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OFFLOADING STORAGE OPERATIONS TO 
STORAGE HARDWARE USING ATHIRD 

PARTY SERVER 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is related to (1) U.S. patent appli 
cation Ser. No. (Docket No. A245) filed on the same 
date, and entitled “Offloading Storage Operations to Storage 
Hardware Using a Switch, and (2) U.S. patent application 
Ser. No. (Docket No. A217) filed on the same date, 
and entitled “Offloading Storage Operations to Storage Hard 

99 
Wa. 

BACKGROUND OF THE INVENTION 

0002 Enterprise storage systems employ disk arrays that 
are physically independent enclosures containing a disk array 
controller, a disk cache and multiple physical disk drives. The 
disk array controller manages the physical disk drives and 
exposes them to connected computer systems as logical data 
storage units, each identified by a logical unit number (LUN), 
and enable storage operations such as cloning, Snapshotting, 
mirroring and replication to be carried out on the data storage 
units using storage hardware. 
0003 Computer systems that employ disk arrays are typi 
cally configured with a file system that executes a logical 
Volume manager. The logical Volume manager is a Software 
or firmware component that organizes a plurality of data 
storage units into a logical Volume. The logical Volume is 
available in the form of a logical device with a contiguous 
address space on which individual files of a file system are 
laid out. The mapping of the logical volume to the data Stor 
age units is controlled by the file system and, as a result, disk 
arrays do not know how individual files are laid out on the data 
storage units. Therefore, a disk array cannot invoke its hard 
ware to carry out storage operations such as cloning, Snap 
shotting, mirroring and replication on a per-file basis. 
0004 One possible solution for carrying out storage 
operations in a disk array on a per-file basis is to add storage 
metadata in data structures managed by the disk array. Disk 
arrays, however, are provided by a number of different ven 
dors and storage metadata varies by Vendor. This solution is 
not attractive because the file system would then need to be 
customized for each different vendor. For this reason, storage 
operations such as cloning, Snapshotting, mirroring and rep 
lication of files have been typically carried out using software 
techniques through traditional standard file system calls. 

SUMMARY OF THE INVENTION 

0005 One or more embodiments of the invention provide 
primitives that enable offloading of storage operations to 
storage hardware on a per-file basis. These primitives include 
instructions for Zeroing file blocks, cloning file blocks, and 
deleting file blocks, and these instructions Support higher 
level applications such as instant provisioning and thin pro 
Visioning. 
0006. One embodiment of the invention provides a 
method for offloading storage operations from a file system to 
a storage system having storage devices using a third party 
server and out of band paths that bypass the file system. The 
method includes the steps of receiving a composite storage 
operation for the storage system, obtaining location informa 
tion from the file system for a file that is stored on the storage 
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devices, and generating configuration information associated 
with the composite storage operation at the third party server 
and Supplying the configuration information and the location 
information to the storage system. 
0007 Another embodiment of the invention provides a 
computer system having a host computer configured to pro 
vide a file system that maintains location information for files 
The host computer is connected to a storage system having 
storage devices that are presented to the host computer as one 
or more logical storage units. In this computer system, a 
composite storage operation is received for the storage sys 
tem, location information is obtained from the file system for 
a file that is stored on the storage system, and configuration 
information associated with the composite storage operation 
is generated by the third party server and supplied to the 
storage system with the location information. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0008 FIG. 1A is a functional block diagram of a virtual 
ized computer system topology in which one or more 
embodiments of the invention may be practiced. 
0009 FIG.1B is a functional block diagram of a computer 
system with a connected storage system in which one or more 
embodiments of the invention may be practiced. 
0010 FIG. 2 is a functional block diagram of a virtualized 
computer system with a connected Storage system in which 
one or more embodiments of the invention may be practiced. 
0011 FIG. 3 is a conceptual diagram that illustrates a 
mapping of a file in the computer system of FIG. 2 to data 
storage units and physical storage locations in a disk array. 
0012 FIG. 4A is a flow diagram for Zeroing a file utilizing 
blocklist level primitives in accordance with one or more 
embodiments of the invention. 
0013 FIG. 4B is a conceptual diagram that illustrates 
extents in a physical storage system when a Zero primitive is 
executed. 
0014 FIG. 5A is a flow diagram for cloning a file utilizing 
blocklist level primitives in accordance with one or more 
embodiments of the invention. 
0015 FIG. 5B is a conceptual diagram that illustrates 
extents in a physical storage system when a clone primitive is 
executed. 
0016 FIG. 6A is a flow diagram for deleting a file utilizing 
blacklist level primitives in accordance with one or more 
embodiments of the invention. 
0017 FIG. 6B is a conceptual diagram that illustrates 
extents in a physical storage system when a delete primitive is 
executed. 
0018 FIG. 7A is a flow diagram for Zeroing a file stored in 
an NAS (network attached storage) device utilizing file level 
primitives in accordance with one or more embodiments of 
the invention. 
0019 FIG. 7B is a flow diagram for cloning a file stored in 
a NAS device utilizing file level primitives inaccordance with 
one or more embodiments of the invention. 
0020 FIG.7C is a flow diagram for deleting a file stored in 
a NAS device utilizing file level primitives inaccordance with 
one or more embodiments of the invention. 
0021 FIG. 8A is another functional block diagram of a 
virtualized computer system topology in which one or more 
embodiments of the invention may be practiced. 
0022 FIG. 8B is a flow diagram for offloading composite 
storage operations to a third party server in accordance with 
one or more embodiments of the invention. 
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0023 FIG. 8C is a flow diagram for performing mirroring 
using a third party server in accordance with one or more 
embodiments of the invention. 
0024 FIG. 9A is a functional block diagram illustrating a 
portion of the virtualized computer system topology of FIG. 
8A, in which one or more embodiments of the invention may 
be practiced. 
0025 FIG.9B is a flow diagram for offloading storage 
operations to a Switch in accordance with one or more 
embodiments of the invention. 

DETAILED DESCRIPTION 

0026 FIG. 1A is a functional block diagram of a virtual 
ized computer system topology in which one or more 
embodiments of the invention may be practiced. A computer 
system may include VMKernel 208 and virtual center appli 
cation 180. VMkernel 208 may be a VMware ESXServer that 
includes a storage stack with a virtual machine file system 
(VMFS) running on a server machine. In accordance with one 
or more such embodiments, virtual center application 180 is 
an application that manages one or more VMKernels 208, and 
runs on a server machine. As shown in FIG. 1A, virtual center 
application 180 is coupled betweenVMKernel 208 and a third 
party server 190 to provide out of band paths 188, 189, and 
183 from VMKernel 208 to storage devices, e.g., network 
attached storage (NAS) device 185 and storage system 106, 
e.g., a disk array. As shown in FIG. 1A, Switch 197 is coupled 
between storage system 106, virtual center application 180, 
VMKernel 208, and third party server 190. In accordance 
with one or more embodiments of the present invention, 
switch 197 is a switching device that contains: (a) a fast 
interconnect and data path processor to Switch packets; and 
(b) Some control path processors to provide I/O packet 
Switching and fabric virtualization services. 
0027. In some embodiments, switch 197 is omitted; stor 
age system 106 resides in a separate data center from third 
party server 190; and third party server 190 communicates 
with storage system 106 via out of band path 183 and NIC 194 
(network interface card) installed in storage system 106. In 
accordance with one or more further embodiments, addi 
tional switches 197 and storage systems 106 may be included 
in a system with one or more storage systems 106 residing in 
different data centers. 
0028 FIG. 1B is a functional block diagram of a computer 
system with a connected storage system, in which one or 
more embodiments of the invention may be practiced. Com 
puter system 100 may be constructed on a conventional, 
typically server-class, hardware platform 102. As shown in 
FIG. 1B, computer system 100 includes host bus adapters 
(HBA) 104 that enable computer system 100 to connect to 
storage system 106. Examples of storage systems 106 may be 
a network attached storage (NAS) device, storage area net 
work (SAN) arrays, or any other similar disk arrays known to 
those with ordinary skill in the art. A storage system 106 that 
is an NAS device may be connected to computer system 100 
through NIC 101. As further discussed below, disk arrays 
such as SAN arrays may typically provide block-level access 
to their storage through SCSI-based protocols such as Fibre 
Channel and iSCSI. Those with ordinary skill in the art will 
recognize that enterprise-level implementations of the fore 
going may have multiple computer systems similar to com 
puter system 100 that may be connected through various 
different known topologies and technologies (e.g., Switches, 
etc.) to multiple storage systems 106. 
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0029. In storage system 106, storage system manager 150, 
which represents one or more programmed Storage proces 
sors, serves as a communication agent (to the outside world) 
for storage system 106, and implements a virtualization of 
physical, typically disk drive-based storage units, referred to 
in FIG. 1B as spindles 152-152, that reside in storage 
system 106. Spindles 152-152 are collectively referred to 
herein as spindles 152. From a logical perspective, each of 
these spindles can be thought of as a sequential array offixed 
sized extents 154. Storage system manager 150 abstracts 
away complexities of targeting read and write operations to 
addresses of the actual spindles and extents of the disk drives 
by exposing to computer system 100 an ability to view the 
aggregate physical storage space provided by the disk drives 
as a contiguous logical storage space that may be divided into 
a set of virtual SCSI devices known as LUNs (Logical Units) 
156-156. The virtualization of spindles 152-152 into 
Such a contiguous logical storage space of LUNS 156-156. 
can provide a more efficient utilization of the aggregate physi 
cal storage space that is represented by an address space of a 
logical Volume. Storage system manager 150 exposes to com 
puter system 100 an ability to transmit data transfer and 
control operations to storage system 106 at a LUN “block” 
level, where a block is a particular contiguous region in a 
particular LUN. For example, a LUN block may be repre 
sented as <LUN ID, offset, lengths and computer system 100 
may transmit to storage system 106 a read or write operation 
for block <LUN ID, offset, lengths in the form of a SCSI 
operation. The LUN identifier (LUN ID) is a unique, hard 
ware independent, SCSI protocol compliant, identifier value 
that is retrievable in response to a standard SCSI Inquiry 
command. 

