26440 [11] No.:

[45] Issued: JUL 1 5 1002

[54] Title:

COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION

OF OLEFINS

[75] Inventor (s):

ENRICO ALBIZZATI and LUISA BARINOW both of Moraret

PIER CAMILLO BARBE and LICIANO NORISTI, both of

[78] Assignee (s): Ferrara; RAIMONDO SCORDAMAGLIA and UMBERTO GIANNINI.

both of Milan and GIAMPIERO MORINI, of Veghera, Pavia,

all of Italy

[22] Filed: HIMONT INCORPORATED, of Delaware, a corporation of

U.S.A.

September 27, 1989

[21] Application Serial No:

39298

FOREIGN APPLICATION PRIORITY DATA

[81] Number (s)

22150 A/88

[32] Date (s)

September 30, 1988

[88] Country (ies)

Italy

PH Class [52]

502/126

Int. Class [61]

COSF 4/646

[58] Field of Search Clas 502/126

[86] Reference (s) Cited and/or Considered:

U.S. Pat. Nes.

4,246,383

Jan. 1981

4,298,718

Mayer, et al.

Gessell

Nov. 1981

4,400,303 4,522,930 [57]

Martin

Aug. 1983

Albisatti, et el. June 1985

4,762,398

Matsura, et al.

Aug. 1988

ABSTRACT

Solid catalyst components for the polymerisation of olefine modified with electron-donor compounds, comprising a titanium halide suppoted on a magnesium dihalide in active form and containing as an electron-donor compound a di- or polyether having specific reactivity characteristics towards MgCl2 and TiCl4.

15	Claims.	Specification: 43	page (s):	Drawings: None sheet (s)
Examiner:	JU.S	TINA MANALO		
Attorney /	/ Agent:	BITO, ET AL	•	

Bush

COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINS

ABSTRACT

solid catalyst components for the polymerimation of olefins modified with electron-donor compounds, comprising a titanium halide supported on a
magnesium dihalide in active form and containing as
an electron-donor compound a di- or polyether having
specific reactivity characteristics towards MgCla
and TiCl4.

The present invention relates to solid components of entalysts for the polymerization of claffins and the entalysts obtained therefrom. The entalysts including titanium compounds supported on magnesium halides in active form are well known in the art.

Catalysts of this type are described for the first time in the USA patent No. 4,298,718. Said entalysts are formed on titanium tetrahalides supported on halides of magnesium in active form.

Although the catalysts have high notivity in the polymerisation of ethylene as well as alpha elefins like propylene and butene-1, they are not very stereospecifie.

Improvements to stereospecificity have been made by adding electron-donor compounds to the solid catalyst component (U.S. patent No. 4,544,717).

Substantial improvements were made using, in addition to the electron-donor present in the solid component, an electron-donor added to the Al-alkyl co-catalyst component (U.S. patent No. 4,107,414).

The estalysts modified in this manner although they are highly stereospecific (isotactic index about 94-95) still do not show sufficiently high levels of activity.

Significant improvements in activity and steresspecificity were obtained by preparing the solid catalytic component according to the technique described in V.S.

BAD ORIGINAL

- 9

(3 JAMANINO OVE

5

10

15

20

25

patent No. 4,226,741.

10

15

20

25

High level performance in catalyst activity as well as stereospecificity have been obtained with the estalysts described in Burepess Patent No. 045977. Said estalysts have as a solid estalyst component, a magnesium halide in active form on which is supported a titandum halide preferably 11.01, and an electron-donor compound melected from specific classes of carboxylic soid esters, of which the phthalates are typically examples, and, as a co-catalyst component, a system formed of an Al-trielkyl compound and a milicon compound containing at least one Si-CR bend (R hydrocarbyl radical). After the appearance of the above mentioned patents which mark the fundamental step for the development of the coordination estalysts supported on magnesium halides, many patents have been filed with the purpose of modifying and/or impreving the performence of the above mentioned estalysts.

In the prolific patent and scientific literature available, however, there is no description of entelysts endowed with both high activity and stereospecificity in which the electron-donor of the solid estalyst component is the only donor present in the estalyst system. The catalysts known up to now that have both high activity and stereospecificity always include the use of an electron-donor in the solid estalyst component and in the ex-

catalyst component.

Surprisingly, it has now been found that it is possible to prepare highly active and stereospecific catalysts where the only donor used is present in the solid catalyst component.

The donors used in the catalysts of this invention are others with one or more other groups, which satisfy particular requisites of reactivity towards magnesium dichloride and titanium tetrachloride.

The ethers of the invention form complexes with magnesium dichloride but in a quantity of less than 60 mmoles per 100 g of MgOl₂; with TiOl₄ the ethers do not undergo at all substitution reactions or they react this way for less than 50% in moles.

Preferably the ethers form complexes with magnesium chloride in quantities comprised between 20 and 50 mmoles, and react with TiCl₄ for less than 50%.

The procedures for the tests of magnesium chloride complexing that reaction with TiCl, are reported below.

Examples of suitable ethers which satisfy the reactivity criterion set forth above are 1,3-diethers of formula:

10

15

20

where R_1 and R_2 independently are linear or branched alkyl, cycloaliphatic, anyl, alkylaryl or anylalkyl radicals with 1-18 earbon atoms, and R_1 or R_2 may also be hydrogen.

5

10

15

20

25

In particular R is an alkyl radical with 1-6 carbon atoms, and more specifically it he methyl. In this case, when R₁ is methyl, ethyl, propyl or isopropyl, R₂ may be ethyl, propyl, isopropyl, butyl, isobutyl, butyl, 2-ethylhexyl, cyclohexyl methyl, phenyl, or bentyl, when R₁ is hydrogen R₂ can be ethyl, butyl, sectionaryl, t-butyl, 2-ethylhexyl, cyclohexylethyl, diphenylmethyl, p-chloropenyl, n-naphthyl, 1-decahydronaphthyl; R₁ and R₂ can be the same and be ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, neopantyl, isopantyl, phenyl, bensyl er cyclohexyl.

