
US 20090300023A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0300023 A1

Vaghani (43) Pub. Date: Dec. 3, 2009

(54) OFFLOADINGSTORAGE OPERATIONS TO Publication Classification
STORAGE HARDWARE USING ATHIRD (51) Int. Cl
PARTY SERVER G06F 2/02 (2006.01)

G06F 7/30 (2006.01)
G06F 2/16 2006.O1

(75) Inventor: Satyam B. Vaghani, Palo Alto, CA G06F 12/00 38:8:
(US) (52) U.S. Cl. 707/10; 711/170; 707/205; 707/204;

707/E1701: 707/E17.032; 711/E12.103;
Correspondence Address: 711 FE12.OO2
VMWARE, INC. (57) ABSTRACT
DARRYL SMITH, 3401 Hillview Ave.
PALO ALTO, CA 94.304 (US) In a computer system with a disk array that has physical

9 storage devices arranged as logical storage units and is
capable of carrying out hardware storage operations on a per

(73) Assignee: VMware, Inc., Palo Alto, CA (US) logical storage unit basis, a third party server is provided to
offload storage operations from a file system to storage hard
ware. The third party server transfers configuration informa

(21) Appl. No.: 12/129,376 tion associated with composite storage operations to the
physical storage devices through an out-of-band path to
enable composite storage operations to be executed without

(22) Filed: May 29, 2008 involving the file system.

File
Segments

File
Segments

Extents - 22

153

x2 Spindle
152

Spindle
152B

Patent Application Publication Dec. 3, 2009 Sheet 1 of 18 US 2009/0300023 A1

Out of band path
188
|

NAS Device
185

VMKERNEL
208 Virtual Center

Application
180

Third Party Server
190

Out of band path
189
|

Out of band path
Storage System

FIGURE 1A

US 2009/0300023 A1 Dec. 3, 2009 Sheet 2 of 18 Patent Application Publication

T??INTI

OÛT WELSÅS MELIT.d.WOO

US 2009/0300023 A1

9?T WELSAS ESOVNO LS00Z WEILSÅS NEILÍTe||WOO

Patent Application Publication

US 2009/0300023 A1 Dec. 3, 2009 Sheet 4 of 18

NOT

Patent Application Publication

Patent Application Publication

Receive request to zero out file
400

Resolve file into file segments
402

Resolve file segments into
logical extents

403

Resolve each logical extent
into a list of blockS

404

COnSOlidate the list Of
blockS into a SOUrCeblocklist

406

Generate "zero" blocklist primitive
and embed into SCSI CBD

408

lsSue SCSI Command to
storage device

410

"Zero"
support?
412

NO

Yes

Internal disk array mechanisms
translate SourCeblocklist to

spindle-extents and write zeros
414

Dec. 3, 2009 Sheet S of 18 US 2009/0300023 A1

generate SCSIWRITE
SAME COmmand With Value
of Zero in the Write buffer for
a block in SOUrCeblocklist

416

SSue SCSI WRITE
SAME Command to

disk array
418

Internal disk array
mechanisms translate

block into spindle-extents
and Write ZeroS

420

Execution complete
424

FIGURE 4A

Patent Application Publication Dec. 3, 2009 Sheet 6 of 18 US 2009/0300023 A1

3.

SS VMFs Volume
Qe 302

Storage System
106

Metadata

156E 155

S

152

S

S.

52H

FIGURE 4B

Patent Application Publication Dec. 3, 2009

Receive request to clone file A to file B
500

Resolve file A into file segments
and file B into file segments

502

Resolve file segments of file A and
file B into respective logical extents

503

Resolve each file segment of file A and
file B into a respective list of blocks

504

COnSolidate the list Of bloCKS for file A
into SOUrCeblocklistand list of blocks for

file B into destinationblocklist
506

Generate "clone" blocklist primitive
and embed into SCSI CBD

508

SSue SCSI COmmand to
Storage device

510

"block"
Support?
512

Internal disk array mechanisms to clone
destination blocklist's list of extents with

SOUrCeblocklist's list of extents
514

Sheet 7 of 18 US 2009/0300023 A1

Generate SCSI level XCOPY
for a block in SOUrCeblocklist

516.

SSue XCOPY
Command to disk array

518

Internal disk array mechanisms
translate block into spindle
extents and ClOne extents

520

Execution complete
524

FIGURE 5A

Patent Application Publication Dec. 3, 2009 Sheet 8 of 18 US 2009/0300023 A1

C C

Virtual Disk A

Storage System
106

Metadata
155

S
S

Š
S

y

S

S

FIGURE 5B

Patent Application Publication Dec. 3, 2009 Sheet 9 of 18 US 2009/0300023 A1

Receive request to delete file
600

Resolve file into file segments
<offset, length>+

602

Resolve file segments into
logical extents

603

Resolve each file segment of into a list
of blocks <LUN ID, offset, length)+

604

COnSOlidate the list Of blockS for file A into
"sourceblocklist" <LUN ID, offset, length>+

representative of the entire file
606

Generate "delete" blocklist primitive
With SOUrCeblocklist and embed into

SCSI WRITE BUFFERCDB
608

SSue SCSI WRITE BUFFER COmmand
to disk array

610

Internal disk array mechanisms
translist sourceblocklist to spindle

extents and Write ZeroS
612

FIGURE 6A

Patent Application Publication Dec. 3, 2009 Sheet 10 of 18 US 2009/0300023 A1

VMFS Volume
302

Storage System
106

Metadata
155

&

FIGURE 6B

Patent Application Publication Dec. 3, 2009 Sheet 11 of 18 US 2009/0300023 A1

Receive request to zero out
segment <offset, length>

702

Determine filehandle
7O6

Prepare request: ioctl(filehandle,
ZERO BLOCKS, offset, length)

708

Issue request to NAS device
710

ZERO BLOCKS
Support?

712

YeS NO

Internal NAS device issue pipelined IO through Vmkernel
mechanisms Write ZeroS Software datamover driver

714. 716

FIGURE 7A

Patent Application Publication Dec. 3, 2009 Sheet 12 of 18 US 2009/0300023 A1

Receive request to clone
Segment A to segment B

722

Determine filehandle
726

Prepare request: ioctl(file A,
CLONE BLOCKS, file B, offset, length)

728

Issue request to NAS device
730

CLONE BLOCKS NO
support?

732

Yes

Internal NAS device mechanisms Issue pipelined IO through Vmkernel
to mark file blockS COW SOftWare datamoVer driver

734 736

FIGURE 7B

Patent Application Publication Dec. 3, 2009 Sheet 13 of 18 US 2009/0300023 A1

Receive request to delete
segment <offset, lengths

742

Determine filehandle
746

Prepare request: ioctl(filehandle,
DELETE BLOCKS, offset, length)

748

Issue request to NAS device
750

Internal NAS device mechanisms to
delete files and reclaim file blockS

752

FIGURE 7C

Patent Application Publication Dec. 3, 2009 Sheet 14 of 18 US 2009/0300023 A1

NAS Device Out of band path
185 188

Config Info |
807 ^

Virtual Center Third Party Server Application
VMKERNEL 180 190

208
SC Extension
802. 822

Out of band path
189
|

Out of band path
Storage System |

-------------2,-------------------

FIGURE 8A

Patent Application Publication Dec. 3, 2009 Sheet 15 of 18 US 2009/0300023 A1

Virtual Center initiates a
Composite storage operation

822

Perform metadata operations
through the virtual machine

filesystem
824

Obtain the filehandle Or blocklist
from the virtual machine filesystem

826

Provide configuration information
through the third party server to the

storage devices
828

Perform the composite storage
operation through the third party server

830

FIGURE 8B

Patent Application Publication Dec. 3, 2009 Sheet 16 of 18 US 2009/0300023 A1

Mirror (F1, F2) operation
received at virtual Center

832

Provide configuration
information to storage device

838

Snapshot F1
840

ROIback F1
842

Fracture F2 from F1 through
third party server

844

Delete F2 through filesystem
846

FIGURE 8C

Patent Application Publication Dec. 3, 2009 Sheet 17 of 18 US 2009/0300023 A1

Protocol packets
900

Control Unit
903

Disk Array
815

Config Info
812

FIGURE 9A

Virtual Target
Server
920

Patent Application Publication Dec. 3, 2009 Sheet 18 of 18 US 2009/0300023 A1

Switch receives a
packet
91O

Translate the primitive
and return the packet to

the SWitch
945

Simple
operation?

915

PrOCeSS With DPP
935

Provide the packet to the
virtual target for

translation
940

CPP
translation?

920

Translate the
primitive
925

Output the packet to the
Storage device

930

FIGURE 9B

US 2009/0300023 A1

OFFLOADING STORAGE OPERATIONS TO
STORAGE HARDWARE USING ATHIRD

PARTY SERVER

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to (1) U.S. patent appli
cation Ser. No. (Docket No. A245) filed on the same
date, and entitled “Offloading Storage Operations to Storage
Hardware Using a Switch, and (2) U.S. patent application
Ser. No. (Docket No. A217) filed on the same date,
and entitled “Offloading Storage Operations to Storage Hard

99
Wa.

BACKGROUND OF THE INVENTION

0002 Enterprise storage systems employ disk arrays that
are physically independent enclosures containing a disk array
controller, a disk cache and multiple physical disk drives. The
disk array controller manages the physical disk drives and
exposes them to connected computer systems as logical data
storage units, each identified by a logical unit number (LUN),
and enable storage operations such as cloning, Snapshotting,
mirroring and replication to be carried out on the data storage
units using storage hardware.
0003 Computer systems that employ disk arrays are typi
cally configured with a file system that executes a logical
Volume manager. The logical Volume manager is a Software
or firmware component that organizes a plurality of data
storage units into a logical Volume. The logical Volume is
available in the form of a logical device with a contiguous
address space on which individual files of a file system are
laid out. The mapping of the logical volume to the data Stor
age units is controlled by the file system and, as a result, disk
arrays do not know how individual files are laid out on the data
storage units. Therefore, a disk array cannot invoke its hard
ware to carry out storage operations such as cloning, Snap
shotting, mirroring and replication on a per-file basis.
0004 One possible solution for carrying out storage
operations in a disk array on a per-file basis is to add storage
metadata in data structures managed by the disk array. Disk
arrays, however, are provided by a number of different ven
dors and storage metadata varies by Vendor. This solution is
not attractive because the file system would then need to be
customized for each different vendor. For this reason, storage
operations such as cloning, Snapshotting, mirroring and rep
lication of files have been typically carried out using software
techniques through traditional standard file system calls.

