发明名称

普瑞巴林和相关化合物的制备

摘要

本发明涉及普瑞巴林和相关化合物的制备。公开了通过酶动力学拆分制备(S)-(+)-3-氨基甲基-5-甲基-己酸和结构上相关的化合物的材料和方法。
1. 制备式 1 化合物或其盐的方法。

其中
R^1 是氢，R^2 是异丁基，
其特征在于该方法包括：
(a) 使式 4 的化合物与酶接触，

其中
R^1 和 R^2 具有式 1 所定义的含意，以及
R^3 和 R^4 相同或不同，并且各自独立地选自 C_{1-12} 烷基、C_{3-12} 环烷基和芳基-C_{1-6} 烷基，
以生成式 3 的化合物或其盐，和式 5 的化合物，

其中
R^1，R^2，R^3 和 R^4 具有式 1 和式 4 所定义的含意，
其中所述酶选自疏棉状嗜热丝孢菌脂肪酶、德列马根霉脂肪酶、雪白根雪脂肪酶、米赫根毛霉酶、假单胞菌属物种脂肪酶、米赫根毛霉脂肪酶、稻根霉脂肪酶、Candida antarctica 脂肪酶 -A 和 Candida antarctica 脂肪酶 -B；
(b) 分离式 3 的化合物或其盐；
(c) 任选地外消旋式 5 的化合物，生成式 4 的化合物；
(d) 还原式 3 化合物或其盐的氨基，生成式 2 的化合物或其盐，

其中
R₁ 和 R₂ 具有关于式 1 所定义的含义；
(e) 使式 2 的化合物或其盐与酸和水反应，生成式 1 的化合物或其盐，并且
(f) 任选地将式 1 的化合物或其盐转化成药学上可接受的盐或溶剂化物。
2. 制备式 1 化合物或其盐的方法，

其中
R₁ 是氢，R₂ 是异丁基。
其特征在于该方法包括：
(a) 使式 4 的化合物与酶接触，

其中
R₁ 和 R₂ 具有关于式 1 所定义的含义，以及
R³ 和 R⁴ 相同或不同，并且各自独立地选自 C₁⁻₁₂ 烷基、C₃⁻₁₂ 环烷基和芳基，C₁⁻₆ 烷基，
以生成式 3 的化合物或其盐，和式 5 的化合物，

其中
R¹、R²、R³ 和 R⁴ 具有关于式 1 和式 4 所定义的含义，
其中所述酶选自疏棉状嗜热丝孢菌脂肪酶、德列马根霉脂肪酶、雪白根霉脂肪酶、
米赫根毛霉酯酶、假单胞菌属物种脂肪酶、米赫根毛霉脂肪酶、稻根霉脂肪酶、Candida antarctica 脂肪酶 -A 和 Candida antarctica 脂肪酶 -B；
(b) 分离式 3 的化合物或其盐；
(c) 任选地外消旋式 5 的化合物，生成式 4 的化合物；
(d) 用酸或碱水解式 3 的化合物或其盐，生成式 6 的化合物或其盐，
其中
R¹ 和 R² 具有关于式 1 所定义的含义；
(e) 还原式 6 化合物及其盐的氰基，生成式 7 的化合物或其盐，

其中
R¹ 和 R² 具有关于式 1 所定义的含义；
(f) 使式 7 的化合物或其盐脱羧基，生成式 1 的化合物或其盐；并且
(g) 任选地将式 1 的化合物或其盐转化为药学上可接受的盐或溶剂化物。

3. 制备式 1 化合物或其盐的方法，

其中
R¹ 是氢，R² 是异丁基，
其特征在于该方法包括：
(a) 使式 4 的化合物与酶接触，

其中
R¹ 和 R² 具有关于式 1 所定义的含义，以及
R³ 和 R⁴ 相同或不同，并且各自独立地选自 C₁-₁₂ 烷基、C₃-₁₂ 环烷基和芳基 -C₁-₆ 烷基，以生成式 3 的化合物或其盐，和式 5 的化合物，
其中
R¹, R², R³ 和 R⁴ 具有关于式 1 和式 4 所定义的含义。
其中所述酶选自硫化铩热丝孢菌脂肪酶、德列马根霉脂肪酶、雪白根霉脂肪酶、米赫根毛霉霉酶、假单胞菌属物种脂肪酶、米赫根毛霉脂肪酶、稻根霉脂肪酶、Candida antarctica 脂肪酶 -A 和 Candida antarctica 脂肪酶 -B；
(b) 分离式 3 的化合物或其盐；
(c) 任选地外消旋式 5 的化合物，生成式 4 的化合物；
(d) 用酸或碱水解式 3 的化合物或其盐，生成式 6 的化合物或其盐；

其中
R¹ 和 R² 具有关于式 1 所定义的含义；
(e) 使式 6 的化合物或其盐脱羧基，生成式 8 的化合物或其盐；

其中
R¹ 和 R² 具有关于式 1 所定义的含义，R⁵ 是氢；
(f) 还原式 8 化合物或其盐的氨基，生成式 1 的化合物；并且
(g) 任选地将式 1 的化合物或其盐转化成药学上可接受的盐或溶剂化物。
4. 制备式 1 化合物或其盐的方法，

其中
R¹ 是氢，R² 是异丁基，
其特征在于该方法包括：
(a) 使式 4 的化合物与酶接触，

其中
R¹ 和 R² 具有关于式 1 所定义的含义，以及
R³ 和 R⁴ 相同或不同，并且各自独立地选自 C₁₅₋₈ 烷基、C₃₋₁₂ 环烷基和芳基 -C₁₋₆ 烷基，
以生成式 3 的化合物或其盐，和式 5 的化合物，

其中
R¹, R², R³ 和 R⁴ 具有关于式 1 和式 4 所定义的含义，
其中所述酶选自疏膜状嗜热丝孢菌脂肪酶、德列马根霉脂肪酶、雪白根霉脂肪酶、
米赫根毛霉酯酶、假单胞菌属物种脂肪酶、米赫根毛霉脂肪酶、稻根霉脂肪酶、Candida antarctica 脂肪酶 -A 和 Candida aantarctica 脂肪酶 -B；
(b) 分离式 3 的化合物或其盐；
(c) 任选地外消旋式 5 的化合物，生成式 4 的化合物；
(d) 使式 3 的化合物或其盐脱羧基，生成式 8 的化合物或其盐，