Examples of representative ethers that are included in the above formula are: 2-(2-ethylhexyl) 1,5-dimethoxypropane, 2-isopropyl- 1,5-dimethoxypropane, 2-isopropyl- 1,5-dimethoxypropane, 2-dimethoxypropane, 2-dimethoxypropane, 2-dimethoxypropane, 2-phanyl-1,5-disthoxypropane, 2-(2-phanyl-1,5-dimethoxypropane, 2-(2-phanyl-1,5-dimethoxypropane, 2-(2-oyolohexylethyl)-1,5-dimethoxypropane, 2-(4-phanylmothyl)-1,5-dimethoxypropane, 2-(4-maphthyl)-1,5-dimethoxypropane, 2-(1-maphthyl)-1,5-dimethoxypropane, 2-(1-maphthyl)-1,5-dimethoxypropane, 2,2-fluorophanyl)-1,5-dimethoxypropane,

pame, 2-(1-decahydronaphthyl)-1,5-dimethoxypropume, 2-(p-t-butylphenyl)-1,5-dimethoxypropems, 2,2-dieyelohemyl-1,3-dimethoxypropens, 2,2-disthyl-1,3-dimethoxypropens, 2,2-dipropyl-1,5-dimethoxypropeme, 2,2-dibutyl-1,5-dimethomypropene, 2-methyl-2-propyl-1,3-dimethomypropene, 2methyl-2-bensyl-1,3-dimethoxymopene, 2-methyl-2-ethyl-1,3-dimethoxypropene, 2-methyl-2-propyl-1,3-dimethoxypropens, 2-methyl-2-bensyl-1, 3-dimethoxypropens, 2-methyl-2-phenyl-1, 3-dimethoxypropane, 2-methyl-2-cyclohexyl-1,3dimethoxypropems, 2,2-bis(p-chlorophenyl)-1,3-dimethoxypropose, 2, 2-bis(2-cyclohexylethy1)-1, 3-dimethoxypropose, 2-methy1-2-isobuty1-1,5-dimethoxypropone, 2-methy1-2-(2ethylhexyl)-1,3-dimethoxypropene, 2-methyl-2-isopropyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane. 2, 2-diphenyl-1, 3-dimethoxypropens, 2, 2-dibensyl-1, 3-dimethoxypropene, 2,2-bis(cyclohexylmethyl)-1,5-dimethoxypropens, 2,2-disobutyl-1,3-disthoxypropens, 2,2-disobuty1-1,3-dibutoxypropems, 2-dsobuty1-2-dsopropy1-1,5dimethoxypropene, 2,2-di-sec-buty1-1,5-dimethoxypropene, 2,2-di-tertahuty1-1,3-dimethoxypropens, 2,2-di-neopenty1-1,3-dimethoxypropens, 2-isopropyl-2-isopentyl-1,3-dimethoxypropens, 2-phenyl-2-bensyl-1,5-dimethoxypropens, 2eyelohexyl-2-eyelohexylmethyl-1, 3-dimethoxymopene." Other suitable ethers are: 2,3-diphenyl-1,5- di-

5

10

15

20

25

BAD ORIGINAL

ethoxybutene, 2,3-dicyclohexyl-1,4-dicthoxybutene, 2,2-di-

bensyl-1,4-diethoxybuteme, 2,3-dibensyl-1,4-dimethoxybutems, 2,5-dicyclohexyl-1,4-dimethoxybutems, 2,5-diisepropy1-1,4-diethoxybutame, 2,2-bis(p-methylpheny1)-1,4dimethoxybuteme, 2,3-bis(p-chloropheny1)-1,4-dimethoxybutene, 2,3-bis(p-fineropheny1)-1,4-dimethoxybutene, 2,4diphenyl-1,5-dimethoxypentene, 2,5-diphenyl-1,5-dimethoxypentene, 2,4-diisopropyl-1,5-dimethoxypentene, 2,5-diphenyl-1,6-dimethoxypentane, 5-methoxymethyltetrahydrofurat, 5methocymethyldioxane, 1,1-dimethocymethyl-decalydrenaghthelene, 1,1-dimethoxymethyl-inden, 2,2-dimethoxymethylindene, 1,1-dimethoxymethy1-2-isopropy1-5-methylayeleherene, 1,3-diisosaylarypropene, 1,2-diisobricaypropene, 1,2-diisobutoxyethane, 1,3-diisoamylaxypropame, 1,2-diisesimiloxyetheme, 1,5-dineopentoxypropene, 2,2-tetrasethylene-1,5-dimethoxypropene, 1,2-dimedpentoxyetheme, 2,2-tetramethylene-1, 5-dimethoxypropene, 2,2-pentemethylene-1,5dimethoxypropane, 2, 2-pentamethylene-1,5-dimethoxypropane, 2, 2-hexamethylene-1, 5-dimethoxypropame, 1, 2-his (methoxymethyl)cyclohexame, 2,8-dickaspiro/5,5/undecame, 5,7-dionabicyclo/3,3,17mmane, 3,7-diemabicycle/3,3,07cctame, 3,5-dilsobutyl-1,5-dicconomene, 6,6-dilsobutyldiccyhepteme, 1,1-dimethoxymethylayelopropene, 1,1-bis/dimethoxymethyl cyclohexene, 1,1-bis methoxymethyl oloyclo 2,2,17heptens, 1,1-dimethoxymethyl cyclopentams, 2-methyl-2methoxymethyl-1, 3-dimethoxypropens:

5

10

15

20

25

The others preferred are the 1,3-diethers belonging to the general formula indicated above and in particular those where R is methyl and R, and R, independently, are isopropyl, isobutyl, t-butyl, eyelohenyl, isopentyl, oyelohenylethyl. Ethers particularly preferred are 2,2-diisobutyl-1,3-dimethoxypropame; 2-isopropyl-2-isopentyl-1,3-dimethoxypropame; 2,2-bis(oyelohenylmethyl)-1,3-dimethoxypropame.

The other complexing test with MgCl₂ is conducted as follows.

In a 100 ml flask with fixed blades mechanical egitator are introduced in a nitrogen atmosphere, in order:

- 70 ml anhydrous n-heptene
- 12 mmoles onlydrous MgCl activated as described below
- 15 2 mmoles ether.

10

Carrie

The ingredients are heated at 60°C for 4 hours (stirring speed 400 rpm), then filtered and washed at room temperature with 100 ml n-heptane and dried with mechanical pump.

20 The quantity of other complexed is determined, after treatment of the solid with 100 ml of others, by quantitative gaschromatic analysis.

The data relative to the complexing test are shown in Table 1.

25 The test for reactivity with TiCl is conducted

as follows.

In a 25 ml test tube with a magnetic agitator are introduced, in a nitrogen atmosphere, in order:

- 10 ml embydrous n-heptens
- 5 mmoles TiOl

10

15

20

25

- 1 mmole ether donor

The ingredients are heated at 70° for 50 min. then cooled at 25°C and decomposed with 90 ml of ethanol.

phically using a stendard HIMONT method available upon request, with a Carlo Erba HRGC 5500 Mega Series gas chrematograph with a 25 meters Ohrompack OP-SIL 5 CB capillary column. The data relative to the reactivity tests are shown in Table 1.