SUMMARY OF THE INVENTION

0005 One or more embodiments of the invention provide
primitives that enable offloading of storage operations to
storage hardware on a per-file basis. These primitives include
instructions for Zeroing file blocks, cloning file blocks, and
deleting file blocks, and these instructions Support higher
level applications such as instant provisioning and thin pro
Visioning.
0006. One embodiment of the invention provides a
method for offloading storage operations from a file system to
a storage system having storage devices using a third party
server and out of band paths that bypass the file system. The
method includes the steps of receiving a composite storage
operation for the storage system, obtaining location informa
tion from the file system for a file that is stored on the storage

Dec. 3, 2009

devices, and generating configuration information associated
with the composite storage operation at the third party server
and Supplying the configuration information and the location
information to the storage system.
0007 Another embodiment of the invention provides a
computer system having a host computer configured to pro
vide a file system that maintains location information for files
The host computer is connected to a storage system having
storage devices that are presented to the host computer as one
or more logical storage units. In this computer system, a
composite storage operation is received for the storage sys
tem, location information is obtained from the file system for
a file that is stored on the storage system, and configuration
information associated with the composite storage operation
is generated by the third party server and supplied to the
storage system with the location information.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1A is a functional block diagram of a virtual
ized computer system topology in which one or more
embodiments of the invention may be practiced.
0009 FIG.1B is a functional block diagram of a computer
system with a connected storage system in which one or more
embodiments of the invention may be practiced.
0010 FIG. 2 is a functional block diagram of a virtualized
computer system with a connected Storage system in which
one or more embodiments of the invention may be practiced.
0011 FIG. 3 is a conceptual diagram that illustrates a
mapping of a file in the computer system of FIG. 2 to data
storage units and physical storage locations in a disk array.
0012 FIG. 4A is a flow diagram for Zeroing a file utilizing
blocklist level primitives in accordance with one or more
embodiments of the invention.
0013 FIG. 4B is a conceptual diagram that illustrates
extents in a physical storage system when a Zero primitive is
executed.
0014 FIG. 5A is a flow diagram for cloning a file utilizing
blocklist level primitives in accordance with one or more
embodiments of the invention.
0015 FIG. 5B is a conceptual diagram that illustrates
extents in a physical storage system when a clone primitive is
executed.
0016 FIG. 6A is a flow diagram for deleting a file utilizing
blacklist level primitives in accordance with one or more
embodiments of the invention.
0017 FIG. 6B is a conceptual diagram that illustrates
extents in a physical storage system when a delete primitive is
executed.
0018 FIG. 7A is a flow diagram for Zeroing a file stored in
an NAS (network attached storage) device utilizing file level
primitives in accordance with one or more embodiments of
the invention.
0019 FIG. 7B is a flow diagram for cloning a file stored in
a NAS device utilizing file level primitives inaccordance with
one or more embodiments of the invention.
0020 FIG.7C is a flow diagram for deleting a file stored in
a NAS device utilizing file level primitives inaccordance with
one or more embodiments of the invention.
0021 FIG. 8A is another functional block diagram of a
virtualized computer system topology in which one or more
embodiments of the invention may be practiced.
0022 FIG. 8B is a flow diagram for offloading composite
storage operations to a third party server in accordance with
one or more embodiments of the invention.

US 2009/0300023 A1

0023 FIG. 8C is a flow diagram for performing mirroring
using a third party server in accordance with one or more
embodiments of the invention.
0024 FIG. 9A is a functional block diagram illustrating a
portion of the virtualized computer system topology of FIG.
8A, in which one or more embodiments of the invention may
be practiced.
0025 FIG.9B is a flow diagram for offloading storage
operations to a Switch in accordance with one or more
embodiments of the invention.

DETAILED DESCRIPTION

0026 FIG. 1A is a functional block diagram of a virtual
ized computer system topology in which one or more
embodiments of the invention may be practiced. A computer
system may include VMKernel 208 and virtual center appli
cation 180. VMkernel 208 may be a VMware ESXServer that
includes a storage stack with a virtual machine file system
(VMFS) running on a server machine. In accordance with one
or more such embodiments, virtual center application 180 is
an application that manages one or more VMKernels 208, and
runs on a server machine. As shown in FIG. 1A, virtual center
application 180 is coupled betweenVMKernel 208 and a third
party server 190 to provide out of band paths 188, 189, and
183 from VMKernel 208 to storage devices, e.g., network
attached storage (NAS) device 185 and storage system 106,
e.g., a disk array. As shown in FIG. 1A, Switch 197 is coupled
between storage system 106, virtual center application 180,
VMKernel 208, and third party server 190. In accordance
with one or more embodiments of the present invention,
switch 197 is a switching device that contains: (a) a fast
interconnect and data path processor to Switch packets; and
(b) Some control path processors to provide I/O packet
Switching and fabric virtualization services.
0027. In some embodiments, switch 197 is omitted; stor
age system 106 resides in a separate data center from third
party server 190; and third party server 190 communicates
with storage system 106 via out of band path 183 and NIC 194
(network interface card) installed in storage system 106. In
accordance with one or more further embodiments, addi
tional switches 197 and storage systems 106 may be included
in a system with one or more storage systems 106 residing in
different data centers.
0028 FIG. 1B is a functional block diagram of a computer
system with a connected storage system, in which one or
more embodiments of the invention may be practiced. Com
puter system 100 may be constructed on a conventional,
typically server-class, hardware platform 102. As shown in
FIG. 1B, computer system 100 includes host bus adapters
(HBA) 104 that enable computer system 100 to connect to
storage system 106. Examples of storage systems 106 may be
a network attached storage (NAS) device, storage area net
work (SAN) arrays, or any other similar disk arrays known to
those with ordinary skill in the art. A storage system 106 that
is an NAS device may be connected to computer system 100
through NIC 101. As further discussed below, disk arrays
such as SAN arrays may typically provide block-level access
to their storage through SCSI-based protocols such as Fibre
Channel and iSCSI. Those with ordinary skill in the art will
recognize that enterprise-level implementations of the fore
going may have multiple computer systems similar to com
puter system 100 that may be connected through various
different known topologies and technologies (e.g., Switches,
etc.) to multiple storage systems 106.

Dec. 3, 2009

0029. In storage system 106, storage system manager 150,
which represents one or more programmed Storage proces
sors, serves as a communication agent (to the outside world)
for storage system 106, and implements a virtualization of
physical, typically disk drive-based storage units, referred to
in FIG. 1B as spindles 152-152, that reside in storage
system 106. Spindles 152-152 are collectively referred to
herein as spindles 152. From a logical perspective, each of
these spindles can be thought of as a sequential array offixed
sized extents 154. Storage system manager 150 abstracts
away complexities of targeting read and write operations to
addresses of the actual spindles and extents of the disk drives
by exposing to computer system 100 an ability to view the
aggregate physical storage space provided by the disk drives
as a contiguous logical storage space that may be divided into
a set of virtual SCSI devices known as LUNs (Logical Units)
156-156. The virtualization of spindles 152-152 into
Such a contiguous logical storage space of LUNS 156-156.
can provide a more efficient utilization of the aggregate physi
cal storage space that is represented by an address space of a
logical Volume. Storage system manager 150 exposes to com
puter system 100 an ability to transmit data transfer and
control operations to storage system 106 at a LUN “block”
level, where a block is a particular contiguous region in a
particular LUN. For example, a LUN block may be repre
sented as <LUN ID, offset, lengths and computer system 100
may transmit to storage system 106 a read or write operation
for block <LUN ID, offset, lengths in the form of a SCSI
operation. The LUN identifier (LUN ID) is a unique, hard
ware independent, SCSI protocol compliant, identifier value
that is retrievable in response to a standard SCSI Inquiry
command.

0030 Storage system manager 150 maintains metadata
155 that includes a mapping (hereinafter, also referred to as an
extent-mapping) for each of LUNs 156-156 to an ordered
list of extents, wherein each such extent can be identified as a
spindle-extent pair <spindle it, extent is and may therefore be
located in any of the various spindles 152-152. As such,
whenever storage system manager 150 receives a LUN block
operation from computer system 100, it is able to utilize the
extent-map of the LUN to resolve the block into an appropri
ate list of extents located in various spindles 152-152, upon
which the operation is performed. Those with ordinary skill in
the art will recognize that, while specific storage system
manager implementation details and terminology may differ
as between different storage device manufacturers, the
desired consistent result is that the externally visible LUNs
implement the expected semantics (in this example, SCSI
semantics) needed to respond to and complete initiated trans
actions.