其中
R¹ 和 R² 具有关于式 1 所定义的含义，R⁵ 是 C₁₋₅ 烷基、C₃₋₁₂ 环烷基和芳基 -C₁₋₆ 烷基；
(e) 水解式 8 的化合物或其盐的酯部分，生成其中 R⁵ 是氢的式 8 的化合物或其盐；
(f) 还原步骤 (e) 产生的 R⁵ 是氢的式 8 化合物或其盐的氨基，生成式 1 的化合物或其
盐；并且最后
(g) 任选地将式 1 的化合物或其盐转化成药学上可接受的盐或溶剂化物。
普瑞巴林和相关化合物的制备

【0001】本申请是申请号为200580020494.9、申请日为2005年6月9日、发明名称为“普瑞巴林和相关化合物的制备”的专利申请的分案申请。

技术领域

【0002】本发明涉及通过酶动力学拆分制备对映体-富集的γ-氨基酸的方法和材料，尤其适用于制备表现出对人α₃δ钙通道亚基的结合亲和力的γ-氨基酸，包括普瑞巴林和相关化合物。

背景技术

【0004】|已经以多种方式制备了普瑞巴林。典型地，合成3-氨基甲基-5-甲基-乙酸的外消旋混合物，并随后拆分成它的R-和S-对映体。这样的方法可以采用叠氮化物中间体，丙二酸酯中间体，或霍夫曼合成。分别见，R.B. Silverman等的美国专利号5,563,175；T.M.Grote等的美国专利号6,046,353,5,840,956，和5,637,767；和B.K.Huckabee&D.M.Sobieray的美国专利号5,629,447和5,616,793，以它们的整体并为所有目的将它们并入本文作为参考。在这些方法中的每一种中，使外消旋物与手性酸（拆分剂）反应，形成一对非对映异构的盐，将其通过已知的技术分离，例如分级结晶法和色谱法。这些方法因而包含了明显超过外消旋物的制备的加工，其与拆分剂一起，增加到生产成本中。而且，经常丢弃不希望的R-对映体，因为它不能有效地再利用，从而使方法的有效产量减少了50%。

【0005】|已经使用手性助剂(4R,5S)-4-甲基-5-苯基-2-嗯啉烷醇，直接合成了普瑞巴林。见例如，R.B. Silverman等的美国专利号6,359,169,6,028,214,5,847,151,5,710,304,5,684,189,5,608,090和5,599,973，以它们的整体并为所有目的将它们并入本文作为参考。尽管这些方法提供了高对映体纯度的普瑞巴林，但它们不太合乎大规模合成的需要，因为它们采用比较昂贵的难以处理的试剂（例如，手性助剂），以及用于达到需要的操作温度（其可以低至-78℃）的特殊低温设备。

【0006】|最近公布的美国专利申请讨论了制备普瑞巴林的方法，其通过氨基-取代的烯烃的不对称氢化，生产(S)-3-氨基甲基-5-甲基乙酸的手性氨基前体。见共同转让的2003
年 11 月 13 日公开的 Burk 等的美国专利申请号 2003/0212290A1，以其整体为所有目的将其并入本文作为参考。随后还原氨基酸前体，生成普瑞巴林。不对称的氨化采用手性的催化剂，该催化剂包含结合到双膦配体上的过渡金属，例如 (R, R)-Me-DUPHOS。该方法导致相对于 (R)-3- (氨基甲基)-5- 甲基己酸实质上富集普瑞巴林。

发明内容

[0008] 本发明提供了用于制备对映体富集的 Y-氨基酸 (式 1) 例如普瑞巴林 (式 9) 的方法和方法。本发明的方法包括，使用适于对映选择性地水解中间体的酯部分的酶，动力学拆分外消旋的氨基酸酯中间体 (式 4 或式 12)。得到的实质上对映纯的二羧酸单酯 (式 3 或式 11)，经历进一步的反应，生成需要的对映体-富集的 Y-氨基酸 (式 1 或式 9)。来自动力学拆分的未反应的对映体 (式 5 或式 13)，可以在外消旋化后的酶法拆分中再使用，从而提高总产率。

[0009] 要求保护的方法提供了明显超过现有的制备对映体-富集的 Y-氨基酸 (式 1 和式 9) 的方法的优点。例如，无需使用手性助剂或专有的氨化催化剂，这会产生更低的单位成本，可以制备旋光活性的 Y-氨基酸。由于酶方法可以在室温和大气压下进行，要求保护的方法有助于使用低压和低温的专门设备而产生的计划安排冲突最小化。如果实施例中指出的，本发明可以用于在未反应的对映体 (式 13) 的单批再循环后，从外消旋的氨酸-取代的二酯 (式 12) 开始，以良好的产率 (26% 至 31%) 制备普瑞巴林。这解释为，与上面所述的丙二酸酯方法相比，物品成本节省了约 50%。

[0010] 本发明的一个方面提供了制备式 1 化合物或其药理学上可接受的化合物、盐、溶剂化物或水合物的方法。

\[
\begin{align*}
\text{H}_2\text{N} & \rightarrow \text{R}^1 \text{R}^2 \text{CO}_2\text{H} \\
& \quad 1
\end{align*}
\]

[0012] 其中

[0013] R1 和 R2 不同，且各自独立地选自氢原子，C1-12 烷基，C3-12 环烷基，和被取代的 C3-12 环烷基，

[0014] 该方法包括:

[0015] (a) 使式 2 化合物或其盐与酸和水反应,
生成式1化合物或其盐；以及

任选地将式1化合物或其盐转化成药学上可接受的复合物、盐、溶剂化物或水合物，其中式2中的R₁和R₂与在式1中的定义相同。

本发明的另一个方面提供了制备上面的式1化合物的方法，该方法包括：

(a) 还原式6化合物或其盐的羰基部分，

生成式7化合物或其盐，

使式7化合物或其盐脱羧基，生成式1化合物或其盐；以及

任选地将式1化合物或其盐转化成药学上可接受的复合物、盐、溶剂化物或水合物，其中式6和式7中的R₁和R₂与上面在式1中的定义相同。

通过水解式3化合物或其盐，可以制备上面的式6化合物，

其中式3中的R₁和R₂与上面在式1中的定义相同，且R₃是C₁-₁₂烷基，C₃-₁₂环烷基，或芳基-C₁-₆烷基。

本发明的另一个方面提供了制备上面的式1化合物的方法，该方法包括：
[0030] (a) 还原式 8 化合物或其盐的氨基部分，
[0031]

\[
\begin{array}{c}
R^1 \quad \text{CN} \\
R^2 \quad \text{CO}_2R^5
\end{array}
\]

8

[0032] 生成式 1 化合物或其盐；以及
[0033] (b) 任选地将式 1 化合物或其盐转化成药学上可接受的化合物、盐、溶剂化物或水合物，其中式 8 中的 R^1 和 R^2 与上文在式 1 中的定义相同，且式 8 中的 R^5 是氢原子，C_{1-12} 烷基，C_{3-12} 环烷基或芳基 -C_{1-6} 烷基。
[0034] 通过使上面的式 3 化合物或其盐脱羧基，或通过水解式 3 化合物或其盐和使其脱羧基，生成式 8 化合物或其盐，可以制备式 8 合物。
[0035] 本发明的另一个方面提供了制备上面的式 3 化合物或其盐的方法，该方法包括：
[0036] (a) 使式 4 化合物接触酶，
[0037]

\[
\begin{array}{c}
R^1 \quad \text{CN} \\
R^2 \quad \text{CO}_2R^3 \\
R^4O_C
\end{array}
\]

4

[0038] 生成式 3 化合物和式 5 化合物，
[0039]

\[
\begin{array}{c}
R^1 \quad \text{CN} \\
R^2 \quad \text{CO}_2R^3 \\
R^4O_C
\end{array}
\]

5

[0040] 其中该酶适于对映选择性地将式 4 化合物水解成式 3 化合物或其盐；
[0041] (b) 分离式 3 化合物或其盐；以及
[0042] (c) 任选地外消旋式 5 化合物，生成式 4 化合物，其中式 4 和式 5 中的 R^1, R^2 和 R^3 与上面在式 1 和式 3 中的定义相同；且式 4 和式 5 中的 R^3 与 R^5 相同或不同，且为 C_{1-12} 烷基，C_{3-12} 环烷基或芳基 -C_{1-6} 烷基。
[0043] 可以使用任意数量的酶，对映选择性地将式 4 化合物水解成式 3 化合物或其盐。有用的酶包括脂肪酶，例如源自疏棉状嗜热丝孢菌 (Thermomyces lanuginosus) 的那些。
[0044] 本发明的另一个方面提供了由上面的式 2 所代表的化合物，包括其复合物、盐、溶剂化物或水合物，条件是，式中由 R^1 或 R^2 代表的取代基之一是氢时，另一个取代基不是 C_{1-3} 烷基或 C_{5} 烷基。
本发明的另一个方面提供了式 27 化合物，

![化合物27](image)

包括其复合物、盐、溶剂化物或水合物，其中

- R^1 和 R^2 不同，且各自独立地选自羟基，C_{1-12} 烷烃基，C_{3-12} 环烷烃基和被取代的 C_{3-12} 环烷烃基，条件是，当由 R^1 或 R^2 代表的取代基之一是氢原子时，另一个取代基不是甲基；以及

- R^2 和 R^3 独立地选自氢原子，C_{1-12} 烷烃基，C_{3-12} 环烷烃基或芳基-C_{1-6} 烷烃基，条件是，R^2 和 R^3 如果不是氢原子，则它们不同。

式 27 化合物包括由上面的式 3、式 4、式 5、式 6 和式 7 代表的那些，包括它们的复合物、盐、溶剂化物或水合物。有用的式 2-7 和 27 的化合物包括其中 R^1 是氢原子，且 R^2 是异丁基的那些。

本发明的另一个方面提供了制备式 9 化合物或其药学上可接受的复合物、盐、溶剂化物或水合物的方法，

![化合物9](image)

该方法包括：

(a) 使式 10 化合物或其盐与酸和水反应，

![化合物10](image)

生成式 9 化合物或其盐；以及

(b) 任选地将式 9 化合物或其盐转化成药学上可接受的复合物、盐、溶剂化物或水合物。

本发明的另一个方面提供了制备上面的式 9 化合物或其药学上可接受的复合物、盐、溶剂化物或水合物的方法，该方法包括：

(a) 还原式 14 化合物或其盐的氨基部分，
[0061] 生成式 15 化合物，

[0062]

或其盐；

[0064] (b) 使式 15 化合物或其中一种盐与酸，生成式 9 化合物或其中一种盐；以及

[0065] (c) 任选地将式 9 化合物或其中一种盐转化成药学可接受的衍生物、盐、溶剂化物或水合物。

[0066] 通过水解式 11 化合物或其中一种盐，可以制备上述的式 14 化合物，

[0067]

其中式 11 中的 R^3 与上文中的 R^1 定义相同。

[0068] 本发明的另一个方面提供了制备上述的式 9 化合物或其中一种盐可接受的衍生物、盐、溶剂化物或水合物的方法，该方法包括：

[0070] (a) 还原式 16 化合物或其中一种盐的氨基部分，

[0071]

生成式 9 化合物或其中一种盐；以及
（b）任选地将式 9 化合物或其盐转化成药学上可接受的复合物、盐、溶剂化物或水合物，其中式 16 中的 R^3 与上面在式 8 中的定义相同。