The megnesium dichloride used in the complexing test with the ethers is prepared as follows.

In a 1 1 container of a vibrating mill (Siebtechnik's Vibratrom) containing 1.8 kg of steel spheres 16 mm in diameter, are introduced under a nitrogen atmosphere, 50 g anhydrous MgCl₂ and 6.8 ml 1,2 dichloroethans (DOB). The mixture is milled at room temperature for 96 hours, after which the solid obtained is dried at 50°C for 16 hours under vacuum of a mechanical pump.

Solid characterisation.

In the X-ray powder spectrum:

- half peak breadth of D110 reflection = 1.15 cm;
- presence of a halo with maximum intensity at angle 2 0 = 52.10;
- Surface are (B.E.T.) = 125 m²/g;
- 5 Residual DCE = 2.5% by weight.

Table 1

May Music at the

Ether	Complexing with MgCl2 (*)	Reaction with TiOLA (**
2,2-dimethyl-1,3-		
dimethoxypropens	3,5	00
2-methyl-2-isopropyl		- enterior est de des de la litera della de la litera del
1,3-dimethoxypropens	1,6	71
2,2-diisobuty1-1,3-		
dimethoxypropone	3,3	98
2,2-d11sobuty1-1,5-		
disthoxypropens	2,0	100
2, 2+diisobu ty 1–1, 3-d	1-	
n-butogpropane	0,5	97
2,2-diphenyl-1,5-		
dimethoxypropene	0,7	75

Table 1 (follow)

2,2	-bis (cyclohexylmethyl)		
1,5	-dimethoxypropene	1,8	85
1,5	-diisobutoxypropeme	2,6	99
2,2	-pentamethylens-1,3-		
din	ethoxypropene	2,4	100
1,1	-bis (methodymethyl)-		
bie	yolo-(2,2 ,1 -heptane)	1,9	97
1,5	-dimethoxypropens	9,6	100
1-1	sopropyl-2, 2-dimethyl-	,	
1,3	-dinethoxypropens	1,3	0
2-4	sepenty1-2-1sopropy1		
1,	5-dimethoxypropsme	2,5	98
1,	2-dimethoxyethane	9,4	76
(*) Moles of other X 100 ca	mplexed by 100 g o	er ngoli
(*	*) Fercentage in moles of	ther recovered a	ter reset
	with 11014		

The preparation of the selid estalyst compensation including the others of the invention is carried out according to various methods."

For example, the magnetium dihalide (used in subgirous state containing less than 1% of water), the titudium compound and the di or polyether are ground tegether under conditions where activation of the magnetium dihalide coours. The milled product is them treated one or more times with TiOl₄ in excess at temperatures between 80 and 155°0 and them washed repeatedly with a hydrocarbon i.e. hereme until all chlorine ions disappears.

10

15

20

25

According to another method, the ashydrone negacsize dihalide is presetivated according to known methods in the prior art and then reacted with an excess of MCL₄ which contains the other compand in solution, at teaperatures between 80 and 135° C. The treatment with MCL₄ is repeated and the solid is then weahed with hexage to climinate all traces of unreacted MCL₄.

According to another method, an MgCl₂ nROH addret (particularly in form of spheroidal particles) in which m is a number from 1 to 5, and ROH is ethomol, butamel, or isolutamel, is treated with an excess of MiCl₄ containing the other compound in solution at a temperature generally between 80 and 120°C. After the reaction, the so-

BAD ORIGINAL

lid is treated once more with MCL4: then separated and washed with a hydrocarbon until the chlorine ions are removed.

According to mother method, elechelates or chloroelechelates of magnesium, the chloroelechelates prepared according to V.S. patent No. 4,220,554 are treated with ElCl₄ in excess containing the other compound in solution, under reaction conditions described above.

halide with titemism alsoholates for example the complex MgCl₂ 2M (CC₄H₉)₄ are treated, in a hydrocarbon solution, with MCl₄ in excess containing the other compound in solution, the solid product is separated and further treated with an excess of MCl₄ and then separated and washed with hexame. The reaction with MCl₄ is conducted at temperatures between 80 and 120°C.

According to a variant of the above method, the complex between MgCl₂ and the titumium alacholate is resorted in hydrocarbon solution with hydropolyxylexame. The separated solid product is reacted at 50°C with silicon tetraphloride containing the other compound in solution and the solid is treated with MCl₄ in excess operating at 80-100°C. It is possible to react with MCl₄; in excess, containing the other compound in solution, percus styrene-divinylbensene resists in spherical particle form,

10

15

20

impregnated with solutions of compounds or complemes of Mg soluble in organic solvents:

the resins and their method of improgration are described in European Patent No. 344795.

5

The reaction with TiOl, is earried out at 80-200°C.

and after separating the TiOl, excess, the reaction is
repeated and the solid is then washed with a hydrocarbon.

The molar ratio MgCl_/ether compound used in the reactions indicated above is generally between 4:1 and 12:1."

10

The other compound is fixed on the magnesium halide containing component in quantities generally between 5 and 20% mole.

However, in the case of components supported on resins, the molar ratio between fixed other compound and the magnesium present in generally between 0.3 and 0.8.

In the estalytic components of the invention the ratio Mg/Ri is generally between 50:1 and 4:15 in the components supported on resins the ratio is lower, generally from 2:1 to 5:1.

20

25

15

The titenium compounds that can be used for the preparation of catalytic components are the halides and halogen alcoholates. Titenium tetrachloride is the preferred compound. Satisfactory results are obtained also with trihalides, particularly TiOly HR, TiOly ARA, and with haloalsoholates, such as TiOly CR, where R is a phonyl

radical.

5

10

15

20

25

The above mentioned reactions result in the formation of magnesium dihalide in active form.

In addition to these reactions, other reactions that result in the formation of magnesium dihalide in active form starting with magnesium compounds
different from halides are well known in literature.

The active magnesium dihalides present in the melid catalyst components of the invention show in the X-ray powder spectrum of the catalyst component the replacement of the most intense diffraction present in the powder spectrum of the non-activated magnesium halides having a surface area of less than 3 m²/g by a halo with the maximum intensity peak shifted with respect to the position of the most intense diffraction line, or a half peak breadth of the most intense diffraction line at least 30% greater than the half peak breadth of the corresponding line of the non-activated magnesium halide. The most active forms are those where in the X-ray powder spectrum of the catalyst component a halo appears.