0031 When storage system 106 is an NAS device, storage
system manager 150 exposes to computer system 100 an
ability to transmit data transfer and control operations to
storage system 106 at the file level. In contrast with SAN
storage, LUNs 156-156 are managed within the NAS
device. Storage system manager 150 manipulates files (per
forms I/O for files using block addresses, change file length
and attributes, and the like) stored on the NAS device using
file handles. When storage system manager 150 receives a file
operation from computer system 100, it finds the location of
the files being operated on within spindles 152-152, using
the filehandle specified by the file operation and performs the
operation.

US 2009/0300023 A1

0032. Returning to computer system 100, operating sys
tem 108 is installed on top of hardware platform 102 and it
Supports execution of applications 110. Examples of operat
ing system 108 may be Microsoft Windows, Linux, Netware
based operating systems or any other operating system known
to those with ordinary skill in the art. Users may interact with
computer system 100 through a user interface 112 such as a
graphical user interface or a command based shell, while
executing applications 110 may access computing resources
of computer system 100 that are managed by operating sys
tem kernel 114 through kernel application programming
interface (API) 116. Kernel 114 provides process, memory
and device management to enable various executing applica
tions 110 to share limited resources of computer system 100.
For example, file system calls initiated by applications 110
through kernel API 116 are routed to file system 118. File
system 118, in turn, converts the file system operations to
LUN block operations, and provides the LUN block opera
tions to logical volume manager 120. File system 118, in
general, manages creation, use, and deletion of files Stored on
storage system 106 through the LUN abstraction discussed
previously. Logical Volume manager 120 translates the Vol
ume block operations for execution by storage system 106.
and issues raw SCSI operations (or operations from any other
appropriate hardware connection interface standard protocol
known to those with ordinary skill in the art, including IDE,
ATA, and ATAPI) to device access layer 122 based on the
LUN block operations. Device access layer 122 discovers
storage system 106, and applies command queuing and
scheduling policies to the raw SCSI operations. Device driver
124 understands the input/output interface of HBAs 104
interfacing with storage system 106, and sends the raw SCSI
operations from device access layer 122 to HBAs 104 to be
forwarded to storage system 106. As previously discussed,
storage system manager 150 of storage system 106 receives
the raw SCSI operations (i.e., LUN block level operations),
and resolves them into the appropriate extents within the
spindles of the disk array that are operated upon.
0033. Instances arise during the operation of computer
system 100 where files on file system 118 cannot ultimately
bestored in contiguous blocks of LUNs 156-156.presented
to computer system 100 by storage system 106. While there
may be enough blocks of free storage space in the aggregate
among various LUNs 156-156 to store such files, such
blocks are neither large enough nor contiguous and may be
dispersed across different LUNs. In such instances, files may
need to be segmented into multiple component parts at the file
system level, LUN level, and the spindle-extent level (as
further detailed in FIG. 3), such that the file components are
stored across different blocks of different LUNs. Due to this
segmentation, operations on Such files, such as read and write
operations, also need to be broken up into separate block level
LUN operations (i.e., raw LUN block level SCSI operations)
when transmitted to storage system 106 thereby increasing
the resources used by computer system 100 to communicate
with storage system 106 (e.g., CPU cycles, DMA buffers,
SCSI commands in the HBA queue, etc.).
0034. One example of an environment that deals with sig
nificantly large files or collections offiles where the foregoing
segmentation may occur is server virtualization. As further
discussed below, virtualization systems expose the concept of
a “virtual disk” which is implemented as a collection of files
stored on a file system. FIG. 2 is a functional block diagram of
a virtualized computer system with a connected storage sys

Dec. 3, 2009

tem, in which one or more embodiments of the invention may
be practiced. Similar to computer system 100 of FIG. 1B,
computer system 200 may be constructed on a conventional,
typically server-class, hardware platform 102. As shown in
FIG. 2, computer system 200 includes HBAs 104 and NIC
101 that enable computer system 200 to connect to storage
system 106. As further shown in FIG. 2, virtual machine
(VMKernel) operating system 208 is installed on top of hard
ware platform 102 and it supports virtual machine execution
space 210 within which multiple virtual machines (VMs)
212-212 may be concurrently instantiated and executed.
Each Such virtual machine 212-212 implements a virtual
hardware (HW) platform 214 that supports the installation of
a guest operating system 216 which is capable of executing
applications 218. Similar to operating system 108 of FIG. 1B,
examples of a guest operating system 216 may be Microsoft
Windows, Linux, Netware-based operating systems or any
other operating system known to those with ordinary skill in
the art. In each instance, guest operating system 216 includes
a native file system layer (not shown), for example, either an
NTFS or an ext3FS type file system layer. These file system
layers interface with virtual hardware platforms 214 to
access, from the perspective of guest operating systems 216,
a data storage HBA, which in reality, is virtual HBA 220
implemented by virtual hardware platform 214 that provides
the appearance of disk storage Support (in reality, Virtual disks
or virtual disks 222-222) to enable execution of guest oper
ating system 216 transparent to the virtualization of the sys
tem hardware. Virtual disks 222-222 may appear to Sup
port, from the perspective of guest operating system 216, the
SCSI standard for connecting to the virtual machine or any
other appropriate hardware connection interface standard
known to those with ordinary skill in the art, including IDE,
ATA, and ATAPI.
0035 Although, from the perspective of guest operating
systems 216, file system calls initiated by Such guest operat
ing systems 216 to implement file system-related data trans
fer and control operations appear to be routed to virtual disks
222-222 for final execution, in reality, such calls are pro
cessed and passed through virtual HBA220 to adjunct virtual
machine monitor (VMM) layers 224-224 that implement
the virtual system support needed to coordinate operation
with virtual machine kernel 208. In particular, hostbus emu
lator 226 functionally enables the data transfer and control
operations to be correctly handled by virtual machine kernel
208 which ultimately passes such operations through its vari
ous layers to true HBAs 104 or NIC 101 that connect to
storage system 106. Assuming a SCSI supported virtual
device implementation (although those with ordinary skill in
the art will recognize the option of using other hardware
interface standards), SCSI virtualization layer 228 of virtual
machine kernel 208 receives a data transfer and control opera
tion (in the form of SCSI commands) from VMM layers
224-224, and converts them into file system operations that
are understood by virtual machine file system (VMFS) 230.
SCSI virtualization layer 228 then issues these file system
operations to VMFS 230. VMFS, in turn, converts the file
system operations to Volume block operations, and provides
the Volume block operations to logical Volume manager 232.
Logical volume manager (LVM) 232 is typically imple
mented as an intermediate layer between the driver and con
ventional operating system file system layers, and Supports
volume oriented virtualization and management of the LUNs
accessible through HBAs 104 and NIC 101. As previously

US 2009/0300023 A1

described, multiple LUNs, such as LUNs 156-156 can be
gathered and managed together as a volume under the control
of logical Volume manager 232 for presentation to and use by
VMFS 230 as an integral LUN.
0036 VMFS 230, in general, manages creation, use, and
deletion of files stored on storage system 106 through the
LUN abstraction discussed previously. Clustered file sys
tems, such as VMFS 230, are described in patent application
Ser. No. 10/773,613 that is titled, “MULTIPLE CONCUR
RENT ACCESS TO A FILE SYSTEM filed Feb. 4, 2004.
Logical Volume manager 232 issues raw SCSI operations to
device access layer 234 based on the LUN block operations.
Device access layer 234 discovers storage system 106, and
applies command queuing and scheduling policies to the raw
SCSI operations. Device driver 236 understands the input/
output interface of HBAs 104 and NIC 101 interfacing with
storage system 106, and sends the raw SCSI operations from
device access layer 234 to HBAs 104 or NIC 101 to be
forwarded to storage system 106. As previously discussed,
storage system manager 150 of storage system 106 receives
the raw SCSI operations (i.e., LUN block level operations)
and resolves them into the appropriate extents within the
spindles of the disk array that are operated upon.
0037 FIG. 3 is a conceptual diagram that illustrates a
mapping of a file in the computer system of FIG. 2 to data
storage units and physical storage locations in a disk array. As
FIG. 3 depicts, virtual disk 222 is stored as a file on the file
system managed by VMFS 230. For simplicity, the descrip
tion that follows will assume that the virtual disk is made out
of a single file. However, the description is just as applicable
to virtual disks containing multiple files. Further, one or more
embodiments of the invention are applicable to not only one
or more files but also to a file segment that is stored in
non-adjacent locations of the same LUN or across different
LUNS

0038. The virtual LUN file is allocated by VMFS 230 as a
series of segments 300-300, in logical address space, VMFS
volume 302, that is managed by VMFS 230. Each segment
300-300, is a contiguous region in VMFS volume 302,
where VMFS 302 has been constructed by an administrator of
the system by allocating a set of LUNs 156-156 available
from storage system's 106 set of LUNs 156-156. As pre
viously discussed in the context of FIGS. 1B and 2, each
contiguous region of a file segment that is also contiguous on
one of the allocated LUNS, is considered a LUN “block'304
that can be represented as <LUN ID, offset, lengthd. As
shown in FIG. 3, different LUN blocks 304 corresponding to
a portion of a file segment may be of different lengths depend
ing on how big the file segment is and what part of that file
segment actually corresponds to a contiguous region of an
allocated LUN. Therefore, a file may have one or more seg
ments, and a segment may be composed of one or more blocks
from one or more LUNS. In the illustrated example, file
segment 300 has 2 LUN blocks, file segment 300 has 3
LUN blocks, file segment 300, has 4 LUN blocks, and file
segment 300, has 1 LUN block. As shown in FIG. 3, file
segments in VMFS volume 302 are converted into LUN
blocks by lines connecting file segments 300 to LUN blocks
304 in LUNs 156 where LUNs 156 represent the LUN
address space. When storage system 106 is a NAS device, the
file segments are managed within the NAS device.
0039. By resolving all file segments 300-300, making up
virtual disk 222 into an ordered list of their corresponding
LUN blocks (in the case of FIG. 3, for a total of 10 blocks),