（b）通过使上面的式 11 化合物或其盐脱羧基（例如，通过加热），或通过水解式 11 化合物或其盐并使其脱羧基，可以制备式 16 化合物。

本发明的另一个方面提供了制备上面的式 11 化合物或其盐的方法，该方法包括：

（a）使式 12 化合物接触酶，

生成式 11 化合物和式 13 化合物，

其中该酶适于对映选择性地将式 12 化合物水解成式 11 化合物或其盐；

（b）分离式 11 化合物或其盐；以及

（c）任选地外消旋式 13 化合物，生成式 12 化合物，其中

式 12 和式 13 中的 R^3 与上面在式 3 中的定义相同；且

式 12 和式 13 中的 R^4 与 R^3 相同或不同，且为 C_{1-12} 烷基，C_{1-12} 环烷基或芳基 - C_{1-6} 烷基。

在制备式 11 化合物的方法中，式 11 化合物的对应盐包括选自下述的那些：碱金属盐，例如钾盐；伯胺盐，例如叔丁胺盐；和仲胺盐。而且，有用的酶包括脂肪酶，例如源自疏棉状嗜热丝孢菌的那些。

本发明的另一个方面提供了选自下述的化合物：

3- 氧基 - 2- 乙氧羰基 - 5- 甲基 - 己酸，

（3S）- 3- 氧基 - 2- 乙氧羰基 - 5- 甲基 - 己酸，

（2S, 3S）- 3- 氧基 - 2- 乙氧羰基 - 5- 甲基 - 己酸，

（2R, 3S）- 3- 氧基 - 2- 乙氧羰基 - 5- 甲基 - 己酸，

3- 氨基 - 2- 乙氧羰基 - 5- 甲基 - 己酸乙酯，

（R）- 3- 氨基 - 2- 乙氧羰基 - 5- 甲基 - 己酸乙酯，

4- 异丁基 - 2- 氧代 - 吡咯烷 - 3- 甲酸，

（S）- 4- 异丁基 - 2- 氧代 - 吡咯烷 - 3- 甲酸，
[0095] 3- 氧基 -2- 羧基 -5- 甲基 -乙酸，
[0096] (S)-3- 氧基 -2- 羧基 -5- 甲基 -乙酸，
[0097] 3- 氨基甲基 -2- 羧基 -5- 甲基 -乙酸，和
[0098] (S)-3- 氨基甲基 -2- 羧基 -5- 甲基 -乙酸，
[0099] 包括其复合物、盐、溶剂化合物和水合物和其相反的对映体。
[0100] 本发明包括所有化合物的所有衍生物和盐，无论是否是药学上可接受的，溶
剂化合物，水合物和多晶型物。某些化合物可以含有单个基或环状基团，这样顺 / 反 (或 Z/E)
立体异构体是可能的，或可以含有酮或肟基团，这样可能发生互变异构。在这样的情况下，
本发明通常包括所有 Z/E 异构体和互变异构形式，无论它们是纯的，实质上纯的，还是混合
物。
[0101] 附图简述
[0102] 图 1 描述了制备对映体 - 富集的 γ- 氨基酸 (式 1) 的方案。
[0103] 图 2 描述了制备氮基 - 取代的二酯 (式 4) 的方案。
[0104] 详细描述
[0105] 定义和缩写
[0106] 除非另有说明，本公开使用下面提供的定义。有些定义和公式可能包含破折号
 (“-”)，以指示原子之间的键或与命名的或未命名的原子或原子组的结合点。其它定义和
公式可能包含等号 (“==”) 或等号等标识 (“—”)，以分别指示双键或三键。某些公式还可
能包含一个或多个星号 (“*”)，以指示立体生成 (stereogenic) (不对称的或手性的) 中
心，尽管星号的缺失不表明该化合物缺少立体中心。这样的公式可以指外消旋体或单个的
对映体或单个的非对映体，其可以为或可以不是纯的或实质上纯的。
[0107] “被取代的”基团是其中一个或多个氢原子被替换为一个或多个非氢基团的那些，
条件是，满足化合价要求，且取代产生化学稳定的化合物。
[0108] 当与可测量的数字变量联合使用时，“约”或“大约”指变量的指示值，也指在指示
值的实验误差内（例如，在平均值的 95% 置信区间内）或在指示值 ±10% 内（无论哪一个
更大）的变量的所有值。
[0109] “烷基”指直链和分支的饱和烃基，其通常具有指定数目的碳原子（即，C1-6 烷基
指具有 1,2,3,4,5 或 6 个碳原子的烷基，且 C12-烷基指具有 1,2,3,4,5,6,7,8,9,10,11 或
12 个碳原子的烷基）。烷基的实例包括，但不限于，甲基，乙基，正丙基，异丙基，正丁基，仲
丁基，异丁基，叔丁基，戊 -1- 基，戊 -2- 基，戊 -3- 基，3- 甲基丁 -1- 基，3- 甲基丁 -2- 基，
2- 甲基丁 -2- 基，2,2,2- 三甲基乙 -1- 基，正己基等。
[0110] “链烯基”指直链和分支的烃基，其具有一个或多个不饱和的碳 - 碳键，且通常具有
d指定数目的碳原子。链烯基的实例包括，但不限于，乙烯基，1- 丙烯 -1- 基，1- 丙烯 -2- 基，
2- 丙烯 -1- 基，1- 丁烯 -1- 基，1- 丁烯 -2- 基，3- 丁烯 -1- 基，3- 丁烯 -2- 基，2- 丁烯 -1- 基，
2- 丁烯 -2- 基，2- 甲基 -1- 丙烯 -1- 基，2- 甲基 -2- 丙烯 -1- 基，1,3- 丁二烯 -1- 基，1，
3- 丁二烯 -2- 基等。
[0111] “炔基”指直链或分支的烃基，其具有一个或多个三碳 - 碳键，且通常具有指定数
目的碳原子。炔基的实例包括，但不限于，乙炔基，1- 丙炔 -1- 基，2- 丙炔 -1- 基，1- 丁炔
-1- 基，3- 丁炔 -1- 基，3- 丁炔 -2- 基，2- 丁炔 -1- 基等。
"烷酰基"和"烷酰基氨基"分别指烷基-C(0)-和烷基-C(0)-NH-,其中烷基如上所定义，且通常包含指定数目的碳原子，包括碳基碳。烷酰基的实例包括，但不限于甲酰基，乙酰基，丙酰基，丁酰基，戊酰基，己酰基等。

