E	Glu	glutamic acid
G	Gly	glycine

TABLE III: Amino Acid Substitution Matrix

Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix (block substitution matrix). The higher the value, the more likely a substitution is found in related, natural proteins.

A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y	.
4	0	-2	-1	-2	0	-2	-1	-1	-1	-1	-2	-1	-1	-1	1	0	0	-3	-2	A
9	-3	-4	-2	-3	-3	-1	-3	-1	-1	-3	-3	-3	-3	-1	-1	-1	-2	-2	C	
6	2	-3	-1	-1	-3	-1	-4	-3	1	-1	0	-2	0	-1	-3	-4	-3	D		
5	-3	-2	0	-3	1	-3	-2	0	-1	2	0	0	-1	-2	-3	-2	E			
6	-3	-1	0	-3	0	0	-3	-4	-3	-3	-2	-2	-2	-1	1	3	F			
6	-2	-4	-2	-4	-3	0	-2	-2	-2	0	-2	-3	-2	-3	-2	-3	G			
8	-3	-1	-3	-2	1	-2	0	0	-1	-2	-3	-2	-2	2	H					
4	-3	2	1	-3	-3	-3	-3	-2	-1	3	-3	-1	I							
5	-2	-1	0	-1	1	2	0	-1	-2	-3	-2	K								
4	2	-3	-3	-2	-2	-2	-2	-1	1	-2	-1	L								
5	-2	-2	0	-1	-1	-1	1	-1	-1	1	-1	M								
6	-2	0	0	1	0	-3	-4	-2	N											
7	-1	-2	-1	-1	-2	-4	-3	P												
5	1	0	-1	-2	-2	-1	Q													
5	-1	-1	-3	-3	-2	R														
4	1	-2	-3	-2	S															
5	0	-2	-2	T																
4	-3	-1	V																	
11	2	W																		
7	Y																			

Table IV(A): FACS MFI of AGS-5M2.1vcMMAE on LnCAP cells

Ha5-1(5)2.1vcMMAE Conc. (nM)	MFI on LNCaP cells
160.000	116
106.667	114
71.111	108
23.704	97
7.901	86
2.634	70
0.878	54
0.293	28
0.098	15
0.033	9
0.011	7

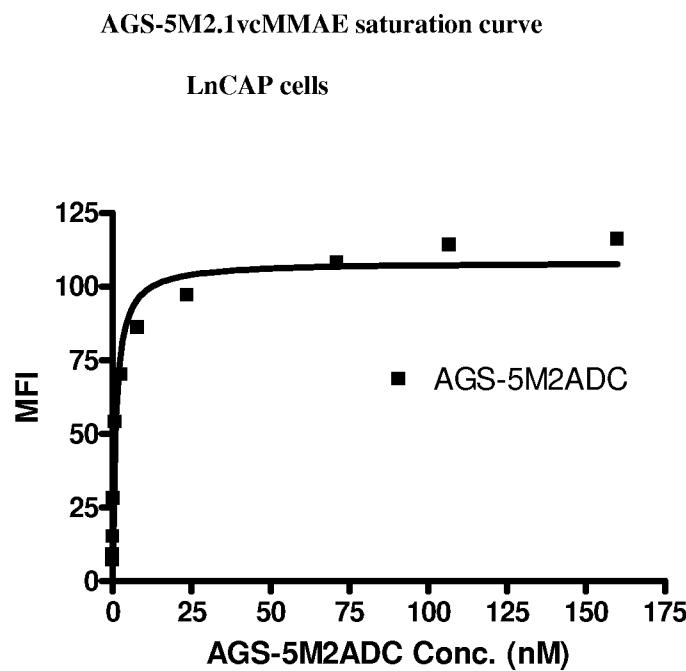
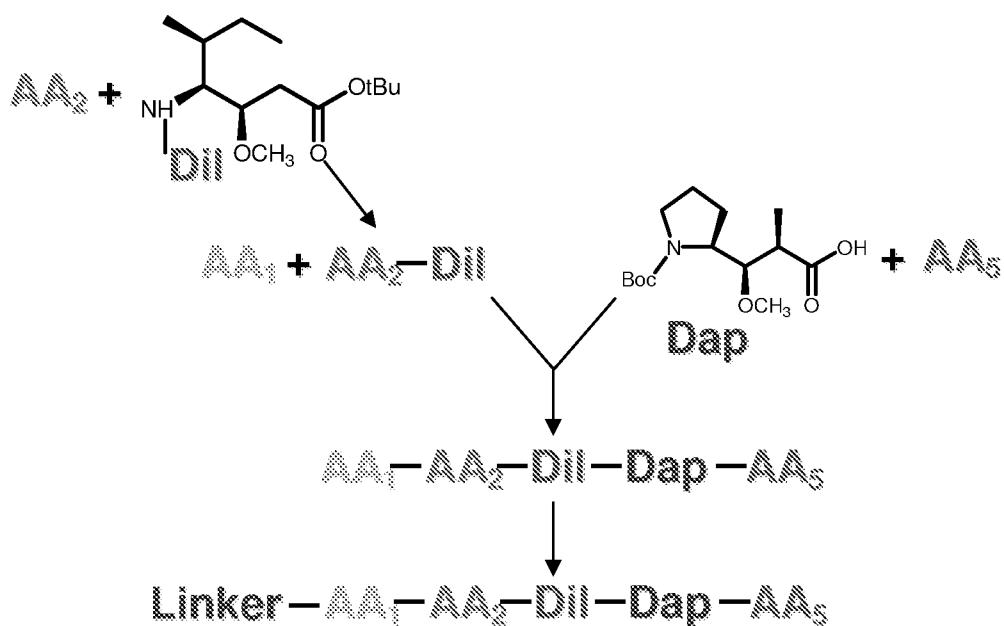


Table IV(B): Affinity values calculated by GraphPad Prism software

Table V. General Method for Synthesis of vcMMAE

Where:
 AA1 = Amino Acid 1
 AA2 = Amino Acid 2
 AA5 = Amino Acid 5
 DIL = Dolaisoleuine
 DAP = Dolaproine
 Linker = Val-Cit (vc)

Claims

1. An antibody drug conjugate comprising an antibody or antigen binding fragment to monomethyl auristatin E (MMAE), wherein the antibody or fragment comprises the heavy chain variable region consisting of the amino acid sequence ranging from 20th Q to the 143th S of SEQ ID NO: 20 and the light chain variable consisting of the amino acid sequence ranging from 23th D to the 130th R SEQ ID NO: 22.
2. An antibody drug conjugate comprising an antibody or fragment that comprises the variable regions of the heavy chains and light chains of an antibody produced by a hybridoma deposited under American Type Culture Collection (ATCC) Accession No. PTA-8602 conjugated to monomethyl auristatin E (MMAE).
3. The antibody drug conjugate of claim 3, wherein the antibody comprises the heavy chain and light chain of an antibody produced by a hybridoma deposited under A.T.C.C. Accession No.: PTA-8602.
4. The antibody drug conjugate of claim 1, wherein the antibody comprises the heavy chain consisting of the amino acid sequence ranging from 20th Q to the 469th K of SEQ ID NO: 20 and the light chain consisting of the amino acid sequence ranging from 23th D to the 236th C of SEQ ID NO: 22.
5. The antibody drug conjugate of claim 1, wherein the fragment is an Fab, F(ab')₂, Fv or Sfv fragment.
6. The antibody drug conjugate of claim 1, wherein the antibody is a fully human antibody.
7. The antibody drug conjugate of claim 1, which the antibody is recombinantly produced.
8. A pharmaceutical composition that comprises the antibody drug conjugate of claim 1 in a human unit dose form.

9. The pharmaceutical composition of claim 8, wherein the composition is for cancer treatment.

10. The pharmaceutical composition of claim 9, wherein the cancer is colon cancer, pancreatic cancer, ovarian cancer, prostate cancer, or gastric cancer.

11. A method of inhibiting growth of cancer cells in a subject, comprising administering to said subject an antibody drug conjugate of claim 1.

12. A method for treating tumor in a mammal comprising treating the mammal with an effective amount of an antibody drug conjugate of claim 1.

13. A method for reducing tumor growth in a mammal comprising treating the mammal with an effective amount of a combination of an antibody drug conjugate and radiation.

14. A method for reducing tumor growth in a mammal comprising treating the mammal with an effective amount of a combination of an antibody drug conjugate and a chemotherapeutic agent.

15. A method for reducing tumor growth in a mammal comprising treating the mammal with an effective amount of a combination of an antibody drug conjugate and a drug or biologically active therapy.

Figure 1:

Figure 1A. The cDNA (SEQ ID NO:1) and amino acid sequence (SEQ ID NO:2) of 24P4C12 variant 1. The open reading frame extends from nucleic acid 6-2138 including the stop codon. The start methionine is underlined.

Figure 1A-2

Figure 1A.3

Figure 1B: The cDNA (SEQ ID NO:3) and amino acid sequence (SEQ ID NO:4) of 24P4C12 variant 2. The open reading frame extends from nucleic acid 6-2138 including the stop codon. The start methionine is underlined.

Figure 1B-2

Figure 18-3

2221 tgggtaaaaaaaagggtttttaggcacggggggggctcaccggctgttaatccaaacaaatgg
 2231 agaggctgaggggggggggatccctgagtcaggagttcggagaccaggctggccaaacargg
 2341 tggaaacccctccgtcttattaaaaatcacaaaatttagccggaggtgggtggatgtccaaatgt
 2461 catccccagctactcggggaggctggggcaggagaatcgatgttgcacccgggggggggggggg
 2461 gcagggtggatgtggccactgcactccaaacctgggtgacagactctgtctccaaaa
 2581 caaaaaaaaacaaaaaaaagattt
 2581 aaaaaaaaaaaaaaaa

Figure 1C: The cDNA (SEQ ID NO:5) and amino acid sequence (SEQ ID NO:6) of 24P4C12 variant 3. The open reading frame extends from nucleotide acid 6-2138 including the stop codon. The start methionine is underlined.

1 M Q G K Q R D S S D E A Y C K P V R Y
 2 a gaggccATGGGGGGAAAGCACCCCCAACGGGATGACGACAGCTACGGAAACCCAGCTAAAT
 30 D P S E R G P I K N S S C T S T I G C V
 61 ACAGACCCCTCTTTCGAGGGCCCATTAAGAACAGAACAGCTGCAACAGATCTCATCTGCTGCC
 40 L F L L F I L S Y T V Y G I V A R L Y S
 121 TCCCTCTTCTGCTCTTCATTCTAAGTTACATGGGGTGGGGATTTGGGGCTGGGTTGATG
 60 D P P Q V L T P R N S T G A Y C G M G E
 181 GAGACCCCCCCCCAACAGTCTCTACCCCCAGGAACTCTACTGGGGCTACTCTGGCATGGGG
 80 S K D R P Y L L T F R I F S C I L S S N
 241 AGAACACAGATAAGCCGTATCTCTTACTTCACACATCTTCAAGCTGCACTCTGCTCAGCA
 100 I E G Y A E R G L Q C P T P O V C V S S
 301 ACATCATCTCAAGTTGCTGAGAACACGGCTTACAGTGGGGCACACCCCCAGGTGTTGCTGCT
 120 C P E D P S T V G K N E F S Q T V S E Y
 361 CCTGGCCCCGAGGACCCATGGACTTGGGAAAAAACGAGTTCTACAGACTTTGGGAG
 140 F Y T K N R R E C L P Q V P W N M T V T
 421 TCTCTATAACAAAAAACAGGAACCTTTTGCTGCTGCAAGGGTACCCCTGGAAATAGACGGTGA
 160 T S L Q Q E L C P S F L L P S A P A L G
 481 TCACAAAGGCTGCAACACGGAACTCTGGCCCCACTTTCCTCTCCCTCTGCTGCAAGCTGCG
 180 R C F P W T R T T P S A L P S I T N D T
 541 GGGGCTCTTTCGATGGACCAACATTAATCCACCGGGCTCCAGGGATCACCAATGACA
 200 T I Q Q S I S G L I D S L N A P D I S V
 601 CCACCATACAGCAGGGGATCAGGGGTTATTGACAGGCTCAATGCCCGAGACATCAGTG
 220 K I F E D P A Q S W Y W I L V A D G V A
 661 TTAAGATCTTAAAGATTTCGCCAATCTGCTGCTGCTGATTCCTGCTGCTGCTGCTGCTG
 240 L V A S D L F I L L L Q L V A G E L V L
 721 CTCTGGCTTGAGGCTACTTGTTATCTTGCTTCTGGCTGGTGGCTGGGGCCCTGGCTGCTG
 260 V L I L G V L G V L A Y G I Y T C W E E