Dec. 3, 2009

VMFS 230 creates a “blacklist” (e.g., a list of <LUN ID,
offset, lengthd) which is representative of virtual disk 222 in
LUN block form. As previously discussed in the context of
FIG. 1, storage system 106 can utilize the extent maps for
LUNs 156,156 to resolve each of the LUN blocks in the
blocklist into its corresponding list of <spindle it, extent i>
pairs (spindle-extent pairs) within spindles 152-152. As
shown in FIG.3, LUN blocks 304 are converted into spindle
extent pairs by lines connecting LUN blocks 304 within
LUNs 156 to extents within spindles 152. Extents 153 within
spindle 152 are explicitly labeled in FIG. 3. Extents within
other spindles 152 are not labeled in FIG. 3. Those with
ordinary skill in the art will recognize that, although FIG. 3
has been discussed in the context of a virtualized system in
which a virtual disk is allocated into file segments, non
virtualized systems similar to that of FIG. 1B may also have
files stored in its file system that exhibit similar types of
segmentation into LUN blocks.
0040. As previously discussed, storage devices such as
storage system 106 typically expose LUN block level opera
tions to computer systems communicating with it. For
example, a standard raw SCSI read or write operation requires
a LUN identifier, logical block address, and transfer length
(i.e., similar to the <LUN ID, offset, lengths encoding
described herein). As such, in order to perform operations on
files such as virtual disk 222 that are managed at VMFS 230
file system level, standard raw SCSI operations need to be
separately applied to each of the 10 blocks in virtual disk’s
222 blacklist. Each I/O communication (e.g., transmission
of a raw SCSI operation) by computer system 200 with stor
age system 106 can take up significant computing resources
such as CPU cycles, DMA buffers, and SCSI commands in an
HBA queue.
0041. By exposing LUN blocklist level primitives to the
set of operations available to computer systems communicat
ing with storage system 106, disk array vendors provide com
puter systems an ability to offload resource intensive commu
nication with a disk array into the disk array itself. The disk
array can then leverage any proprietary hardware optimiza
tions that may be available internally thereto. In one embodi
ment, such blocklist level primitives may be embedded in a
command descriptor block (CDB) in a pre-existing standard
command of the communication interface protocol between
the computer system and disk array or, alternatively, may be
added as an additional command to the set of standard com
mands. For example, for SCSI supported interactions
between a computer system and a disk array, certain blocklist
level primitives may be able to be embedded into the CDB of
SCSI's pre-existing WRITE BUFFER command, while other
blacklist level primitives may require the addition of a new
SCSI level command (e.g., with its own CDB) to augment
SCSI's current commands. The following discussion presents
three possible blacklist level primitives supported by storage
system 106 (i.e., “Zero' for Zeroing out files, “clone' for
cloning files and “delete for deleting files). These three
blacklist level primitives are in the general form: operator
(source blocklist, destination blocklist, context identifier),
and may be utilized to offload atomic components of larger
composite virtual machine operations to the disk array. How
ever, those with ordinary skill in the art will appreciate that
other additional and alternative blacklist level primitives may
be supported by the disk array without departing from the
spirit and scope of the claimed invention.

US 2009/0300023 A1

0042 FIG. 4A is a flow diagram for Zeroing a file such as
virtual disk 222 that is stored at VMFS 320 file system level
in accordance with one or more embodiments of the inven
tion. The embodiment of FIG. 4A envisions that a SCSI based
disk array supports a new blocklist level primitive called
"Zero' that takes a context identifier, such as virtual machine
identifier (VMID), and a sourceblocklist as parameters, and
can be embedded into the CBD of the Standard SCSI WRITE
BUFFER command. Those with ordinary skill in the art will
recognize that the name of the primitive used, the number of
parameters supported by the primitive, and whether the
primitive is embedded in the CDB of a current SCSI com
mand or is an articulation of a new SCSI level command are
implementation choices that are available to persons skilled
in the art.

0043. At step 400, the file system within VMKernel 208 of
the operating system receives a request to Zero out a file. For
example, in a particular embodiment that implements virtu
alization, VMFS 230 in VMKernel 208 may receive a request
to Zero out a file Such as virtual disk 222 (e.g., to preserve
VM isolation). The file system resolves the file into its com
ponent file segments at step 402, where <fileid, offset,
lengthd+ in step 402 represents a list of <fileid, offset, lengthd
file segments. Fileid is a unique identifier that distinguishes
segments associated with one file from segments associated
with another file. At step 403, VMKernel 208 resolves the file
segments into logical extents. At step 404, VMKernel 208
resolves each of the logical extents into a corresponding list of
LUN blocks <LUN ID, offset, lengthd+. At step 406, VMK
ernel 208 consolidates these lists of LUN blocks into a sour
ceblocklist, the ordered list LUN blocks representing the
relevant file. At step 408, VMKernel 208 generates a new zero
blocklist primitive containing the sourceblocklist, and
embeds it into the CDB of the standard SCSI command
WRITE BUFFER. At step 410, VMKernel 208 issues the
WRITE BUFFER command to the disk array. At decision
step 412, if the disk array supports the new zero blacklist
primitive, then, at step 414, internal disk array mechanisms
translate the Sourceblocklist to corresponding spindle-ex
tents, and write Zeroes into the extents representing the rel
evant file.

0044. At decision step 412, if storage system 106 does not
support the new zero blocklist primitive, then, at step 416, for
each block <LUN ID, offset, lengths in the sourceblocklist,
VMKernel 208 generates a SCSI WRITE SAME command
with the value of zero in the write buffer. At step 418, VMK
ernel 208 issues the WRITE SAME command to storage
system 106. At step 420, storage system 106 receives the
WRITE SAME command, internally translates the LUN
block into the appropriate spindle-extents, and write Zeroes
into the extent representing the block. At decision step 422,
VMKernel 208 determines if Zeroes should be written for
another block in the sourceblocklist and if so, steps 416,418,
and 420 are repeated to generate and issue SCSI WRITE
SAME commands for another block to storage system 106.
When all of the blocks have been processed, VMKernel 208
proceeds to step 424, and execution is complete. Those with
ordinary skill in the art will recognize that different functional
components or layers of VMKernel 208 may implement steps
400 to 410. For example, in an embodiment that implements
virtualization, VMFS 230 layer of VMKernel 208 may per
form steps 402 to 403 of resolving a file into segments and
then into logical extents. Logical Volume manager 232 may
perform steps 404 to 406 of generating the LUN block opera

Dec. 3, 2009

tions, logical volume manager 228 of VMKernel 208 may
convert the Sourceblocklist into the raw SCSI WRITE
BUFFER operation at step 408, and device access layer 234
of VMKernel 208 ultimately transmits the WRITE BUFFER
operation at step 410 to storage system 106.
0045 FIG. 4B is a conceptual diagram that illustrates
extents in spindles 152 when a zero primitive is executed.
When a zero primitive is executed to Zero file segment 300,
storage system 106 Zeroes the extents in spindles 152 that
store file segment 300. Refer to FIG. 3 for the specific
mapping of LUN blocks within LUN 156, and 156 to
spindles 152. The Zero primitive may be used to initialize
large portions of storage system 106 with Zeroes to preserve
VM isolation. In a conventional system, this initialization
may require a significant amount of host resources interms of
CPU cycles, memory accesses, DMA buffers, and SCSI com
mands in the HBA queue. In addition to improving the effi
ciency of the initialization, the Zero primitive may be used by
storage system 106 to optimize for hardware-based thin-pro
visioning. In particular, storage system 106 can choose to not
write Zeroes on thin-provisioned LUNs when the correspond
ing blocks are not yet allocated. For thin-provisioning, Stor
age system 106 may optimize by not allocating extents for
Zero writes, and also free up extents and mark them as Zeros.
0046 Zeroed extents 401, 405, 407,409, 411, and 413 that
correspond to segment 300, within spindles 152, 152, and
152, are shown in FIG. 4B. Metadata 155 is configured to
store an extent map including the virtual LUN (assuming that
each spindle extent is 64 Kbyte in size) to spindle-extent pair
mapping as shown in TABLE 1, where S1, s2, and S3 may each
correspond to one of spindles 152-152. Although each
spindle extent is shown as 64 Kbytes, other sizes may be used
for the spindle extents. The Zeroed extents may be unmapped
from their respective extent maps by updating metadata 155.
Metadata 155 is updated to indicate that those extents are
Zeroed (without necessarily writing Zeroes) and proprietary
mechanisms may be employed to lazily Zero out requested
extents using a background process, even for non-thin-provi
sioned LUNs. For example, a flag in metadata 155 for each
spindle extent corresponding to segment 300, where the flag
indicates that the extent should effectively be presented as
Zeroes to the user. Techniques for performing lazy Zeroing are
described in patent application Ser. No. 12/050,805 that is
titled, “INITIALIZING FILE DATA BLOCKS filed Mar.
18, 2008. Metadata related to the Zero primitive may also be
stored as well as configuration information that is described
in detail in conjunction with FIGS. 8A, 8B, 8C, 9A, and 9B.