"镍酰基"和"炔酰基"分别指链烯基-C(0)-和炔基-C(0)-，其中链烯基和炔基如上所定义。提及烯酰基和炔酰基通常包含指定数目的碳原子，不包括碳基碳。烯酰基的实例包括，但不限于丙烯酰基，2-甲基丙烯酰基，2-丁烯酰基，3-丁烯酰基，2-甲基-2-丁烯酰基，2-甲基-3-丁烯酰基，3-甲基-3-丁烯酰基，2-戊烯酰基，3-戊烯酰基，4-戊烯酰基等。炔酰基的实例包括，但不限于丙炔酰基，2-丁炔酰基，3-丁炔酰基，2-戊炔酰基，3-戊炔酰基，4-戊炔酰基等。

"烷氧基"，"烷氧基氨基"和"烷氧基氨基氨基"分别指烷基-O-,链烯基-O-，和炔基-O-；指烷基-O-C(0)-，链烯基-O-C(0)-，炔基-O-C(0)-，和指烷基-O-C(0)-NH-,链烯基-O-C(0)-NH-,和炔基-O-C(0)-NH-，其中烷基，链烯基，和炔基如上所定义。烷氧基的实例包括，但不限于甲氧基，乙氧基，正丙氧基，异丙氧基，正丁氧基，仲丁氧基，叔丁氧基，正戊氧基，仲戊氧基等。烷氧基氨基的实例包括，但不限于甲氧基，乙氧基，正丙氧基，异丙氧基，正丁氧基，仲丁氧基，叔丁氧基，正戊氧基，仲戊氧基等。

"烷氨基"，"烷氨基氨基"和"烷氨基氨基氨基"分别指烷基-NH-,烷基-NH-C(0)-，烷基-NH-C(0)-，烷基-NH-C(0)-，烷基-NH-C(0)-，烷基-NH-C(0)-，和指烷基-NH-C(0)-，其中烷基如上所定义。

"氨胺基"和"氟胺基"分别指NH-烷基和N＝C-烷基，其中烷基如上所定义。

"卤代"，"卤素"和"卤素代"可互换地使用，且指氟化，卤代，溴化，碘化。

"卤代烷基"，"卤代链烯基"，"卤代炔酰基"，"卤代烯酰基"，"卤代炔基"，"卤代烷氧基"，"卤代烷氧基氨基"分别指被一个或多个卤素原子取代的烷基，链烯基，炔基，烯酰基，炔酰基，烷氧基和烷氧基氨基，其中烷基，链烯基，炔基，烯酰基，炔酰基，烷氧基和烷氧基氨基，如上所定义。卤代烷基的实例包括，但不限于三氟甲基，三氯甲基，五氟乙基，五氯乙基等。

"羟烷基"和"氧代烷基"分别指HO-烷基和O＝烷基，其中烷基如上所定义。羟烷基和氧代烷基的实例包括，但不限于羟甲基，羟乙基，3-羟丙基，氧代甲基，氧代乙基，3-氧代丙基等。

"环烷基"指饱和的和环环的和环环的环烷，其通常具有指定数目的环环碳原子（即，C₆；环烷基是指具有3,4,5,6或7个作为环成员的碳原子的环烷基）。环烷基可以在任意的环原子处结合到母体基团或底物上，除非这样的结合会违反化合作用。同样地，环烷基可以包含一个或多个非氢的取代基，除非这样的取代会违反化合作用。有用的取代基包括，但不限于烷基，链烯基，炔基，卤代烷基，卤代链烯基，卤代炔基，烷氧基，烷氧基氨基，烷酰基，和卤代，如上所定义的，和羟基，巯基，硝基，和氨基。

[0122] “环烯基”指单环的和双环的烃基，其具有一个或多个不饱和的碳-碳键，且通常具有指定数目的环碳原子（即，C₃₅₋₇），环烯基指具有3, 4, 5, 6或7个作为环成员的碳原子的环烯基。环烯基可以在任意的环原子处结合到母体基团或底物上，除非这样的结合会违反化合价要求。同样地，环烯基可以包含一个或多个非氢的取代基，除非这样的取代会违反化合价要求。有用的取代基包括但不限于烷基，链烯基，烯基，卤代烷基，卤代烯基，卤代炔基，炔烷基，烷氧基碳基，烷氧基基，和氢基，如上所定义的，和烷基，硫基，硝基，氨基，和氢基。

[0123] “环烷酰基”和“环烯酰基”分别指环烷基-C(0)-和环烯基-C(0)-，其中环烷基和环烯基如上所定义。提及环烷酰基和环烯酰基通常包含指定数目的碳原子，不包括烷基碳。环烷酰基的实例包括但不限于，环丙酰基，环丁酰基，环戊酰基，环己酰基，环庚酰基，1-环丁烯酰基，2-环丁烯酰基，1-环戊烯酰基，2-环戊烯酰基，1-环己烯酰基，3-环己烯酰基，2-环己烯酰基，3-环己烯酰基，2-环己烯酰基，3-环己烯酰基等。

[0124] “环烷基”和“环烷基氨基”分别指环烷基-0-和环烯基-0-指环烷基-0-C(0)-和环烯基-0-C(0)-，其中环烷基和环烯基如上所定义。提及环烷基和环烯基氨基通常包含指定数目的碳原子，不包括烷基碳。环烷基氨基的实例包括但不限于，环丙基氨，环丁基氨，环戊基氨，环己基氨，1-环丁烯基氨，2-环丁烯基氨，1-环戊烯基氨，2-环戊烯基氨，1-环己烯基氨，3-环己烯基氨等。环烷基氨基的实例包括但不限于，环丙基氨，环丁基氨，环戊基氨，环己基氨，环戊基氨，环己基氨，环丁烯基氨，2-环丁烯基氨，1-环戊烯基氨，2-环戊烯基氨，3-环己烯基氨，1-环已烯基氨，2-环己烯基氨，3-环己烯基氨等。