Among the magnesium dihalides, the magnesium dichloride is the preferred compound. In the case of the
most active forms of magnesium dichloride in the halo
appears in place of the diffraction line that is present
in the spectrum of the non-active magnesium chloride at

an interplaner distance of 2.56A.

The solid entalyst component of the invention form, by reaction with Al-alkyl compounds, entalysts for the polymerisation of elefins CH₂ sche, where R is hydregen, alkyl radical with 1-60, or anyl radical, or mixtures of said elefins mixed with each other with or without disclefins.

The Al-allyl compounds include Al-triallyl such as Al-triethyl, Al-trisobutyl, Al-tri-m-butyl. Idness or syelic Al-allyl compounds containing two or more Al atoms linked to each other by O. N or S atoms may be used.

Examples of these compounds are:

10

15

E. AMARKHAN ...

where n is a number between 1 and 20%

Also one can use AlR_gCR¹ ecopeumis, where R¹ is an anyl radical substituted in position 2 and/or 6 and R is an alkyl radical with 1-6 carbon atoms, or AlR_gH ecopoumis.

The Al-alkyl compound is used in Al/Ni ration generally between 1 and 100.

The trielkyl compounds may be used in mixtures with Al-alkyl halides, such as AlET_Cl.

10

15

20

25

The polymerisation of olefins is earlied out seconding to known methods in a liquid phase of the monemer(s) or a solution of monomer(s) in an alighetic er aromatic hydrogerbon solvent, or in gas phase, or with techniques using a combination of liquid phase and gas phase.

the (co)polymerization temperature is generally between 0° and 150°C, preferably between 60° and 100°C, while operating at atmospheric pressure or at a higher pressure.

The ostalysts may be precontacted with small quasetities of olerins (prepelymerization). The prepolymerization improves the catalyst performance as well as the polymer morphology.

The prepolymerisation is carried out by maintaining the catalyst in dispension in a hydrocarbon solvent
(hexene, heptane, etc.) while centacting small amounts
of the monomer with the catalyst and polymerising at a

PAD ORIGINAL 3

temperature between room temperature and 60°C. producing quantities of polymer included between 0.5 and 3 times the weight of the catalyst component. It may also be carried out in liquid or gaseous monomer, under the temperature conditions above, to produce quantities of polymer up to 1000 g per g of the catalyst component.

In case of stereoregular polymerisation of olefins, in particular of propylene, some times it is convenient to use together with the Al-alkyl compound in electron-donor selected from 2,2,6,6-tetramethylpiperidine and silicon compounds containing at least one Si-OR bond wherein R is a hydrocarbyl radical.

Preferably the silicon compounds have the formula $R^{I}R^{II}S_{I}(OR^{III})$ (OR^{IV})

where R^I and R^{II} independently, are branched alkyl, cycloaliphatic or aryla radicals with 1-12 carbon atoms;

R^{III} and R^{IV} independently are alkyl radicals with 1-6 carbon atoms.

Exemples of such compounds are:

5

10

60

20 (t-butyl)₂ S1(OC₃)₂; (cyclohexyl)₂ S1(OCH₃)₂; (isopropyl)₂ S1(OCH₃)₂; (sec-butyl)₂ S1(OCH₃)₂.

The molar ratio between Al-alkyl compound and electron-donor is usually between 5:1 and 100:1.

As indicated above, the catalysts find perticular

application in the polymerisation of CH_sCHR clefins where R is an alkyl radical with 1-6 earten atoms or an aryl radical.

They are also particularly suited for the polymerization of ethylene and its mixtures with smaller preportions of alpha-olefins, such as butene-1, hexene-1
and outene-1 to form ILIDPE, because the catalysts produce
polymers with narrow molecular weight distribution.

5.

15

20

25

In the copolymerisation of ethylene with prepylane,

or other alpha-olefins or mixtures thereof to form elastomeric products copolymers are obtained having low crystallinity suitable therefore for the production of elastomers with highly valued qualities.

The following exemples illustrate the invention.

In the exemples, unless otherwise indicated, the percentages are by weight.

ing the polymer (150°C), cooling and then filtering it.

The solubility is determined by the fraction soluble at

25°C. The insoluble residue substantially corresponds to
the isoteoticity index determined by extraction with boiling n-heptane (4 hours). Melt index E and F for polyethylene
and I for polypropylene are determined according to ASTM

Di238. Melt index E and F are measured at 190°C with respective weights of 2.15 and 21.6 kg. The one for polypro-

pylene is measured at 250°C with a weight of 2.16 kg. The intrinsic viscosity are determined in tetralin at 155°C. Unless otherwise indicated, the isotacticity index (I.I.) has been determined by extraction with boiling n-haptane (4 hours).

Polymerisation Procedure

A. In liquid monomers

Procedure Asla

In a 4 1 steinless steel sutcoleve equipped with an anchor egitator and previously purged with mitrogen flux at 70°0 for 1 hour, were introduced, under prepylene flow at 30°C, 80 ml ambydrous n-hexage containing an adequate quantity of solid entalyst component and 6.9 mmoles of Al(Bt), The anteeleve was closed and 120 ml of hydrogen was introduced. The agitator was inserted and 1.2 kg of liquid propylane, or other alpha-elefin menance capable of being polynewised in liquid phase, was charged. The temperature was brought to 70°0 in 5 minutes and the polymerisation was carried out for 2 hours. At the and of the test the unreacted propyleme is removed. the pelymer recovered and dried in an even at 70° C under nitrogen flow for 3 hours, and thencharasterised.

20

15

10

Procedure A.l.l.

The procedure of A.1 above were followed except that added to the hexane was an appropriate quantity of an electron-donor together with Al(Bt)₃ corresponding to a molar ratio Al/donor = 20. The composition of the selic and the ethers used, the pelyments and the others used, the pelyments are described in tables 2 and 3.

In Table 5 the donor used together with Al(Et)₃ is indicated in parenthesis.

In solvent.