Figure 1C-2

781 TGGTGTCTGATCTGGGAGTGTCTGGGCGGTGTGGCATACGGCATCTACTACTGTGCTGGAGG
800 Y R V L R D K G A S I S Q L S E T T N D
841 AGTACCCGAGTGTCTGGGGACAAAGGGGGCTCCATCTCCGAGCTGGGTTTCACCAACCAACC
860 S A Y Q S V Q L T W L A A L I V L A V I
901 TCACTGCGTACCAAGAGCCGTGGAGGAGACCTGGCTGGCCGGCCCTGATCGTGTGGCCGGCTGC
920 R A T I L L M L I V L R Q R I R I A I A
961 TTGAAAGGOCATCTGCTGCTGCTGATGCTCATCTTCTGGGGCAGGGGATTOGTATTGGCCATCG
980 L L K R A S K A V G Q M M S T M F T P L
1021 CCCTCTGAAAGGAGGCGACAAAGGGTGTGGACAGAGATGATGCTACCATGTTCTACCCAC
1060 V T P V L L L E C I A Y W A M T A L Y L
1081 TGGTCACCTTGTCT
1120 A T S G Q P Q Y V L W R A S N I S S P G C
1141 TGGCTACATGGGGCAACCCAGTATGTGCTCTGGGATCCAAACATCAAGCTCCCCCCCCCT
1180 S K V F I N T S C N P T A R E L V R S S C
1201 GTGAGAAAGTGGCAATAATACATCATGCAACCCCCACGGGGCGCTTGTGAACCTCTCTCT
1240 P G L M C V F Q G Y S S G Y G L I Q R S V
1261 GCCCAGGGTGTGTGCGTCTTCCAGGCTACTCATCCAAAGGCTATCCAAACGGTTCTG
1300 F R L Q I Y G V L G L F W T L N W Y L A
1321 TCTTCATCTGCAAATCTATCGGTTCTGGGCTCTCTGGACCCCTTAACCTGGCTACTGG
1360 L G Q C V L A G A P A S F Y W A P H W P
1381 CCCTGGGCAATGGCTCTGGCTGGAGCCTTGGCTCTCTACTGGGCTTCCACAAGC
1420 Q D I P T F P L I S A F I R T L R Y S T
1441 CCCAGGACATGGCTACCTTGGCTTAACTCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
1480 G S L R F G A L I M T L V Q I A R P V I L
1501 CGGGGTCTTGGCTTGGAGGCGCTCATCTGACCCCTTGTGCAGATAAGGGGGGGCTCATCT
1540 E Y I D R K L R G V Q N P V A R C I M C
1561 TGGAGTATATTGACCAAGCTCAAGAGAGACTGCAAGAACCGTGGGGCTGATCATGTT
1600 C P K C C L W C L E R K P I K Y L W R N A
1621 GCTGTTCAAGTGTGCTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
1660 Y I M L A I Y G S N F C V S A R N A F M
1681 CATAACATCATGATGGCAATCTACGGGAAGAATTTCGTGTCTGCTGCTGCTGCTGCTG
1720 L L M R N I V R V V V L S X V T D L L L
1741 TGCTACTCATGGAAAACATTGTCAAGGGGGGGCTCTGGACAAAGCTGAGACCTGGCTGC
1780 F F G K L L V V G G V G V L S F P Y F S
1801 TGTCTTGGCAAGGCTGCTGGCTGCTGGCTGGCTGGGGGGCTGCTGCTGCTGCTGCTG
1840 G R A P S L S K D F K S P H L R Y X W D
1861 CCCGTCGGCATGGGGGGGGGGGGTAAAGACGTTAAAGAGGGGGGGGGGGGGGGGGGGGG
1900 P I M T S I L G A Y V I A S G F F S V F
1921 TCCCCATCATGACCTCCATGCTGGGGGGCTATGTCTGCTGCTGCTGCTGCTGCTGCTG
1960 G M C V D T L F L C P I E D L E R N N G
1981 TCGGGCATATTTGGAGACGGGGCTTCTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG

Figure 1C-3

Figure 1D: The cDNA (SEQ ID NO:7) and amino acid sequence (SEQ ID NO:8) of 24P4C12 variant 4. The open reading frame extends from nucleic acid 6-2138 including the stop codon. The start methionine is underlined.

3 M G G K Q R D S D D E A Y G K P V K
1 gagccCATGGGGAAAGCAGGGGACGAGGATACAGAAGGCTACGAGGAAAGCCAGTCAAAT
20 D P S F R G P E K R R S C T S V I C C V
61 ACGACCCCTCTTTCGAGGGCCATCAAGAACAGAAGCTGCACACATGTCATCTGCTGG
40 L P L L F I L G Y I V V G I Y K W L Y G
121 TCCCTCTTCTCTCTCTTCATTCATTCAGGTTACATCTTGGTGGGGATTTGTCGGCTGGTTGTATG
60 D P R Q V L Y P R N S T G A Y C G S G R
181 GAGACCCCTGGCAAGTCCTCTAAGGAGGAACTCTACTGGGCGTACTGTGCGATGGGGGG
80 R E D K P Y D L Y F N I F S C I L S S N
241 AGAACAAAGATAAGCCGTATCTCTCTACTTCACACATCTCAGCTCCACCTGTCCAGCA
100 I T S V A E R Q L Q C P T P Q V C Y S S
301 ACATCATCTCAAGTTCGAGAACCTGGCTACAGTCCCCACACCCCCAGGTTGTCGTC
120 C P E D P W I V G K R E P S Q T V G E V
361 CCTGGCCCGGAGGACCCATGGACTGTGGGAAAAAAGGAGTTCTACAGACTGTTGGGGAG
140 P Y T K N R R P C L S G V P W R M T V I
421 TCTTCATACAAAAAAACAGGAACTTTTGTCTGGCAAGGGTAACCTTGAAATATGACCCCTA
160 T S L Q Q E L C P S F L A P S A P A L G
481 TCAACAAGCTGCAACAGGAACTCTGGGGCACTTTGCTCTCCCTCTGCTCCAGCTCTG
180 S C F P W T R V T P P A L P G T T N D T
541 GGGCGCTGGTTCCATGGACCAACGTTACTCCACGGGGCTCCAGGGATCACCAATGACA
200 T I Q Q E I S G L E S G L N A R D I S V
601 CCACCATACAGGCAAGGGGATCAGGCGTCATTGACAGGCTCAATGGGGAGAGACATCACTG
220 K I E S D F P Q S R Y N I L V A L G Y A

Figure 1D-2

661 TTAAGATCTTGAAAGATTTGCCAATTCCTGTTTGGGATTTCTGTTGCCCTGGGGCTGG
 240 L V L S I L P I L L S L V A G P L V L
 721 CTCCTGTTGAGGCTACTGTTATCTTGCTTCGCGCTGCTGCTGGCCCTGCTGCTGG
 260 V L I L G V L G V I A T G I Y Y C W E E
 781 TGGTGCTGATCCTCGGAGTGCTGGGCGTGCCTGGCATATGGCATCTACTGCTGGGAGG
 280 Y P V L R D K G A S I S Q L G F T T R L
 841 AGTACCGACTGCTGGGGACAAGGGCCCTCCATCTCCAGCTGGGTTGACCAACAC
 300 S A Y C S V Q E T W L A A L I V L A V L
 901 TCGTGCCTACAGAGGCTGCAAGGACACCTGGCTGGGGCCCTGATCCTGCTGGGGCTGC
 320 S R I L L M L I P L R Q R I R Y A I A
 961 TTGAAGCCATCCTGCTGCTGATGCTCATCTGCTGCGGCAAGGGATTGCTATTCGATCG
 340 L M K E A S K A V G Q M M S T M F Y P L
 1021 CCTCTGAGGGAGCCAGCAAGGCTGTGGGACAGATGATCTACCATGTTCTACCCAC
 360 V T P V L L I C I A Y W A M T A L Y L
 1081 TGGCACCTTGTCTCTCTCATCTGCTTACTGGGGCTGACTGCTCTCTACCC
 380 A T S C Q P Q Y V L W A S N I S S P G C
 1141 TGGCTACATGGGGCAACCCAGTATGTGGCTCTGGGATCCAAACATCAAGCTCCGGGAGT
 400 E S V P I N T S C R P T A R L V N S S C
 1201 GTGAGAAACTGCGAATAAACATCTGCAACCCCAAGGGGCAACCTTGTGAACCTGCTGCT
 420 P C L M C V S Q G Y S S N G L I Q P S V
 1261 GCGCAGGGCTCATGCTGGCTTCCAGGGCTACTCATCCAAAGGCTAACTCCAGCTGG
 440 F N L Q I Y G V L G L F W T L N W V L A
 1321 TCTTCATCTGCAAACTCATGGGGCTCTGGGGCTCTGCAACCTTAACCTGGGACTGG
 460 L G C C V L A G A F A S F Y W A F R K P
 1381 CCCTGGGCCAATGGGTCTCGCTGGAGCCCTTCCCTCTTACTGGGCTTCCACAGC
 480 Q D I P T F P L I S A F I R T L R Y R T
 1441 CCCAGGACATGGCTACCTGCTGGGGCTCATGGCTCATGGCAACACTGGGTTACCA
 500 G S L A E G A L I L T L V Q I A R V I D
 1501 CTGGGTCTATGGCTTGGAGGGCTCATGACCCCTGCAAGATAACCCGGGCTCATCT
 520 S Y I D W S L P G V Q N P V A R C I M C
 1561 TGGAGTATAATGCAACCAAGCTGAGGGAGTCACAGAACCCGTTAGCCGGCTGCACTG
 540 C F K C C L R C L E S F P I K F L S R S R
 1621 GCTGGTTCAAGTGCTGCTCTGGTGGAAAGAATTCTGCTGCTGCAACCTAAACCGCAATG
 560 Y I M I A I Y G M N F C V S A K N A F M
 1681 CATAACATCATGATCCCATGACGGAAAGAATTCTGCTGCTGCAACCTAAACCGCAATG
 580 D L M E R I V R V V V L D R V T D L L
 1741 TGCTACTCATGGAAAACATGTCAGGGTGGTGGTGGTGGACRAAGTCACAGACCTGCTGG
 600 F F C N L L V V G G V S G V S S F P F F S
 1801 TGTCTTGGAGCTGCTGGCTGGAGGGCTGGGGCTCTGCTCTGCTCTGCTCTGCT
 620 G P I Y G L G K D F K S P R L N Y Y M L
 1861 CGGGTCCGATGGGGGCTGGGAAAGACTTAAGAGCCCCACCTCAACCTATTACTGGC

Figure 1B-3

640 P I M T S I L G A Y V I A S G P F S V F
 1921 TGCCCACATCAAGACUTCCATCTGGGGGGCTATGTCACTGCCAGCCGCTTCTTCAGCGTT
 650 G M C V D T L F L C F L R D L S R N N G
 1981 TCGGCATGTGTGTGGACACGGCTCTTCTCTGCTTCTGGAGACCTGGAGCCGAACAAAG
 660 S L Q P P Y V M S S S L L K I A G K K N
 2041 GCTCCCTTAAGGGGGCTACTACTGTGCCAAGAGGCTCTAAAGATTCTGGGGAAAGAAGA
 700 E A P P D N K R R K S *
 2101 ACGAGGCCGGGGGGGACAAACAAGAAGAGGAAGAACTGACagctccggccctgtatccgg
 2161 ctgcaccccccaccccccacccgtccagccatccacccctccatccatccatccatccatcc
 2221 tgggtttaaaaaagggttttagggccaggccggctggctcaeyctgtatccaaacacttgg
 2281 agaggctggggggggggggacccctgagtcaggagttcgagacccagccctggccaaatgg
 2341 tgaaaacctccgtttataaaaataaaaaatttttttttttttttttttttttttttttttt
 2401 catcccaagtcactccggggggctgggggggggggggggggggggggggggggggggggg
 2461 qcagtggccggggatccggccactgcaactccaaacctgggtggatccggccatccgg
 2521 caaaaacaaaaaaaacaaaaaaaagattttttttttttttttttttttttttttttttt
 2581 aaaaaaaa

Figure 1E: The cDNA (SEQ ID NO:9) and amino acid sequence (SEQ ID NO:10) of 24P4C12 variant S. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