[0125] “芳基”和“亚芳基”分别指单环的和双环的芳族基，包括含有0-4个独立地选自氢、氧和硫的杂原子的5-和6-元单环芳族基。单环芳基的实例包括但不限于，苯基，吡咯基，呋喃基，噻吩基，异噻唑基，咪唑基，三唑基，四唑基，吡唑基，噻唑基，异噻唑基，呋啶基，吡啶基，噻嗪基，嘧啶基等。芳基和亚芳基也包括双环基团，三环基团等，包括稠合的上述5-和6-元环。多环芳基的实例包括但不限于，萘基，苯基，喹啉基，苯并基，苯并噻唑基，苯并呋喃基，苯并噻吩基，苯并唑基，咪唑基，异噻唑基，呋喃基，苯并呋喃基，噻唑基，啶嗪基等。这些芳基和亚芳基可以在任意的环原子处结合到母体基团或底物上，除非这样的结合会违反化合价要求。同样地，芳基和亚芳基可以包含一个或多个非氢的取代基，除非这样的取代会违反化合价要求。有用的取代基包括但不限于，烷基，链烯基，炔基，卤代烷基，卤代链烯基，卤代炔基，环烷基，环烯基，环烷基，环烯基，环烷基，环烯基，环烷基，环烯基，和氢基，如上所定义的，和烷基，硫基，硝基，氨基，和烷基氨基。

[0126] “杂环”和“杂环基”指饱和的、部分不饱和的或不饱和的单环的或双环，其分别具有5-7或7-11个环成员。这些基团具有由碳原子和1-4个独立地选自氢，氧或硫的杂原子组成的环成员，且可以包含任意的双环基团，其中任一个上面定义的单环杂环稠合到苯环上。氮和硫杂原子可以任选地被氧化。杂环可以在任意的杂原子或碳原子处结合到母体基
团或底物上，除非这样的结合会违反化合价要求。同样地，碳或氮环成员中的任一个可以包含非氢的取代基，除非这样的取代会违反化合价要求。有用的取代基包括但不限于烷基、环烯基、炔基、卤代烷基、卤代烯基、卤代炔基、环烷基、环烯基、烷氧基、环烷氧基、烷酰基、环烷酰基、环烷酰氧基、环烷氧基酸基、环烷氧基羧基，和卤代，如上所定义的，和羟基，巯基，硝基，氨基，和烷基氨基。

0127] 杂环的实例包括，但不限于，吲哚基，吲哚基，苯并咪唑基，苯并呋喃基，苯并噻唑基，苯并噻吩基，苯并噻唑基，苯并噻
指芳基碳-\(-\text{C}(0)-,\) 杂芳基碳-\(-\text{C}(0)-,\) 芳基烷氧基-\(-\text{C}(0)-,\) 和杂芳基烷氧基-\(-\text{C}(0)-,\) 其中芳基氧化基, 杂芳基氧化基, 芳基烷氧基, 和杂芳基烷氧基如上所定义。实例包括, 但不限于, 苯氧基
羰基, 咪唑-2-基氧羰基, 苯甲基氧化基, 苯基甲基氧化基, 咪唑-2-基-甲基氧化羰基等。

【0134】“离去基团”指任意的在断裂过程, 包括取代反应, 消去反应, 和加成 - 消去反应中
离开分子的基团。离去基团可以是离核的, 其中该基团带着一对电子离去, 该对电子以前用
作离去基团和分子之间的键, 或可以是离电子的, 其中该基团不带电子对地离去。离核的离
去基团的离去能力依赖于它的碱强度, 最强的碱是最差的离去基团。常见的离核的离去基
团包括氨 (例, 例, 来自浓氨盐); 碳酸根, 包含烷基磺酸酯 (例如, 甲磺酰根), 氧代烷基磺酸
根 (例如, 三氟甲基烷酸根, 六氟甲基磺酸根, 九氟甲基磺酸根, 和三氟乙磺酸根), 和芳基
磺酸酯 (例如, 甲苯磺酰根, 对溴苯磺酸根, 对氯苯磺酸根, 和对硝基苯磺酸根)。其它包括
磺酸酯, 白化物酯, 磺酸酯阴离子, 酯酸根离子, 和醇盐。通过用酸处理, 可以使有些更
强的碱例如 \(\text{NH}_3\) 和 \(\text{OH}^-\) 成为更好的离去基团。常见的离电子的离去基团包括质子, \(\text{CO}_2\), 和金属。

【0135】“对映体过量”或 “ee” 是一种度量, 对于给定的样品, 是指一种对映体超过手性化
合物的外消旋样品的度量, 且表达为百分比。将对映体过量定义为 \(100 \times (er-1)/(er+1)\), 其中
“er” 是较丰富的对映体与较不丰富的对映体的比例。

【0136】“非对映体过量”或 “de” 是一种度量, 对于给定的样品, 是指一种非对映体超过
具有等量非对映体的样品的度量, 且表达为百分比。将非对映体过量定义为 \(100 \times (dr-1)/(dr+1)\)
, 其中 “dr” 是较丰富的非对映体与较不丰富的非对映体的比例。

【0137】“立体选择性”、“对映选择性” 而“非对映异构选择性的” 和其变体, 指一种给定
的方法 (例如, 酯解, 氢化, 酶化反应, \(\pi\)-烯丙基钯偶合, 杂化氢, 氧化氢, 烯烃转移, 加氢
酰化, 烯丙胺异构化, 等), 其分别产生一种立体异构体, 对映体, 或非对映异构体多于另一
种。

【0138】“高水平的异构选择性”, “高水平的对映选择性”,”高水平的非对映立体选择性”和
其变体, 指一种给定的方法, 其产生具有过量的一种立体异构体, 对映体, 或非对映异构体
的产物, 其占总产物的至少约 90%。对于对映体或非对映体, 高水平的对映选择性或非对映
异构选择性相当于至少约 80% 的 ee 或 de。

【0139】“立体异构体富集的” , “对映体富集的” , “非对映体富集的” 和其变体, 分别指具
有一种立体异构体, 对映体或非对映体多于另一种的化合物样品。通过总产物的 %, 可以测量
富集程度, 或对于对映体或非对映体, 可以通过 ee 或 de 测量。