10

15

20

25

Presedure B.2.

mostat and magnetic agitator, which was previously purged with nitrogen flux at 70° C for 1 hour and washed 4 times successively with propyleme, was heated to 45° C and, under a light nitrogen flow, 670 ml of subydrous hexame was charged. The catalyst suspension (catalyst component and Al-alkyl premixed immediately before the test in 150 ml solvent) was them added. The sateclare was closed and 120 ml of hydrogen was fed from a calibrated cylinder. The agitator was inserted and the temperature was rapidly brought to 75° C (incubout 5 minutes). Gaseous propyleme or other alpha-clafin monomer was them introduced up to a total pressure of 8 atm.

feeding propylene or other monomers to reintegrate the monomer polymerised. At the end of the polymerisation the autoclave was rapidly degrased and ecoled to 25-50°C. The polyment suspension was then filtered, the solid part was dried in an oven at 70°C in nitrogen for 4 hours and then weighed and analysed. The filtrate was evaporated and the dry residue consisting of anorphous polymer was recovered and weighed. This was taken into consideration in calculating the total yield and the total isotactic index.

Procedure B.2.1

10

15

20

25

City Malinery

In a 2000 ml stainless steel autoclave, equipped with an amehor agitator, was introduced under a propyleme flow at 25°C 1000 ml n-heptane, 2.5 mmoles of Al(CH) and an adequate quantity of the solid catalyst component. The autoclave was closed and the pressure brought to 1 atm. while feeding propyleme, and an overpressure of hydrogen equal to 0.2 atm was introduced. The reaction mixture was heated to 70°C and the pressure brought to a total of 7 atm, by feeding propyleme, and polymerised for 2 hours while continuing to feed the monomer to maintain the pressure at 7 atm. The polymer obtained was isolated by filtration and dried; the polymer remaining in the filtrate was precipitated in methenol, vacuum

dried and considered in determining the total insoluble residue of the extraction with n-heptens. The composition of the solid catalyst components and others used and the polymerisation yields and the properties of the polymers obtained are described in tables 2 and 5.

Procedure B.2.2.

The polymerisation methods described in procedure $B_{\bullet}2.1.^{\circ}$ were followed except using 5 mmoles of $A1({}^{\circ}_{2}{}^{\circ}_{5})_{5}$ together with an adequate quantity of electron donor such that the molar ratio A1/donor=20. The composition of the solid catalyst components, ether and electron donor (with the A1-a11y1 compound) used and the polymerisation yields and the properties of the polymers obtained are described in tables 2 and 3. In table 3 the donor used together with $A1({}^{\circ}_{2}{}^{\circ}_{5})_{5}$ is indicated in parenthesis.

Exemple 1

10

15

20

25

In a 1 1 flack equipped with condenser, mechanical agitation and thermometer was introduced 625 ml TiCl₄ under nitrogen environment. 25 g of spherical MgCl₂.2.1C₂H₅CH support, obtained according to the procedures and ingredients of example of USS, patent 4 469 648, was fed at 0°C; with agitation and heated to 100°C over 1 hour, When the temperature reached 40°C, 4.1 ml of 2,2-diisobutyl-1,3-dimethoxypropame was introduced, and the contents maintained at 100°C for 2 hours, left to settle and the supernantant

siphoned off. 550 ml of MiCl₄ was added to the solid and heated at 120°C for 1 hour with agitation. The agitation was stopped, the solid was allowed to settle and the supernatant was removed by siphon. The residual semidd was them washed 6 times with 200 ml portions of amphydrous hexane at 60°C and 3 times at room temperature and dried under vacuum.

The catalyst solid component contained 5.4% Ti and 12.6% 2,2-disobuty1-1,5-dimethoxypropens. Propylems was polymerised according to procedure A.1 above for the liquid monomer using 0.76 g of Al(C_H)₅, 0.09 ml of hexame suspension containing 7.25 mg of solid estalyst component and 1000 ml hydrogen. 460 g of polymer was obtained. The polymer yield was 63.4 kg/g of catalyst component. The polymer has a 95.3% insoluble residue in xyleme at 25°C, a melt index of 10.0 g/10° and a temped bulk density of 0.48 g/ml.

Example 2

5

10

15

20

25

for a more

In a 500 ml glass flask equipped with condenser, mechanical cal agitator and thermometer, was introduced, in an electronic mitrogen environment at 20°C., 265 ml of Ticl, and 20 g of C₂H₅CMgCl support prepared according to the precedure of U.S. Patent No. 4, 220, 554. While agitating the contents were heated to 70°C in 50 minutes and then 4.7 ml 2,2-diisobutyl-1,5-dimethoxypropane was added and

maintained at 120°C, for I hour. The reaction mixture was allowed to settle and supernatural removed by siphon. Then another 285 ml TiCl₄ were added and heatefust 120°C for I hour. The reaction mixture was allowed to settle and the supernatural removed by siphon. The residual semilids were washed 5 times with 150 ml portions of anhydrous heptane at 80°C, and again at room temperature with 150 ml portions of anhydrous heptane ions in the wash liquid.

The enclysis of the vacuum dried solid estalyst component showed a content of 2.2% Ti and 12.2% 2,2-dissbuty1-1,5-dimethoxypropens.

Propylene was polymerized advording to the Procedure A.1 above using 0.76 g $\text{Al}(C_2H_5)_{5}$, 0.12 ml hexane suspension containing 15 mg of solid entalyst component and 1000 ml hydrogen.

240 g of polymer was obtained with a polymer yield of 18.4 Kg/g catalyst component, a 95.2% insoluble residue in xylene, at 25°C, a melt index of 10.6 g/10' and a temped bulk density of 0.50 g/ml.

Example 3

10

15

20

In a 350 ml porcelain jer containing 4 porcelain spheres, was introduced, under an anhydrous nitrogen environment,

9.2 g of commercial embydrous MgOl, and 3.3 ml of 2,2diisobutyl-1,3-dimethoxypropens. The jer is placed in
a centrifugal mill operated at 350 rpm for 15 hours.

In a 250 ml glass flask fitted with a condenser, mechanical agitator and thermometer, under an ambydrous nitogen
environment at room temperature, were introduced 8 g of
the above milled product and 115 ml of TiOl.

The contents were heated to 120°C in 20 minutes and maintained at 120°C for 2 hours.

The solids were allowed to settle and supernaturt was 10 siphoned off. Another 115 ml of TiCl, was introduced, heated at 120°C for 2 hour. The solids were allowed to settle and the supernatant removed by siphone. The solid residue was washed repeatedly at 60°C and at 40°C with 15 100 ml portions of enhydrous hexans, until there were no chlorine ions in the wash liquid. The solid residue, obtained by vacuum drying, contained 2.155 Ti and 10.25 2.2diisobuty1-1,3-dimethoxypropens. The polymerisation was cerried out according to precedure B.2, using 0.57 g Al(C2H5)5 and 0.25 ml hexene suspension containing 15:0 20 mg of solid catalyst component. 284 g of polymer was obtained with a polymer yield of 18.9 Kg/g catalyst, a 96.1% residue insoluble in xylene at 25°C, a melt index of 4.2 g/10' and a temped bulk density of 0.35 g/ml.