1 M G K Q R D E D E A Y G K P V R Y
 1 gagecatGGGGGGAAAGCAGCCGACGGGATGACGAGGCTACGGGAAGCCAGTCATAAT
 20 D P S P R C P I K R R S C T D V I C C V
 61 ACGACCCCTCTTCAGGGGGGGCTAAAGAACAGAAGCTGCCAGATGTCACTCTGCGG
 40 L F L L P I L G Y I V V G I V A K L Y G
 121 TCCCTTTCTGCTCTTCTTCTACGTTACATCTGCTGCTGCTGCTGCTGCTGCTGCTG
 60 D P P Q V L Y P R N S T G A Y C G M G E
 181 GAGACCCCCCGCAATTCTCTACCCCCGGAAACTCTACTGGGGGCTACTGTGGGCTGGGGGG
 80 N K D K F Y L N Y F N I P S C I L S S N
 241 AGAACAAAGATAAGCCGTATCTCCCTATCTTCACATCTTCAGCTGCATCCCTTCAGCA
 100 I I S V A E R G L Q C P T P Q V C V S S
 301 ACATCATCTCAAGTTGCTGAGAACGGGCTACAGTGCCCCAACACCCCCAGGTGTGTTGTTG
 120 C P E D P W T V G K N R F S Q T V C E V
 361 CCTGGCCGGGGGACCCATGGACTCTGGAAAAAAAGAGCTTTCACAGACTTGGGAAAG
 140 F Y T K N R S F C L S C V P W N M T V I
 421 TCTTCTATAACAAAAAACAGGAACCTTTGTCTGCCAGGGCTACCTGAAATATGACGGTGA
 160 T S L Q Q E L C P S F L I P S A P A L G
 481 TCACAAAGGCTGCAACAGGAACCTCTGGGGGGAGTTCTGCTGCTGCTGCTGCTGCTG
 180 S C P V W T N V T P S A I P Q I P R D T
 541 CGCGCTGCTTCCATGGACCAACGTTACTCCACCCGGCTCCAGGGATCACCAAPGACA

Figure 1E-2

200 T I Q Q G I L S Q L I D S L N A R D I S V
 201 CCACCAATACAGCAGGGGATCAGCGCTTATTGACAGCCTCAATGCCCGAGACATCAGTC
 220 K I F S D F A Q S W Y W I L V A L G V A
 221 TTAAGATCTTGAAGATTTGCCAGTCCTGTTATGATCTTGTGCTGCCCTGGGGGGGGGG
 240 L V S S L C F I L L R L V A G P L V L
 241 CTCTGGCTCTTGAGCCTACGTTATCTTGCTCTGGGGCTGGTGGCTGGGGGGGGGG
 260 V L T L G V E S V L A Y G I Y ? Q W E E
 261 TGGTGGTGGATCCGGGACTGCTGGGGCTGCTGGGATACGGGATCTACTACTGCTGGGGAGC
 280 Y R V L R D K C A S I C Q L G V T T N L
 281 ACTACGGGACTGCTCCGGGACAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 300 S A Y Q S V Q E T N L A A L I V L A V L
 301 TCAAGTGGCTTACCAAGAGGGCTGGAGGGAGACCTGGGGGGGGGGGGGGGGGGGGGG
 320 S A F L L L V L I F L P Q R I R I A I
 321 TTGAAGCCATCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 340 L L K E A S F A V G Q M M S T M P Y F L
 341 CGCTGGTGAAGGAGGGCAGCAAGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 360 V T F V L L L I C I A Y W R M T A L X L
 361 TGGTCAACCTTGTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCT
 380 A T S G Q P Q ? V L W R S N I G S P G C
 381 TGGCTACATCGGGGCAACCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 400 E K V P I N T S C M P T A R L V N S S C
 401 CTGAGAAAATGCCAATAATACATCATGCCAACCCGGGGGGGGGGGGGGGGGGGGGG
 420 F G L M C V E D G Y S S S K G L I Q R S V
 421 GCCCAGGGCTGATCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 440 F R L Q I S G V L G A F W T L N W V L A
 441 TGGTCAATCTGGCAAAATCTATGGGTCTGGGGCTCTGGGGGGGGGGGGGGGGGGGG
 460 L G Q C V L A D A F A S Y Y W A F H N P
 461 CCCTGGGCAATGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 480 Q D I P T F V L I S A F T R T L R Y S T
 481 CCCAGGGACATCCCTACCTTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 500 G S L A F C A L I L T L V Q I A R V I L
 501 CTGGGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 520 K Y I D H K L R G V Q N P V A R C T M C
 521 TGGAGTATGGACCAACGG
 540 C F R C C L W C D E K F I L K F L R R A
 541 GGTGTTTCAACTGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 560 Y I M I A I Y G K N P C V E A R N A F M
 561 CATAACATCATGATGGCCATCTACGGGGAGAAATTTCCTGGCTGGCTGGCTGGCTGG
 580 L L R R I V R V V V L S K V T D L I L
 581 TGGTACTGGGAAACATTGGTCAAGGGTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 600 F S G X L L V V G G V G V L S P F F F S

Figure 1E-3

Figure 1F: The cDNA (SEQ ID NO:11) and amino acid sequence (SEQ ID NO:12) of 24PAC12 variant 6. The open reading frame extends from nucleic acid 6-2138 including the stop codon.

1 M C G S Q R D E S D E S A Y G R P V S Y
1 gaggccATGGGGGGGAAAGCCACCCGGGACAGGAGATGACGGGGCTACGGGAAGCCAGTCAAAT
20 D P S E R Q P T K N R S C T D V I C C V
61 ACCACCCCTCCPTTCGAGGCCCATCAAGAACAGAACGCTGCACAGATGTCATCTGGCTGGG
40 L P L L P T L G Y I V V G I V A W L Y G
121 TCCTCTTCTCTCTCTTCATTCAGGTTACATCTGCTGGGATCTGCCCCGGTTGATC
60 D P R Q V L Y R R S S T G A Y C C M G R
181 GAGACCCCGGCAAGTCCTCTACCCAGGAACCTCTACTGGGCCCCATCTGTCATGGG
80 N K Q X P Y L D Y F R I F S C I L S G N
241 AGAACAAAGATAAGCCGTATCTCCPCTACTTCACATCPTCACGCTGCAFCCTGTCAGCA
100 I I S V A E N C L Q C Y T P Q V C V S S
301 ACATCATCAGTTGCTGAAACGGCCCTACAGTGCCCCACACCCCGGGGGGCTGCTGCTG
120 C P S D P W T V G K R S F S Q T V G S V
361 CCTGGGGGGGGACCCATGGACTGTTGGAAAAAAACGGAGTTCTCACAGACTGTTGGGGAG
140 F Y T K N R N F C L P G V F W N M T V T
421 TCTTCTATACAAAAACGAACTTTGTCAGGGTACCTGGAAATATGACCGGTA
160 T S I Q O S L C P S F P L P S A F A L S

Figure 1F-2

481 TCACAAAGGCTGCAACAGKAACTCTGCCCTAGTTCTCTTCTGCTCCAGCTCTGG
180 R C F P W T N V T P P A L P G I T N D T
541 GGCCTGCTTCCATGGACCAACAGTTACTCCACCGGGCTCTGGATGACCAATGACA
200 T I Q Q S I S G L I D S L R A R D T S V
601 CCACCATACAGCAGGGATCACCGCTCTTACAGCTCAATGCCCGAGACATCACTG
220 K F P S D P A Q S W Y W I L V A L G V A
661 TTAAGAGATTTTGAAGATTTTGCCACTCTGCTATTGATTCTTGTGCCCTGGGGGTGCG
240 L V L S L L F I L A L R I V A S P L V L
721 CTCTGGCTTGAGCCTACTGTTATCTGCTCTGCGCCCTGGCTGGCTGGGGGGCTGGCG
260 V L T L G V L G V L A Y Q T Y V C R E S
781 TGGTCTCTGATCTGGGAGCTGCTGGGCTCTGGCTACATGGCTACTACTGCTGGGGAGG
280 Y P V L R D K G A S I S Q L C S T T N L
841 AGTACCGAGTGGCTGGGGAGCAAGGGGGCTCCATCTCCAGCTGGGTTAACCAACCAACC
300 S A Y Q S V Q E T W L A M L I V L A V L
961 TCACTGCTTACCAAGACGCTGCAAGGAGACCTGCTGGGGGGCTGATGTTGGGGCTGCG
320 E A I L L M L E F L P Q R I R L A I A
961 TTGAAGGCACTCTGCTGCTGATGCTCATCTGCGGGGGGGATTGGTATGCGCATCG
340 L L E A S K A V G Q M N S T M F Y P L
1021 CCCTCTGAGGAGGCGAGCAAGGCTGCGGACAGATGATGCTACCATGCTTACCGAC
360 V T P V L D I C I A Y W A M T A L Y L
1081 TGGTCACCTTGTCTCTCATCTGCTTACTGGGCTACATGACTGCTGTAC
380 A T S G Q P Q Y V L R A S N I S S P G C
1141 TGGCTACATGGGGCAACCCAGTATGCTGGGCTACATCAGCTCCCCGGCT
400 E K Y P I N T S C N P T A R I V R Q S C
1261 GTGCGAAAAGTGCCAATAATACATCATGCAACCCACGGGGCAACCTTGAACTCCCTG
420 P G L M C V F Q G S S S K G L I P R S V
1261 GGGCAAGGGCGATGCTGGGCTTCCAGGGCTACTCATCCAAAGGGCTAACCCACGGCTCG
440 F N L Q I Y G V L G L F W T L R W V L A
1321 TCTTCATCTGAAATCTATGGGCTCTGGGGCTTCTGACCCCTAACGGTACTGG
460 L G Q C V L A G A P A S F I W A F H K P
1381 CCCTGGGGCAATGCGTCTGGCTGGGAGCTTGGCTCTACTGGGCTTCCACAAGC
480 Q D I P T F P I S A F E R T L R F R T
1441 CCCAGGACATCCCTAACCTTCCCTTAATCTCTGCTTCACTGGCACACTGGTACCCACA
500 G S L A F G A L I M T L V Q I A R V I L
1561 CTGGGTCAATTGGATTTGGAGGCGCTCATCTGACCCCTTGTGCAAGATACCCGGGTGCTAC
520 E Y I D R K L K G V Q N P V A F C I W C
1561 TGGAGTATATTGACCAACAGCTAGAGGGAGTGCAGAAACCTGTAAGGCGCTGCTAC
540 C P K C C L W C E E K P I K P L N R N A
1621 CCTGTTCAAGTGGCTGGCTGCTGGGAAAGGAAACCTGTAAGTCTAAACCGCAATG
560 Y I M I A I S G R M F C V S A F N A F M
1681 CATAACATCATGCTGGGCTACAGGGAGAACTTCTGCTGCTGAGGCAAAAAATGGGTTCA

Figure 13-3

Figure 1G: The cDNA (SEQ ID NO:13) and amino acid sequence (SEQ ID NO:14) of 24P4C12 variant 7. The open reading frame extends from nucleic acid 6-1892 including the stop codon.

1 M G G K Q R D S D D E A S G Y F V K Y
4 tgatgccATGCGGGAAACGACCCGGGACGAGGTGACGAGGCCTAACGCGAAGCCAGTCAAAT
20 D P S E R G P I K N R S C T D V Y C C V
61 ACCGACCCCTCTTTGAGGGGGCATCAAGAACAGAAGCCTGACACAGATGTCATCTGCTGCG
40 L F L I F I L G Y I V V G I V A W L Y G
121 TCTCTTTCTGCTCTTCATTCAGGTTACATCGTGTGGGGATTGTGCGCTGCTGTTGATG
80 G P S Q V L Y P R N S T G A V C S M C S
181 GAGACCCCGGCAAGTCCTCTAACCCGAGAACCTCTACTGGGGCTTAATGTGGCATGGGGC
80 R K D N P Y L L Y P N I F S C I L S S R
241 AGAACAAAGATAAGCCGTAATCTCTGTACITCAACATCTTCACTGCTCATCTTCTCCAA
160 Y I S V A E N G L Q C P T F Q V C V S S
301 ACATCATCTCACTTGTGAGAACCCGCTACAGTGGCCCAACACCCGAGGTGTTGTCCT
120 C P E D P W T V G K N E S Q T V G E V
362 CGCGCGGGGAGGCGGGATGCGGATGAAAGGAGTCGTTACAGAGCTTGCGGGAGC