【0140】“实质上纯的立体异构体”, “实质上纯的对映体”, “实质上纯的非对映体” 和其变
体, 分别指含有立体异构体, 对映体, 或非对映体的样品, 其占总样品的至少约 95%。对于对映
体和非对映体对, 实质上纯的对映体或非对映体相当于具有约 90% 或更大的 ee 或 de 的样
品。

【0141】“纯立体异构体”, “纯对映体”, “纯非对映体” 和其变体, 分别指含有立体异构体, 对
映体, 或非对映体的样品, 其占样品的至少约 99.5%。对于对映体和非对映体对, 纯对映体
或纯非对映体” 相当于具有约 99% 或更大的 ee 或 de 的样品。

【0142】“相反的对映体” 指一种分子, 它是参照分子的不可重叠的镜像, 其可以通过反转
参照分子的所有立体生成中心来得到。例如, 如果参照分子具有 S 绝对立体化学构型, 则相
反的对映体具有R绝对立体化学构型。同样地，如果参照分子具有S,S绝对立体化学构型，则相反的对映体具有R,R立体化学构型，依此类推。

【0144】“对映选择性值”或“E”指经历化学反应或转化的化合物的每种对映体的特异性常数的比例，且可以从下述表达式计算（对于S-对映体）。

$$ E = \frac{K_S}{K_S} = \frac{\ln[1-\chi(1+ee_p)]}{\ln[1-\chi(1+ee_s)]} = \frac{\ln[1-\chi(1-ee_s)]}{\ln[1-\chi(1-ee_s)]} $$

【0146】其中K_S和K_S是转化为S-和R-对映体的1级速度常数；K_SM和K_SM是S-和R-对映体的米氏常数；x为底物的转化率；ee_p和ee_s是产物和底物（反应物）的对映体过量。

【0147】“脂肪酶单位”或“LU”指，当与三丁酸甘油酯和乳化剂（阿拉伯胶）在30℃和pH 7接触时，每分钟释放1μmol可滴定的丁酸的酶的量（按克计）。

【0148】“溶剂化物”指分子复合物，其包含公开的或要求保护的化合物，和化学计量的或非-化学计量的量的一种或多种溶剂分子（例如，EtOH）。

【0149】“水合物”指溶剂化物，其包含公开的或要求保护的化合物，和化学计量的或非-化学计量的量的水。

【0150】“药学上可接受的化合物，盐，溶剂化物，或水合物”指要求保护的和公开的化合物的复合物，酸或碱加成盐，溶剂化物或水合，其在合理的医学判断范围内，适用于与患者的组织接触，没有过度的毒性、刺激、过敏反应等，具有合理的利益/风险比，且对于它们的目标用途是有效的。

