wo 2016/018400 A1 [N I NPF V00 0000 T O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/018400 A1

(51

eay)

(22)

(25)
(26)
1

(72

74

4 February 2016 (04.02.2016) WIPOIPCT
International Patent Classification: (81)
GO6F 17/00 (2006.01)
International Application Number:

PCT/US2014/049264

International Filing Date:
31 July 2014 (31.07.2014)

English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 11445 Compaq Center Drive
W., Houston, Texas 77070 (US).

Inventors: HUANG, Muhuan; 1501 Page Mill Road, Palo
Alto, California 94304-1100 (US). KEETON, Kimberly;
1501 Page Mill Road, Palo Alto, California 94304-1100
(US). MORREY, III, Charles B.; 1501 Page Mill Road,
Palo Alto, California 94304-1100 (US). LIM, Kevin T.;
1501 Page Mill Road, Palo Alto, California 94304-1100
(US).

Agents: ORTEGA, Arthur S. et al.; Hewlett-Packard
Company, Intellectual Property Administration, Mail Stop
35, 3404 E. Harmony Road, Fort Collins, Colorado 80528

(US).

Filing Language:

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: DATA MERGE PROCESSING

120 ~ 100 fOO 7113
114 116 - |
106
N [= r
{
- 108
110 e A
N 122 N 124
-
100] foo [20
DMA 200 bar | -

12 \| Dual-port BRAM

100

FIG. 1

(57) Abstract: Techniques are described in which updates are received. The updates are ordered by priority value via a priority
queue. A higher priority update is received from the priority queue. The higher priority update is merged with a corresponding data -
base row.

WO 2016/018400 A1 |IIWAK 00TV 000 O AR

Published:
— with international search report (Art. 21(3))

WO 2016/018400 PCT/US2014/049264

DATA MERGE PROCESSING

BACKGROUND

[0001] Incomputing, there are several examples of processes that merge large
amounts of data. Data may also be prioritized using values that indicate the relative
priority of individual data.

BRIEF DESCRIPTION OF THE DRAWINGS
[0002] Various features of the techniques of the present application will become

apparent from the following description of examples, given by way of example only,
which is made with reference to the accompanying drawings, of which:

[0003] Fig. 1 is a block diagram of an example merge stage;

[0004] Fig. 2 is a process flow diagram illustrating an example method for
prioritizing data to be merged;

[0005] Fig. 3A is a diagram of an example priority processor populated with initial
values;

[0006] Fig. 3B is a diagram of an example priority processor fully populated with
an ordered array of individual updates with priority values displayed;

[0007] Fig. 3C is a diagram of an example priority processor receiving a new
individual update;

[0008] Fig. 3D is a diagram of an example priority processor having processed a
new individual update;

[0009] Fig. 3E is a diagram of an example priority processor receiving another
individual update;

[0010] Fig. 3F is a diagram of an example priority processor having processed
the individual updates;

[0011] Fig. 4 is a process flow diagram illustrating an example method for
merging SCUs;

[0012] Fig. 5is block diagram of an example computing device to merge data;
and

[0013] Fig. 6 is a drawing of an example machine-readable storage medium that
can be used to merge data.

WO 2016/018400 PCT/US2014/049264

DETAILED DESCRIPTION
[0014] There are processes in computing environments that may benefit from

merging data efficiently. Data may be prioritized using values that indicate the
relative priority of individual data. For example, in databases, data ordering may be
based on the primary keys in an index. For example, the primary key values may be
used to retrieve or update information in a specified order.

[0015] Improved merging of data flows may be achieved using priority queues.
As used herein, priority queues refer to data structures that are used to prioritize
individual updates in batch updates to data entries. The priority queues described
herein may maintain a partially ordered internal structure, but allow for constant time
identification of a priority element. Thus, priority queues may be used to provide a
fast ordering where a priority element is the item of interest. For example, a priority
element in a priority queue may be an individual update with an entry having a higher
primary index number than other individual updates in the queue. In addition, a
specialized processor such as a field-programmable gate array (FPGA) may be used
to achieve parallel processing of elements to be merged.

[0016] Some current designs process pipeline stages on a standard processor.
As used herein, pipelined refers to a set of elements being connected in series,
where the output of one element is the input of the next element, and multiple
operations may occur in parallel along the series. By executing on a standard
processor, the pipeline stages have the limitations of using a general purpose
processor. For example, the architecture of the processor may not be well suited for
the access patterns nor enable as much parallelism.

[0017] Described herein are techniques relating to merging data using a
specialized priority processor and merging processor in a computing device. In
some examples, a priority processor of the computing device may prioritize data in a
pipelined array associated with a priority queue as described in Figs. 3A-3F below.
The prioritized data can then be efficiently merged using a merging processor. An
example merge stage is shown in Fig. 1 and an example of such computing device is
shown in Fig. 5.