Figure 16-2

140 F Y T K N R N F C L P Q V P R N N M T V I
 141 TCTTCTATACAAAAAACAGGAACCTTTGCTGCCAGGGTACCCCTGGAAATATGACGGGA
 160 T S L Q Q S L C P S F I L L P S A P A L G
 181 TCACAAGCCTGCAACAGGAACCTGCCCCAGTTCTCTCTCCCCCTGCTCCAGCTCTGG
 180 R C P P W T R V T P P A L P G I T R D T
 541 GGCCTGCTGCTTCCATGGACCAACGGTAACTCCACCCGGCTTCCAGGATCACCAATGACA
 200 T T Q C G I S G L I S L N A P D T S V
 601 CCACCATACACCAAGGGATCAAGGGCTTTTACACAGGCTCAATCCCCAGACATAGTG
 220 S I P E D S A G S N Y W I L V A V G Q M
 661 TTAAGATCTTTGAAGATTTGCCCACTCCCTGTTGGATTCTTGCGCTGTGGCACAGA
 240 M S T M F Y P L V T S V L L L I C I A Y
 721 TGAGGTCTACCATGTTTACCCACTGGTCACCTTGTCTCTCTCTGCTGCAATTGGCT
 260 W A M T A L Y I A T S C Q P Q Y V L W A
 781 ACTGGGGCTTGACTGCTCTTACCTGGCTACATGGGGCAACCCGCTATGCTCTGGCT
 280 S M I S D P G C E K V P I R T S C M P T
 841 CATCCAACATCAGCTCCCCGGCTGTGAGAAATGCCAATAAAACATCATGCAACCCCA
 300 A H L V R S S C P G L M C V P Q G Y S S
 301 CGGGCCACCTTGTGAACTCTCGTGGCCAGGGCTGATGTGGCTCTTCCAGGGCTACTCAT
 320 K Q L I Q P S Y P N L Q I Y G V L G L P
 361 CGAAAGGGCTAATCCACCTTGTCTTCAATCTGCAAATCTATGGCTGGGGCTCT
 340 W T L R R V L A L G Q C V L A C A F A S
 1021 TCTGAAACCTTAACCTGGTACTGGCCCTGGGCCATGGCTCTGGAGGGCTTGGCT
 360 R I W A P H K P Q D I P T P P L I S A E
 1081 CCTCTACTGGGCCTTCCACAAAGGGCCAGGACATCCCTACCTTCCCTTAATCTCTGGCT
 380 T R T L R X S T G S L A V G A L I L T I
 1141 TCAACGGCACACTGGGTACCCACTGGCTCATGGCATTTGGAGGGCTCATCTGACCC
 400 V Q I A R V I L E Y I D M R E G V G R
 1201 TTGTGAGATAACCCCGGCTCATCTGGAGCTATTGACCACAAAGCTAGAGGAGCTGGAGA
 420 P V A R C I M C C F E C C L W C L E E F
 1261 ACCCTGTAAGCCCGCTGCACTGTCCTGTTCAAGTGCTGCCCTCTGGGTCTGGAAATAAT
 440 I K F L R R N A Y I M I A I Y G R N N P C
 1321 TTATCAAGTTCTAAACGGCAATGCATACATCATGATGGCATCTAAGGGAAAGAAATTCT
 460 V S A R N A F M L L M R R I V R V V V L
 1381 GTCCTCAGGCAAAATGGGTCATCTACTCATGGGAAACATTGGTACGGTGGCTGGCT
 480 D K V T D L L F F G S I L L V V G G V G
 1441 TCAACAAAGTCACAGACCTGGCTGCTCTTGGGAAAGCTGGCTGGGGGGGGGGCTGG
 500 V L S F P F F S G R I P G L C S D F K S
 1501 GGGCCTGTCCTCTTCTTCTCCGGTGGCATCCGGGGCTGGTAAAGACTTTAAGA
 520 P R L R V Y W L E I M T S I L G A Y V I
 1561 CGGGCCACCTCACTTTACTGGCTCCCCCATCATGACCTCCATGGGGGGGGCTAGCTCA
 540 A S G F F S V F G M C V G T L P L C F L

Figure 1C-3

Figure 1H. The cDNA (SEQ ID NO:15) and amino acid sequence (SEQ ID NO:16) of 24P4C12 v.8. The start methionine is underlined. The open reading frame extends from nucleic acid 6-2174 including the stop codon.

1 M C G K Q P D E D D E K A Y G K P V E Y
 1 g a g c c a t g c c c c g a a a c c o c o g a c c a g g a t c a c c a g g c t a c c c c a a g c c a c t c a a a t
 20 D P S E R G P I K N P S G T D V I C C V
 61 A C C A C C C C C T C T T C C T C C A C C A C A C A C A C G A A G C T C O A C A G A T G M C A T C T G C T G C G
 40 L F L I P E L G Y I V V C I V A W L Y G
 121 T C C T C T T C C T G C T C T T C A T T C T A G G T T A C A T O C T G G T G G G G A I T G T G G C C T G G T T C A T G
 60 D P R Q V L Y P R N S T G A Y C G N G E
 181 G A G A C C C C C C G C A A G T C T C A C C C A G G A A C T C T A C T G G G G C T A C T Y T T C A T G G G G G
 80 N K D K P Y L L Y E R I F S C I L S S N
 241 A C A A C A A G A T A A G C C G T A T C T C C T G T A C T T C A A C A T C T C A G G T G C A T C C T G T C C A G C A
 100 I I S V A E N C L Q C P T P Q V C V S S
 301 A C T C A T C T C A G T T G C T C A G A A C C G C C T A C A G T C C C C A C A C C C C A C G G G G T G T G T G C C T
 120 C P E D P W T V G K N S F S Q T V G E V
 361 C C T G C C C G A G G G A C C C A T G G A C T G T G G G G A A A A A C G A G T T C T C A C A G A C T G T G G G G A A G
 140 P X T K N K N F C L P G V F W N M T V I
 421 T C T T C T A T A C A A A A A C X G G A A C T T T T O T C T C O C C A P P G G T A C C C T G G A A T T G A C C G G T G A
 160 T S L Q Q R I C P S F L L P S A P S L G
 481 T C A C A A G C C T G C A A C A G G A A C T C P G C C C C A G G T T C T C C T C C C C T C T G C T C C A G C T C T G S
 180 R C F P W T N V T P P A L P G I T N D T
 541 G G G G C T G C T T C C A T G G A C C A A C G T T A C T C C A C C G G C G C T C C C A G G G A T C C A A T G C A C A
 200 T T Q Q G I S G L I D S L N A R O I S V
 601 C C A C C A T A C A C C A C C C C C A T C C C C C C C C A T C C C C C A A G C A C T C A T G C A C C C C C A A G C A C T C A T G

Figure III-2

220 K I P E Q P A Q G N Y W I L V A L G V A
 221 TTAAGATCTTGAAGATTTGCCCNCTCTCTGATTGGATTCCTGCTGCCCTGGGGTGC
 240 L V I S L L F I L L L P L V A G P L V I
 241 CTCCTGCTCTGAGGCTACTGTTATCTGCTCTGCGCTYATGCTGGGGCCCTGCTGCG
 260 V L I I G V L G V L A Y G I Y Y C W E E
 261 TGGTGGTGTATCTCTGGAGTGTCTGGCTGCTGGCATACGGCATCTACTGCTGGAGG
 280 Y E V L K D K G A S I S Q I G F T T N L
 281 ACTACCGAGCTGCTGCCGGACAACGGCCGCTCCATCTCCACGCTGCTTCACCCACCAACC
 300 G A Y Q S V Q E Y W L A A L I V L A V I
 301 TCAATGCCCTAACAGAGGGCCAGGAGACCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 320 R A I L L M L I F L R Q R I R I A I A
 321 TTGAAGCCATCTGCTGCTGATGATCTCATCTTCTGCGGCACGGGATTGCTATTCCCTGG
 340 L L K E R S K A V G Q M M B T M Y F P L
 341 CCTCTCTGAGGGAGGGCCAGGCAAGGCTGCTGGGACAGATGATCTACCATGTTGCTACCCAC
 360 V T F V L L D F C E A Y W A M T A L Y I
 361 TGGTCACCTTTGTCTCTCTCTCATCTGCACTGCTACTGGGCCATGACTGCTCTGCTACC
 380 A T S G Q P Q Y V L W A S H I S S P G C
 381 TGGCTACATGGGGCAACCCCACTATGPOCTCTGGGCACTGCAACATCAGCTGGGGGGCT
 400 R K V P I N T S C N P T A H L V M S S C
 401 GTGAGAAACTGCCAATAATACATCATGCAACCCCAACGGCCACCTTGTGAACTGCTG
 420 P Q L M C V F Q G Y S S K G L I Q R S V
 421 GCCCAGGGCTCATGCGCTCTTCCAGGGCTACTCATGCAACGGCTAACTCCAACTGCTG
 440 F N L Q I Y G V L G L F M T L N W V L A
 441 TCTTCATCTGCAAAATCTATGGGGCTCTGGGGCTCTGCGACCCGTAACGCTGGCTACTGG
 460 L C Q C V L A G A F A S P N W A S H E P
 461 CCCTGGGGCAATGCGTCCCTGGGCTGGGCGCTGGCTCTACTGGGCCCTCCACAGG
 480 Q D I P T S P L I S A F I R T L R Y H T
 481 CCCTGGGACATGCGCTACCTTCCCTTAAATCTCTGCGCTTCACTGGGCTTACAGCA
 500 C S L A F G A L I I T L V Q I A R V I L
 501 CTGGGTCAATTGGCATTTGGAGGGCTCATCTGACGGCTTGCGAGATAAGGGGGCTCATCT
 520 E Z I D R K D R G V Q N F V A P C I M C
 521 TGGAGTATATTGACCAACAGCTCGAGGAGTGCAGAACCCCTGATGGGGCTGATCATG
 540 C F S C C L W C L E K F L K F L N R N A
 541 GCTGTTTCAGCTGCTGCCCTCTGCTGCTGGAAAAATTTATCAAGTTCCTAAACCGCACTG
 560 Y I M I A I Y G K N F C V S A N A E M
 561 CATACTCATGATGCCATCTACGGGAAGAAATTCTGCTCTGCTGAGGGAAAAATGTTCA
 580 L L M R N I V R V V Y L D R Y T D L L
 581 TGCTACTCATGGAAACATTGTCAGGGCTGGCTGAGGAGGGCTGCCCTGCTCTTCTTCT
 600 F F Q K L I V V G C V G V L S P P F F S
 601 TGTTCCTTGGGAAACGCGCTGCCGGTGGAGGGCTGCCCTGCTCTTCTTCTTCT
 620 G R I P G L G K D F K S P K D R Y Z W D

Figure 1H-3

Figure 11. The cDNA (SEQ ID NO:17) and amino acid sequence (SEQ ID NO:18) of 24P4C12 v.9. The start methionine is underlined. The open reading frame extends from nucleic acid 6-2144 including the stop codon.

1 M G S K Q R D E D D D B A 7 G K P V K Y
 3 ggggccATGCGCGGAAAGCAGCGGACGAGATGACGAGGCTACGCGGAAGGCCACTCAAA
 20 S P S F P G E T K N R S C T D V I C C Y
 61 ACGACCCCTCTTCTGAGGCCCCATCAAGAACAGAGCTGACACAGATGTCATCTGCTGG
 90 L P L L P I L G Y I V V V G I V A W I 7 G
 131 TCCTCTCTCTCTCTCATTCCTAGGTTACATCTGGTGGGGATTGTTGAGCTGTTGATG
 160 S P P Q V L Y P R N S T G A V C C M S 6
 181 GAGACCCCGGCGAAGTCCTCTGACCCAGGAACCTCTACTGGGGCTACTGTGGCATGGGG
 210 S R D K P Y L Y P N I F S C T L S S N
 241 AGAACAAAGATAAGCCGATCTCCCTGACTTCACACATCTTCAGCTGCACTGTCAGCA
 280 I I G V A E N G L Q C P T P Q V C V S S
 310 ACATCATCTCACTTGCTGAGAACGGCTACAGTGCCCCACACCCGAGGTGCTGCTGCT
 340 C P E D P W T V G K R E P S Q T V S S V
 361 CCTGGCCCGAAGGACCCATGGACTGTGGGAAACACGAGTTCTCAAGACTGTGGGAG
 410 F Y T K N F N F C L P G V P W H M T V I
 421 TCTCTCTTACAAAAACGCGAATTTTGTCTGGGAGCTACGCTGGAATATGAGCTGA