TABLE 1

Extent Map

LUN offset Metadata configuration
(Kbyte) <spindle, extent> information

O <s2, e3> Zeroed, thin-provisioned
64 <S1, e1) Clone of <s2, els
128 <s3, e1 Zeroed, thin-provisioned
192 <s2, e3> free

0047 FIG. 5A is a flow diagram for cloning a file such as
virtual disk 222 that is stored at VMFS 320 file system level
and has been segmented at such level into different LUN
blocks in accordance with one or more embodiments of the
invention. At step 500, the file system within the kernel of the

US 2009/0300023 A1

operating system may receive a request to copy or clone one
file A to another file B. At step 502, the file system resolves file
A and file B into their component file segments, e.g., a list of
<fileid, offset, lengths file segments. At step 503, VMFS 230
resolves the file segments into logical extents.
0048. At step 504, logical volume manager 232 resolves
each of the logical extents for each of file A and file B into
their corresponding lists of LUN blocks <LUN ID, offset,
length>+. At step 506, logical Volume manager 232 consoli
dates these lists of LUN blocks into a sourceblocklist and a
destinationblocklist for file A and file B, respectively, which
are the ordered list LUN blocks representing the respective
files. At step 508, VMKernel 208 generates the new clone
blocklist primitive containing the sourceblocklist and desti
nationblocklist, and embeds it into the CDB of the standard
SCSI command WRITE BUFFER. At step 510, VMKernel
208 issues the SCSI command to storage system 106. At
decision step 512, if storage system 106 supports the new
clone blacklist primitive, then, at step 514, internal disk array
mechanisms clone the destinationblocklist's list of extents
with sourceblocklist's list of extents (including utilizing any
hardware optimizations within storage system 106 Such as
"copy-on-write' techniques).
0049. If, however, at decision step 512, storage system 106
does not Support the new clone blacklist primitive, then, at
step 516, for each block <LUN ID, offset, lengths in the
sourceblocklist, VMKernel 208 generates a SCSI XCOPY
command with the <LUN ID, offset, lengths of the destina
tionblocklist. At step 518, VMKernel 508 issues the SCSI
XCOPY command to storage system 106. At step 520, stor
age system 106 receives the XCOPY command, internally
translates the LUN block into the appropriate spindle-extents,
and copies the source extent into the destination extent rep
resenting the block. At decision step 522, VMKernel 208
determines if more blocks in sourceblocklist remain to be
cloned and if so, steps 516 and 518 are repeated to generate
and issue SCSI XCOPY commands for another block to
storage system 106. When all of the blocks have been pro
cessed the clone operation is complete. Those with ordinary
skill in the art will recognize that different functional com
ponents or layers of VMKernel 208 may implement steps 500
to 510. For example, in an embodiment that implements
virtualization, VMFS 230 layer of VMKernel 208 may per
form steps 502-503 of generating the LUN block operations,
logical volume manager 228 of VMKernel 208 may create the
sourceblocklist and destinationblocklist at steps 504-506 and
convert it into the raw SCSI XCOPY operation at step 508,
and device access layer 234 of VMKernel 208 ultimately
transmits the XCOPY operation at step 510 to storage system
106.

0050 FIG. 5B is a conceptual diagram that illustrates
extents in spindles 152 when a clone primitive is executed.
When a clone primitive is executed to clone file segment 300
of virtual disk 222 to a file segment 300 of a virtual disk
222, storage system 106 copies extents 501,505, and 507 in
spindles 152 and 152 that store file segment 300 to extents
509 and 511 in spindle 152 that store file segment 300
Refer to FIG. 3 for the specific mapping of LUN blocks
within LUN 156, 156, and 156 to spindles 152. In a
conventional system, cloning may require a significant
amount of host resources in terms CPU cycles, memory
accesses, DMA buffers, and SCSI commands in an HBA
queue. The files being cloned may be multiple gigabytes in
size, causing the clone operation to last for many minutes or

Dec. 3, 2009

even hours. In addition to improving the efficiency of the
initialization, the clone primitive may be used by Storage
system 106 to use proprietary mechanisms, e.g., metadata
155, to mark cloned destination extents as duplicates of
source extents. For example, extents 509 may be unmapped
by storage system 106 in the extent map of metadata 155, and
extents 505 may be substituted in a read-only format.
0051 FIG. 6A is a flow diagram for deleting a file, such as
virtual disk 222 that is stored at VMFS 230 file system level,
in accordance with one or more embodiments of the inven
tion. Conventionally, when files are deleted from a file sys
tem, the space may be reclaimed in the logical address space
of the volume, but LUN block liveness is not necessarily
conveyed to the disk array. While file system block allocation
may be implicitly signaled to a disk array through the first
writes to a previously unwritten region, file system block
deallocation cannot be implicitly signaled to the disk array in
a similar fashion. As such, a disk array cannot provide disk
management optimization techniques for tasks such as thin
provisioning, de-duplication, mirroring and replication by
exploiting extents related to deleted files only known at the
computer system's file system level.
0052 Similar to the “Zero” primitive embodiment of FIG.
4A, the embodiment of FIG. 6A envisions that a SCSI based
disk array supports a new blacklist level primitive called
“delete' that takes a context identifier, such as virtual
machine identifier (VMID), and a sourceblocklist as param
eters, and can be embedded into the CBD of the standard
SCSI WRITE BUFFER command. At step 600, the file sys
tem within the kernel of the operating system receives a
request to delete a file. For example, in a particular embodi
ment that implements virtualization, VMFS 230 in VMKer
nel 208 may receive a request to delete a file such as virtual
disk 222. At step 602, the file system resolves the file into its
component file segments. At step 603, VMFS 230 resolves the
file segments into logical extents, and at Step 604, logical
Volume manager 232 resolves each of the file segments into
their corresponding list of LUN blocks <LUN ID, offset,
length>+. At step 606, logical Volume manager 232 consoli
dates these lists of LUN blocks into a sourceblocklist, the
ordered list LUN blocks representing the relevant file. At step
608, VMKernel 208 generates the new delete blocklist primi
tive containing the Sourceblocklist, and embeds it into the
CDB of the Standard SCSI command WRITE BUFFER. At
step 610, VMKernel 208 issues the WRITE BUFFER com
mand to the disk array. At step 612, the internal disk array
mechanisms are able to translate the Sourceblocklist to cor
responding spindle-extents and mark them as deleted or
update metadata 155 to indicate that the extents should be
returned to the free pool.
0053 FIG. 6B is a conceptual diagram that illustrates
extents in spindles 152 when a delete primitive is executed.
Refer to FIG. 3 for the specific mapping of LUN blocks
within LUN 156, and 156 to spindles 152. When a file is
deleted from a VMFS volume on hardware thin-provisioned
virtual disk A 222 that corresponds to segment 300 and
extents 605, 607, and 609 in storage system 106, storage
system 106 can unmap the deleted extents from the extent
map stored in metadata 155, and return them to the free pool.
Internal optimization techniques such as unmapping of
deleted extents may be employed by storage system 106 for
tasks such as thin-provisioning, de-duplication, mirroring
and replication. Further, the unmapped regions of the LUN
address space can point to a proprietary representation, e.g., a

US 2009/0300023 A1

Zero-extent representation. In the absence of the delete primi
tive, thin-provisioned LUNs would needlessly use three
extents (in lieu of extents 605, 607, and 609) from the storage
pool that would not be available for use by the file system until
the next time that part of the file system address space is
allocated to a file.

0054 By exposing file administrative level operations
Such as Zero, clone, and delete to the set of file operations
available to computer systems communicating with a NAS
based storage device, storage vendors provide computer sys
tems an ability to offload resource intensive communication
with the file storage into the NAS device itself, which can then
leverage any proprietary hardware optimizations that may be
available internally to the NAS device. In one embodiment,
file level primitives may be accessed as (I/O control) com
mands using a pre-existing standard command of the com
munication interface protocol between the computer system
and NAS device or, alternatively, may be added as an addi
tional commands to the set of standard commands. The fol
lowing discussion presents three possible file level primitives
supported by a NAS based storage system 106 (i.e., “Zero' for
Zeroing out files, “clone' for cloning files and “delete for
deleting files). These three file level primitives may be uti
lized to offload atomic components of larger composite Vir
tual machine operations to the storage system. However,
those with ordinary skill in the art will appreciate that other
additional and alternative blocklist level primitives may be
supported by the storage system 106 without departing from
the spirit and scope of the claimed invention.
0055 FIG. 7A is a flow diagram for Zeroing a file stored in
an NAS device utilizing file level primitives in accordance
with one or more embodiments of the invention. The embodi
ment of FIG. 7A envisions that a NAS device supports a new
file level primitive called ZERO BLOCKS that takes an open
NFS/CIFS handle of a source file (filehandle), offset, and a
length as parameters, and can be issued as an ioctl command.
Those with ordinary skill in the art will recognize that the
name of the primitive used, and the number of parameters
Supported by the primitive are implementation choices that
are available to persons skilled in the art. At step 702, VMFS
230 within VMKernel 208 receives a request to zero out a file
segment specified by a fileid, an offset and length. At step 706
VMKernel 208 determines the filehandle for the Source file.
At step 708, VMKernel 208 prepares the ZERO BLOCKS
ioctl command, and at step 710, VMKernel 208 issues the
ioctl command to the NAS device. If, at decision step 712, the
NAS device supports the new ZERO BLOCKS, then, at step
714, internal NAS device mechanisms are able to write Zeroes
to corresponding spindle-extents and write Zeroes into the
extents representing the relevant file. Otherwise, at step 716,
VMKernel 208 issues pipelined I/O through a datamover
driver to write Zeroes using conventional mechanisms.
0056 Those with ordinary skill in the art will recognize
that different functional components or layers of the kernel
may implement steps 702 to 710. Conventional NAS devices
may be configured to write Zeroes to blocks to perform
administrative operations, however that functionality is not
available to users of the NAS device, such as VMs 212.
Without the ZERO BLOCKS command VMS 212 transfer
Zeroes to the NAS device to write Zeroes to the blocks corre
sponding to a file. In some cases, for example when a two
terabyte virtual disk is used, as many as two terabytes of
Zeroes are transferred to the NAS device compared with trans
ferring 20 bytes of parameters using the ZERO BLOCKS

Dec. 3, 2009

command in order to offload the storage operation from com
puter system 200 to the NAS device, e.g., storage system 106.
Additionally, any administrative optimizations that are pro
vided by the NAS device may also be leveraged through the
ZERO BLOCKS command. For example, particular NAS
devices may be configured to not store Zeroes at the time of
the command is received.