[0018] Fig. 1 is a detailed block diagram of an example merge stage according to
implementations described herein. The configuration of the example merge stage is
generally referred to by the reference number 100. The merge stage includes three
primary components, including a fetch stage 102, a priority queue 104, and a data

2

WO 2016/018400 PCT/US2014/049264

merge stage 106. The data fetch stage 102 includes a Direct Memory Access
(DMA) engine 108 that reads data such as individual updates 113 of self-consistent
updates (SCUs) 110 from local memory into block random access memory (BRAM)
buffers 112. As used herein, an SCU refers to a batch of updates that are received
by a client node and/or a pointer to the batch of updates. SCUs include a set of
changes that are applied atomically to tables in a database. In some examples, the
SCUs are stored durably onto a disk when they are first uploaded. The SCUs are
said to be self-consistent to the extent that each SCU is applied consistently such
that all underlying tables in a system are consistent after the changes are applied.
Moreover, the application of an SCU is isolated from other SCUs. Each SCU 110
includes individual updates 113 that can each include a key 114 and one or more
related fields 116. In some examples, one or more fields 116 may not have an
update to be applied as indicated by dashes in updates 113. The priority queue 104
includes a pipelined array 118 of individual updates 113 to be prioritized and a
prioritized array 120 of individual updates 113. The merge stage 106 includes an
array 122 of merged individual updates 124.

[0019] In some examples, the fetch stage 102 may begin with the DMA engine
reading data from a local memory to BRAM buffers. In some examples, the BRAM
buffers may be an on-FPGA memory. In some examples, the DMA may receive a
request for a particular data in the form of a request for acknowledgment. For
example, a priority processor can request an individual update from a self-consistent
update (SCU) from the DMA. In some examples, the updates can be batched based
on a specific time interval. For example, the updates can be baiched once every
several seconds. In some examples, updates can be batched based on a specific
number of updates. For example, the updates can be batched every 100 updates.
In some examples, the DMA can return an acknowledgment to the priority queue and
retrieve the individual update from an SCU. In some examples, the BRAM buffers
provide temporary storage for a plurality of individual updates 113 from each SCU
110. The BRAM thus enables priority queue operation to occur while overlapping
the transfer from the local memory.

[0020] In some examples, the priority queue 104 may be a high speed parallel
implementation that utilizes a pipelined array. A pipelined array allows replace
operations to occur on the priority queue 104 every clock cycle. In some examples,
the pipelined array may be processed by a priority processor, such as an FPGA or

3

WO 2016/018400 PCT/US2014/049264

Application Specific Integrated Circuit (ASIC). The FPGAs enable the sorting of the
array implementing the priority queue to occur in parallel with the replace operation.
This may result in a 10x improvement over standard software implementations.
Standard software implementations take logarithmic time between replace
operations, whereas the time spent between replace operations in the present
implementations is fairly constant without regard to the number of operations
concurrently executed.

[0021] Insome examples, the data merge stage 106 takes each prioritized
individual update 113 provided by the priority queue 104 and merges the data of
each prioritized individual update 113 with the current version of the specific row.
Each update potentially includes updates to multiple fields within the row. For each
field 116, a timestamp is be compared to each field’s timestamp in the current
version of the row to see if the prioritized individual update 113 has more recent
data. If the prioritized individual update 113 has more recent data, then the current
version’s data is changed to match the update 113. In some examples, a merge
processor implemented using an FPGA is able to compare timestamps across
multiple fields in parallel, allowing a very fast merging of data. Traditional software
approaches often examine each field sequentially. In some examples, the final
merged updates 124 of merged array 122 are written out to local memory once the
latest higher priority update of the priority queue 104 indicates that there are no more
updates to that row. For example, a new value for the primary key may be returned
by the priority queue indicating an update to another row.

[0022] Fig. 2 is a process flow diagram illustrating an example method for
prioritizing data to be merged. The method of Fig. 2 is generally referred to by the
reference number 200.

[0023] At block 202, a processor initializes a priority queue 104. As used herein,
higher numbers represent higher priority and lower numbers represent lower priority.
In some examples, because the replace operation is used, initial values are used to
initialize the priority queue. In some examples, the processor may populate a priority
queue 104 with values indicating infinity. In some examples, the processor may use
lower values to indicate priority and may populate the priority queue 104 with values
indicating negative infinity. In both cases, the infinity values serve as initial
placeholders in the priority queue 104 that may be replaced by individual updates
113 using the replace operation.

WO 2016/018400 PCT/US2014/049264

[0024] At block 204, the priority queue 104 receives an individual update 113
from the SCUs 110. For example, the update 113 may correspond to one of a
plurality of database entries to be updated. The update 113 may include the data to
be updated or a pointer to the update 113. For example, update 113 may refer to
one of a batch of updates in an SCU or a pointer that identifies an individual update
in the SCU. Each individual update also includes a priority value associated with the
individual update. The priority value may be assigned by the processor. In some
examples, the priority value may be a key value such as primary key 114. For
example, the key value may be used to determine a relative position in a database
entry to be updated. In some examples, related database entries to be updated may
be later merged together using the key value and updated in a more efficient
manner.