Premia A

5

10

15

25

In a 350 ml procededn jar containing 4 percelain spheres was introduced, under an ashydrous nitrogen environment, 7.65 of embydrous MgCl., 2.76 ml 2,2-diisobaty2-1,3-dimethoxypropene, and 1.17 ml TiOlg. The jar was placed in a centrifugal mill operated at 350 mm for 20 hours. In a 350 ml glass reactor, equipped with porous disk for filtration, condensor, mechanical agitator and theracmeter, was introduced at room temperature under an askydrous nitrogen environment, 8 g of the above milled produst and 32 ml 1,2-dishlorosthams. The contents were heated at 850 C for 2 hours, then filtered and the solid residue weshed 3 times with 50 ml portions of sphydreus hexane. The solid residue obtained by vasuum daying contained 1.35 Ti and 18.45 2, 2-dilsobaty1-1, 3-dimethacypropened Propylene was polymerized ascerding to procedure 3.2 uning 0.57 g Al $(0_2 H_g)_g$ and 0.5 ml horano suspension containing 81 mg solid entalyst component. 188 g of polymer was obtained with polymer yield of 2:3 Kg/g estalyst component, a 94.7% residue inschable in xylene, at 25°0 a molt index of 8.4 g/10', and tempod bulk demoity of 0.29 g/ml;

Brownle 5

In a 500 ml glass flask equipped with a condenser, mechanical agitator and thermoseter, was introduced, at rees.

temperature under anhydrous nitrogen stmouphere, 250 ml of MCL, and 25 g of support in spherical particles comprising a styrene-divinylbensene copelymer impregnated with the ${\rm MgOl}_2$ 221 ${\rm COO_4^H_9}_4$ complex, prepared seconding to procedure of example 1 of Agreeum Patent No. 344755. While agitating, the contents were heated to 100°C. When the temperature reaches 40°C., 1.52 ml of 2,2-discounty1-1,5-dimethoxypropens was introduced. The temperature maintained at 100°C for 1 hour, the solid allowed to settle and the supernatent was removed by sighon. An additional 250 ml TiOl, was fed and heated at 120° C for 2 hours. After settlement of the selids and siphening of the supernature, the solid residue was washed 5 times with 150 ml portions of anhydrous heptane at 85° C, then 5 times with anhydrous hexane at room temperature, until no chlorine ions were formed in the wash liquid After vacuum drying, the solid estalytic component contained 0.77% fi and 3.9% 2,2-diisobutyl-1,5-dimethoxyprepane. Propylene was polymerised according to procedure A.1 using 0.79 g $A1(0_{g}H_{g})_{g}$, 1.4 ml hexane suspension containing 49.5 mg solid catalyst component and 1300 ml hydrogen. 400 g of polymer was obtained with a polymer yield of 8.1 kg/g estalyst component, a 95.1% insoluble residue in xylene, at 25° 0, a melt index of 11.2 g/10' and a temped bulk density of 0.42 g/ml.

10

15

20

25

Brannle 6

10

15

20

25

In a 500 ml glass flack equipped with condensor, mediamical agitator and thermometer was introduced 156.9 ml

24 (00₄H₉)₄ and 20 g anhydrous MgOl₂. While agitating,
the contents were heated to 140°C for 5 hours, cooled to

40°C and the resulting solution diluted with 157 ml anhydraus heptane. Then 31.5 ml polymethylhydroxylemene was
added (d=0.99 g/ml, Nw=2256). After allowing the solvents
to settle and siphoning off the supernature, the solid
was washed 5 times with 150 ml portions of salydraus heptune.

At 50°0, 18.4 ml of SiGl₄ was added over a 15 minutes period, then treated with 2.7 ml 2,2-diisobutyl-1,3-dimenshappropase and mainteined at 50°0 for 2 hours. The solids were allowed to settle and the supernature removed by siphon and washed 4 times with 120 ml portions of anhydrous hexame. The residue was treated with 52.3 ml of EiGl₄ and then heated at 90°0 for 2 hours. The liquid was removed by siphon after the solids were allowed to settle, the solid residue was washed repeatedly with anhydrous heptane at 60°0 and then 5 times at reon temperature, until there were no chlorine ions in the wash liquid. After vasuum drying, the solid solid estalyst component contained 1.65% Ti and 14.9% 2,2-diisobutyl-1,3-dimethoxy-propens.

Propylene was polymerised according to procedure B.2 using 0.57 g Al(0₂H₅)₃ and 0.4 ml herene suspension comteining 7.9 mg solid catalyst compensat. 229 g of polymer was obtained with a polymer yield of 29 kg per g; of catalyst component 96.2% insoluble residue in xylene at 25°0 and a temped bulk density 10 AD of 0.42 g/ee.

Premole 7

10

15

20

Ma inches

Into a 1 1 glass flank equipped with condenser, mechanical agitator and thermometer, under subydrous nitrogen atmosphere, was introduced 572 ml selution containing 11.4 g Al(C,H,), for each 100 ml hexame. While sgitating at 5°C, 40 g spherical NgOl2.2.602 HgOH support, prepared according to method of example 1 in U.S. patent No. 4,469,648 was added over 90 minutes, then heated to 6000 for 5.3 hours, the solids were allowed to settle and the supernature removed by siphon. The solid residue was washed 10 times with 200 ml pertions of snhydrous heptenes. To the product obtained, which was diluted to 100 ml with subjections heptene, was added over 2 hours at 80°C, 2.7 mi n=0 H OH diluted with 1.5 ml sampdrous hepteme. The solid were allowed to settle end the liquid siphened eff The solid was washed repeatedly with 150 ml pertions anhydrous hexame. After vesums drying the solid showed a Mg content of 20.9% and 0 H OH of 3.6%.

25 In a 500 ml glass flask was introduced, under an asky-

drows mitrogen environment, 362 ml TiOl₄, then while agitating at 0°C, 14.5 g of the solid entalyst component extense were added. Over a 1 hour period the contents were heated to 100°C. When the temperature resched 40°C, 4.8 ml 2,2-disebutyl-1,3-dimethoxypropens was added. The contents were heated at 100°C for 2 hours. The solids allowed to settle and the liquid was siphoned off.