Figure 18-2

180 T S L Q Q R L C P S S L L P S A P A L S
481 TCACAAAGCCTGCAACAGGAACCTCTGCCCGAGTTCCCTCCCTCTCTCCAGCTCTCG
190 R C F P W T N Y T P P A L P G I T N P T
581 CGCGCTGCTTCCATGGACCAACGTTACTCCACCGGGCTCCCAGGGATCAACCAATGACA
200 T I Q Q S I S G L I D S L N A P D I S Y
681 CCACCATACAGCAGGGATCAGGGTCTTATTGACAGGCTCAATGGGGAGACATCTG
220 K I P E D F A Q S W Y W I L V A L G V A
661 TTAAGATCTTCAAAQATTTCGCCAGTCTCTGGATTGGATCTTCTTCCCTGGGCTGGC
240 L V I S L L F I L L R I V A G P I V I
721 CTCTGGTCTTGACCCCTACTGTTTATCTTCTGCGGCCCTGGCTGGGCTGGGCTGGC
260 V L I L S V L A Y G I Y Y C W E E
781 TGGTGTGATCTGGGAGTGCTGGGGCTGGGCTGGGCTGGGAGGCTGGGAGG
280 Y R V L P D K G A S I S Q L G F T T M L
841 AGTACCGAGTGTGGGGAGAACAGGGGGCTCCATCTCCAGCTGGGTTTACCCACCAACC
300 S A Y Q S V Q E T W I A A L I V I A V I
801 TCAGTGCTTACAGAGCGTCAAGGAGACCTTGCGTGGGGCTGGGCTGGGCTGGGCTGGC
320 S A I L I L M L I S L R Q R E R I A I A
961 TTGAAGCCATCTGGCTTGATGCTCATCTCTGGGGAGGGATTGGATTGGCCATGCG
340 L L K S A S F A V G Q M M S T M E Y P L
1621 CCCTCTGAGGAGGAGGGAGCAAGGCTGGGAGAGATGATGCTTACCATGGTCTACCCAC
360 V T F V I L L I C I A Y W A M T A L Y P
1081 TGGTCACCTTGTGCTCTGCTCATCTGCAATTGGCTACTGGCCATGACTCTCTATAC
380 L P T Q P A T L G Y V L W A S N I S S P
1141 CTCTGCCAACGGAGGGCAACTCTGGGATCTGGCTGGGCTGGGCTGGGCTGGGCTGGC
400 S C E K V P I N T S C S P T A H L V N S
1261 CGGGCTGTGAGAAACTGCAATAAACATCATGCAACCCACGGGGCACTTGGGCTGGGCTGGG
420 S C P G L M C V F Q G Y S S K G L I Q R
1261 CCTCGTGGGAGGGCTGATGCTGGTCTTCAAGGGCTACTCATCCAAAGGCTTAATCCAAC
440 S V F N L Q I Y G V L G L F W T L W S V
1321 GTPCTGTCTTCAATCTGCAATCTATGGGGCTCTGGGCTCTCTGGACCCCTTAACGGG
460 S A E G Q C V L A G A F A S E F W A F S
1381 TACTGGCCCTGGCCATGGCTCTCTGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGC
480 K P Q D I P T F P L I S A S I R T L R Y
1441 ACAAGGCCCCAGACATCOCTAACCTGCGCTTAATCTCTGGCTTCATGGCACACTCCCTT
500 R T G S L A F G A E I D T I V Q I A R Y
1501 ACCACACCTGGCTCATGGCATTTGGAGGGCTCATGACCTTGCTGAGATAGGGGGGGGG
520 F L R Y I D H N L R G V Q N P V A S C E
1561 TCATCTTGGACTATATTGACCAACAGCTGAGAGGAGTGCAGAACCCCTGAGCCGGCTGCA
540 M C C S R C C L W C I E X F I X F L N R
1621 TCATGTCAGTGTTCAGTGCTGCCCTGGCTCTGGAAAATTTATCAAGTTCTAAAC
560 N A V T M I A I Y G K N F G V S A K N A

Figure 11-3

1681 GCAATGATACATCATGATGCGCCATCTACGGGAAGAATTCTGTCCTGAGCCAAAATG
580 P M L L M R N I V R Y V V I D S V T D L
1741 CGTTCATGCTACTCTGCGAACATTTGTCAGGGTGGCTGGACAAAGTCACAGACC
600 L L F P G K L L V V G G V Q V L S F F F
1801 TGGCTCTGTCCTTGGAAAGCTGCTCTGGCTGGAGGGTGGCTCTGTCCTTCTTT
620 F S G P I P G L G R Q F N S P R L N Y Y
1861 TTTTCCTCCGGTGGCTTCCGGGGCTGGTTAAAGACTTTAAGAGCCCCCACCTGAACTATT
640 W L P I M T S I L G A Y V I A S G G P F S
1921 ACTGGCTGCCOATCATGACCTCCATCTGGGGGCTATGTCATGGCCAGGGGCTCTTCA
660 V R G M C V D T L F L Q F L S D L E R N
1981 GCGTTTCGGCATGTCGTTGGACACGGCTTCTCTGCTTCCTGGAAAGACCTGGGGKA
680 N G S I P R P Y Y M S K S I L K I L Q K
2041 ACAACGGCTCCCTGGACGGGCCCTACTACATGTCGAAGAGGCTCTAAAGATTCTGGCA
700 K N S A P P D R K K K K *
2101 AGAAGAGACGAGGCGCCCGGCGGACAACAGAGAAGAGCAAGAGCTGACAGCTGGGGCGCTGAT
2161 ccaggactgcaccccccaccccccacccgtccagccatccaaacccacttcgccttacaggat
2221 ccatttttgtgtaaaaaaagggtttcaggccaggccggccgttgttcacccctgttaacccac
2281 acttttgagagaggctggggccggatccatctgagtccaggatttcggccacccgcctggccca
2341 acatgggtggaaacccctccggcttattaaaaataccaaaaatccggccggatgggtggccatgc
2401 acctggatcccccacgttactccggggaggccggccggatccgttggaaacccggggggggcc
2461 ggggttggcaatggggggggatccggccactggccatccatccatccggccatggatccatgtt
2521 ccaaaaacaaaaacaaaaacaaaaagattttattaaagatttttgtttactccatgtaaaaa
2581 aaaaaaaaaaaaaa

Figure 2:

Figure 2A. The cDNA (SEQ ID NO:19) and amino acid sequence (SEQ ID NO:20) of HaS-1(S)2.1 heavy chain. Double-underlined is the leader sequence, underlined is the heavy chain variable region, and underlined with a dashed line is the human IgG2 constant region.

Figure 2A-2

1321 CAGGGGAAACGCTTTCATGCTCCGIGATGATGAGGCTCTGGACAAACCAACTACAGGAG
 K S L S L S P G K *

1381 ANNGGCTTCTTCTTCTTCTCCGGGAAATGAA

Figure 2B The cDNA (SEQ ID NO:21) and amino acid sequence (SEQ ID NO:22) of Ba5-1(S)2.1 light chain. Double-underline is the leader sequence, underlined is the light chain variable region, and underlined with a dashed bar is the human kappa constant region.

1 M D N R V P A Q L L G I L L L W L P D T
 ATGGACATGAGGCTCCCTGAGGCTGGGCACTCCGGCTGCTCTGAGCTCCAGATAGC
 R C D I Q M T Q S P S T D S A S I G D R
 61 AGATTTGACATCCAGATGACCCAGTCTCCATCCACCCTGCTGGCATCTATAGGAGACAGA
 V T I T C R A S Q G I S Y Y L A W Y Q Q
 121 GTCACCATCACTTGCCGGGGAGTCAGGGCAATTAGCTATTATTAGCTGGTATCAGCAG
 K P G K T P K L I Y D T S S L Q S G V
 181 AAACCCGGAAAATTCTAACTCTGATCTTGATACATCTCTTGGAAATCAGGGCTC
 P S R F S G S R S G T D L S L T I S S L
 241 CCATCTGATTGAGTGGGAGTAGATCTGGGACAGATCTCTCTGACCCATCAGGAGGCTG
 Q P S D V A T Y Y C Q R Y D S A P L T P
 301 CAGGCTGAAAGATCTGGCAACTTATTACTGTOAAAGGATATGACAGTGGCCCGGCTCACTTC
 Q G Q T K V R T E R T V A A P S V P I F
 361 GGCGAGGGACCAAGGTGGAGATCAAAGGACTYTGGCTGACCCATCTGCTTCATCTTC
 P P S D E Q L K S G T A S V V C L L N N
 421 CCGCCGATCTGATGAGGAGTTGAAATCTGGAAACTGGCTCTGTTGTGTGGCTGCTGAAATANG
 P Y P E B A K V Q W K V D N A L Q S G N
 481 TTCTATCCAGAGAGGGGAAAGTACAGTGGAAAGCTGGATAACGGGCTCCAAATCTGGTAC
 S Q E S V T R Q D S K D S T Y S L S S T
 541 TGGGAGGAGGTGTCACAGAGACGGAAACGGAAAGCTGGCTGAGGAGGCTGGGAGGACC
 L T L S K A D Y E X H K V Y A C E V T H
 601 CTGACGGCTGAGGAAAGGAGACTAAGGAGAAACGGAAAGCTGGCTGGAAAGTCACCCAT
 Q G L S S P V T E S F R R G E C *
 661 CAGGCGCTGAGCTCCGGGCTGACAAAGAGCTTCAGACAGGGAGAGCTGGAG

Figure 3:

Figure 3A The amino acid sequence (SEQ ID NO:23) of Hs5-1(S)2.1 heavy chain. Double-underlined is the leader sequence, underlined is the heavy chain variable region, and underlined with a dashed line is the human IgG2 constant region.

```

1  METGQLTWVFL VALLRGVQQQ VQLVVERGGGV VQPGRSLELIS CRASGFTESS
51  YGMHHWVRQAP GKGLEWAVM SYDGSKKPYT DSVEKGRFTIG PDNSENTLYL
101 QMNSLRAEDT AVYYCARDGG DYVRYHYYGM DVNGQGTTVT VSCASTKQPS
151 VFPLIAPCSRS TSESTAALGC LVKDYFPEPV TVSWNSGALT SGVRTFPAVL
201 QSSGLYGLSS VVTVPSSNFG TQTYTCNVDH KPSNTKVDKT VERKCCVSCP
251 PCPAPPVAGP SVFLFFFPKP DTLMISETPE YTCVVVDVSH EDPEVQNNWY
301 VDGVEVHNAM TKPREEQFNS TFRVVEVLTV VHQDWLNGKE YKCKVSNKGL
351 PAPTEKTISK TKGOPREPOV XTLPPSREEM TKHQVSLTCL VKGFYPSDIA
401 VEWBENGQPE NNYKTTPPML DGDGGFFFLYS KLTVDKSEWQ QCNVPSCSVM
451 HEALHINHYTQ KSLSLSLFGK

```

Figure 3B The amino acid sequence (SEQ ID NO:24) of Hs5-1(S)2.1 light chain. Double-underlined is the leader sequence, underlined is the light chain variable region, and underlined with a dashed line is the human kappa constant region.

```

1  MUMRVPAAQLL GLLLNLNPDT RCDICMTQSP STLSASIGDE VTITCRASQG
51  ISYYLANYQQ KPGKIPKLLI YUTSSLQSGV PSRFSGSRSG TDLSLTISSL
101 QPEDDVATYYC QPYDSAPLTF GGGTIVVRLIEF TVAAPSIVTIF PPSLEQIYSG
151 TASVVCLLNN FYPREAKVQW KVNDALQSGN SQESVTEQDS KDGTYGLSST
201 LTLISKADYEK NKVYACEVTH QGLSSPVTKS FNRGEC

```

Figure 4A1: Alignment of Hs3-1(S)2,1 heavy chain to human Iggerline.

Figure 4A.2

		T	T	V	V	S	S
32.3 (29/288)	333.3%						
32.9 (13/38)	33.3%						
36.6 (87/381)	33%						
		4.08	4.08	5.00	5.00	4.30	4.30

Figure 4B: Alignment of *Ma5-1(S)2.1* light chain to human Ig gamma-like.