0057 FIG. 7B is a flow diagram for cloning a file stored in
a NAS device utilizing file level primitives inaccordance with
one or more embodiments of the invention. The embodiment
of FIG. 7B envisions that a NAS device supports a new file
level primitive called CLONE BLOCKS that takes open
NFS/CIFS handles of a source file and a destination file,
offset, and a length as parameters, and can be issued as an ioctl
command. Those with ordinary skill in the art will recognize
that the name of the primitive used and the number of param
eters Supported by the primitive are implementation choices
that are available to persons skilled in the art. At step 722,
VMFS 230 within VMKernel 208 receives a request to clone
file segment A to segment B, where each segment is specified
by a fileid, an offset and length. At step 726, VMKernel 208
determines the filehandle for file A. At step 728, VMKernel
208 prepares the CLONE BLOCKS ioctl command, and at
step 730, VMKernel 208 issues the ioctl command to the NAS
device. If, at decision step 732, the NAS device supports the
new CLONE BLOCKS, then, at step 734, internal disk array
mechanisms are able to copy corresponding spindle-extents
of file segment A into the extents representing file segment B
(including utilizing any hardware optimizations supported by
the NAS device for administrative operations such as "copy
on-write” techniques). Otherwise, at step 736, VMKernel 208
issues I/O through a datamover driver to copy the file using
conventional mechanisms.

0.058 FIG.7C is a flow diagram for deleting a file segment
stored in a NAS device utilizing file level primitives in accor
dance with one or more embodiments of the invention. When
files are deleted from a file system, the space may be
reclaimed in the logical address space Volume, and a file
delete operation is executed by the storage system manager
on the NAS device. In a conventional system, when an appli
cation frees a subset of a file, for example if a guest OS inside
of a VM deletes a few files inside of its file system, the NAS
device will not be aware that the blocks used to store the
subset of the file can be deallocated. When the delete primi
tive is used, the deletion initiated by the guest OS will trans
late into a deletion of file segment(s), which is then conveyed
to the NAS device through the DELETE BLOCKS primi
tive. When the new primitive are used, a NAS device can
provide disk management optimization techniques for tasks
Such as thin-provisioning, de-duplication, mirroring and rep
lication by exploiting extents related to deleted files only
known at the computer system's file system level.
0059 Similar to the ZERO BLOCKS and CLONE
BLOCKS primitives, the embodiment of FIG. 7C envisions
that a NAS device supports a new file level primitive
DELETE BLOCKS that takes a filehandle, offset, and a
length as parameters and can be issued as an ioctl command.
Those with ordinary skill in the art will recognize that the
name of the primitive used and the number of parameters
Supported by the primitive are implementation choices that
are available to persons skilled in the art. At step 742, VMFS
230 within VMKernel 208 receives a request to delete a
segment specified by a fileid, an offset and length. At step 746,
VMKernel 208 determines the filehandle for the file. At step

US 2009/0300023 A1

748, VMKernel 208 prepares the DELETE BLOCKS ioctl
command, and at step 750, VMKernel 208 issues the ioctl
command to the NAS device. At step 752, internal disk array
mechanisms are able to delete corresponding spindle-extents
of the file and keep track of such extents as being freed by the
file system such that they may be utilized in internal optimi
Zation techniques for tasks such as thin-provisioning, de
duplication, mirroring and replication. For example, in an
embodiment where LUNs may be thin-provisioned, deletion
of a file segment through the foregoing “delete' blocklist
primitive enables the NAS device to unmap the extents asso
ciated with the file segment from the extent-maps of their
associated thin-provisioned LUNs, thereby returning the
unmapped extents to the free pool of extents.
0060 Those with ordinary skill in the art will recognize
that the foregoing discussions as well as FIGS. 4A, 4B, 5A,
5B, 6A, 6B, 7A, 7B and 7C are merely exemplary and that
alternative blocklist and file level primitives may be imple
mented without departing from the spirit and scope of the
claimed invention. Furthermore, while this discussion has
focused upon transmitting blacklist level primitives where the
blacklist is representative of an entire file on the file system,
those with ordinary skill in the art will recognize that alter
native embodiments may work with smaller blacklists, such
as blocklists at the file segment level. For example, in the case
of zeroing out virtual disk 222 in FIG. 3, an alternative file
segment blocklist level embodiment would require 4
instances of issuing the Zero blocklist primitive to storage
system 106 (i.e., one for each of the file segments 300-300)
in comparison to a single instance of the Zero blocklist primi
tive containing a blocklist comprising a consolidation of the 4
smaller blacklists for the 4 file segments 300-300.
0061 The primitives discussed above can be used to build
hardware-assisted data protection (e.g., Snapshotting, clon
ing, mirroring and replication) and other file management
commands that operate at the file level and leverage the disk
array's internal capabilities. A Snapshot of a virtual disk is a
copy of the virtual disk as it existed at a given point in time
(i.e. a previous version of a virtual disk). A virtualized system
such as FIG. 2, may use the Zero primitive of FIGS. 4A, 4B,
5A, 5B, 6A, 6B, 7A,7B and 7C for (a) cloning operations for
eager-Zeroed virtual disks, (b) initializing new file blocks in
thin-provisioned virtual disks, (c) initializing previously
unwritten blocks for Zeroed virtual disks, and (d) integrating
thin-provisioned and Zeroed virtual disk formats with the disk
array's hardware-based thin-provisioning. Similarly, embed
ding blacklists within the XCOPY primitive as depicted in
FIG.5A and the CLONE BLOCKS file primitive of FIG. 7B
may be utilized for (a) instant provisioning of virtual disks
and (b) snapshotting of virtual disks. The delete primitive of
FIGS. 6 and 7C may be used for(a) destroying or reformatting
files on a space optimized (thin-provisioned or de-duplicated)
or protected (mirrored, replicated or Snapshotted) Volume, (b)
deleting virtual disks or virtual disks Snapshots on a space
optimized or protected Volume, and (c) integrating thin-pro
visioned and Zeroed thick virtual disk formats with the disk
array's hardware-based thin-provisioning.
0062 For example, using blocklist with the XCOPY SCSI
operation as discussed in FIGS.5A and 5B or the CLONE
BLOCKS command as discussed in FIG. 7B enables a virtu
alized system to provide instant provisioning of virtual disks
in the order of a few milliseconds or seconds in comparison to
a few minutes or hours without the combined use of blacklists
and WRITE BUFFER or XCOPY. Instant provisioning

Dec. 3, 2009

involves making a full copy of a template virtual disk during
the process of creating or provisioning a new virtual machine
within a computer system. Because virtual disks are repre
sented as significantly large files on the file system, perform
ing continual standard SCSI READ and WRITE operations at
a LUN block level, including use of read and write buffers
within the computer system, takes up significant time and
resources. By converting the files into blacklists and utilizing
the WRITE BUFFER or XCOPY SCSI command, the effort
to perform the cloning can be offloaded to the hardware of the
storage system itself.
0063. Similarly, the delete primitive of FIGS. 6A, 6B, and
7C facilitates the management of thinly provisioned virtual
disks within a virtualized system. Rather than allocating Stor
age space for a virtual disk in anticipation of future needs, a
thin-provisioned virtual disk is allocated the minimum
amount of storage space for its current needs and dynamically
provided additional space from a pool of free space when the
virtual disk demands it. As discussed in the context of FIGS.
6A, 6B, and 7C, because the delete blocklist primitive or
DELETE BLOCKS command frees extents in a storage sys
tem and enables the storage system controller to unmap Such
freed extents from the extent-maps of the LUNs previously
using those extents, these extents can be returned to the free
pool of extents utilized by other thinly provisioned virtual
disks in need of additional storage space.
0064. The detailed description provided herein with refer
ence to FIG. 2 relates to a virtualized computer system. How
ever, those of ordinary skill in the art will recognize that even
non-virtualized computer systems may benefit from Such
blacklist level primitives—any files existing at the file system
level (i.e., not necessarily representative of virtual LUNs) of
any computer system may take advantage of Such blocklist
level primitives. Similarly, while the foregoing discussion has
utilized the SCSI interface as a primary example of protocol
communication between the disk array and computer system,
those with ordinary skill in the art will also appreciate that
other communication protocols may be utilized without
departing from the spirit and scope of the claimed invention.
In particular, as described in conjunction with FIGS. 7A, 7B.
and 7C, a NAS device that provides file level access to storage
through protocols such as NFS (in contrast to a SAN disk
array supporting SCSI), rather than embedding blacklist
primitives into the CDB of pre-existing SCSI commands,
may use functional file primitives may be developed as ioctl
control functions for NFS's standard ioctl operation.