[0025] At block 206, the priority processor identifies a higher priority update 113
than all other updates 113 in the priority queue and replaces the higher priority
update 113 at the root position in a priority queue with a new update 113 from SCUs
110. A root position in a priority queue, as used herein, refers to a level in a priority
queue that receives new updates 113 from the SCUs 110 and also contains higher
priority updates 113. After identifying the higher priority update 113, the priority
processor may send the identified update 113 to the other processor to indicate the
corresponding update 113 to be updated. In some examples, the priority processor
may send the identified higher priority updates 113 of prioritized array 120 to a
memory for merging in the merge stage 106. In some examples, the root level of the
priority queue may contain the higher priority update 113 after a complete clock
cycle. In some examples, the root level may contain the new update 113 from SCUs
110 after a complete clock cycle. Thus, by replacing the update 113 at the root
position of the priority queue 104 with a new update 113 from the SCUs 110, the
priority processor may identify an update 113 with a higher priority than all other
updates 113 in the array 118.

[0026] At block 208, the priority processor swaps even-level updates 113 with
consecutively higher odd-level updates 113 based on a comparison of priority values
associated with the updates 113. For example, the priority values may be key
values 114 associated with each update 113. In some examples, given six levels 0-
5, the updates 113 in levels 0 and 1 may be swapped, the updates 113 in levels 2
and 3 may be swapped, and the updates 113 in levels 4 and 5 may be swapped. In

5

WO 2016/018400 PCT/US2014/049264

some examples, the updates 113 of two levels are swapped based on their priority
values. For example, the updates 113 may be swapped when the higher level
update 113 has a higher priority value. For example, in a priority queue, the higher
priority updates 113 will be sorted to lower levels. Thus, in the priority queue, if an
update 113 in level 0 has a priority value of 5 and an update 113 in level 1 has a
priority value of 2, then the update 113 in level 0 will not be swapped after being
compared with the update 113 in level 1 because they are already sorted correctly.
In some examples, the priority processor may simultaneously swap all the pairs of
odd/even levels of updates 113 that are to be swapped. In some examples, block
208 may be executed at higher levels concurrently with the execution of block 206 at
the lower levels.

[0027] At block 210, the priority processor swaps odd-level updates 113 with
consecutively higher even-level updates 113 based on a comparison of priority
values associated with the updates 113. For example, the update 113 of level 1
might be swapped with an update 113 of level 2, an update 113 of level 3 might be
swapped with an update 113 of level 4, and so on. In some examples, the updates
113 are swapped according to their priority values. For example, an update 113 in
level 1 may be swapped with an update 113 in level 2 if the update 113 in level 1 has
a lower priority value than the update 113 in level 2. In some examples, block 210
may be executed at higher levels concurrently with the execution of block 206 at the
lower levels.

[0028] In some examples, as indicated by diamond 212, if additional updates 113
are received by the priority queue 104, then method 200 may iterate through
additional received updates 113 by cycling through blocks 204-210. If no further
additional updates 113 are received, then the method proceeds to diamond 214.
[0029] In some examples, as indicated by diamond 214, if no additional updates
113 are received by priority queue 104, then method 200 may proceed to cycle
through blocks 208-210 until no further swaps are performed because all the
updates 113 are sorted. In some examples, the priority processor may be populated
with lower priority values to sort the remaining sorted updates 113 and identify higher
priority updates 113 in the priority queue. If all the updates 113 are sorted, then the
method ends at block 216.

[0030] Itis to be understood that the process diagram of Fig. 2 is not intended to
indicate that all of the elements of the method 200 are to be included in every case.

6

WO 2016/018400 PCT/US2014/049264

For example, a clock cycle may begin at block 204 and end at block 210. In some
examples, a clock cycle may begin at block 208, proceed to block 210, then finish
with blocks 204 and 206. Further, any number of additional elements not shown in
Fig. 2 may be included in the method 200, depending on the details of the specific
implementation.

[0031] Fig. 3A is a diagram of an example priority processor initialized with initial
values. The configuration of the example priority processor of Fig. 3A is referred to
generally by the reference number 300A. The priority processor 300A includes
levels 0-7 that are labeled as levels 302-316, respectively. In the example of 300A,
levels 302-316 are populated by the value infinity 318.

[0032] In Fig. 3A, the levels 302-316 are populated by the value infinity 318
because priority is indicated by higher priority values. For example, the priority
queue may be arranged to output the priority updates and store the rest of the
updates in a descending order from left to right. In some examples, the priority
processor 300A may use replace and delete functions, and not insert functions. By
using the replace and delete functions on the priority processor 300A in parallel on
all the levels of the priority queue, rather than using insert functions, the priority
processor 300A may allow an operation following a replacement or removal in O(1),
or constant time, instead of O(log n), or logarithmic time. Therefore, the priority
processor 300A may efficiently process updates regardless of the total amount of
updates to be processed. Furthermore, because a single array is used, the priority
processor 300A may use storage space efficiently.