0030 Storage system manager 150 maintains metadata 
155 that includes a mapping (hereinafter, also referred to as an 
extent-mapping) for each of LUNs 156-156 to an ordered 
list of extents, wherein each such extent can be identified as a 
spindle-extent pair <spindle it, extent is and may therefore be 
located in any of the various spindles 152-152. As such, 
whenever storage system manager 150 receives a LUN block 
operation from computer system 100, it is able to utilize the 
extent-map of the LUN to resolve the block into an appropri 
ate list of extents located in various spindles 152-152, upon 
which the operation is performed. Those with ordinary skill in 
the art will recognize that, while specific storage system 
manager implementation details and terminology may differ 
as between different storage device manufacturers, the 
desired consistent result is that the externally visible LUNs 
implement the expected semantics (in this example, SCSI 
semantics) needed to respond to and complete initiated trans 
actions. 

0031 When storage system 106 is an NAS device, storage 
system manager 150 exposes to computer system 100 an 
ability to transmit data transfer and control operations to 
storage system 106 at the file level. In contrast with SAN 
storage, LUNs 156-156 are managed within the NAS 
device. Storage system manager 150 manipulates files (per 
forms I/O for files using block addresses, change file length 
and attributes, and the like) stored on the NAS device using 
file handles. When storage system manager 150 receives a file 
operation from computer system 100, it finds the location of 
the files being operated on within spindles 152-152, using 
the filehandle specified by the file operation and performs the 
operation. 
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0032. Returning to computer system 100, operating sys 
tem 108 is installed on top of hardware platform 102 and it 
Supports execution of applications 110. Examples of operat 
ing system 108 may be Microsoft Windows, Linux, Netware 
based operating systems or any other operating system known 
to those with ordinary skill in the art. Users may interact with 
computer system 100 through a user interface 112 such as a 
graphical user interface or a command based shell, while 
executing applications 110 may access computing resources 
of computer system 100 that are managed by operating sys 
tem kernel 114 through kernel application programming 
interface (API) 116. Kernel 114 provides process, memory 
and device management to enable various executing applica 
tions 110 to share limited resources of computer system 100. 
For example, file system calls initiated by applications 110 
through kernel API 116 are routed to file system 118. File 
system 118, in turn, converts the file system operations to 
LUN block operations, and provides the LUN block opera 
tions to logical volume manager 120. File system 118, in 
general, manages creation, use, and deletion of files Stored on 
storage system 106 through the LUN abstraction discussed 
previously. Logical Volume manager 120 translates the Vol 
ume block operations for execution by storage system 106. 
and issues raw SCSI operations (or operations from any other 
appropriate hardware connection interface standard protocol 
known to those with ordinary skill in the art, including IDE, 
ATA, and ATAPI) to device access layer 122 based on the 
LUN block operations. Device access layer 122 discovers 
storage system 106, and applies command queuing and 
scheduling policies to the raw SCSI operations. Device driver 
124 understands the input/output interface of HBAs 104 
interfacing with storage system 106, and sends the raw SCSI 
operations from device access layer 122 to HBAs 104 to be 
forwarded to storage system 106. As previously discussed, 
storage system manager 150 of storage system 106 receives 
the raw SCSI operations (i.e., LUN block level operations), 
and resolves them into the appropriate extents within the 
spindles of the disk array that are operated upon. 
0033. Instances arise during the operation of computer 
system 100 where files on file system 118 cannot ultimately 
bestored in contiguous blocks of LUNs 156-156.presented 
to computer system 100 by storage system 106. While there 
may be enough blocks of free storage space in the aggregate 
among various LUNs 156-156 to store such files, such 
blocks are neither large enough nor contiguous and may be 
dispersed across different LUNs. In such instances, files may 
need to be segmented into multiple component parts at the file 
system level, LUN level, and the spindle-extent level (as 
further detailed in FIG. 3), such that the file components are 
stored across different blocks of different LUNs. Due to this 
segmentation, operations on Such files, such as read and write 
operations, also need to be broken up into separate block level 
LUN operations (i.e., raw LUN block level SCSI operations) 
when transmitted to storage system 106 thereby increasing 
the resources used by computer system 100 to communicate 
with storage system 106 (e.g., CPU cycles, DMA buffers, 
SCSI commands in the HBA queue, etc.). 
0034. One example of an environment that deals with sig 
nificantly large files or collections offiles where the foregoing 
segmentation may occur is server virtualization. As further 
discussed below, virtualization systems expose the concept of 
a “virtual disk” which is implemented as a collection of files 
stored on a file system. FIG. 2 is a functional block diagram of 
a virtualized computer system with a connected storage sys 

Dec. 3, 2009 

tem, in which one or more embodiments of the invention may 
be practiced. Similar to computer system 100 of FIG. 1B, 
computer system 200 may be constructed on a conventional, 
typically server-class, hardware platform 102. As shown in 
FIG. 2, computer system 200 includes HBAs 104 and NIC 
101 that enable computer system 200 to connect to storage 
system 106. As further shown in FIG. 2, virtual machine 
(VMKernel) operating system 208 is installed on top of hard 
ware platform 102 and it supports virtual machine execution 
space 210 within which multiple virtual machines (VMs) 
212-212 may be concurrently instantiated and executed. 
Each Such virtual machine 212-212 implements a virtual 
hardware (HW) platform 214 that supports the installation of 
a guest operating system 216 which is capable of executing 
applications 218. Similar to operating system 108 of FIG. 1B, 
examples of a guest operating system 216 may be Microsoft 
Windows, Linux, Netware-based operating systems or any 
other operating system known to those with ordinary skill in 
the art. In each instance, guest operating system 216 includes 
a native file system layer (not shown), for example, either an 
NTFS or an ext3FS type file system layer. These file system 
layers interface with virtual hardware platforms 214 to 
access, from the perspective of guest operating systems 216, 
a data storage HBA, which in reality, is virtual HBA 220 
implemented by virtual hardware platform 214 that provides 
the appearance of disk storage Support (in reality, Virtual disks 
or virtual disks 222-222) to enable execution of guest oper 
ating system 216 transparent to the virtualization of the sys 
tem hardware. Virtual disks 222-222 may appear to Sup 
port, from the perspective of guest operating system 216, the 
SCSI standard for connecting to the virtual machine or any 
other appropriate hardware connection interface standard 
known to those with ordinary skill in the art, including IDE, 
ATA, and ATAPI. 
0035 Although, from the perspective of guest operating 
systems 216, file system calls initiated by Such guest operat 
ing systems 216 to implement file system-related data trans 
fer and control operations appear to be routed to virtual disks 
222-222 for final execution, in reality, such calls are pro 
cessed and passed through virtual HBA220 to adjunct virtual 
machine monitor (VMM) layers 224-224 that implement 
the virtual system support needed to coordinate operation 
with virtual machine kernel 208. In particular, hostbus emu 
lator 226 functionally enables the data transfer and control 
operations to be correctly handled by virtual machine kernel 
208 which ultimately passes such operations through its vari 
ous layers to true HBAs 104 or NIC 101 that connect to 
storage system 106. Assuming a SCSI supported virtual 
device implementation (although those with ordinary skill in 
the art will recognize the option of using other hardware 
interface standards), SCSI virtualization layer 228 of virtual 
machine kernel 208 receives a data transfer and control opera 
tion (in the form of SCSI commands) from VMM layers 
224-224, and converts them into file system operations that 
are understood by virtual machine file system (VMFS) 230. 
SCSI virtualization layer 228 then issues these file system 
operations to VMFS 230. VMFS, in turn, converts the file 
system operations to Volume block operations, and provides 
the Volume block operations to logical Volume manager 232. 
Logical volume manager (LVM) 232 is typically imple 
mented as an intermediate layer between the driver and con 
ventional operating system file system layers, and Supports 
volume oriented virtualization and management of the LUNs 
accessible through HBAs 104 and NIC 101. As previously 
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described, multiple LUNs, such as LUNs 156-156 can be 
gathered and managed together as a volume under the control 
of logical Volume manager 232 for presentation to and use by 
VMFS 230 as an integral LUN. 
0036 VMFS 230, in general, manages creation, use, and 
deletion of files stored on storage system 106 through the 
LUN abstraction discussed previously. Clustered file sys 
tems, such as VMFS 230, are described in patent application 
Ser. No. 10/773,613 that is titled, “MULTIPLE CONCUR 
RENT ACCESS TO A FILE SYSTEM filed Feb. 4, 2004. 
Logical Volume manager 232 issues raw SCSI operations to 
device access layer 234 based on the LUN block operations. 
Device access layer 234 discovers storage system 106, and 
applies command queuing and scheduling policies to the raw 
SCSI operations. Device driver 236 understands the input/ 
output interface of HBAs 104 and NIC 101 interfacing with 
storage system 106, and sends the raw SCSI operations from 
device access layer 234 to HBAs 104 or NIC 101 to be 
forwarded to storage system 106. As previously discussed, 
storage system manager 150 of storage system 106 receives 
the raw SCSI operations (i.e., LUN block level operations) 
and resolves them into the appropriate extents within the 
spindles of the disk array that are operated upon. 
0037 FIG. 3 is a conceptual diagram that illustrates a 
mapping of a file in the computer system of FIG. 2 to data 
storage units and physical storage locations in a disk array. As 
FIG. 3 depicts, virtual disk 222 is stored as a file on the file 
system managed by VMFS 230. For simplicity, the descrip 
tion that follows will assume that the virtual disk is made out 
of a single file. However, the description is just as applicable 
to virtual disks containing multiple files. Further, one or more 
embodiments of the invention are applicable to not only one 
or more files but also to a file segment that is stored in 
non-adjacent locations of the same LUN or across different 
LUNS 