Offloading Storage Operations to a Third Party
Server

0065 FIG. 8A is another functional block diagram of a
virtualized computer system topology in which one or more
embodiments of the invention may be practiced. As previ
ously described in conjunction with FIG. 1A, a computer
system may include VMKernel 208 and virtual center appli
cation 180. In accordance with one or more embodiments of
the invention, virtual center application 180 stores VM spe
cific storage metadata keyed by context identifiers in Supple
mental configuration information (SCI) 802. SCI 802 can be
queried and edited by clients by referencing the context iden
tifier through a user interface. Third party server 190 is a
server machine that also stores VM specific storage metadata
(attributes and policies) keyed by context identifiers, and
includes vendor specific extension 822 or a plugin that is used
to manage VM storage operations. Virtual center application

US 2009/0300023 A1

180 may use SNIA (Storage Networking Industry Associa
tion) compliant profiles (or vendor specific APIs) to commu
nicate with third party server 190 in order to centrally report
and set storage metadata for VMs 212. Extension 822 trans
lates VM specific storage metadata into configuration infor
mation 812 that is used to update metadata for storage system
106. Extension 822 may also be configured to translate VM
specific storage metadata into configuration information 807
that is used to update metadata for NAS device 185. Configu
ration information 812 may be stored as part of metadata 155,
and contains information needed to update metatdata 155 to
enable the storage devices to carry out the specified Storage
operation. For example, extension 822 generates configura
tion information 812 or 807 for updating metadata 155 to
enable storage devices to carry out composite storage opera
tions such as mirroring and replication, as described in con
junction with FIGS. 8B and 8C.
0066. When hardware based storage operations are to be
carried out on VM components, such as virtual disks, the
context of Such operations is conveyed as configuration infor
mation 812 or 807 to storage system 106 or NAS device 185,
respectively, through third party server 190. For example,
when setting up a hardware-thin-provisioned virtual disk for
VM 212 (refer to FIG. 2), storage system 106 is instructed to
map a context identifier associated with the virtual disk to
metadata indicating that VM 212 is thin-provisioned, storing
the thin-provisioning attribute in configuration information
812. Extension 822 receives SCI 802 for composite storage
operations and generates configuration information that is
supplied to storage system 106 so that storage system 106 will
recognize that files associated with the context identifier are
thin-provisioned. Previously unwritten extents correspond
ing to VM 212 can be unmapped in the background or at
creation time. Furthermore, Zero writes coming into storage
system 106 as Zero operations can be silently discarded by
storage system 106. Without configuration information 812
or 807, storage system 106 or NAS device 185 would be
unaware that VM 212 is thin-provisioned.
0067 Basic operations such as open, close, delete, and the
like that do not require the movement of data are performed
by VMKernel 208. The data moving portion of the storage
operations, such as copying, are offloaded from VMKernel
208 to the storage system 106 under control of third party
server 190 using vendor specific extension 822 or a plugin, as
described in conjunction with FIGS. 8B and 8C. Additionally,
primitives such as Zero, clone, and delete can each convey the
context identifier as part of their payload, so that an operation
can be instantaneously mapped to the properties that govern
the context requesting the operation. Furthermore, the primi
tives can also carry per-operation directives. For example, a
primitive may include a directive to make a full clone (eagerly
copy blocks) for a given set offile segments instead of a quick
clone (copy-on-write blocks).
0068 FIG. 8B is a flow diagram for offloading composite
storage operations, such as mirroring and replication using
third party server 190 in accordance with one or more
embodiments of the invention. At step 822 a user initiates a
composite storage operation through virtual center applica
tion 180 or a command line. At step 824, virtual center appli
cation 180 performs metadata operations on VMFS volume
302 through VMKernel 208. For example, when a replicate
composite operation is specified, a second set of virtual disks
in a different data center is set up by virtual center application
180. When a “mirror” composite storage operation is per

Dec. 3, 2009

formed, virtual center application 180 sets up a second set of
virtual disks in the same data center. At step 826, VMKernel
208, in conjunction with virtual center application 180,
obtains location information, such as a filehandle (for files
stored on NAS device 185) or blocklist (for files stored on
storage system 106), from VMKernel 208, and updates SCI
802 with the operation specific configuration information,
e.g., that a virtual disk is a copy (mirrored or replicated) of
another virtual disk.
0069. At step 828, third party server 190 receives opera
tion specific configuration information that is included in SCI
802 from VMKernel 208. Third party server 190 transcribes
the operation specific configuration information into a vendor
specific format to generate configuration information 807 or
812 that is needed for the composite storage operation, and
supplies it to the storage device, e.g., NAS device 185 or
storage system 106, through out-of-band paths 188 and 183,
respectively. Alternatively, the operation specific configura
tion information may be transcribed by the storage device to
produce configuration information 807 or 812. The configu
ration information may be included in the extent-map.
0070. When mirroring is performed, the configuration
information indicates that a relationship exists between the
file being mirrored and the mirror file, and may indicate
whether or not the mirroring is synchronous or asynchronous
and a quality of service (QOS) level. Similarly, with replica
tion, the configuration information may indicate whether
compression or encryption should be employed. The configu
ration information is used by the storage device to keep the
mirror file updated as the file being mirrored is modified, e.g.,
writtento, snapshotted, rolled back, and the like. Writes to the
file being mirrored (or replicated) will be reflected to the
mirrored (or replicated) file by storage system 106 or NAS
device 185 based on the configuration information 812 or
807, respectively. Writes for replicated extents are reflected
by storage system 106 to a storage system 106 in another data
center. Importantly, the transfer of data is performed by the
storage system rather than third party server 190, virtual
center application 180, or VMKernel 208.
(0071. At step 830, third party server 190 controls the
execution of the composite storage operation by the storage
device in order to offload storage operations from VMKernel
208. For example, third party server 190 issues a command to
mirror or replicate the file by creating a clone.
0072 FIG. 8C is a flow diagram for performing mirroring
using third party server 190 in accordance with one or more
embodiments of the invention. At step 832, virtual center
application 180 receives a mirror command, mirror (F1, F2),
where the file F1 is mirrored to a new file, F2. Virtual disk 222
for the new file, F2, is created by VMKernel 208 in virtual
machine execution space 210. Virtual center application 180
obtains the blocklist (or filehandle) for F2 from VMKernel
208.

0073 Creating the new file, F2, on the storage device is
necessary to complete the mirror operations. It is also neces
sary to provide configuration information to virtual center
application 180 and the storage device (via third party server
190), so that storage system 106 or NAS device 185 is aware
that F2 is a mirror of F1 in order for the storage device to
properly maintain F2 as a mirror file. Therefore, at step 838,
third party server 190 supplies the configuration information
to the storage device, as previously described in conjunction
with FIG. 8B. Also, without requiring any action by VMKer
nel 208, virtual center application 180 sets up the mirroring

US 2009/0300023 A1

through third party server 190. The new file, F2, is created, F1
is copied to F2, and virtual center application 180 provides
configuration information to the storage device that indicates
F2 is a mirror of F1 through third party server 190.
0074. Since file F2 is a mirror offile F1, all writes to F1 are
also reflected to F2 by the storage device. At step 840, VMK
ernel 208 receives a command to snapshot file F1. A redo log
is created by the storage device for F1. Since virtual center
application 180 was provided configuration information indi
cating that F2 is a mirror of F1, a redo log is also created by
VMkernel 208 on instruction from virtual center application
180 for F2. Virtual center application 180 then sets up a redo
log for F2 that is a mirror of the redo log for F1. As data is
written to F1 through the virtual machine file system, the data
writes are captured in the redo log file for F1, and mirrored to
the redo log file for F2. Virtual center application 180 sends
the blocklists for data writes to third party server 190 for F1,
and third party server 190 performs the mirroring for F2 and
the redo log files for F1 and F2.
0075. At step 842, virtual center application 180 receives
a command to rollback F1 to the most recent snaphot. Virtual
center application 180 and VMKernel 208 perform the roll
back command for F1 and F2. If the redo log had not been
created by virtual center application 180 and VMkernel 208,
F2 would not be an accurate mirror of F1 after step 842 is
completed. Because third party server 190 provides the stor
age device with configuration information 812 or 807, the
storage device properly maintains F2 as a mirror of F1,
including the creation and maintenance of the redo log. If the
configuration information is not provided to the storage
device, VMKernel 208 is burdened with the task of creating
and maintaining F2 and the redo log. Third party server 190
beneficially allows VMkernel 208 or virtual center applica
tion 180 to control NAS and SAN capabilities of storage
devices, NAS device 185 and storage system 106, respec
tively, in order to offload the movement of data from VMK
ernel 208.
0076. At step 844, virtual center application 180 receives
a command to fracture F2 from F1, and third party server 190
updates the configuration information for the storage devices
to indicate that file F2 is no longer a mirror of file F1 and the
F2 redo log is no longer a mirror of the F1 redo log. Virtual
center application 180 deletes the F2 redo log through VMk
ernel 208. At step 846, virtual center application 180 receives
a command to delete file F2. VMkernel 208 deletes the F2 file
from VMFS 230, and third party server 190 deletes the F2 file
from the storage devices. The previously described delete
primitive may be used by third party server 190 to delete the
F2 file, producing updated configuration information 807 or
812. Virtual center application 180 will also make corre
sponding changes to VM212 configuration information at the
time of fracture and deletion in order to decouple the affected
file from the current State of the VM 212.
0077 Offloading the data moving portion of storage
operations, such as copying, from VMkernel 208 to the stor
age devices using third party server 190 improves the effi
ciency of the host system. Additionally, the transfer of con
figuration information associated with composite storage
operations by third party server 190 to storage devices
enables the integration of the storage device capabilities into
the virtual machine workflow.