[0033] Fig. 3B is a diagram of an example priority processor fully populated with
an ordered array of individual updates 113 with priority values displayed. The
configuration of the example priority processor in Fig. 3B is referred to generally by
the reference number 300B. Updates 320-334 correspond to levels 302-316 of the
priority processor, respectively.

[0034] In the diagram of Fig. 3B, the corresponding priority values of updates
320-334 have replaced the value infinity 318 one clock cycle at a time. In some
examples, after eight clock cycles, the order of the updates 320-334 is from higher to
lower. The original order of the updates 320-334 does not matter because of the
swapping function as discussed at greater length in Fig. 3C. Thus, the priority
processor 300B is able to efficiently sort updates regardless of their original order.

WO 2016/018400 PCT/US2014/049264

[0035] Fig. 3C is a diagram of an example priority processor receiving a new
update. The configuration of the priority processor in Fig. 3C is generally referred to
by the reference number 300C. In addition, new update 336 is about to replace
update 320 as shown by arrow 338. Update 320 is also about to be identified as a
higher priority update and sent to output as shown by arrow 340. In some examples,
the output may be sent to a processor or memory as discussed further in Figs. 5 and
6 below.

[0036] In the diagram of Fig. 3C, the fully populated priority processor 300C
receives a new individual update 336. The new update 336 is received at level 0
302, also referred to herein as the root level 302. In some examples, the priority
processor 300C uses the replace function to replace update 320 at root level 302
with new update 336 and output update 320. In some examples, the update 320
may be output 340 to a processor, memory, or storage device. In some examples,
the priority processor 300C may then swap consecutive updates using the replace
operation as described in Fig. 3D.

[0037] Fig. 3D is a diagram of an example priority processor having processed an
individual update 113. The configuration of the priority processor in Fig. 3D is
generally referred to by the reference number 300D. A first round of swap and
comparisons are indicated by arrows 342 and 344, respectively. A second round of
swap and comparisons are indicated by arrows 346 and 348, respectively.

[0038] Inthe diagram of Fig. 3D, update 336 has shifted two places to the right
from root level 302 to level 306. In some examples, the replacement of update 336
with the original update 320 at root level 302 and the shifting of update 336 two
levels to the right may be performed by the priority processor 300D within one clock
cycle. In some examples, the priority processor 300D may perform two sets of
adjacent comparisons and/or swaps. For example, a first set of a swap and
comparisons of even-levels with consecutively higher odd-levels indicated by arrows
342 and 344, respectively, results in new update 336 at root level 302 swapping with
higher priority update 322 at level 304. Thus, update 322 is then placed into root
level 302 and update 336 takes the place of update 322 at level 304. Although
comparisons are made as indicated by arrows 344, the priority processor 300D does
not perform any swaps because the priority values of these updates indicate that
they are already ordered in a descending order of priority. In a second set of swaps
and comparisons, as indicated by arrows 346 and 348, update 336 of level 304 is

8

WO 2016/018400 PCT/US2014/049264

then swapped with higher priority update 324 of level 306. Thus, update 336 moves
up to level 306, and update 324 moves down to level 304, the final resulting order of
the updates shown in the example of 300D.

[0039] Fig. 3E is a diagram of an example priority processor receiving another
individual update 113. The configuration of the priority processor in Fig. 3E is
generally referred to by the reference number 300E. A new update 350 is to replace
update 322 as shown by arrow 352. Update 322 is also to be output by the priority
processor 300E as shown by arrow 354.

[0040] In the diagram of Fig. 3E, a new update 350 is to be added to the pipeline
processor configuration of 300D. As in 300C, the new update 350 is to replace the
existing update 322 of root level 302, the existing update 322 to be output by the
priority processor 300E as indicated by arrow 354. However, this time two pairs of
swaps will simultaneously follow the replacement of root level 302 as described in
further detail with reference to Fig. 3F.

[0041] Fig. 3F is a diagram of an example priority processor having processed
the individual updates. The configuration of the priority processor in Fig. 3F is
generally referred to by the reference number 300F. Two pairs of swaps 342, 346
are indicated by bold dotted arrows, while comparisons 344, 348 are indicated by
lightly dotted arrows.

[0042] InFig. 3F, both new update 350 of 300E and update 336 of 300C have
been shifted up two levels to the right. As discussed in 300D, the priority processor
300F executes two consecutive swaps. However, 300F shows two pairs of
consecutive swaps. In some examples, more than one update may simultaneously
be swapped with a consecutively higher level update. For example, in 300F update
350 of root level 302 was swapped with update 324 of level 304, and update 336 of
level 306 was swapped with update 326 of level 308. In some examples, after the
even-level updates compared and/or swapped with consecutively higher odd-level
updates, then the odd-level updates are compared with the corresponding
consecutively higher level even-level updates. For example, in the example of 300F,
update 350 at level 304 was compared and swapped with update 326 of level 306,
and update 336 of level 308 was compared and swapped with update 328 of level
310. Thus, 300F shows the final positions of the two sets of swaps. As updates
330-334 are still ordered properly with respect to each other, no swaps included
updates 330-334. However, in some examples, with two additional clock cycles,

9

WO 2016/018400 PCT/US2014/049264

update 336 may eventually reach level 316 as it is an update with a lower priority.
Likewise, in some examples, with an additional clock cycle, priority processor 300F
may swap update 350 into level 310 and keep it there until a lower priority update is
introduced at later clock cycles. Processing a pipelined array on a priority processor
300F such as an FPGA may result in a higher overall performance. For example, an
implemented pipelined array priority queue on an FPGA board produced
benchmarks indicating about a tenfold speedup over software implementations, and
about a threefold speedup over pipelined heap designs.