0038. The virtual LUN file is allocated by VMFS 230 as a 
series of segments 300-300, in logical address space, VMFS 
volume 302, that is managed by VMFS 230. Each segment 
300-300, is a contiguous region in VMFS volume 302, 
where VMFS 302 has been constructed by an administrator of 
the system by allocating a set of LUNs 156-156 available 
from storage system's 106 set of LUNs 156-156. As pre 
viously discussed in the context of FIGS. 1B and 2, each 
contiguous region of a file segment that is also contiguous on 
one of the allocated LUNS, is considered a LUN “block'304 
that can be represented as <LUN ID, offset, lengthd. As 
shown in FIG. 3, different LUN blocks 304 corresponding to 
a portion of a file segment may be of different lengths depend 
ing on how big the file segment is and what part of that file 
segment actually corresponds to a contiguous region of an 
allocated LUN. Therefore, a file may have one or more seg 
ments, and a segment may be composed of one or more blocks 
from one or more LUNS. In the illustrated example, file 
segment 300 has 2 LUN blocks, file segment 300 has 3 
LUN blocks, file segment 300, has 4 LUN blocks, and file 
segment 300, has 1 LUN block. As shown in FIG. 3, file 
segments in VMFS volume 302 are converted into LUN 
blocks by lines connecting file segments 300 to LUN blocks 
304 in LUNs 156 where LUNs 156 represent the LUN 
address space. When storage system 106 is a NAS device, the 
file segments are managed within the NAS device. 
0039. By resolving all file segments 300-300, making up 
virtual disk 222 into an ordered list of their corresponding 
LUN blocks (in the case of FIG. 3, for a total of 10 blocks), 
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VMFS 230 creates a “blacklist” (e.g., a list of <LUN ID, 
offset, lengthd) which is representative of virtual disk 222 in 
LUN block form. As previously discussed in the context of 
FIG. 1, storage system 106 can utilize the extent maps for 
LUNs 156,156 to resolve each of the LUN blocks in the 
blocklist into its corresponding list of <spindle it, extent i> 
pairs (spindle-extent pairs) within spindles 152-152. As 
shown in FIG.3, LUN blocks 304 are converted into spindle 
extent pairs by lines connecting LUN blocks 304 within 
LUNs 156 to extents within spindles 152. Extents 153 within 
spindle 152 are explicitly labeled in FIG. 3. Extents within 
other spindles 152 are not labeled in FIG. 3. Those with 
ordinary skill in the art will recognize that, although FIG. 3 
has been discussed in the context of a virtualized system in 
which a virtual disk is allocated into file segments, non 
virtualized systems similar to that of FIG. 1B may also have 
files stored in its file system that exhibit similar types of 
segmentation into LUN blocks. 
0040. As previously discussed, storage devices such as 
storage system 106 typically expose LUN block level opera 
tions to computer systems communicating with it. For 
example, a standard raw SCSI read or write operation requires 
a LUN identifier, logical block address, and transfer length 
(i.e., similar to the <LUN ID, offset, lengths encoding 
described herein). As such, in order to perform operations on 
files such as virtual disk 222 that are managed at VMFS 230 
file system level, standard raw SCSI operations need to be 
separately applied to each of the 10 blocks in virtual disk’s 
222 blacklist. Each I/O communication (e.g., transmission 
of a raw SCSI operation) by computer system 200 with stor 
age system 106 can take up significant computing resources 
such as CPU cycles, DMA buffers, and SCSI commands in an 
HBA queue. 
0041. By exposing LUN blocklist level primitives to the 
set of operations available to computer systems communicat 
ing with storage system 106, disk array vendors provide com 
puter systems an ability to offload resource intensive commu 
nication with a disk array into the disk array itself. The disk 
array can then leverage any proprietary hardware optimiza 
tions that may be available internally thereto. In one embodi 
ment, such blocklist level primitives may be embedded in a 
command descriptor block (CDB) in a pre-existing standard 
command of the communication interface protocol between 
the computer system and disk array or, alternatively, may be 
added as an additional command to the set of standard com 
mands. For example, for SCSI supported interactions 
between a computer system and a disk array, certain blocklist 
level primitives may be able to be embedded into the CDB of 
SCSI's pre-existing WRITE BUFFER command, while other 
blacklist level primitives may require the addition of a new 
SCSI level command (e.g., with its own CDB) to augment 
SCSI's current commands. The following discussion presents 
three possible blacklist level primitives supported by storage 
system 106 (i.e., “Zero' for Zeroing out files, “clone' for 
cloning files and “delete for deleting files). These three 
blacklist level primitives are in the general form: operator 
(source blocklist, destination blocklist, context identifier), 
and may be utilized to offload atomic components of larger 
composite virtual machine operations to the disk array. How 
ever, those with ordinary skill in the art will appreciate that 
other additional and alternative blacklist level primitives may 
be supported by the disk array without departing from the 
spirit and scope of the claimed invention. 
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0042 FIG. 4A is a flow diagram for Zeroing a file such as 
virtual disk 222 that is stored at VMFS 320 file system level 
in accordance with one or more embodiments of the inven 
tion. The embodiment of FIG. 4A envisions that a SCSI based 
disk array supports a new blocklist level primitive called 
"Zero' that takes a context identifier, such as virtual machine 
identifier (VMID), and a sourceblocklist as parameters, and 
can be embedded into the CBD of the Standard SCSI WRITE 
BUFFER command. Those with ordinary skill in the art will 
recognize that the name of the primitive used, the number of 
parameters supported by the primitive, and whether the 
primitive is embedded in the CDB of a current SCSI com 
mand or is an articulation of a new SCSI level command are 
implementation choices that are available to persons skilled 
in the art. 

0043. At step 400, the file system within VMKernel 208 of 
the operating system receives a request to Zero out a file. For 
example, in a particular embodiment that implements virtu 
alization, VMFS 230 in VMKernel 208 may receive a request 
to Zero out a file Such as virtual disk 222 (e.g., to preserve 
VM isolation). The file system resolves the file into its com 
ponent file segments at step 402, where <fileid, offset, 
lengthd+ in step 402 represents a list of <fileid, offset, lengthd 
file segments. Fileid is a unique identifier that distinguishes 
segments associated with one file from segments associated 
with another file. At step 403, VMKernel 208 resolves the file 
segments into logical extents. At step 404, VMKernel 208 
resolves each of the logical extents into a corresponding list of 
LUN blocks <LUN ID, offset, lengthd+. At step 406, VMK 
ernel 208 consolidates these lists of LUN blocks into a sour 
ceblocklist, the ordered list LUN blocks representing the 
relevant file. At step 408, VMKernel 208 generates a new zero 
blocklist primitive containing the sourceblocklist, and 
embeds it into the CDB of the standard SCSI command 
WRITE BUFFER. At step 410, VMKernel 208 issues the 
WRITE BUFFER command to the disk array. At decision 
step 412, if the disk array supports the new zero blacklist 
primitive, then, at step 414, internal disk array mechanisms 
translate the Sourceblocklist to corresponding spindle-ex 
tents, and write Zeroes into the extents representing the rel 
evant file. 