Offloading Storage Operations to a Switch
0078 Switch 197 (shown in FIG. 9A) may be used to
offload storage operations from VMkernel 208 by translating

Dec. 3, 2009

primitives, e.g. copy and clone, enroute to storage devices that
do not support the new blacklist primitives. For example, new
primitives such as copy and clone may be translated by Switch
197 for execution by the physical storage devices, when a
storage device is not configured to execute the blacklist primi
tive directly. This translation offloads the data moving portion
of the storage operations from the file system. Another advan
tage of offloading storage operations through Switch 197, is
that switch 197 functions for storage systems provided by
different vendors and therefore, allows for interoperability
with existing and disparate storage systems. Switch 197 may
perform the translation or a virtual target, Such as another
computer system 100 or 200, may be setup by the switch to
perform the translation. Additionally, per-VM policies may
be specified, and switch 197 may be configured to implement
those policies. Example policies include RAID levels, snap
shot frequency, data protection, QOS (quality of service),
thin-provisioning, and the like. The policies effect the han
dling of the data movement when a storage operation is per
formed, and may be included in SCI 802, configuration infor
mation 807, or configuration information 812.
007.9 FIG. 9A is a functional block diagram illustrating a
portion of the virtualized computer system topology of FIG.
8A in which one or more embodiments of the invention may
be practiced. Switch 197 includes one or more data path
processors, DPPs 901, and one of more control path proces
sors, CPPs 902. Each DPP 901 routes protocol packets 900
received at one fabric port of switch 197 to another fabric port
of Switch 197 to route requests, including storage requests
between sources and target destinations. Each CPP 902 is
configured to provide intelligent processing, including the
implementation of policies and translation of blocklist primi
tives that are not recognized by destination storage devices,
such as storage system 106 or NAS device 185 to offload the
data movement portion of the storage operations from VMK
ernel 208. Control unit 903 is configured to determine
whether a received packet is processed by a DPP 901 or a CPP
902.

0080 When a CPP902 does not include support for trans
lating aparticular blocklist primitive, VMFS 230 or LVM232
in the requesting computer system 100 or 200 instructs switch
197 to create a virtual target having a unique LUN identifier,
such as virtual target server 920. CPP902 is then programmed
to communicate with virtual target server 920. Virtual target
server 920 is configured as a proxy host that is able to translate
blocklist primitives for execution by the storage devices. CPP
902 routes packets with blocklist primitives that it is not
configured to translate to virtual target server 920. Virtual
target server 920 translates the blocklist primitive for execu
tion by the storage devices to offload the data movement
portion of the storage operations from VMKernel 208. When
the Zero blocklist primitive is used, CPP902 or virtual target
server 920 may translate the Zero blocklist primitive into
SCSI WRITE SAME commands with the value of Zero for
each block <LUN ID, offset, lengths in the sourceblocklist,
as previously described in conjunction with FIG. 4A. When
the clone blocklist primitive is used, CPP902 or virtual target
server 920 may translate the clone blocklist primitive into
SCSI XCOPY commands for each block <LUN ID, offset,
lengths in the sourceblocklist, as previously described in
conjunction with FIG. 5A.
I0081 FIG. 9B is a flow diagram for offloading storage
operations to switch 197, in accordance with one or more
embodiments of the invention. At step 910, switch 197

US 2009/0300023 A1

receives a protocol packet including a storage operation. At
decision step 915, control unit 903 determines if a blocklist
primitive specified for the storage operation is a simple opera
tion, such as a read or write storage operation that can be
processed by a DPP 901.
0082 If the operation included in the protocol packet is a
simple one, then, at step 935, a DPP 901 processes the pro
tocol packet. Otherwise, at decision step, step 920, CPP 902
determines if it is configured to translate the blocklist primi
tive into commands that can be executed by the storage
device. If the CPP 902 is not configured to translate the
blocklist primitive, then, at step 940, the CPP902 routes the
protocol packet to virtual target server 920 for translation. At
step 945, virtual target server 920 receives the protocol packet
including the translated blocklist primitive, translates the
blocklist primitive into commands for execution by the target
storage device, and returns the protocol packet with the trans
lated blocklist primitive to switch 197 for routing to the target
destination. A DPP 901 will process the packet and route it to
the target destination.
I0083. Returning to step 920, if the CPP 902 determines
that it is configured to translate the blocklist primitive, then at
step 925, the CPP 902 translates the blocklist primitive into
commands for execution by the target storage device. At step
930, the CPP 902 (or DPP 901 that processed the protocol
packet at step 935) outputs the protocol packet to the target
destination, e.g., storage device. The translation of the black
list primitive into commands by either CPP 902 or virtual
target server 920 offloads the storage operations from VMK
ernel 208.
I0084. Outside of the flow diagram shown in FIG.9B, the
host system determines whether or not the storage device is
configured to execute blacklist primitives. A protocol packet
including a blacklist primitive is provided by the host system
for translation when a storage device is not configured to
execute the primitive. If switch 197 is unable to translate a
primitive, switch 197 reports an error to the host system and
the host system handles the translation.
0085. One or more embodiments of the invention may be
implemented as a program product for use with a computer
system. The program(s) of the program product define func
tions of the embodiments (including the methods described
herein) and can be contained on a variety of computer-read
able storage media. Illustrative computer-readable storage
media include, but are not limited to: (i) non-Writable storage
media (e.g., read-only memory devices within a computer
such as CD-ROM disks readable by a CD-ROM drive, flash
memory, ROM chips or any type of solid-state non-volatile
semiconductor memory) on which information is perma
nently stored; and (ii) Writable storage media (e.g., floppy
disks within a diskette drive or hard-disk drive or any type of
Solid-state random-access semiconductor memory) on which
alterable information is stored.
0.086 The invention has been described above with refer
ence to specific embodiments. Persons skilled in the art, how
ever, will understand that various modifications and changes
may be made thereto without departing from the broader
spirit and scope of the invention as set forth in the appended
claims. The foregoing description and drawings are, accord
ingly, to be regarded in an illustrative rather than a restrictive
SSC.

What is claimed is:
1. In a computer system including a host computer con

nected to a storage system having storage devices that are

Dec. 3, 2009

represented as logical storage units, a method of offloading
storage operations from a file system to the storage system
through a third party server, said method comprising:

receiving a composite storage operation for the storage
system;

obtaining location information from the file system for a
file that is stored on the storage devices; and

generating configuration information associated with the
composite storage operation at the third party server and
Supplying the configuration information and the loca
tion information to the storage system.

2. The method according to claim 1, wherein location
information is a list of blocks, and each block identifies a
contiguous region of a logical storage unit using a logical unit
number corresponding to the logical storage unit, an offset
value, and length.

3. The method according to claim 1, wherein the location
information is a file handle and the storage devices are net
work accessible storage devices.

4. The method according to claim 1, wherein the composite
storage operation is mirroring a first file that is stored on the
storage devices and the configuration information indicates
that a second file is a mirror of the first file.

5. The method according to claim 4, further comprising
receiving at the third party server changes made to the first file
from the file system and maintaining a redo log for the second
file based on the changes.

6. The method according to claim 1, wherein the configu
ration information is supplied from the third party server to
the storage system through an out of band path that bypasses
the file system.

7. The method according to claim 6, wherein the configu
ration information is supplied from the third party server to a
network interface card of the storage system.

8. A computer system comprising:
a host computer configured to provide a file system that

maintains location information for files;
a storage system, connected to the host computer, having

storage devices that store the files and are presented to
the host computer as one or more logical storage units of
the file system; and

a third party sever that is coupled between the host com
puter and the storage system and configured to receive a
composite storage operation for the storage system,
obtain location information from the file system for a file
that is stored on the storage devices, and generate con
figuration information associated with the composite
storage operation at the third party server and Supply the
configuration information and the location information
to the storage system.

9. The computer system according to claim 8, wherein
location information is a list of blocks, and each block iden
tifies a contiguous region of a logical storage unit using a
logical unit number corresponding to the logical storage unit,
an offset value, and length.

10. The computer system according to claim8, wherein the
location information is a file handle and the storage devices
are network accessible storage devices.

11. The computer system according to claim 8, wherein the
composite storage operation is mirroring a first file that is
stored on the storage devices and the configuration informa
tion indicates that a second file is a mirror of the first file.

12. The computer system according to claim 11, further
comprising receiving at the third party server changes made

US 2009/0300023 A1

to the first file from the file system and maintaining a redo log
for the second file based on the changes.

13. The computer system according to claim8, wherein the
configuration information is Supplied from the third party
server to the storage system through an out of band path that
bypasses the file system.

14. The computer system according to claim 13, wherein
the storage system includes a network interface card that is
coupled to the third party server by the out of band path and
configured to receive the configuration information.

15. A computer readable storage medium storing instruc
tions for causing a third party server of a storage system that
has storage devices that are represented as logical storage
units, to offloading storage operations from the file system by
performing the steps of

receiving a composite storage operation for the storage
system;

obtaining location information from the file system for a
file that is stored on the storage devices; and

generating configuration information associated with the
composite storage operation at the third party server and
Supplying the configuration information and the loca
tion information to the storage system.

16. The computer readable storage medium according to
claim 15, wherein location information is a list of blocks, and

Dec. 3, 2009

each block identifies a contiguous region of a logical storage
unit using a logical unit number corresponding to the logical
storage unit, an offset value, and length.

17. The computer readable storage medium according to
claim 15, wherein the location information is a file handle and
the storage devices are network accessible storage devices.

18. The computer readable storage medium according to
claim 15, wherein the composite storage operation is mirror
ing a first file that is stored on the storage devices and the
configuration information indicates that a second file is a
mirror of the first file.

19. The computer readable storage medium according to
claim 18, further comprising receiving at the third party
server changes made to the first file from the file system and
maintaining a redo log for the second file based on the
changes.

20. The computer readable storage medium according to
claim 15, wherein the configuration information is Supplied
from the third party server to the storage system through an
out of band path that bypasses the file system.

21. The computer readable storage medium according to
claim 20, wherein the configuration information is Supplied
from the third party server to a network interface card of the
Storage System.