[0043] Itis to be understood that the diagrams of Figs. 3A-3F are not intended to
indicate that all of the elements of the configurations 300A-300F are to be included in
every case. Further, any number of additional elements not shown in Figs. 3A-3F
may be included in the configurations 300A-300F, depending on the details of the
specific implementation. For example, in configuration 300F, more than two updates
may be swapped at the same time with a consecutively higher level, depending on
the priority values of the updates.

[0044] Fig. 4 is a process flow diagram illustrating an example method for
merging data. The method of Fig. 4 is generally referred to by the reference number
400.

[0045] At block 402, a priority processor receives individual updates 113. For
example, the individual updates 113 may be from SCUs 110 and are to be prioritized
and merged with a current database row.

[0046] At block 404, the priority processor orders the updates 113 by priority
value via a priority queue. For example, the priority value may be a primary key
associated with each individual update. In some examples, the priority processor
can order the updates 113 while concurrently sending higher priority updates 113 to
the merge processor. In some examples, the DMA can store higher priority updates
113 in the BRAM for the priority processor to access higher priority updates.

[0047] At block 406, a merge processor receives a higher priority update from the
priority queue. For example, the higher priority update may have had a primary key
that is equal to or higher than all the rest of the updates of the priority queue.

[0048] At block 408, the merge processor merges the higher priority update with a
corresponding database row. In some examples, merging the higher priority update
may include updating multiple fields of the corresponding database row based on a

10

WO 2016/018400 PCT/US2014/049264

timestamp comparison. In some examples, multiple fields are to be updated in
parallel.

[0049] At diamond 410, the merge processor checks if a different database row is
indicated by a priority value. For example, a primary key can be used to distinguish
between members of different rows. If the primary key indicates that the higher
priority update corresponds to the same database row as the prior primary key, then
the method proceeds back to 408 wherein the merge processor is to receive
additional higher priority updates from the priority queue. In some examples, the
merge processor may then merge the additional higher priority updates with their
corresponding database rows. In some examples, if the primary key indicates that a
higher priority update corresponds to a different row based on the primary key, then
the method proceeds to 412.

[0050] At block 412, the merge processor sends the merged database row to
memory after receiving a higher priority update corresponding to a different database
row. In some examples, the merge processor can also store the merged database in
a storage device.

[0051] Itis to be understood that the process diagram of Fig. 4 is not intended to
indicate that all of the elements of the method 400 are to be included in every case.
Further, any number of additional elements not shown in Fig. 4 may be included in
the method 400, depending on the details of the specific implementation.

[0052] Fig. 5is a block diagram of an example computing device 502 to update
data. The computing device 502 may include a processor 504, memory 506, a
machine-readable storage 508, a network interface card (NIC) 510 to connect
computing system 102 to network 112, a direct memory access (DMA) engine 514,
a priority processor 516, and a merge processor 518.

[0053] Insome examples, the processor 504 may be a main processor that is
adapted to execute the stored instructions. The processor 504 may be a single core
processor, a multi-core processor, a computing cluster, or any number of other
configurations. The processor 504 may be implemented as Complex Instruction Set
Computer (CISC) or Reduced Instruction Set Computer (RISC) processors, x86
Instruction set compatible processors, ARMv7 Instruction set compatible processors,
multi-core, or any other microprocessor or central processing unit (CPU).

[0054] In some examples, the memory device 506 may include random access
memory (e.g., SRAM, BRAM, DRAM, zero capacitor RAM, SONOS, eDRAM, EDO

11

WO 2016/018400 PCT/US2014/049264

RAM, DDR RAM, RRAM, PRAM, etc.), read only memory (e.g., Mask ROM, PROM,
EPROM, EEPROM, etc.), flash memory, or any other suitable memory systems. As
described below, in some examples, the memory may receive identified higher
priority data from the priority processor 516.

[0055] In some examples, machine-readable storage 508 may be any electronic,
magnetic, optical, or other physical storage device that stored executable
instructions. Thus, machine-readable storage medium may be, for example,
Random Access Memory (RAM), an Electrically-Erasable Programmable Read-Only
Memory (EEPROM), a storage drive, an optical disc, and the like. As described in
detail below, machine-readable storage medium 508 may be encoded with
executable instructions for prioritizing data. For example, the machine-readable
storage medium 508 may be encoded with executable instructions for prioritizing
individual updates.