0044. At decision step 412, if storage system 106 does not 
support the new zero blocklist primitive, then, at step 416, for 
each block <LUN ID, offset, lengths in the sourceblocklist, 
VMKernel 208 generates a SCSI WRITE SAME command 
with the value of zero in the write buffer. At step 418, VMK 
ernel 208 issues the WRITE SAME command to storage 
system 106. At step 420, storage system 106 receives the 
WRITE SAME command, internally translates the LUN 
block into the appropriate spindle-extents, and write Zeroes 
into the extent representing the block. At decision step 422, 
VMKernel 208 determines if Zeroes should be written for 
another block in the sourceblocklist and if so, steps 416,418, 
and 420 are repeated to generate and issue SCSI WRITE 
SAME commands for another block to storage system 106. 
When all of the blocks have been processed, VMKernel 208 
proceeds to step 424, and execution is complete. Those with 
ordinary skill in the art will recognize that different functional 
components or layers of VMKernel 208 may implement steps 
400 to 410. For example, in an embodiment that implements 
virtualization, VMFS 230 layer of VMKernel 208 may per 
form steps 402 to 403 of resolving a file into segments and 
then into logical extents. Logical Volume manager 232 may 
perform steps 404 to 406 of generating the LUN block opera 
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tions, logical volume manager 228 of VMKernel 208 may 
convert the Sourceblocklist into the raw SCSI WRITE 
BUFFER operation at step 408, and device access layer 234 
of VMKernel 208 ultimately transmits the WRITE BUFFER 
operation at step 410 to storage system 106. 
0045 FIG. 4B is a conceptual diagram that illustrates 
extents in spindles 152 when a zero primitive is executed. 
When a zero primitive is executed to Zero file segment 300, 
storage system 106 Zeroes the extents in spindles 152 that 
store file segment 300. Refer to FIG. 3 for the specific 
mapping of LUN blocks within LUN 156, and 156 to 
spindles 152. The Zero primitive may be used to initialize 
large portions of storage system 106 with Zeroes to preserve 
VM isolation. In a conventional system, this initialization 
may require a significant amount of host resources interms of 
CPU cycles, memory accesses, DMA buffers, and SCSI com 
mands in the HBA queue. In addition to improving the effi 
ciency of the initialization, the Zero primitive may be used by 
storage system 106 to optimize for hardware-based thin-pro 
visioning. In particular, storage system 106 can choose to not 
write Zeroes on thin-provisioned LUNs when the correspond 
ing blocks are not yet allocated. For thin-provisioning, Stor 
age system 106 may optimize by not allocating extents for 
Zero writes, and also free up extents and mark them as Zeros. 
0046 Zeroed extents 401, 405, 407,409, 411, and 413 that 
correspond to segment 300, within spindles 152, 152, and 
152, are shown in FIG. 4B. Metadata 155 is configured to 
store an extent map including the virtual LUN (assuming that 
each spindle extent is 64 Kbyte in size) to spindle-extent pair 
mapping as shown in TABLE 1, where S1, s2, and S3 may each 
correspond to one of spindles 152-152. Although each 
spindle extent is shown as 64 Kbytes, other sizes may be used 
for the spindle extents. The Zeroed extents may be unmapped 
from their respective extent maps by updating metadata 155. 
Metadata 155 is updated to indicate that those extents are 
Zeroed (without necessarily writing Zeroes) and proprietary 
mechanisms may be employed to lazily Zero out requested 
extents using a background process, even for non-thin-provi 
sioned LUNs. For example, a flag in metadata 155 for each 
spindle extent corresponding to segment 300, where the flag 
indicates that the extent should effectively be presented as 
Zeroes to the user. Techniques for performing lazy Zeroing are 
described in patent application Ser. No. 12/050,805 that is 
titled, “INITIALIZING FILE DATA BLOCKS filed Mar. 
18, 2008. Metadata related to the Zero primitive may also be 
stored as well as configuration information that is described 
in detail in conjunction with FIGS. 8A, 8B, 8C, 9A, and 9B. 

TABLE 1 

Extent Map 

LUN offset Metadata configuration 
(Kbyte) <spindle, extent> information 

O <s2, e3> Zeroed, thin-provisioned 
64 <S1, e1) Clone of <s2, els 
128 <s3, e1 Zeroed, thin-provisioned 
192 <s2, e3> free 

0047 FIG. 5A is a flow diagram for cloning a file such as 
virtual disk 222 that is stored at VMFS 320 file system level 
and has been segmented at such level into different LUN 
blocks in accordance with one or more embodiments of the 
invention. At step 500, the file system within the kernel of the 
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operating system may receive a request to copy or clone one 
file A to another file B. At step 502, the file system resolves file 
A and file B into their component file segments, e.g., a list of 
<fileid, offset, lengths file segments. At step 503, VMFS 230 
resolves the file segments into logical extents. 
0048. At step 504, logical volume manager 232 resolves 
each of the logical extents for each of file A and file B into 
their corresponding lists of LUN blocks <LUN ID, offset, 
length>+. At step 506, logical Volume manager 232 consoli 
dates these lists of LUN blocks into a sourceblocklist and a 
destinationblocklist for file A and file B, respectively, which 
are the ordered list LUN blocks representing the respective 
files. At step 508, VMKernel 208 generates the new clone 
blocklist primitive containing the sourceblocklist and desti 
nationblocklist, and embeds it into the CDB of the standard 
SCSI command WRITE BUFFER. At step 510, VMKernel 
208 issues the SCSI command to storage system 106. At 
decision step 512, if storage system 106 supports the new 
clone blacklist primitive, then, at step 514, internal disk array 
mechanisms clone the destinationblocklist's list of extents 
with sourceblocklist's list of extents (including utilizing any 
hardware optimizations within storage system 106 Such as 
"copy-on-write' techniques). 
0049. If, however, at decision step 512, storage system 106 
does not Support the new clone blacklist primitive, then, at 
step 516, for each block <LUN ID, offset, lengths in the 
sourceblocklist, VMKernel 208 generates a SCSI XCOPY 
command with the <LUN ID, offset, lengths of the destina 
tionblocklist. At step 518, VMKernel 508 issues the SCSI 
XCOPY command to storage system 106. At step 520, stor 
age system 106 receives the XCOPY command, internally 
translates the LUN block into the appropriate spindle-extents, 
and copies the source extent into the destination extent rep 
resenting the block. At decision step 522, VMKernel 208 
determines if more blocks in sourceblocklist remain to be 
cloned and if so, steps 516 and 518 are repeated to generate 
and issue SCSI XCOPY commands for another block to 
storage system 106. When all of the blocks have been pro 
cessed the clone operation is complete. Those with ordinary 
skill in the art will recognize that different functional com 
ponents or layers of VMKernel 208 may implement steps 500 
to 510. For example, in an embodiment that implements 
virtualization, VMFS 230 layer of VMKernel 208 may per 
form steps 502-503 of generating the LUN block operations, 
logical volume manager 228 of VMKernel 208 may create the 
sourceblocklist and destinationblocklist at steps 504-506 and 
convert it into the raw SCSI XCOPY operation at step 508, 
and device access layer 234 of VMKernel 208 ultimately 
transmits the XCOPY operation at step 510 to storage system 
106. 