To the solid residue 319 ml of TiOl₄ was added, heated to 120°0 for 1 hour, and then the liquid was removed by siphening after settling. The solid was washed repeatedly with 150 ml portions ashydrous hazane first at 60°0. and then at room temperature. After vacuum drying the catalytic solid contains 2.4% Ti and 6.7% 2,2-dissobutyl-1.5-dimethoxypropuse.

10

15

20

Propylene was polymerised seconding to precedure A.1 using 0.76 g $A1(^{\circ}2^{\circ}5)_{3}$, 0.09 ml herene solution containing 8.9 mg solid extelyst component and 1000 ml hydrogen. 450 g of polymer was obtained with a polymer yield of 51.8 kg/g entalyst component, 90.4% insoluble residue in xylene at 25° 0, a nelt index of 8.9 g/10° and a temped bulk density of 0.49 g/ml.

Exemples 8-18 and semperative exemples 1-5.

Into a 500 ml reactor equipped with filtering disk 225 ml.

25 TiOl, was introduced at 0°C. While egitating 10:1 g (54)

ing to the method of example 1 of U.S. patent 4,469,648, was added. Upon completing the addition, the temperature was brought to 40°C and 9 muoles ether was introduced. The temperature was raised to 100°C over one hour period and allowed to react for 2 hours after which the unreacted TiCl₄ was removed by filtration. Another 200 ml TiCl₄ was added and allowed to react at 120°C for 1 hour, filtered and washed with n-heptame at 60°C until the chlorine ions disappeared from the filtrate.

The others used and the analytical data relative to the solid estalyst component obtained in this names are reported in table 2.

Examples 19-36 and comparative examples 4-6

10

15

The polymerisation data with the entalysts obtained from the solid catalyst components prepared according to examples 6-18 and comparative examples 1-5 are reported in Table 3. Table 2

Composition of the wolld estalyst Ether used Br. component % by weight No. Biher Ħ Mg 10.40 2.6 2,2-dimethy1-1,3dimethoxypropens 10,44 5.24 2-1sopropyl-2-methyl-21.7 9 1,3-dimethoxypropens 15.5 3.1 16.64 2, 2-diisobutyl-1,3-10 dimethoxypropane 8,10 4:3 2,2-diisobutyl-1,3-11 disthoxypropens 2,40 5.2 16.3 2,2-d11sobutyl-1,5-12 di-n-butoxypropene 11,10 5.59 14.5 2,2-diphenyl-4,3-15 dimethoxypropane 11.4 4:43 2,2-bis(cyclohexylmet 14.87 14 thy1) 1,3-dimethoxypropane 0.005 4.7 1,3-diisobutoxypropeme 15 15.1 2.9 2,2-pentamethylene 16 1,3-dimethoxypropene 11.7 3.3 1,1-bis(methoxymethy1) 17 bicyclo-(2,2,.1)-heptene

	Table 2	Table 2 (follow)					
	18	1,2-isopentyl-2-isopropyl-		2.5	14.8		
	Comp. 1	1,3-dimethoxypropane	18.0	1.7	10.6		
5	Comp. 2	l-isopropyl-2,2-dimethyl	17.0	4.3	0		

20.8

3.0

4.0

1.3-dime thoxy propane

Comp. 3 1,1-dimethoxyethane

Ŧ	ab	1	e	- 3

Ex.	Ether	Polymer Yield	I.I.		Polymerisation		
No.	Ex. No.	g polymer/g Cat.	≸	41/6	Method		
6949 - 1049	-	comp.	,				
	······································						
19	8	3100	89.8	2.15	B.2.1.		
20	9	8700	95.5	2.90	B.2.1.		
21	10	9300	95.3		B. 2.1.		
22	11	14200	79.7		B.2.1.		
23	12	13600	84.3	2.10	B. 2.1.		
24	13	910 0	84.8	2.48	B.2.1.		
25	14	19000	88,4	1.65	B. 27.1.		
26	15	50100	75.0		B.2.1.		
27	16	7100	89.5		B.2.1.		
28	17	8500	79.8		B.2.1.		
29	18	11000	98.0		B. 2.1.		
Comp.	4 Comp.	1 1800	64.9		B.2.1.		
Comp.	5 Comp.	2 2000	72.0	1.0	B.2.1.		
Comp.	6 Comp.	3 4300	68,1	1.77	B. 2.1.		
30	10	8900	96.1	2.39	B. 2.2.		
(dimethyl dimethoxy- silane)							
31	10	7900	96.3	2.00	B.2.2.		
(2,2-diisobutyl-1,3-							
dimethoxypropane)							
52	10	5100	97.5	2.15	B.2.2.		
(,sheng	(, henyltriethoxysilane)						

Table 3 (follow)

	33	10	55400	92.0	1.56	A.1.
		ilisobutyl-1,3- choxypropens)				
	34	10	23200	96.0	1.71	A.1.1
5	35	10	36600	93.8	1.85	A.1.1.
		6,6-tetramethyld ridine)	•			
	36 (ethy	10 1 p. toluste)	9600	96.6	1.94	A.1.1.

10 Exemple 37

15

20

A 1.4 stainless steel autoclave, equipped with a thermostat and mechanical agitator, was purged with geneous propyleme at room temperature for 1 hour. Then, while agitating, 66 g of butadiene, 230 g of liquid propyleme and 300 ml of hydrogen were fed. Under propyleme pressure a catalytic suspension of 0.6 Al(Et₃)₃ TEAL and 0.048 g solid catalyst component of example 1. The temperature was rapidly brought to 70°C (in S min.) and the resulting pressure was 24.6 atm. These conditions were maintained for 4 hours reintegrating feeding propyleme continuously to reintegrate the pertion polymerized. The sutoclave was then degassed and cooled at room temperature. 64 g. polymer, dried in an oven under nitrogen at 60°C for 4 MIL = 4 g/10° Soluble in xylene at 25° C = 24.1% (weight).

Butediene content (determined via IR);

- raw polymer = 0.6% 1,2; 3.7% 1,4 trans
- insoluble in xylene = 0.5% 1,2; 1.6% 1,4 trems
- 10 soluble in xylene = < 0.25% 1,2; 8.2 1,4 trans.

Exemple 38

The autoclave and procedure of example 37 was used to polymerise propylene with the solid catalyst component.

of example 1, but using instead of Al-triethyl, a mixture of 3.3 mmoles Al-triethyl and 3.3 mmoles Al-diethylmono-ohloride and 0.018 g solid catalyst component.