Figure 5 – Ha5-1(5)2.1 MAb binds to cell surface of 24P4C12

Ha5-1(5)2.1 MAb from
Hybridoma

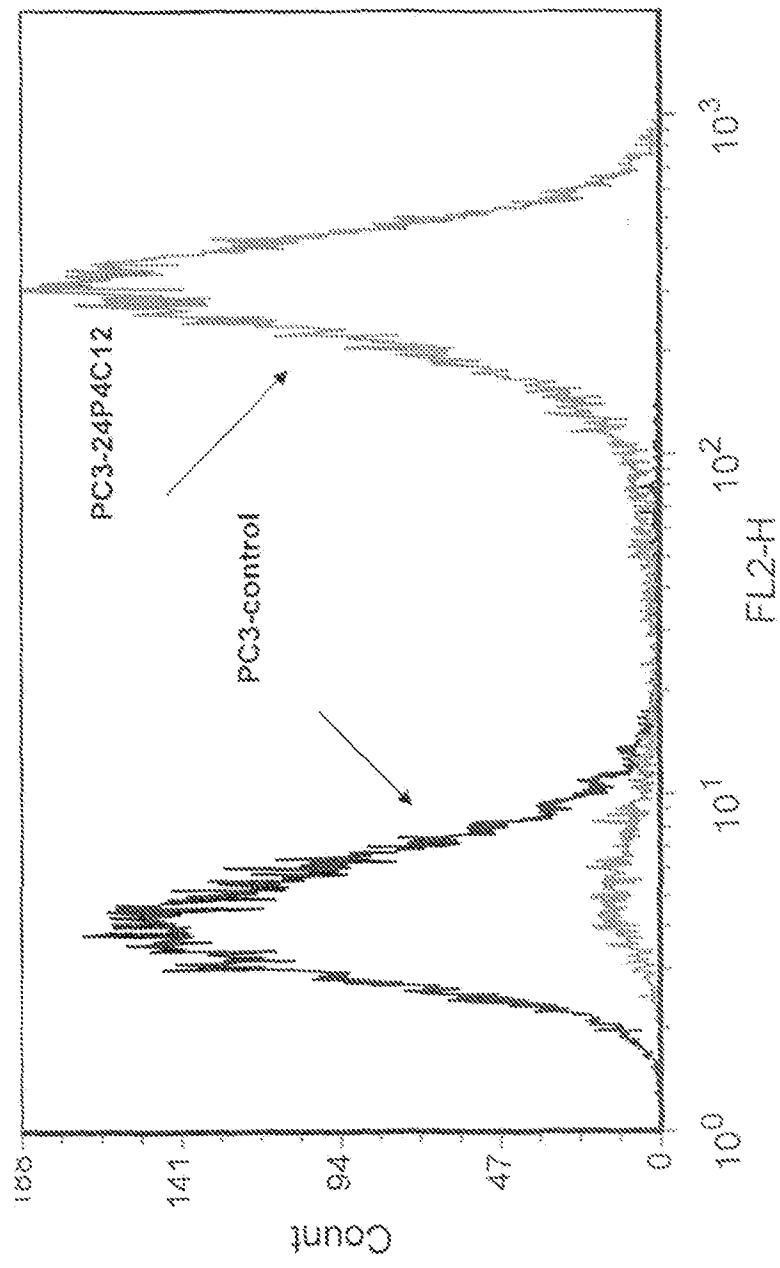
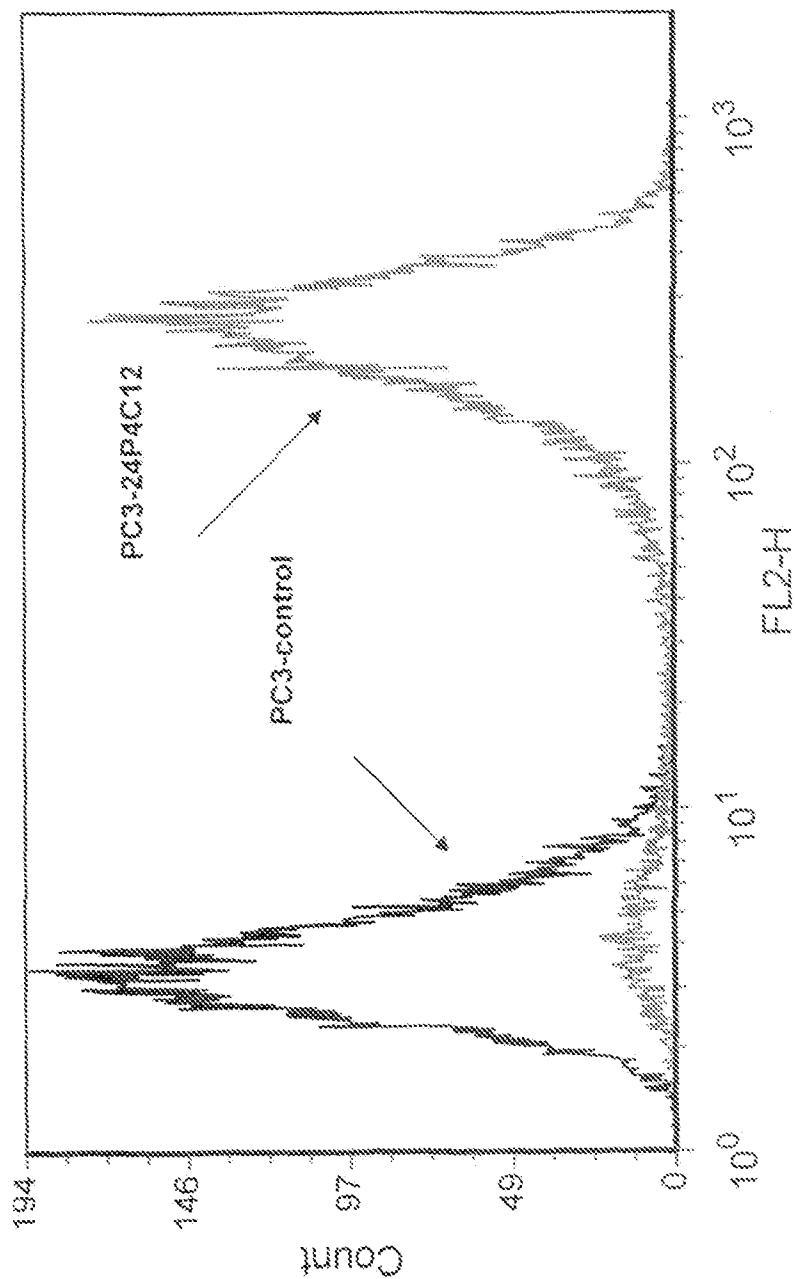



Figure 5 (cont'd) – Ha5-1(5)2.1 MAb binds to cell surface of 24P4C12

Ha5-1(5)2.1 MAb from
CHO transfection

Figure 6: Cell Cytotoxicity by Has-1(5)2,1-vcMMAE

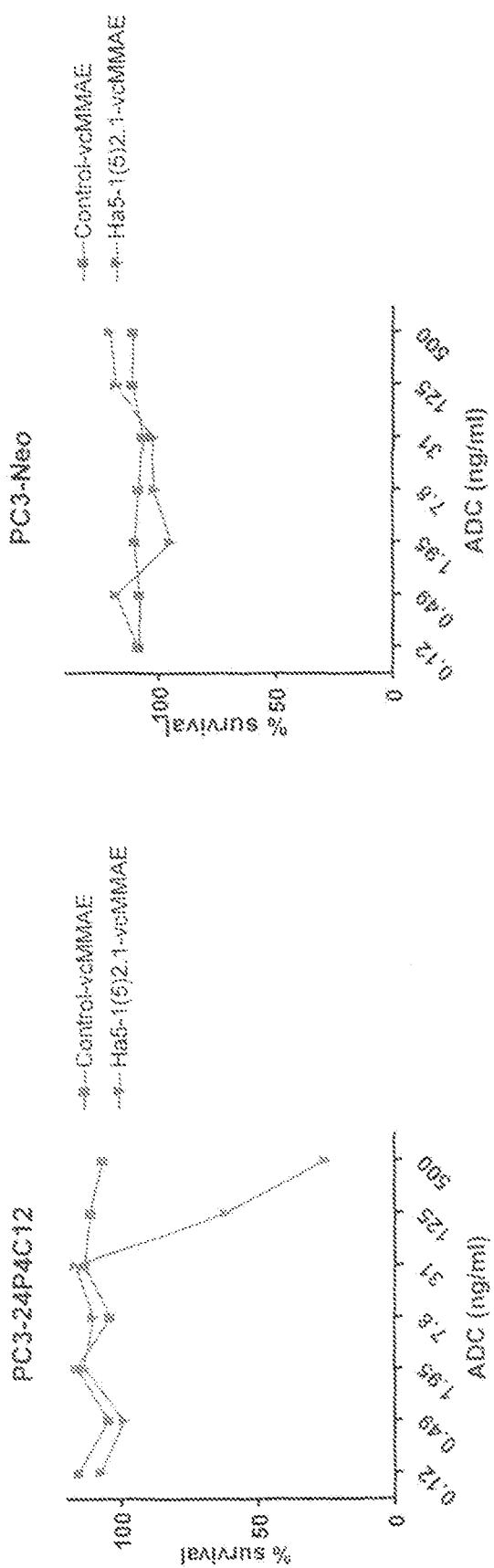


Figure 7. Ha5-1(S)2.1-vcMMAE inhibits the growth of subcutaneously established human androgen-independent prostate cancer xenograft in SCID mice

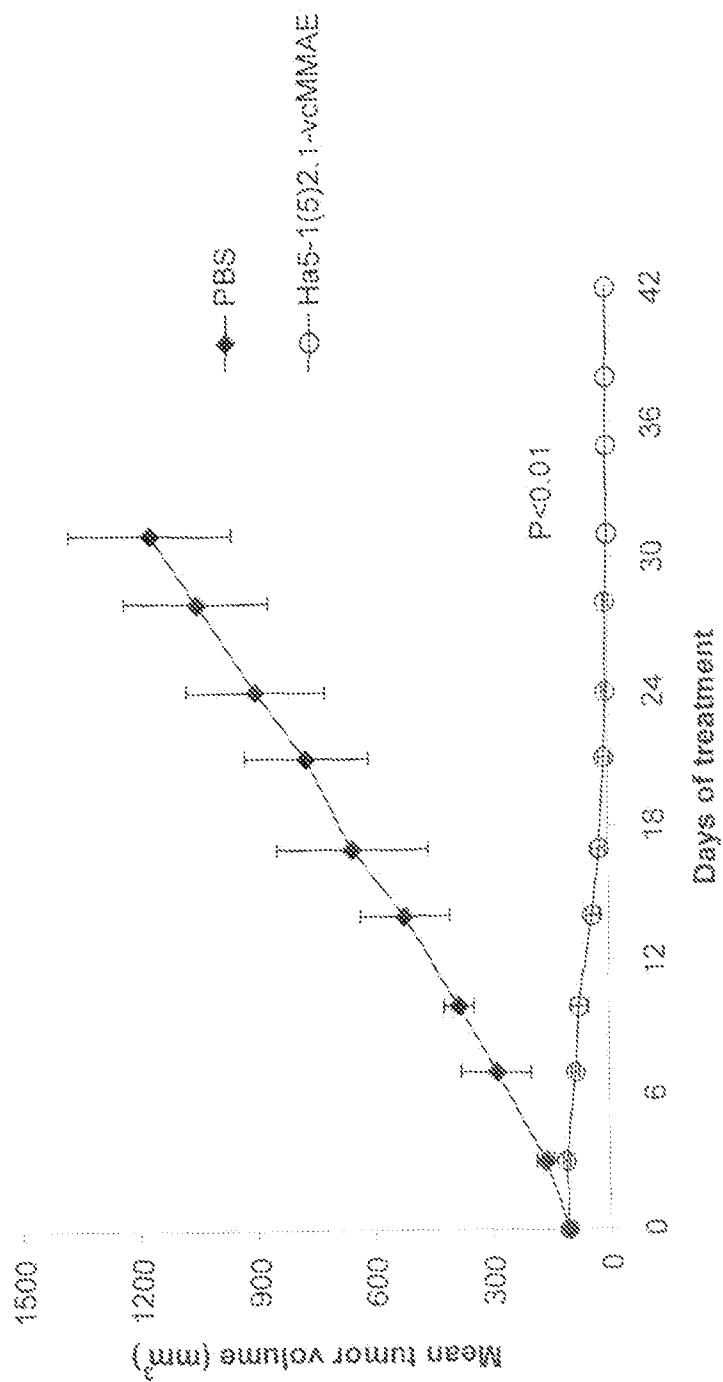


Figure 8: Has-1(5)2.1-vcMMAE inhibits the growth of orthotopically established human androgen-independent prostate cancer xenograft in SCID mice

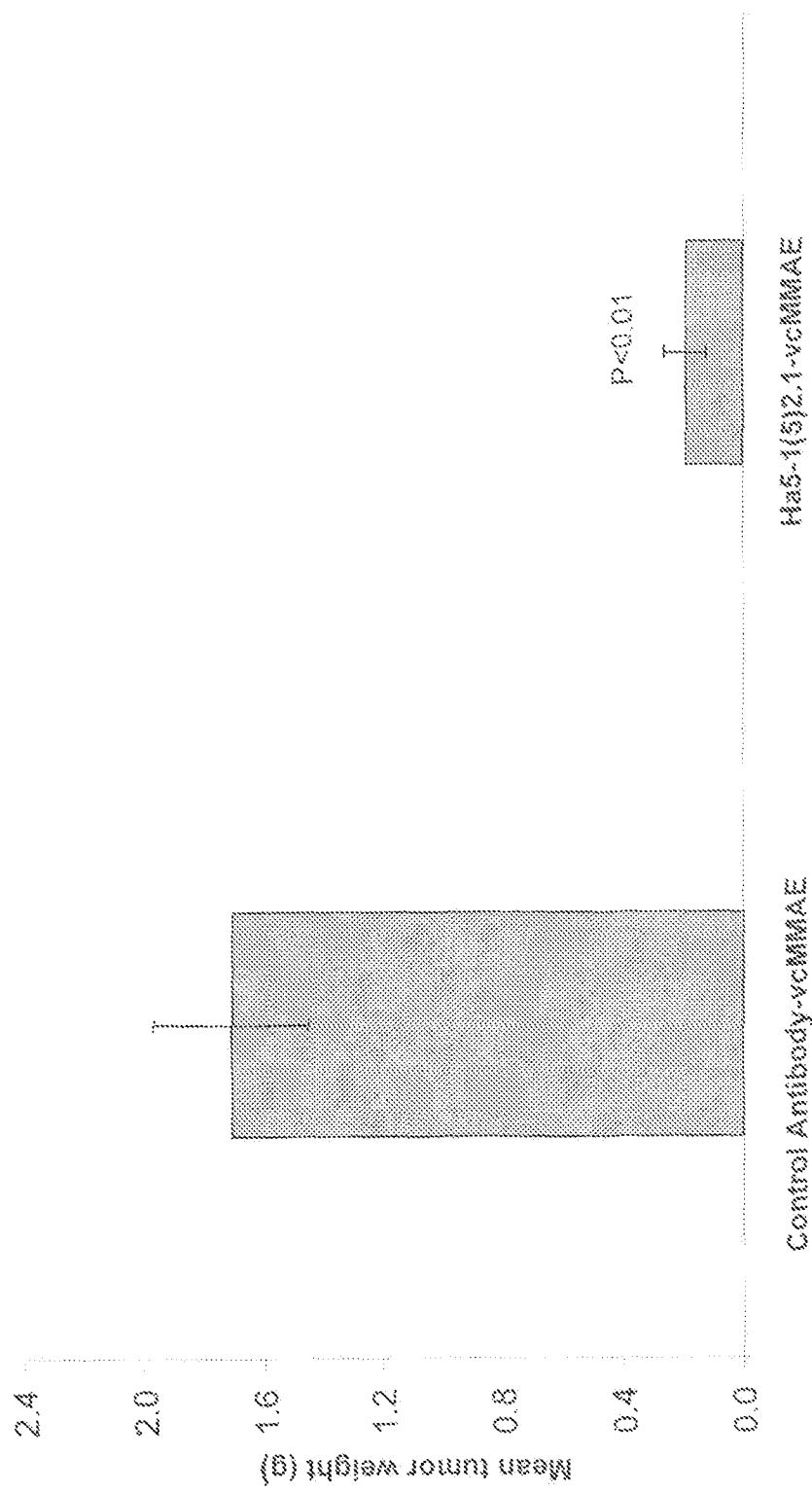


Figure 8: Ha5-1(5)2.1-vCHIMAE inhibits the growth of subcutaneously established human colon cancer xenograft in SCID mice