0050 FIG. 5B is a conceptual diagram that illustrates 
extents in spindles 152 when a clone primitive is executed. 
When a clone primitive is executed to clone file segment 300 
of virtual disk 222 to a file segment 300 of a virtual disk 
222, storage system 106 copies extents 501,505, and 507 in 
spindles 152 and 152 that store file segment 300 to extents 
509 and 511 in spindle 152 that store file segment 300 
Refer to FIG. 3 for the specific mapping of LUN blocks 
within LUN 156, 156, and 156 to spindles 152. In a 
conventional system, cloning may require a significant 
amount of host resources in terms CPU cycles, memory 
accesses, DMA buffers, and SCSI commands in an HBA 
queue. The files being cloned may be multiple gigabytes in 
size, causing the clone operation to last for many minutes or 
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even hours. In addition to improving the efficiency of the 
initialization, the clone primitive may be used by Storage 
system 106 to use proprietary mechanisms, e.g., metadata 
155, to mark cloned destination extents as duplicates of 
source extents. For example, extents 509 may be unmapped 
by storage system 106 in the extent map of metadata 155, and 
extents 505 may be substituted in a read-only format. 
0051 FIG. 6A is a flow diagram for deleting a file, such as 
virtual disk 222 that is stored at VMFS 230 file system level, 
in accordance with one or more embodiments of the inven 
tion. Conventionally, when files are deleted from a file sys 
tem, the space may be reclaimed in the logical address space 
of the volume, but LUN block liveness is not necessarily 
conveyed to the disk array. While file system block allocation 
may be implicitly signaled to a disk array through the first 
writes to a previously unwritten region, file system block 
deallocation cannot be implicitly signaled to the disk array in 
a similar fashion. As such, a disk array cannot provide disk 
management optimization techniques for tasks such as thin 
provisioning, de-duplication, mirroring and replication by 
exploiting extents related to deleted files only known at the 
computer system's file system level. 
0052 Similar to the “Zero” primitive embodiment of FIG. 
4A, the embodiment of FIG. 6A envisions that a SCSI based 
disk array supports a new blacklist level primitive called 
“delete' that takes a context identifier, such as virtual 
machine identifier (VMID), and a sourceblocklist as param 
eters, and can be embedded into the CBD of the standard 
SCSI WRITE BUFFER command. At step 600, the file sys 
tem within the kernel of the operating system receives a 
request to delete a file. For example, in a particular embodi 
ment that implements virtualization, VMFS 230 in VMKer 
nel 208 may receive a request to delete a file such as virtual 
disk 222. At step 602, the file system resolves the file into its 
component file segments. At step 603, VMFS 230 resolves the 
file segments into logical extents, and at Step 604, logical 
Volume manager 232 resolves each of the file segments into 
their corresponding list of LUN blocks <LUN ID, offset, 
length>+. At step 606, logical Volume manager 232 consoli 
dates these lists of LUN blocks into a sourceblocklist, the 
ordered list LUN blocks representing the relevant file. At step 
608, VMKernel 208 generates the new delete blocklist primi 
tive containing the Sourceblocklist, and embeds it into the 
CDB of the Standard SCSI command WRITE BUFFER. At 
step 610, VMKernel 208 issues the WRITE BUFFER com 
mand to the disk array. At step 612, the internal disk array 
mechanisms are able to translate the Sourceblocklist to cor 
responding spindle-extents and mark them as deleted or 
update metadata 155 to indicate that the extents should be 
returned to the free pool. 
0053 FIG. 6B is a conceptual diagram that illustrates 
extents in spindles 152 when a delete primitive is executed. 
Refer to FIG. 3 for the specific mapping of LUN blocks 
within LUN 156, and 156 to spindles 152. When a file is 
deleted from a VMFS volume on hardware thin-provisioned 
virtual disk A 222 that corresponds to segment 300 and 
extents 605, 607, and 609 in storage system 106, storage 
system 106 can unmap the deleted extents from the extent 
map stored in metadata 155, and return them to the free pool. 
Internal optimization techniques such as unmapping of 
deleted extents may be employed by storage system 106 for 
tasks such as thin-provisioning, de-duplication, mirroring 
and replication. Further, the unmapped regions of the LUN 
address space can point to a proprietary representation, e.g., a 
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Zero-extent representation. In the absence of the delete primi 
tive, thin-provisioned LUNs would needlessly use three 
extents (in lieu of extents 605, 607, and 609) from the storage 
pool that would not be available for use by the file system until 
the next time that part of the file system address space is 
allocated to a file. 

0054 By exposing file administrative level operations 
Such as Zero, clone, and delete to the set of file operations 
available to computer systems communicating with a NAS 
based storage device, storage vendors provide computer sys 
tems an ability to offload resource intensive communication 
with the file storage into the NAS device itself, which can then 
leverage any proprietary hardware optimizations that may be 
available internally to the NAS device. In one embodiment, 
file level primitives may be accessed as (I/O control) com 
mands using a pre-existing standard command of the com 
munication interface protocol between the computer system 
and NAS device or, alternatively, may be added as an addi 
tional commands to the set of standard commands. The fol 
lowing discussion presents three possible file level primitives 
supported by a NAS based storage system 106 (i.e., “Zero' for 
Zeroing out files, “clone' for cloning files and “delete for 
deleting files). These three file level primitives may be uti 
lized to offload atomic components of larger composite Vir 
tual machine operations to the storage system. However, 
those with ordinary skill in the art will appreciate that other 
additional and alternative blocklist level primitives may be 
supported by the storage system 106 without departing from 
the spirit and scope of the claimed invention. 
0055 FIG. 7A is a flow diagram for Zeroing a file stored in 
an NAS device utilizing file level primitives in accordance 
with one or more embodiments of the invention. The embodi 
ment of FIG. 7A envisions that a NAS device supports a new 
file level primitive called ZERO BLOCKS that takes an open 
NFS/CIFS handle of a source file (filehandle), offset, and a 
length as parameters, and can be issued as an ioctl command. 
Those with ordinary skill in the art will recognize that the 
name of the primitive used, and the number of parameters 
Supported by the primitive are implementation choices that 
are available to persons skilled in the art. At step 702, VMFS 
230 within VMKernel 208 receives a request to zero out a file 
segment specified by a fileid, an offset and length. At step 706 
VMKernel 208 determines the filehandle for the Source file. 
At step 708, VMKernel 208 prepares the ZERO BLOCKS 
ioctl command, and at step 710, VMKernel 208 issues the 
ioctl command to the NAS device. If, at decision step 712, the 
NAS device supports the new ZERO BLOCKS, then, at step 
714, internal NAS device mechanisms are able to write Zeroes 
to corresponding spindle-extents and write Zeroes into the 
extents representing the relevant file. Otherwise, at step 716, 
VMKernel 208 issues pipelined I/O through a datamover 
driver to write Zeroes using conventional mechanisms. 
0056 Those with ordinary skill in the art will recognize 
that different functional components or layers of the kernel 
may implement steps 702 to 710. Conventional NAS devices 
may be configured to write Zeroes to blocks to perform 
administrative operations, however that functionality is not 
available to users of the NAS device, such as VMs 212. 
Without the ZERO BLOCKS command VMS 212 transfer 
Zeroes to the NAS device to write Zeroes to the blocks corre 
sponding to a file. In some cases, for example when a two 
terabyte virtual disk is used, as many as two terabytes of 
Zeroes are transferred to the NAS device compared with trans 
ferring 20 bytes of parameters using the ZERO BLOCKS 
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command in order to offload the storage operation from com 
puter system 200 to the NAS device, e.g., storage system 106. 
Additionally, any administrative optimizations that are pro 
vided by the NAS device may also be leveraged through the 
ZERO BLOCKS command. For example, particular NAS 
devices may be configured to not store Zeroes at the time of 
the command is received. 

0057 FIG. 7B is a flow diagram for cloning a file stored in 
a NAS device utilizing file level primitives inaccordance with 
one or more embodiments of the invention. The embodiment 
of FIG. 7B envisions that a NAS device supports a new file 
level primitive called CLONE BLOCKS that takes open 
NFS/CIFS handles of a source file and a destination file, 
offset, and a length as parameters, and can be issued as an ioctl 
command. Those with ordinary skill in the art will recognize 
that the name of the primitive used and the number of param 
eters Supported by the primitive are implementation choices 
that are available to persons skilled in the art. At step 722, 
VMFS 230 within VMKernel 208 receives a request to clone 
file segment A to segment B, where each segment is specified 
by a fileid, an offset and length. At step 726, VMKernel 208 
determines the filehandle for file A. At step 728, VMKernel 
208 prepares the CLONE BLOCKS ioctl command, and at 
step 730, VMKernel 208 issues the ioctl command to the NAS 
device. If, at decision step 732, the NAS device supports the 
new CLONE BLOCKS, then, at step 734, internal disk array 
mechanisms are able to copy corresponding spindle-extents 
of file segment A into the extents representing file segment B 
(including utilizing any hardware optimizations supported by 
the NAS device for administrative operations such as "copy 
on-write” techniques). Otherwise, at step 736, VMKernel 208 
issues I/O through a datamover driver to copy the file using 
conventional mechanisms. 