[0056] In some examples, a NIC 510 may connect computing system 502 to a
network 512. For example, the NIC 510 may connect computing system 502 to a
local network 512, a virtual private network (VPN), or the Internet. In some
examples, the NIC may include an Ethernet controller. In some examples, the
Ethernet controller can be leveraged on a field programmable gate array (FPGA) to
provide a connection of the pipeline stages using the transmission control protocol
(TCP).

[0057] In some examples, the DMA engine 514 may be an embedded DMA
controller. The DMA engine can be used to transport data without accessing the
processor 504. For example, the direct memory access (DMA) engine 514 may be
used to retrieve data from an FPGA-local dynamic random access memory (DRAM)
into block random access memory (BRAM) buffers on a field programmable gate
array (FPGA). In some examples, the DMA engine 514 may be used to retrieve an
individual update 113 that is to be placed in the priority queue.

[0058] In examples, the priority processor 516 may be an Application Specific
Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or other type of
specialized processor designed to perform the techniques described herein. For
example, an FPGA may be programmed to efficiently prioritize updates 113 in a
pipelined array as discussed in Figs. 3A-3F above. For example, the priority
processor 516 may receive a first update 113 from the processor and output a
second update residing at a root position of the priority queue 104 and send the

12

WO 2016/018400 PCT/US2014/049264

second update to the processor and/or the memory and enter the first update at the
root position of the priority queue 104. The priority processor 516 may also swap the
first update residing at the root position of the priority queue 104 with a third update
residing at a second position of the priority queue 104 based on a comparison of a
first priority value associated with the first update and a second priority value
associated with the third update. In some examples, the priority processor 516 may
be further configured to swap the first update residing at the second position of the
priority queue 104 with at least a fourth update residing at least a third position of the
priority queue 104 based on a comparison of a third priority value associated with the
fourth update and the first priority value associated with the first update. In some
examples, the swapping between pairs of consecutive odd and even level updates
may be executed concurrently.

[0059] In some examples, the priority queue 104 is a data structure that may
receive updates 113 for sorting according to a priority. In some examples, the
priority queue 104 may be located on priority processor 516. For example, memory
506 may be a memory associated with priority processor 516. In some examples,
the priority queue 104 may be located on storage device 508.

[0060] The block diagram of Fig. 5 is not intended to indicate that the computing
device 502 is to include all of the components shown in Fig. 5. Further, the
computing device 502 may include any number of additional components not shown
in Fig. 5, depending on the details of the specific implementation.

[0061] Fig. 6 is a drawing of an example machine-readable storage medium 600
that may be used to update data. Machine-readable storage medium 600 is
connected to processor 602 via bus 604. Machine-readable storage medium 600
also contains data fetch module 606, a priority module 608, and a merge module
610. The machine-readable medium is generally referred to by the reference number
600. The machine-readable medium 600 may comprise Random Access Memory
(RAM), a hard disk drive, an array of hard disk drives, an optical drive, an array of
optical drives, a non-volatile memory, a Universal Serial Bus (USB) flash drive, a
DVD, a CD, and the like. In one implementation of the present techniques, the
machine-readable medium 600 may be accessed by a processor 602 over a
computer bus 604.

[0062] The various software components discussed herein may be stored on the
tangible, non-transitory machine-readable medium 600 as indicated in Fig. 6. For

13

WO 2016/018400 PCT/US2014/049264

example, a first block 606 may include a data fetch module 606 to retrieve an
update. For example, the update can be an individual update 113 from an SCU 110.
A second block 608 may include a priority module to order the updates by priority
value via a priority queue. For example, the priority value can be a primary key 114
associated with each individual update 113. The priority module 608 may further
also receive a higher priority update from the priority queue. A third block 610 may
include a merge module 610 to merge the higher priority update with a
corresponding database row. In some examples, merging the higher priority update
may include instructions to update multiple fields of the corresponding database row
based on a timestamp comparison. In some examples, the merge module 610 may
receive additional higher priority updates from the priority queue. In some examples,
the merge module 610 may merge the higher priority updates with the corresponding
database row. In some examples, the merge module 610 may also send the merged
database row to a memory after receiving a higher priority update corresponding to a
different database row. In some examples, the instructions to update the multiple
fields are to be executed in parallel. In some examples, the merge module 610 may
store the merged database row to a storage device.

[0063] Although shown as contiguous blocks, the software components may be
stored in any order or configuration. For example, if the computer-readable medium
600 is a hard drive, the software components may be stored in non-contiguous, or
even overlapping, sectors.

[0064] The present techniques are not restricted to the particular details listed
herein. Indeed, those skilled in the art having the benefit of this disclosure will
appreciate that many other variations from the foregoing description and drawings
may be made within the scope of the present techniques.