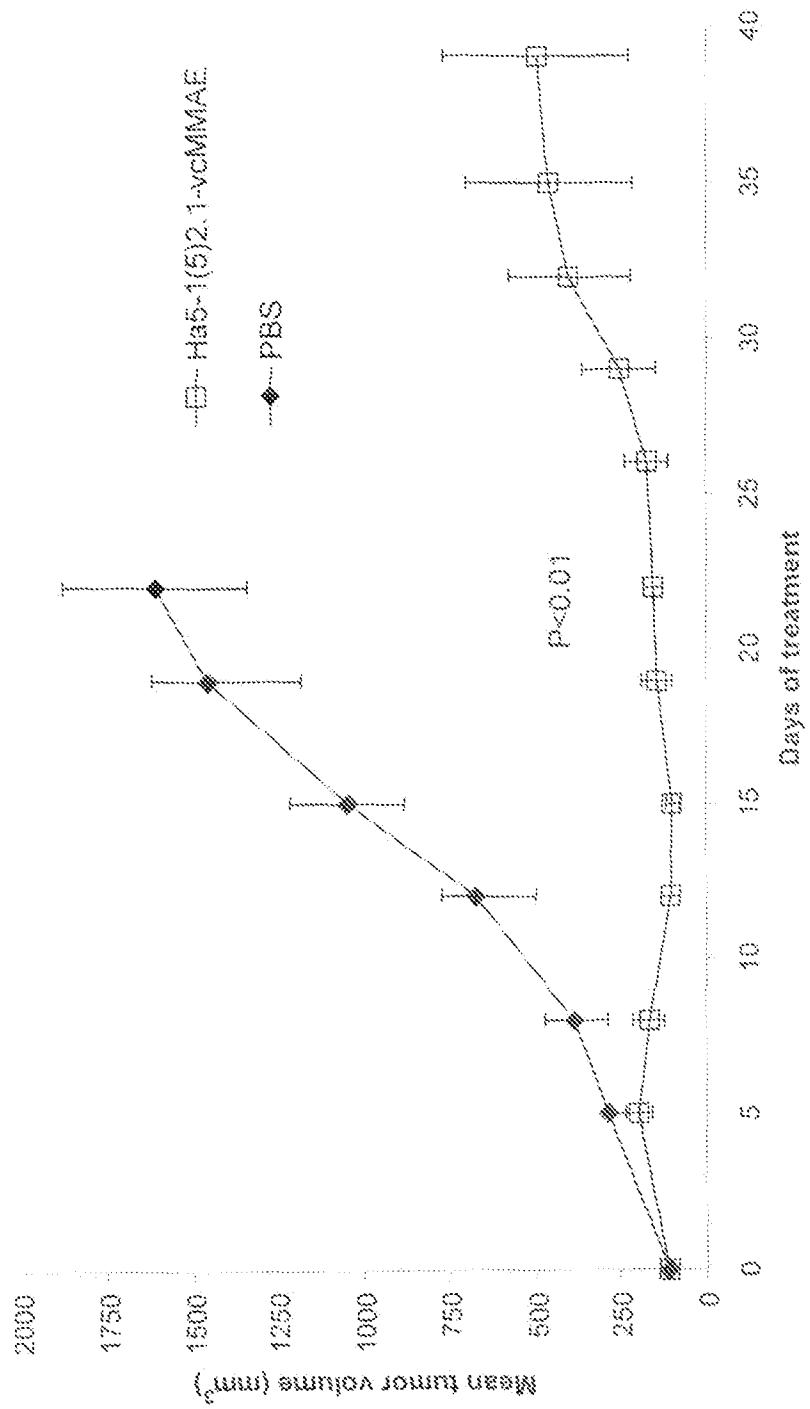


Figure 10: Ha5-1(5)2.1-vCMVMAE inhibits the growth of subcutaneously established patient-derived colon cancer xenograft in SCID mice

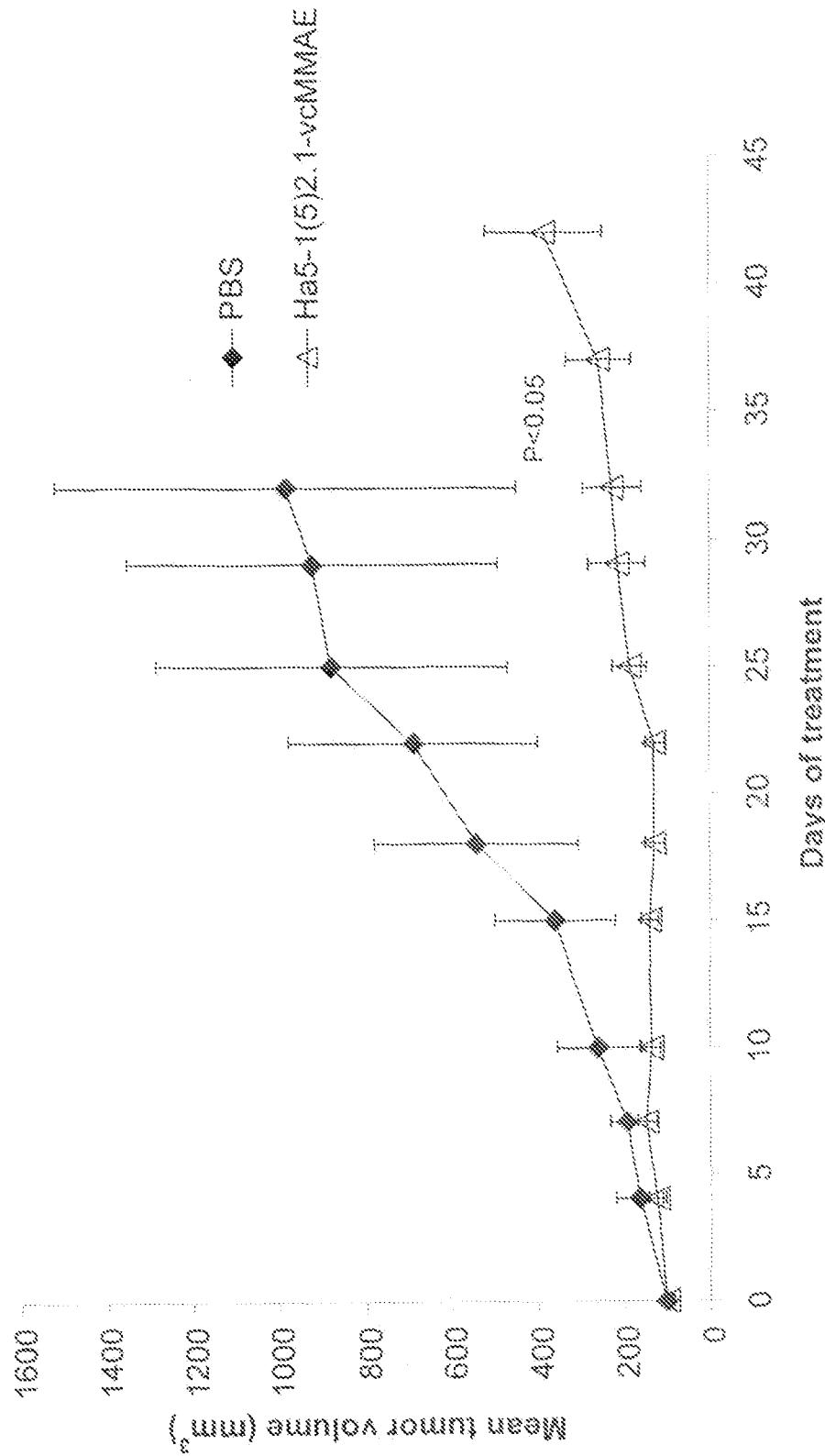


Figure 1: Hs5-1(5)2.1-vcMMAE inhibits the growth of subcutaneously established human ovarian cancer xenograft in nude mice

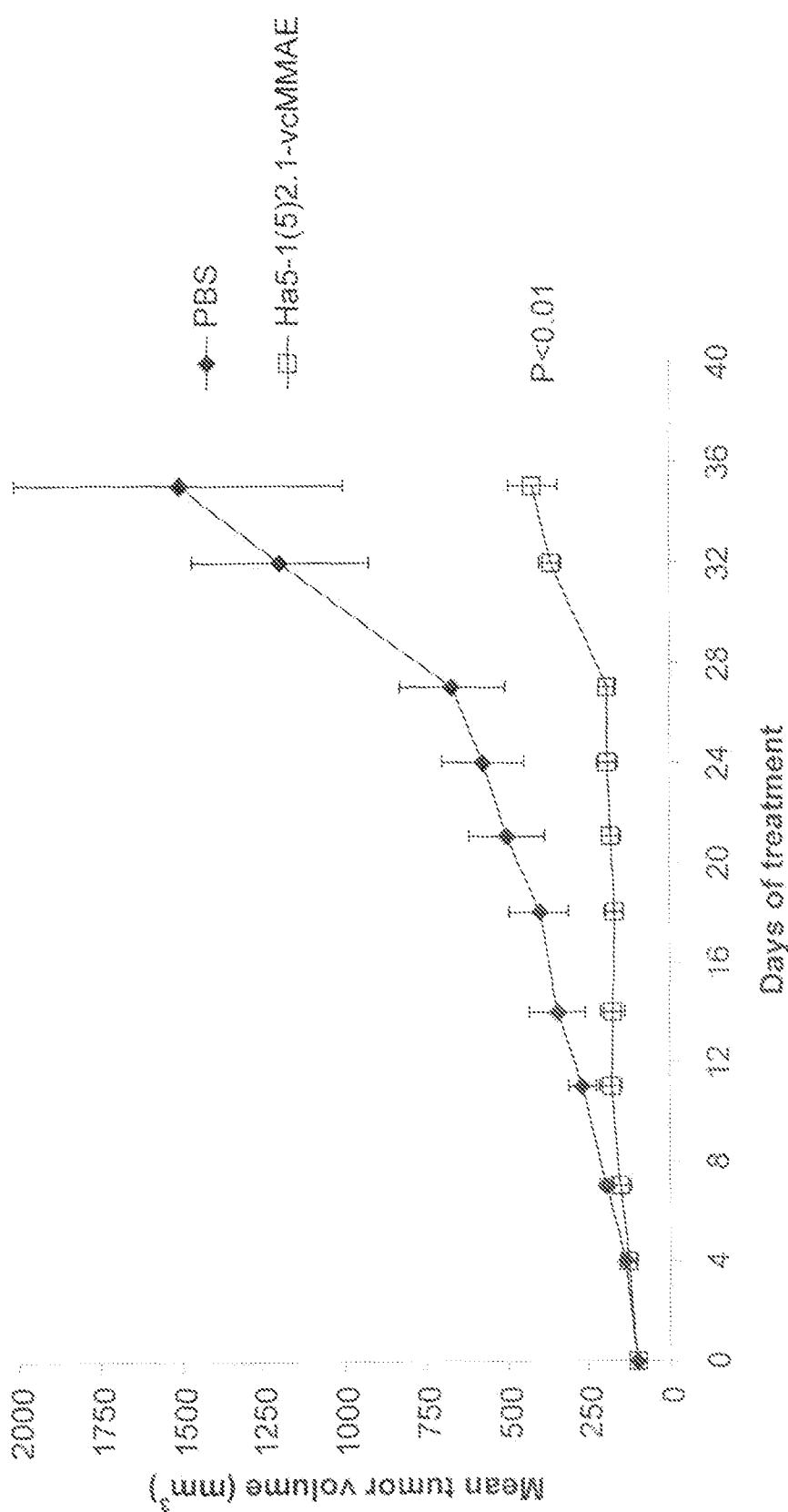


Figure 12: Ha5-1(5)2,1-vcMMAE inhibits the growth of subcutaneously established patient-derived pancreatic cancer xenograft in SCID mice