0.058 FIG.7C is a flow diagram for deleting a file segment 
stored in a NAS device utilizing file level primitives in accor 
dance with one or more embodiments of the invention. When 
files are deleted from a file system, the space may be 
reclaimed in the logical address space Volume, and a file 
delete operation is executed by the storage system manager 
on the NAS device. In a conventional system, when an appli 
cation frees a subset of a file, for example if a guest OS inside 
of a VM deletes a few files inside of its file system, the NAS 
device will not be aware that the blocks used to store the 
subset of the file can be deallocated. When the delete primi 
tive is used, the deletion initiated by the guest OS will trans 
late into a deletion of file segment(s), which is then conveyed 
to the NAS device through the DELETE BLOCKS primi 
tive. When the new primitive are used, a NAS device can 
provide disk management optimization techniques for tasks 
Such as thin-provisioning, de-duplication, mirroring and rep 
lication by exploiting extents related to deleted files only 
known at the computer system's file system level. 
0059 Similar to the ZERO BLOCKS and CLONE 
BLOCKS primitives, the embodiment of FIG. 7C envisions 
that a NAS device supports a new file level primitive 
DELETE BLOCKS that takes a filehandle, offset, and a 
length as parameters and can be issued as an ioctl command. 
Those with ordinary skill in the art will recognize that the 
name of the primitive used and the number of parameters 
Supported by the primitive are implementation choices that 
are available to persons skilled in the art. At step 742, VMFS 
230 within VMKernel 208 receives a request to delete a 
segment specified by a fileid, an offset and length. At step 746, 
VMKernel 208 determines the filehandle for the file. At step 
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748, VMKernel 208 prepares the DELETE BLOCKS ioctl 
command, and at step 750, VMKernel 208 issues the ioctl 
command to the NAS device. At step 752, internal disk array 
mechanisms are able to delete corresponding spindle-extents 
of the file and keep track of such extents as being freed by the 
file system such that they may be utilized in internal optimi 
Zation techniques for tasks such as thin-provisioning, de 
duplication, mirroring and replication. For example, in an 
embodiment where LUNs may be thin-provisioned, deletion 
of a file segment through the foregoing “delete' blocklist 
primitive enables the NAS device to unmap the extents asso 
ciated with the file segment from the extent-maps of their 
associated thin-provisioned LUNs, thereby returning the 
unmapped extents to the free pool of extents. 
0060 Those with ordinary skill in the art will recognize 
that the foregoing discussions as well as FIGS. 4A, 4B, 5A, 
5B, 6A, 6B, 7A, 7B and 7C are merely exemplary and that 
alternative blocklist and file level primitives may be imple 
mented without departing from the spirit and scope of the 
claimed invention. Furthermore, while this discussion has 
focused upon transmitting blacklist level primitives where the 
blacklist is representative of an entire file on the file system, 
those with ordinary skill in the art will recognize that alter 
native embodiments may work with smaller blacklists, such 
as blocklists at the file segment level. For example, in the case 
of zeroing out virtual disk 222 in FIG. 3, an alternative file 
segment blocklist level embodiment would require 4 
instances of issuing the Zero blocklist primitive to storage 
system 106 (i.e., one for each of the file segments 300-300) 
in comparison to a single instance of the Zero blocklist primi 
tive containing a blocklist comprising a consolidation of the 4 
smaller blacklists for the 4 file segments 300-300. 
0061 The primitives discussed above can be used to build 
hardware-assisted data protection (e.g., Snapshotting, clon 
ing, mirroring and replication) and other file management 
commands that operate at the file level and leverage the disk 
array's internal capabilities. A Snapshot of a virtual disk is a 
copy of the virtual disk as it existed at a given point in time 
(i.e. a previous version of a virtual disk). A virtualized system 
such as FIG. 2, may use the Zero primitive of FIGS. 4A, 4B, 
5A, 5B, 6A, 6B, 7A,7B and 7C for (a) cloning operations for 
eager-Zeroed virtual disks, (b) initializing new file blocks in 
thin-provisioned virtual disks, (c) initializing previously 
unwritten blocks for Zeroed virtual disks, and (d) integrating 
thin-provisioned and Zeroed virtual disk formats with the disk 
array's hardware-based thin-provisioning. Similarly, embed 
ding blacklists within the XCOPY primitive as depicted in 
FIG.5A and the CLONE BLOCKS file primitive of FIG. 7B 
may be utilized for (a) instant provisioning of virtual disks 
and (b) snapshotting of virtual disks. The delete primitive of 
FIGS. 6 and 7C may be used for(a) destroying or reformatting 
files on a space optimized (thin-provisioned or de-duplicated) 
or protected (mirrored, replicated or Snapshotted) Volume, (b) 
deleting virtual disks or virtual disks Snapshots on a space 
optimized or protected Volume, and (c) integrating thin-pro 
visioned and Zeroed thick virtual disk formats with the disk 
array's hardware-based thin-provisioning. 
0062 For example, using blocklist with the XCOPY SCSI 
operation as discussed in FIGS.5A and 5B or the CLONE 
BLOCKS command as discussed in FIG. 7B enables a virtu 
alized system to provide instant provisioning of virtual disks 
in the order of a few milliseconds or seconds in comparison to 
a few minutes or hours without the combined use of blacklists 
and WRITE BUFFER or XCOPY. Instant provisioning 
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involves making a full copy of a template virtual disk during 
the process of creating or provisioning a new virtual machine 
within a computer system. Because virtual disks are repre 
sented as significantly large files on the file system, perform 
ing continual standard SCSI READ and WRITE operations at 
a LUN block level, including use of read and write buffers 
within the computer system, takes up significant time and 
resources. By converting the files into blacklists and utilizing 
the WRITE BUFFER or XCOPY SCSI command, the effort 
to perform the cloning can be offloaded to the hardware of the 
storage system itself. 
0063. Similarly, the delete primitive of FIGS. 6A, 6B, and 
7C facilitates the management of thinly provisioned virtual 
disks within a virtualized system. Rather than allocating Stor 
age space for a virtual disk in anticipation of future needs, a 
thin-provisioned virtual disk is allocated the minimum 
amount of storage space for its current needs and dynamically 
provided additional space from a pool of free space when the 
virtual disk demands it. As discussed in the context of FIGS. 
6A, 6B, and 7C, because the delete blocklist primitive or 
DELETE BLOCKS command frees extents in a storage sys 
tem and enables the storage system controller to unmap Such 
freed extents from the extent-maps of the LUNs previously 
using those extents, these extents can be returned to the free 
pool of extents utilized by other thinly provisioned virtual 
disks in need of additional storage space. 
0064. The detailed description provided herein with refer 
ence to FIG. 2 relates to a virtualized computer system. How 
ever, those of ordinary skill in the art will recognize that even 
non-virtualized computer systems may benefit from Such 
blacklist level primitives—any files existing at the file system 
level (i.e., not necessarily representative of virtual LUNs) of 
any computer system may take advantage of Such blocklist 
level primitives. Similarly, while the foregoing discussion has 
utilized the SCSI interface as a primary example of protocol 
communication between the disk array and computer system, 
those with ordinary skill in the art will also appreciate that 
other communication protocols may be utilized without 
departing from the spirit and scope of the claimed invention. 
In particular, as described in conjunction with FIGS. 7A, 7B. 
and 7C, a NAS device that provides file level access to storage 
through protocols such as NFS (in contrast to a SAN disk 
array supporting SCSI), rather than embedding blacklist 
primitives into the CDB of pre-existing SCSI commands, 
may use functional file primitives may be developed as ioctl 
control functions for NFS's standard ioctl operation. 