14

WO 2016/018400 PCT/US2014/049264

CLAIMS
What is claimed is:

1. A computing system for updating data, comprising:
a priority processor to:
receive an individual update;
output a prioritized update residing at a root position of a priority queue
and replace the prioritized update with a new individual update;
and
sort the individual updates in the priority queue based on their priority
values; and
a merge processor to:
receive the sorted updates from the priority processor and merge the
sorted updates into merged updates.

2. The computing system of claim 1, the individual updates corresponding
to database entries to be updated.

3. The computing system of claim 2, further comprising a direct memory
access (DMA) engine to retrieve an individual update from a self-consistent update
(SCU) to be placed in the priority queue.

4. The computing system of claim 3, the individual update comprising a
primary key to be used as the priority value and self-consistent update (SCU) source
ID.

5. The computing system of claim 1, further comprising a block random
access memory (BRAM) to provide temporary storage for a plurality of individual
updates of each SCU.

6. A method for updating data, comprising:
receiving updates;
ordering the updates by priority value via a priority queue;
receiving a higher priority update from the priority queue; and

15

WO 2016/018400 PCT/US2014/049264

merging the higher priority update with a corresponding database row.

7. The method of claim 6, merging the higher priority update comprising
updating multiple fields of the corresponding database row based on a timestamp

comparison.

8. The method of claim 7, wherein the multiple fields are to be updated in
parallel.

9. The method of claim 6, further comprising:

receiving additional higher priority updates from the priority queue;

merging the additional higher priority updates with the corresponding
database row; and

sending the merged database row to a memory after receiving a higher
priority update corresponding to a different database row.

10. The method of claim 9, further comprising storing the merged database
row to a memory after receiving a higher priority update corresponding to a different
database row.

11. A non-transitory machine-readable storage medium for updating data
encoded with instructions executable by a processor, the machine-readable storage
medium comprising:

instructions to retrieve updates;

instructions to order the updates by priority value via a priority queue;

instructions to receive a higher priority update from the priority queue;
and

instructions to merge the higher priority update with a corresponding
database row.

12. The non-transitory machine-readable storage medium of claim 11,

merging the higher priority update further comprising instructions to update multiple
fields of the corresponding database row based on a timestamp comparison.

16

WO 2016/018400 PCT/US2014/049264

13. The non-transitory machine-readable storage medium of claim 12,
wherein the instructions to update the multiple fields are to be executed in parallel.

14. The non-transitory machine-readable storage medium of claim 11,
further comprising:

instructions to receive additional higher priority updates from the priority
queue to generate a merged database row;

instructions to merge the higher priority updates with the corresponding
database row; and

instructions to send the merged database row to a memory after receiving a
higher priority update corresponding to a different database row.

15. The non-transitory machine-readable storage medium of claim 11,

further comprising instructions to send the merged database row to a memory after
receiving a higher priority update corresponding to a different database row.

17

PCT/US2014/049264

WO 2016/018400

1/11

|

i)
o7

|

0

Nv¥g Hod-leng

N—2Cl1
L[] TS
mw—\—\ ON - OOF s < o o o
; Yoe
1eq |00 B A , > :
_ T :
q |00z 1eq | 002 >y VNG
ON OO A * @ ’
00 L — | ool | 001
\\ | |
AR C J < ..
44’ /Iw__\ C i /ro__\
801 RARRRLT TN
/ upield [L pield | Aoy
\]
s01 Nrop \ 9 DZEN
\ — | 1eq | 002 20l L vl
\om - ool
cLl -~ | 9% |00} [N oz

WO 2016/018400

PCT/US2014/049264

2/11

Initialize a Priority Queue

v

Additiona
Individual
pdates?,

216 —~

End

Receive a Individual Update

v

212

Individual
Updates
Sorted?,

Identify a Higher Priority Individual Update
than All Other Individual Updates in the
Priority Queue and Replace the Higher

Priority Individual Update at the Root
Position in the Priority Queue with a
New Individual Update

v

>

Swap Even-Level Individual Updates with
Consecutively Higher Odd-Level
Individual Updates Based on a Comparison
of Priority Values Associated with the
Individual Updates

~ 208

!

Swap Odd-Level Individual Updates with
Consecutively Higher Even-Level
Individual Updates Based on a
Comparison of Priority Values Associated
with the Individual Updates

200

FIG. 2

PCT/US2014/049264

WO 2016/018400

3/11

ﬁ.m_\m

ﬁ.._w_\m

ﬁ.N_\m

Ve Old

Vv00€

ﬁ.o_\m

ﬁ.wom

ﬁ.oom

ﬁ.._wom

ﬁ.Nom

L 18A97

9 [oraT

G [oAaT

y [9AST

£ [oAaT]

Z 19897

| oA

0 19A07

PCT/US2014/049264

WO 2016/018400

4/11

ﬁ.m_\m

ﬁ.._w_\m

ﬁ.N_\m

d¢€ Old
0%

a0

ﬁ.o_\m

ﬁ.wom

ﬁ.oom

ﬁ.._wom

ﬁ.Nom

L 18A97

9 [oraT

G [oAaT

y [9AST

£ [oAaT]