380 g of a pelymer with a polymer yield of 35.2 kg/g of catalyst component, a 94.1% insoluble residue in xylene at 25°0, and a melt index of 7.3 g/10°.

20 Example 39

15

In the same autoclave used in example 1 was charged at 50°C. and without agitation, a catalyst suspension of 0.9 g Al-triethyl and 0.09 g of the solid catalyst component of example 57 in about 18 ml hexame. Them 800 g

propens was introduced with agitation. The temperature was rapidly brought to 75° C, and then 2 atm hydrogem, 200 g butens-1 were introduced. Ethylene was them introduced until the pressure reached 33 atm. These conditions were maintained for 2 hours maintaining constant pressure by continuously feeding with a mixture of ethylene and butens-1 in a weight ratio of 10/1. The autoclave was degassed and cooled at room temperature. The amount of polymer, obtained after drying at 70°C under nitragen for 4 hours, was 280 g, which corresponded to a yield of 51.1 kg per g of catalyst component. Analysed using standard methods, the product showed the following characteristics:

- MIE = 0.23 g/10' (F/E = 26.7)
- MIF = 6.16 g/10'
- 15 Butene (determined via IR) = 6% (weight)
 - Denuity = 0.9211 g/cm3
 - Soluble in xylene at 25°C = 6.3% (weight)

Bremple 40

10

20

25

In the same sutcolave used in example 5 purged as described therein but usingh ethylene instead of proppleme, was introduced at 45°C under hydrogen flow, a 900 ml solution of 0.5 g/l of Al-triisobutyl in enhydrous hexame and immediately after 0.015 g of solid entalyst component of example 1 suspended in 100 ml of the above mentioned solution. The contents were rapidly heated to a temperature of 75°C, then

hydrogen was fed until the pressure reached 4.5 atm.

These conditions were maintained for 3 hours continuously replacing the ethylene polymerized. The autoclave was rapidly degassed and cooled at room temperature. The polymeric suspension was filtered and the solid was dried at 60°C under nitrogen for 8 hours. 300 g of polymer was obtained (corresponding to a yield of 20 kg/g of catalyst component) which had the following characteristics (determined by standard methods):

- MIE = 1.74 g/10 (MIF/MIE = 26.5)
 - MIF = 46 g/10 $^{\circ}$

5

10

- tamped bulk density = 0.362 g/ma

the invention disclosed herein will be readily apparant to those exercising ordinary skill after reading the foregoing disclosures. In this regard, while specific embodiments of the invention have been described in considerable detail, variations and modifications of these embodiments can be effected without departing from the spirit and scope of the invention as described and claimed.

CLADOS:

10

15

20

- of elefins comprising a megnesium dihalide in active form and supported thereon a titanium compound comtaining at least one Ti-halogen bond and an electron-denor compound selected from others containing two or more other groups and further characterised by the formation of complexes with substitute at less than 50 mmoles per 100 g of magnesium dichloride at less than 50 mmoles per 100 g of magnesium dichloride and the failure to enter into substitution reactions with TiCl₄ or of reacting that way at less than 50% by moles.
- 2. The solid catalyst component of Claim 1 where the ethers are complexed in quantities between 20 and 90 mmoles per 100 g. of magnesium dichloride.
- 5. The solid catalyst component of Claim 1 wherein the others are selected from diethers with the fellowing general formula:

where R, R₁ and R₂, independently, are linear er branched alkyl, cycloaliphatic, aryl, alkylaryl er

anyalkyl radicals with 1-15 carbon atoms and R_1 or R_2 may also be hydrogen.

A. The solid catalyst component of Claim 3 wherein R is methyl, and when R is methyl, ethyl, propyl or isopropyl, R₂ is ethyl, propyl, isopropyl, batyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, methyl-cyclohexyl, phenyl or bennyl, and when R₁ and R₂ are the same, they are ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, neopentyl, isopropyl, phenyl, bensyl or cyclohexyl.

5

10

WALLEY OF

- 5. The molid catalyst component of Claim 5 wherein R is methyl and R₁ and R₂ are different and are iso-propyl, isobutyl, t-butyl, cyclohexyl, isopentyl or cyclohexylethyl.
- 15 6. The solid catalyst component of Claim 3 where the ethers are 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopentyl-1,3-dimethoxypropane or 2,2-bis(cyclohexylmethyl)-1,3-dimethoxypropane.
- 7. The solid catalyst component of Claim 1 wherein
 20 the titanium compound is selected from the group
 consisting of the halo alcoholates and the halides
 of titanium and the magnesium dihalide is magnesium dichloride.
 - 8. The solid catalytic component of Claim 7 wherein

the titanium compound is titanium tetrachloride.

- 9. The solid catalytic component of Claim 7 wherein
 the magnesium dichloride is present in active form
 characterized in that in the X-ray powder spectrum
 of the catalyst component a halo appears instead of
 the most intense diffraction line which appears at
 an interplanar distance of 2.56 % in the mon-activated magnesium dichloride and the maximum intensity
 of the halo is shifted with respect to said interplanar distance.
 - 10. The solid catalyst component of Claim 1 wherein the ether is present in an amount from 5 and 20% amoles with respect to the magnesium dihalide.
- 11. The solid catalyst component of Claim 1 wherein the

 Mg/Ti ratio is between 50:1 and 4:1.

20

Carrier Carrier

- 12. The solid catalyst component of Claim 1 wherein the magnesium dichloride in active form is obtained from EgCl₂ complexes with alcohols or titanium alcoholates, or from alcoholates and chloroalcoholates of magnesium.
- 13. The solid catalyst component of Claim 1 wherein the magnesium dichloride and the titanium compound are supported on resins and the Mg/Ti ratio is from 2:1 to 3:1.

- OHR, wherein R is H, an alkyl radical with 1-6 curbon atoms or an aryl, or mixtures thereof with or without a diolefin, comprising the product obtained by reaction of a solid catalyst component of Claim 3 with an Al-trialkyl compound.
- 15: The catalyst of Cledm 14 for the polymerization of olefins CH₂ = CHR wherein R is an alkyl radical with 1-6 carbon atoms, further comprising, in addition to the Al-trialkyl compound 2,2,6,6-tetramethylpiperiodine or a silicon electron donor compound containing at least one Si-CR bond wherein R is a hydrecarbon radical.

ENRICO ALBIZZATI
LUCIANO NORISTI
LUISA BARINO
PIER CAMILLO BARBE'
RAIMONDO SCORDAMAGLIA
UMBERTO GIANNINI
GIAMPIERO MORINI
Inventors