Offloading Storage Operations to a Third Party 
Server 

0065 FIG. 8A is another functional block diagram of a 
virtualized computer system topology in which one or more 
embodiments of the invention may be practiced. As previ 
ously described in conjunction with FIG. 1A, a computer 
system may include VMKernel 208 and virtual center appli 
cation 180. In accordance with one or more embodiments of 
the invention, virtual center application 180 stores VM spe 
cific storage metadata keyed by context identifiers in Supple 
mental configuration information (SCI) 802. SCI 802 can be 
queried and edited by clients by referencing the context iden 
tifier through a user interface. Third party server 190 is a 
server machine that also stores VM specific storage metadata 
(attributes and policies) keyed by context identifiers, and 
includes vendor specific extension 822 or a plugin that is used 
to manage VM storage operations. Virtual center application 
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180 may use SNIA (Storage Networking Industry Associa 
tion) compliant profiles (or vendor specific APIs) to commu 
nicate with third party server 190 in order to centrally report 
and set storage metadata for VMs 212. Extension 822 trans 
lates VM specific storage metadata into configuration infor 
mation 812 that is used to update metadata for storage system 
106. Extension 822 may also be configured to translate VM 
specific storage metadata into configuration information 807 
that is used to update metadata for NAS device 185. Configu 
ration information 812 may be stored as part of metadata 155, 
and contains information needed to update metatdata 155 to 
enable the storage devices to carry out the specified Storage 
operation. For example, extension 822 generates configura 
tion information 812 or 807 for updating metadata 155 to 
enable storage devices to carry out composite storage opera 
tions such as mirroring and replication, as described in con 
junction with FIGS. 8B and 8C. 
0066. When hardware based storage operations are to be 
carried out on VM components, such as virtual disks, the 
context of Such operations is conveyed as configuration infor 
mation 812 or 807 to storage system 106 or NAS device 185, 
respectively, through third party server 190. For example, 
when setting up a hardware-thin-provisioned virtual disk for 
VM 212 (refer to FIG. 2), storage system 106 is instructed to 
map a context identifier associated with the virtual disk to 
metadata indicating that VM 212 is thin-provisioned, storing 
the thin-provisioning attribute in configuration information 
812. Extension 822 receives SCI 802 for composite storage 
operations and generates configuration information that is 
supplied to storage system 106 so that storage system 106 will 
recognize that files associated with the context identifier are 
thin-provisioned. Previously unwritten extents correspond 
ing to VM 212 can be unmapped in the background or at 
creation time. Furthermore, Zero writes coming into storage 
system 106 as Zero operations can be silently discarded by 
storage system 106. Without configuration information 812 
or 807, storage system 106 or NAS device 185 would be 
unaware that VM 212 is thin-provisioned. 
0067 Basic operations such as open, close, delete, and the 
like that do not require the movement of data are performed 
by VMKernel 208. The data moving portion of the storage 
operations, such as copying, are offloaded from VMKernel 
208 to the storage system 106 under control of third party 
server 190 using vendor specific extension 822 or a plugin, as 
described in conjunction with FIGS. 8B and 8C. Additionally, 
primitives such as Zero, clone, and delete can each convey the 
context identifier as part of their payload, so that an operation 
can be instantaneously mapped to the properties that govern 
the context requesting the operation. Furthermore, the primi 
tives can also carry per-operation directives. For example, a 
primitive may include a directive to make a full clone (eagerly 
copy blocks) for a given set offile segments instead of a quick 
clone (copy-on-write blocks). 
0068 FIG. 8B is a flow diagram for offloading composite 
storage operations, such as mirroring and replication using 
third party server 190 in accordance with one or more 
embodiments of the invention. At step 822 a user initiates a 
composite storage operation through virtual center applica 
tion 180 or a command line. At step 824, virtual center appli 
cation 180 performs metadata operations on VMFS volume 
302 through VMKernel 208. For example, when a replicate 
composite operation is specified, a second set of virtual disks 
in a different data center is set up by virtual center application 
180. When a “mirror” composite storage operation is per 
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formed, virtual center application 180 sets up a second set of 
virtual disks in the same data center. At step 826, VMKernel 
208, in conjunction with virtual center application 180, 
obtains location information, such as a filehandle (for files 
stored on NAS device 185) or blocklist (for files stored on 
storage system 106), from VMKernel 208, and updates SCI 
802 with the operation specific configuration information, 
e.g., that a virtual disk is a copy (mirrored or replicated) of 
another virtual disk. 
0069. At step 828, third party server 190 receives opera 
tion specific configuration information that is included in SCI 
802 from VMKernel 208. Third party server 190 transcribes 
the operation specific configuration information into a vendor 
specific format to generate configuration information 807 or 
812 that is needed for the composite storage operation, and 
supplies it to the storage device, e.g., NAS device 185 or 
storage system 106, through out-of-band paths 188 and 183, 
respectively. Alternatively, the operation specific configura 
tion information may be transcribed by the storage device to 
produce configuration information 807 or 812. The configu 
ration information may be included in the extent-map. 
0070. When mirroring is performed, the configuration 
information indicates that a relationship exists between the 
file being mirrored and the mirror file, and may indicate 
whether or not the mirroring is synchronous or asynchronous 
and a quality of service (QOS) level. Similarly, with replica 
tion, the configuration information may indicate whether 
compression or encryption should be employed. The configu 
ration information is used by the storage device to keep the 
mirror file updated as the file being mirrored is modified, e.g., 
writtento, snapshotted, rolled back, and the like. Writes to the 
file being mirrored (or replicated) will be reflected to the 
mirrored (or replicated) file by storage system 106 or NAS 
device 185 based on the configuration information 812 or 
807, respectively. Writes for replicated extents are reflected 
by storage system 106 to a storage system 106 in another data 
center. Importantly, the transfer of data is performed by the 
storage system rather than third party server 190, virtual 
center application 180, or VMKernel 208. 
(0071. At step 830, third party server 190 controls the 
execution of the composite storage operation by the storage 
device in order to offload storage operations from VMKernel 
208. For example, third party server 190 issues a command to 
mirror or replicate the file by creating a clone. 
0072 FIG. 8C is a flow diagram for performing mirroring 
using third party server 190 in accordance with one or more 
embodiments of the invention. At step 832, virtual center 
application 180 receives a mirror command, mirror (F1, F2), 
where the file F1 is mirrored to a new file, F2. Virtual disk 222 
for the new file, F2, is created by VMKernel 208 in virtual 
machine execution space 210. Virtual center application 180 
obtains the blocklist (or filehandle) for F2 from VMKernel 
208. 

0073 Creating the new file, F2, on the storage device is 
necessary to complete the mirror operations. It is also neces 
sary to provide configuration information to virtual center 
application 180 and the storage device (via third party server 
190), so that storage system 106 or NAS device 185 is aware 
that F2 is a mirror of F1 in order for the storage device to 
properly maintain F2 as a mirror file. Therefore, at step 838, 
third party server 190 supplies the configuration information 
to the storage device, as previously described in conjunction 
with FIG. 8B. Also, without requiring any action by VMKer 
nel 208, virtual center application 180 sets up the mirroring 
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through third party server 190. The new file, F2, is created, F1 
is copied to F2, and virtual center application 180 provides 
configuration information to the storage device that indicates 
F2 is a mirror of F1 through third party server 190. 
0074. Since file F2 is a mirror offile F1, all writes to F1 are 
also reflected to F2 by the storage device. At step 840, VMK 
ernel 208 receives a command to snapshot file F1. A redo log 
is created by the storage device for F1. Since virtual center 
application 180 was provided configuration information indi 
cating that F2 is a mirror of F1, a redo log is also created by 
VMkernel 208 on instruction from virtual center application 
180 for F2. Virtual center application 180 then sets up a redo 
log for F2 that is a mirror of the redo log for F1. As data is 
written to F1 through the virtual machine file system, the data 
writes are captured in the redo log file for F1, and mirrored to 
the redo log file for F2. Virtual center application 180 sends 
the blocklists for data writes to third party server 190 for F1, 
and third party server 190 performs the mirroring for F2 and 
the redo log files for F1 and F2. 
0075. At step 842, virtual center application 180 receives 
a command to rollback F1 to the most recent snaphot. Virtual 
center application 180 and VMKernel 208 perform the roll 
back command for F1 and F2. If the redo log had not been 
created by virtual center application 180 and VMkernel 208, 
F2 would not be an accurate mirror of F1 after step 842 is 
completed. Because third party server 190 provides the stor 
age device with configuration information 812 or 807, the 
storage device properly maintains F2 as a mirror of F1, 
including the creation and maintenance of the redo log. If the 
configuration information is not provided to the storage 
device, VMKernel 208 is burdened with the task of creating 
and maintaining F2 and the redo log. Third party server 190 
beneficially allows VMkernel 208 or virtual center applica 
tion 180 to control NAS and SAN capabilities of storage 
devices, NAS device 185 and storage system 106, respec 
tively, in order to offload the movement of data from VMK 
ernel 208. 
0076. At step 844, virtual center application 180 receives 
a command to fracture F2 from F1, and third party server 190 
updates the configuration information for the storage devices 
to indicate that file F2 is no longer a mirror of file F1 and the 
F2 redo log is no longer a mirror of the F1 redo log. Virtual 
center application 180 deletes the F2 redo log through VMk 
ernel 208. At step 846, virtual center application 180 receives 
a command to delete file F2. VMkernel 208 deletes the F2 file 
from VMFS 230, and third party server 190 deletes the F2 file 
from the storage devices. The previously described delete 
primitive may be used by third party server 190 to delete the 
F2 file, producing updated configuration information 807 or 
812. Virtual center application 180 will also make corre 
sponding changes to VM212 configuration information at the 
time of fracture and deletion in order to decouple the affected 
file from the current State of the VM 212. 
0077 Offloading the data moving portion of storage 
operations, such as copying, from VMkernel 208 to the stor 
age devices using third party server 190 improves the effi 
ciency of the host system. Additionally, the transfer of con 
figuration information associated with composite storage 
operations by third party server 190 to storage devices 
enables the integration of the storage device capabilities into 
the virtual machine workflow. 

Offloading Storage Operations to a Switch 
0078 Switch 197 (shown in FIG. 9A) may be used to 
offload storage operations from VMkernel 208 by translating 
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primitives, e.g. copy and clone, enroute to storage devices that 
do not support the new blacklist primitives. For example, new 
primitives such as copy and clone may be translated by Switch 
197 for execution by the physical storage devices, when a 
storage device is not configured to execute the blacklist primi 
tive directly. This translation offloads the data moving portion 
of the storage operations from the file system. Another advan 
tage of offloading storage operations through Switch 197, is 
that switch 197 functions for storage systems provided by 
different vendors and therefore, allows for interoperability 
with existing and disparate storage systems. Switch 197 may 
perform the translation or a virtual target, Such as another 
computer system 100 or 200, may be setup by the switch to 
perform the translation. Additionally, per-VM policies may 
be specified, and switch 197 may be configured to implement 
those policies. Example policies include RAID levels, snap 
shot frequency, data protection, QOS (quality of service), 
thin-provisioning, and the like. The policies effect the han 
dling of the data movement when a storage operation is per 
formed, and may be included in SCI 802, configuration infor 
mation 807, or configuration information 812. 
007.9 FIG. 9A is a functional block diagram illustrating a 
portion of the virtualized computer system topology of FIG. 
8A in which one or more embodiments of the invention may 
be practiced. Switch 197 includes one or more data path 
processors, DPPs 901, and one of more control path proces 
sors, CPPs 902. Each DPP 901 routes protocol packets 900 
received at one fabric port of switch 197 to another fabric port 
of Switch 197 to route requests, including storage requests 
between sources and target destinations. Each CPP 902 is 
configured to provide intelligent processing, including the 
implementation of policies and translation of blocklist primi 
tives that are not recognized by destination storage devices, 
such as storage system 106 or NAS device 185 to offload the 
data movement portion of the storage operations from VMK 
ernel 208. Control unit 903 is configured to determine 
whether a received packet is processed by a DPP 901 or a CPP 
902. 