Z 19897

| oA

0 19A07

PCT/US2014/049264

20

o€ Old
0%

ﬂ.m_\m ﬂ.._w_\m ﬂ.N_\m ﬂ.o_\m ﬂ.wom ﬂ.mom ﬁ.._wom ﬁ.Nom

L 19A97] 9 joaT G [oraT y [0AaT] £ [oAaT A | [9A0T 0 0AaT

5/11

WO 2016/018400

ove

;ndino

PCT/US2014/049264

WO 2016/018400

6/11

dec 'old
0¢

ao

ﬁnmrm ﬁnﬁrm ﬁnmrm ﬁnorm ﬁnwom ﬁn@

0€ ﬁnﬁom

ﬁ.Nom

L 18A97

9 [oraT

G [oAaT

y [9AST

£ [oAaT]

Z 19897

| oA

0 19A07

//##m

0€e

//wvm

8ce

//##m

oce

*

oce

.
AT A

/lmﬁm

PCT/US2014/049264

30

d€ Ol4d
0%

ﬂ.m_\m ﬂ.._w_\m ﬂ.N_\m ﬂ.o_\m ﬂ.wom ﬂ.mom ﬁ.._wom ﬁ.Nom

L 19A97] 9 joaT G [oraT y [0AaT] £ [oAaT A | [9A0T 0 0AaT

7/11

WO 2016/018400

12513

;ndino

PCT/US2014/049264

WO 2016/018400

8/11

4¢ Ol
0¢

40

ﬁnmrm ﬁnﬁrm ﬁnmrm ﬁnorm ﬁnwom ﬁn@

0€ ﬁnﬁom

ﬁ.Nom

L 18A97

9 [oraT

G [oAaT

y [9AST

£ [oAaT]

Z 19897

| oA

0 19A07

0€e

//##m

oce

*
Yenyans®

/lmvm

8ce

> * * *

hLTTITR Ad

//Nﬁm

0G¢e

.
AT T A

/lmﬁm

WO 2016/018400

Different
Database
Row?

410

PCT/US2014/049264
9/11
402
Receive Updates 4
Order the Updates by Priority Value Via |~ 404
a Priority Queue
Receive a Higher Priority Update from |/~ 406
the Priority Queue
Merge the Higher Priority Update witha |/~ 408
Corresponding Database Row
Send the Merged Database Row to 412
Memory After Receiving a Higher ~

Priority Update Corresponding to a
Different Database Row

FIG. 4

WO 2016/018400

502
\

10/11

Computing Device

DMA

Processor

504 -/

Memory

Engine

514 -/

Priority

506 -/

508

Processor

516 -~/

Merge

Processor

518/

Storage Device

NIC

PCT/US2014/049264

Network

510 7/

500

FIG. 5

512

WO 2016/018400 PCT/US2014/049264

11/11

600 \

602 N 604 _— 606
Py ‘ | Data Fetch /
0CESSo Module
_— 608
Priority /|
Module
_— 610
Merge /7
Module

FIG. 6

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/049264

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 17/00; GO6F 17/30; GO6F 7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: database, update, entry, priority queue, key value, sort, merge, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2009-0259617 A1 (COWNIE, RICHARD CHARLES et al.) 15 October 2009 1-6,9-11,14-15

See paragraphs [0023], [0026], [0030]-[0034], [0061]-[0062], and [0065];
claims 1 and 6; and figures 1-2 and 6.

A 7-8,12-13

A US 2012-0254173 A1 (GRAEFE, GOETZ) 04 October 2012 1-15
See paragraphs [0015], [0032]-[0034], [0037]-[0038], and [0050]-[0053]; and
figures 2a—2b and 5.

A US 2010-0281013 A1 (GRAEFE, GOETZ) 04 November 2010 1-15
See paragraphs [0041] and [0047]-[0050]; and figure 6.

A US 7,016,914 B2 (NAYAK, TAPAS K.) 21 March 2006 1-15
See column 13, line 24 — column 15, line 11; and figures 9-10c.

A US 2013-0226967 A1 (GROSS, JOHN N et al.) 29 August 2013 1-15
See paragraphs [0363]-[0365] and figure 17A.

. . . . N .
|:| Further documents are listed in the contination of Box C. See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination

means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

30 March 2015 (30.03.2015) 31 March 2015 (31.03.2015)
Name and mailing address of the ISA/KR Authorized officer
International Application Division
+ Korean Intellectual Property Office :
g
189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 302-701, NHO, Ji Myong
= Republic of Korea

Facsimile No. ++82 42472 7140 Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/049264

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2009-0259617 Al 15/10/2009 None

US 2012-0254173 Al 04/10/2012 None

US 2010-0281013 Al 04/11/2010 None

US 7016914 B2 21/03/2006 US 2003-0229626 Al 11/12/2003
US 2005-0251526 Al 10/11/2005
US 2006-0010146 Al 12/01/2006
US 7185019 B2 27/02/2007
US 7590645 B2 15/09/2009

US 2013-0226967 Al 29/08/2013 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