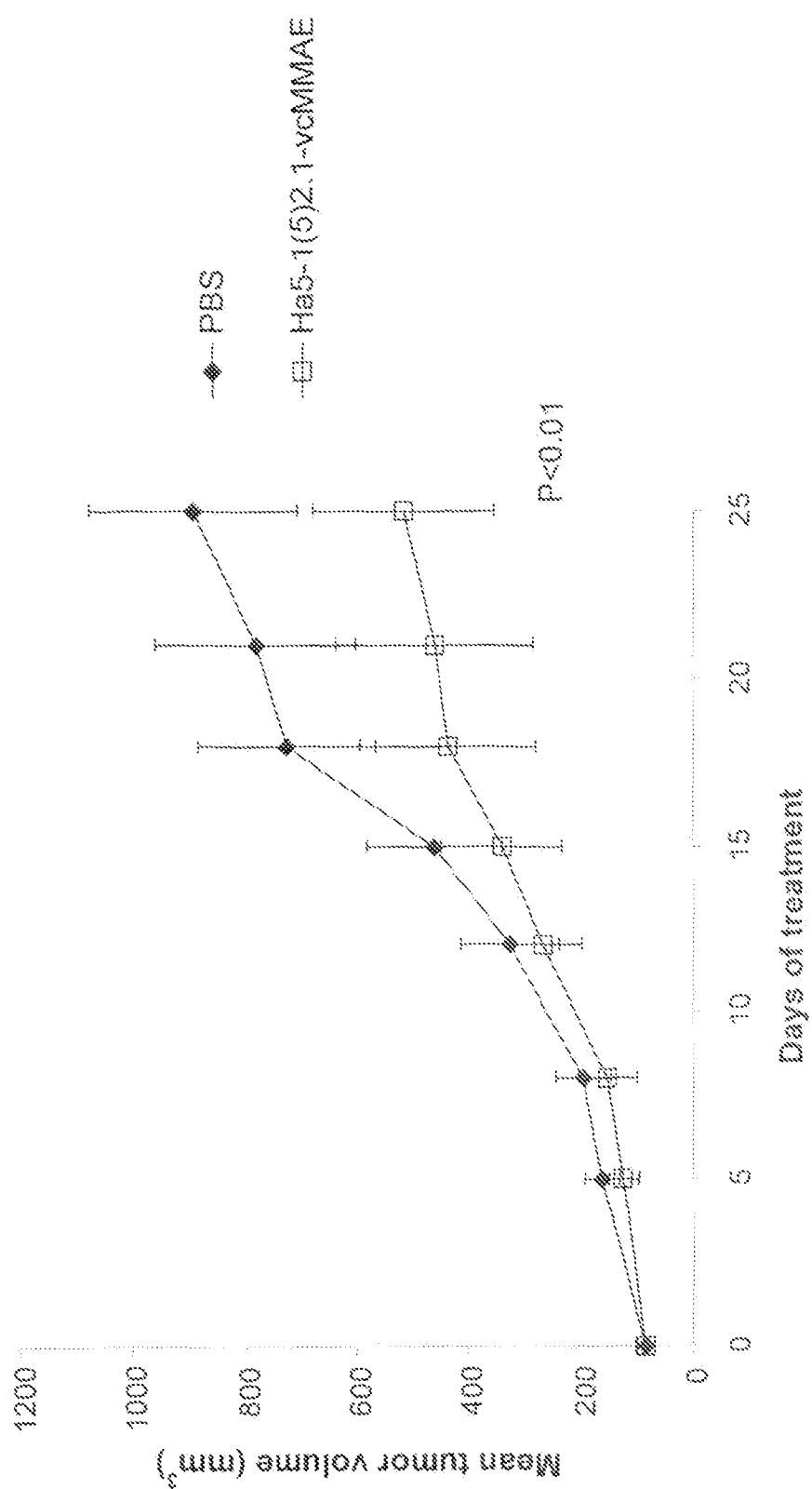


Figure 13. Efficacy of Has5-1(5)2-1vcMMAF compared to other 2424G12 ADCs in Prostate Cancer LAPC9-AD Xenografts

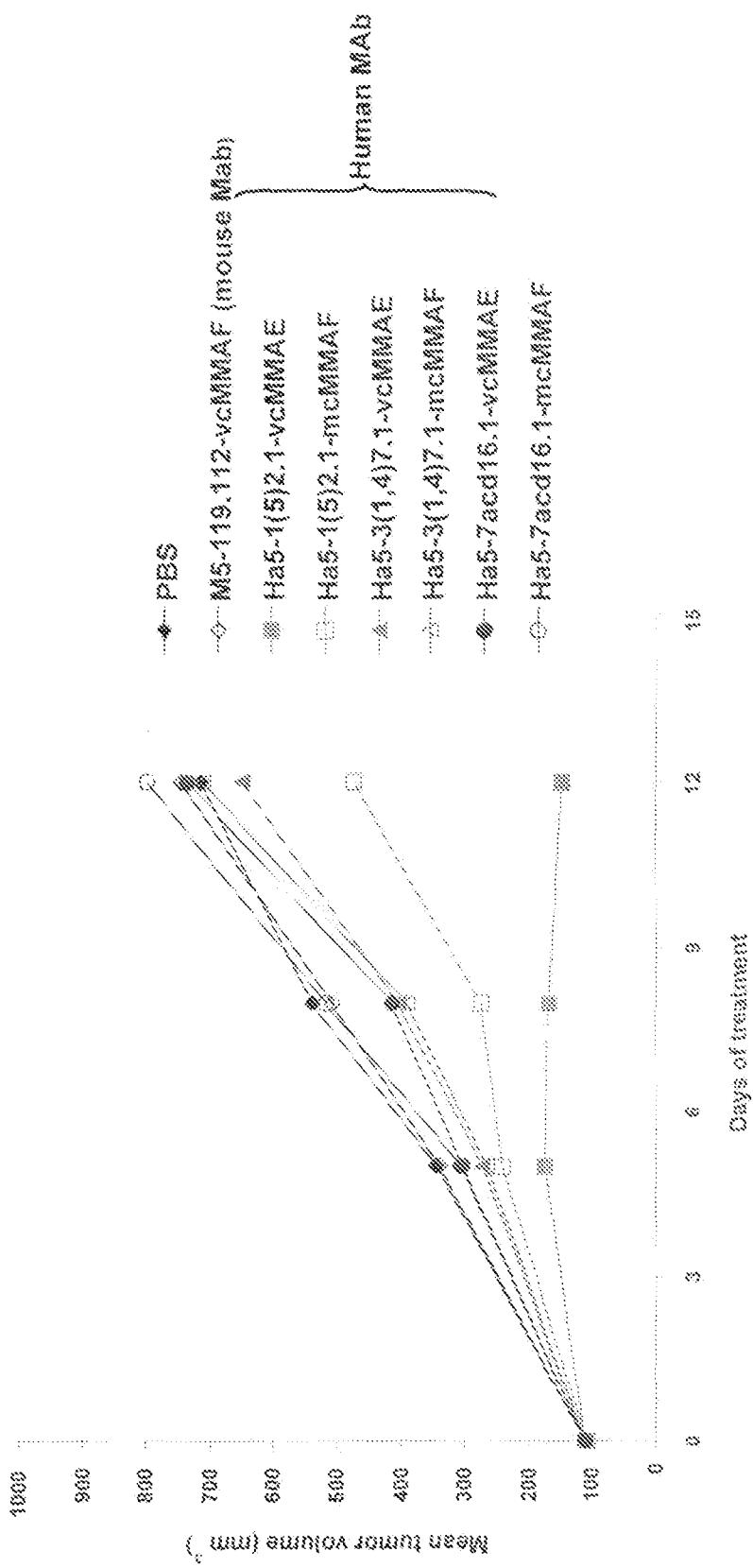
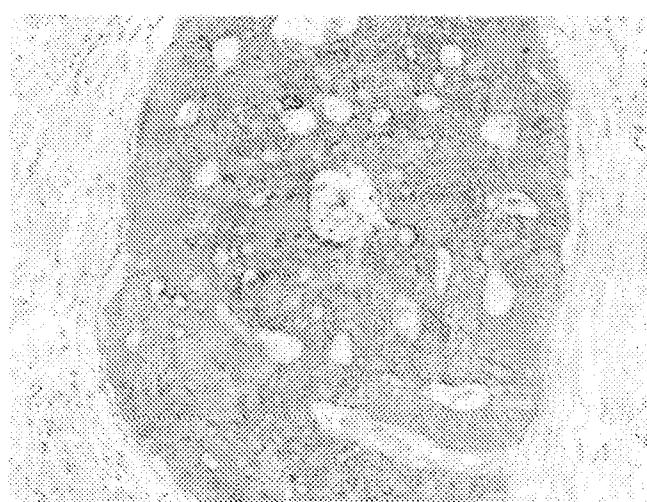
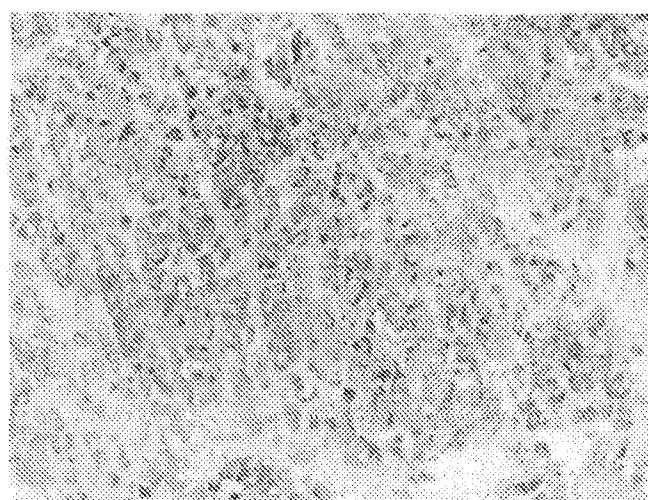



Figure 14: Detection of 24P4C12 protein by immunohistochemistry in gastric cancer patient specimens

14A



14B

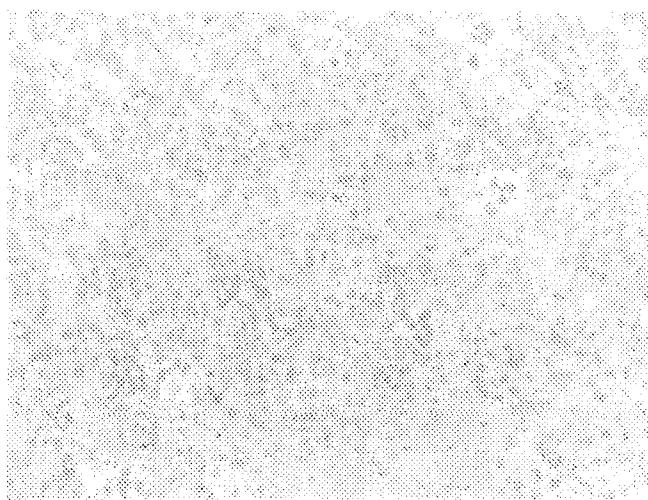


Figure 14 (cont'd): Detection of 24P4C12 protein by immunohistochemistry in gastric cancer patient specimens

14C

14D

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 10/26429

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(8) - A61K 39/00; C12P 21/08 (2010.01)
 USPC - 424/181.1; 530/391.7

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC(8)- A61K 39/00; C12P 21/08 (2010.01)
 USPC: 424/181.1; 530/391.7

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 USPC- 424/178.1; 530/391.1; 530/391.9

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 WEST(PGPB,USPT,EPAB), esp@cenet, ATCC, Google Scholar: antibody, drug, conjugate, cancer, ADC, 24P4C12, MMAE, radiation, hybridoma, ATCC, PTA-8602antibody, drug, conjugate, cancer, ADC, 24P4C12, MMAE, radiation, hybridoma, ATCC, PTA-8602

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2007/0160617 A1 (MA et al.) 12 July 2007 (12.07.2007) abstract; para [0007], [0014], [0045], [0066], [0072], [0109], [0123], [0127]	13-15
A	US 2003/0211100 A1 (BEDIAN et al.) 13 November 2003 (13.11.2003) SEQ ID NO: 116	1, 4-12
A	US 2007/0004910 A1 (SEXTON et al.) 4 January 2007 (04.01.2007) SEQ ID NO: 1126	1, 4-12

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family

Date of the actual completion of the international search
 13 May 2010 (13.05.2010)

Date of mailing of the international search report

10 JUN 2010

Name and mailing address of the ISA/US
 Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
 P.O. Box 1450, Alexandria, Virginia 22313-1450
 Facsimile No. 571-273-3201

Authorized officer:
 Lee W. Young
 PCT Helpdesk: 571-272-4300
 PCT OSP: 571-272-7774