0080 When a CPP902 does not include support for trans 
lating aparticular blocklist primitive, VMFS 230 or LVM232 
in the requesting computer system 100 or 200 instructs switch 
197 to create a virtual target having a unique LUN identifier, 
such as virtual target server 920. CPP902 is then programmed 
to communicate with virtual target server 920. Virtual target 
server 920 is configured as a proxy host that is able to translate 
blocklist primitives for execution by the storage devices. CPP 
902 routes packets with blocklist primitives that it is not 
configured to translate to virtual target server 920. Virtual 
target server 920 translates the blocklist primitive for execu 
tion by the storage devices to offload the data movement 
portion of the storage operations from VMKernel 208. When 
the Zero blocklist primitive is used, CPP902 or virtual target 
server 920 may translate the Zero blocklist primitive into 
SCSI WRITE SAME commands with the value of Zero for 
each block <LUN ID, offset, lengths in the sourceblocklist, 
as previously described in conjunction with FIG. 4A. When 
the clone blocklist primitive is used, CPP902 or virtual target 
server 920 may translate the clone blocklist primitive into 
SCSI XCOPY commands for each block <LUN ID, offset, 
lengths in the sourceblocklist, as previously described in 
conjunction with FIG. 5A. 
I0081 FIG. 9B is a flow diagram for offloading storage 
operations to switch 197, in accordance with one or more 
embodiments of the invention. At step 910, switch 197 



US 2009/0300023 A1 

receives a protocol packet including a storage operation. At 
decision step 915, control unit 903 determines if a blocklist 
primitive specified for the storage operation is a simple opera 
tion, such as a read or write storage operation that can be 
processed by a DPP 901. 
0082 If the operation included in the protocol packet is a 
simple one, then, at step 935, a DPP 901 processes the pro 
tocol packet. Otherwise, at decision step, step 920, CPP 902 
determines if it is configured to translate the blocklist primi 
tive into commands that can be executed by the storage 
device. If the CPP 902 is not configured to translate the 
blocklist primitive, then, at step 940, the CPP902 routes the 
protocol packet to virtual target server 920 for translation. At 
step 945, virtual target server 920 receives the protocol packet 
including the translated blocklist primitive, translates the 
blocklist primitive into commands for execution by the target 
storage device, and returns the protocol packet with the trans 
lated blocklist primitive to switch 197 for routing to the target 
destination. A DPP 901 will process the packet and route it to 
the target destination. 
I0083. Returning to step 920, if the CPP 902 determines 
that it is configured to translate the blocklist primitive, then at 
step 925, the CPP 902 translates the blocklist primitive into 
commands for execution by the target storage device. At step 
930, the CPP 902 (or DPP 901 that processed the protocol 
packet at step 935) outputs the protocol packet to the target 
destination, e.g., storage device. The translation of the black 
list primitive into commands by either CPP 902 or virtual 
target server 920 offloads the storage operations from VMK 
ernel 208. 
I0084. Outside of the flow diagram shown in FIG.9B, the 
host system determines whether or not the storage device is 
configured to execute blacklist primitives. A protocol packet 
including a blacklist primitive is provided by the host system 
for translation when a storage device is not configured to 
execute the primitive. If switch 197 is unable to translate a 
primitive, switch 197 reports an error to the host system and 
the host system handles the translation. 
0085. One or more embodiments of the invention may be 
implemented as a program product for use with a computer 
system. The program(s) of the program product define func 
tions of the embodiments (including the methods described 
herein) and can be contained on a variety of computer-read 
able storage media. Illustrative computer-readable storage 
media include, but are not limited to: (i) non-Writable storage 
media (e.g., read-only memory devices within a computer 
such as CD-ROM disks readable by a CD-ROM drive, flash 
memory, ROM chips or any type of solid-state non-volatile 
semiconductor memory) on which information is perma 
nently stored; and (ii) Writable storage media (e.g., floppy 
disks within a diskette drive or hard-disk drive or any type of 
Solid-state random-access semiconductor memory) on which 
alterable information is stored. 
0.086 The invention has been described above with refer 
ence to specific embodiments. Persons skilled in the art, how 
ever, will understand that various modifications and changes 
may be made thereto without departing from the broader 
spirit and scope of the invention as set forth in the appended 
claims. The foregoing description and drawings are, accord 
ingly, to be regarded in an illustrative rather than a restrictive 
SSC. 

What is claimed is: 
1. In a computer system including a host computer con 

nected to a storage system having storage devices that are 
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represented as logical storage units, a method of offloading 
storage operations from a file system to the storage system 
through a third party server, said method comprising: 

receiving a composite storage operation for the storage 
system; 

obtaining location information from the file system for a 
file that is stored on the storage devices; and 

generating configuration information associated with the 
composite storage operation at the third party server and 
Supplying the configuration information and the loca 
tion information to the storage system. 

2. The method according to claim 1, wherein location 
information is a list of blocks, and each block identifies a 
contiguous region of a logical storage unit using a logical unit 
number corresponding to the logical storage unit, an offset 
value, and length. 

3. The method according to claim 1, wherein the location 
information is a file handle and the storage devices are net 
work accessible storage devices. 

4. The method according to claim 1, wherein the composite 
storage operation is mirroring a first file that is stored on the 
storage devices and the configuration information indicates 
that a second file is a mirror of the first file. 

5. The method according to claim 4, further comprising 
receiving at the third party server changes made to the first file 
from the file system and maintaining a redo log for the second 
file based on the changes. 

6. The method according to claim 1, wherein the configu 
ration information is supplied from the third party server to 
the storage system through an out of band path that bypasses 
the file system. 

7. The method according to claim 6, wherein the configu 
ration information is supplied from the third party server to a 
network interface card of the storage system. 

8. A computer system comprising: 
a host computer configured to provide a file system that 

maintains location information for files; 
a storage system, connected to the host computer, having 

storage devices that store the files and are presented to 
the host computer as one or more logical storage units of 
the file system; and 

a third party sever that is coupled between the host com 
puter and the storage system and configured to receive a 
composite storage operation for the storage system, 
obtain location information from the file system for a file 
that is stored on the storage devices, and generate con 
figuration information associated with the composite 
storage operation at the third party server and Supply the 
configuration information and the location information 
to the storage system. 

9. The computer system according to claim 8, wherein 
location information is a list of blocks, and each block iden 
tifies a contiguous region of a logical storage unit using a 
logical unit number corresponding to the logical storage unit, 
an offset value, and length. 

10. The computer system according to claim8, wherein the 
location information is a file handle and the storage devices 
are network accessible storage devices. 

11. The computer system according to claim 8, wherein the 
composite storage operation is mirroring a first file that is 
stored on the storage devices and the configuration informa 
tion indicates that a second file is a mirror of the first file. 

12. The computer system according to claim 11, further 
comprising receiving at the third party server changes made 
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to the first file from the file system and maintaining a redo log 
for the second file based on the changes. 

13. The computer system according to claim8, wherein the 
configuration information is Supplied from the third party 
server to the storage system through an out of band path that 
bypasses the file system. 

14. The computer system according to claim 13, wherein 
the storage system includes a network interface card that is 
coupled to the third party server by the out of band path and 
configured to receive the configuration information. 

15. A computer readable storage medium storing instruc 
tions for causing a third party server of a storage system that 
has storage devices that are represented as logical storage 
units, to offloading storage operations from the file system by 
performing the steps of 

receiving a composite storage operation for the storage 
system; 

obtaining location information from the file system for a 
file that is stored on the storage devices; and 

generating configuration information associated with the 
composite storage operation at the third party server and 
Supplying the configuration information and the loca 
tion information to the storage system. 

16. The computer readable storage medium according to 
claim 15, wherein location information is a list of blocks, and 
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each block identifies a contiguous region of a logical storage 
unit using a logical unit number corresponding to the logical 
storage unit, an offset value, and length. 

17. The computer readable storage medium according to 
claim 15, wherein the location information is a file handle and 
the storage devices are network accessible storage devices. 

18. The computer readable storage medium according to 
claim 15, wherein the composite storage operation is mirror 
ing a first file that is stored on the storage devices and the 
configuration information indicates that a second file is a 
mirror of the first file. 

19. The computer readable storage medium according to 
claim 18, further comprising receiving at the third party 
server changes made to the first file from the file system and 
maintaining a redo log for the second file based on the 
changes. 

20. The computer readable storage medium according to 
claim 15, wherein the configuration information is Supplied 
from the third party server to the storage system through an 
out of band path that bypasses the file system. 

21. The computer readable storage medium according to 
claim 20, wherein the configuration information is Supplied 
from the third party server to a network interface card of the 
Storage System. 