【0151】“前催化剂”或“催化剂前体”指在使用前转化成催化剂的一种化合物或一组化合物。

【0152】“治疗”指反转、减轻、抑制该术语适用的障碍或状况的进展，或预防该障碍或状况，或预防该障碍或状况的一种或多种症状。

【0153】“治疗”指“治疗”的行为，如上面所定义的。

【0154】表1列出了在本说明书书中使用的缩写。

【0155】表1。缩写列表
<table>
<thead>
<tr>
<th>缩写</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>乙酰基</td>
</tr>
<tr>
<td>ACN</td>
<td>乙腈</td>
</tr>
<tr>
<td>AcNH</td>
<td>乙酰胺基</td>
</tr>
<tr>
<td>aq</td>
<td>含水的</td>
</tr>
<tr>
<td>BES</td>
<td>N,N-双(2-羟基)乙二胺乙烷磺酸</td>
</tr>
<tr>
<td>BICINE</td>
<td>N,N-双(2-羟基)甘氨酸</td>
</tr>
<tr>
<td>缩写</td>
<td>描述</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Bn</td>
<td>苄基</td>
</tr>
<tr>
<td>Bu</td>
<td>丁基</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>正丁基锂</td>
</tr>
<tr>
<td>Bu₄NBr</td>
<td>溴化四丁基</td>
</tr>
<tr>
<td>t-BuNH₂</td>
<td>叔丁基胺</td>
</tr>
<tr>
<td>t-BuOK</td>
<td>叔丁基氧化钾</td>
</tr>
<tr>
<td>t-BuOMe</td>
<td>叔丁基甲基醚</td>
</tr>
<tr>
<td>t-BuONa</td>
<td>叔丁基氧化钠</td>
</tr>
<tr>
<td>Cbz</td>
<td>苄基氯羰基</td>
</tr>
<tr>
<td>ζ</td>
<td>转化率</td>
</tr>
<tr>
<td>COD</td>
<td>1,5-环辛二烯</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-二氧杂环[2.2.2]辛烷</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-二氧杂环[5.4.0]十一碳-7-烯</td>
</tr>
<tr>
<td>DEAD</td>
<td>二乙基偶氮二酰胺</td>
</tr>
<tr>
<td>DIPEA</td>
<td>二异丙基乙基胺(Hünig'氏碱)</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-二甲基氨基吡啶</td>
</tr>
<tr>
<td>DMF</td>
<td>二甲基甲酰胺</td>
</tr>
<tr>
<td>DMSO</td>
<td>二甲基亚砜</td>
</tr>
<tr>
<td>E</td>
<td>经历化学反应或转化的化合物的每种对映体的对映体选择性值或特异性常数比例</td>
</tr>
<tr>
<td>ee (eeₜ或 eeₑ)</td>
<td>(产物或反应物的)的对映体过量</td>
</tr>
<tr>
<td>eq</td>
<td>当量</td>
</tr>
<tr>
<td>er</td>
<td>对映体比例</td>
</tr>
<tr>
<td>Et</td>
<td>乙基</td>
</tr>
<tr>
<td>Et₃N</td>
<td>三乙基胺</td>
</tr>
<tr>
<td>Et₂NH</td>
<td>二乙基胺</td>
</tr>
<tr>
<td>EtOH</td>
<td>乙醇</td>
</tr>
<tr>
<td>EtOAc</td>
<td>醋酸乙酯</td>
</tr>
<tr>
<td>h, min, s, d</td>
<td>小时，分钟，秒，天</td>
</tr>
<tr>
<td>缩写</td>
<td>描述</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-羟乙基)哌嗪-1-乙烷磺酸</td>
</tr>
<tr>
<td>HOAc</td>
<td>醋酸</td>
</tr>
<tr>
<td>HPLC</td>
<td>高效液相色谱法</td>
</tr>
<tr>
<td>IAcOEt</td>
<td>碘代醋酸乙酯</td>
</tr>
<tr>
<td>IPA</td>
<td>异丙醇</td>
</tr>
<tr>
<td>K_S, K_R</td>
<td>S-或 R-对映体的 1 级速度常数</td>
</tr>
<tr>
<td>K_SM, K_RM</td>
<td>S-或 R-对映体的米氏常数</td>
</tr>
<tr>
<td>LC/MS</td>
<td>液相色谱质谱法</td>
</tr>
<tr>
<td>LDA</td>
<td>二异丙基氨基锂</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>六甲基二 silazide 锂</td>
</tr>
<tr>
<td>LTMP</td>
<td>四甲基 piperidide 锂</td>
</tr>
<tr>
<td>LU</td>
<td>脂肪酶单位</td>
</tr>
<tr>
<td>Me</td>
<td>甲基</td>
</tr>
<tr>
<td>MeCl₂</td>
<td>二氯甲烷</td>
</tr>
<tr>
<td>(R,R)-Me-DUPHOS</td>
<td>(-)-1,2-双((2R,5R)-2,5-二甲基 phospholano)苯</td>
</tr>
<tr>
<td>MeI</td>
<td>碘代甲烷</td>
</tr>
<tr>
<td>MeONa</td>
<td>甲醇钠</td>
</tr>
<tr>
<td>MeOH</td>
<td>甲醇</td>
</tr>
<tr>
<td>MES</td>
<td>2-吗啉代乙烷磺酸</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-吗啉代)丙磺酸</td>
</tr>
<tr>
<td>Mpa</td>
<td>兆帕</td>
</tr>
<tr>
<td>Ms</td>
<td>甲磺酰基或甲基磺酰基</td>
</tr>
<tr>
<td>MTBE</td>
<td>甲基叔丁基醚</td>
</tr>
<tr>
<td>NMP</td>
<td>N-甲基吡咯烷酮</td>
</tr>
<tr>
<td>OTf⁻</td>
<td>三氟甲基磺酸根 (三氟-甲烷磺酸阴离子)</td>
</tr>
<tr>
<td>Ph</td>
<td>苯基</td>
</tr>
<tr>
<td>Ph₃P</td>
<td>三苯基磷</td>
</tr>
<tr>
<td>Ph₃As</td>
<td>三苯基胂</td>
</tr>
<tr>
<td>PIPES</td>
<td>哌嗪-1,4-双(2-乙烷磺酸)</td>
</tr>
</tbody>
</table>

[0159]
<table>
<thead>
<tr>
<th>缩写</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaNi</td>
<td>钕内核</td>
</tr>
<tr>
<td>RI</td>
<td>折光率</td>
</tr>
<tr>
<td>RT</td>
<td>室温 (大约 20°C-25°C)</td>
</tr>
<tr>
<td>s/c</td>
<td>底物与催化剂的摩尔比</td>
</tr>
<tr>
<td>sp</td>
<td>物种</td>
</tr>
<tr>
<td>TAPS</td>
<td>N-[三(烃甲基)基]-3-氨基丙磺酸</td>
</tr>
<tr>
<td>TES</td>
<td>N-[三(烃甲基)基]-2-氨基乙烷磺酸</td>
</tr>
<tr>
<td>Tf</td>
<td>三氟甲烷磺酰基(triflyl)</td>
</tr>
<tr>
<td>TFA</td>
<td>三氟醋酸</td>
</tr>
<tr>
<td>THF</td>
<td>四氢呋喃</td>
</tr>
<tr>
<td>TLC</td>
<td>薄层色谱法</td>
</tr>
<tr>
<td>TMEDA</td>
<td>N,N',N'-四甲基-1,2-乙二胺</td>
</tr>
<tr>
<td>TRICINE</td>
<td>N-[三(烃甲基)基]-甘氨酸</td>
</tr>
<tr>
<td>Tris 缓冲液</td>
<td>三(烃甲基)氨基甲烷缓冲液</td>
</tr>
<tr>
<td>TRITON B</td>
<td>苄基三甲基铵氢氧化物</td>
</tr>
<tr>
<td>TRIZMA®</td>
<td>2-氨基-2-(烃甲基)-1,3-丙二醇</td>
</tr>
<tr>
<td>Ts</td>
<td>甲苯磺酰基或对甲苯磺酰基</td>
</tr>
<tr>
<td>p-TSA</td>
<td>对甲苯磺酸</td>
</tr>
<tr>
<td>v/v</td>
<td>体积百分比</td>
</tr>
<tr>
<td>w/w</td>
<td>重量(质量)百分比</td>
</tr>
</tbody>
</table>

[0162] 通常，使用实质上化学计量的量的反应物，可以实现本说明书所述的化学转化，尽
管某些反应可能从使用过量的一种或多种反应物获益。另外，本说明书公开的许多反应，包括下面详细描述的外消旋的二酯（式4）的对映选择性的水解，可以在大约RT进行，但是根据反应动力学、产率等，特定的反应可能需要使用更高的或更低的温度。而且，许多化学转化可以采用一种或多种兼容的溶剂，其可以影响反应速度和产率。根据反应物的性质，一种或多种溶剂可以是极性的质子溶剂，极性的非质子溶剂，非极性的溶剂，或一些组合。在本公开中任何提及浓度范围、温度范围、pH范围、催化剂装载范围等时，无论是否清楚地使用词语“范围”，都包括指示的端点。

[0163] 本发明提供了用于制备旋光活性的γ-氨基酸（式1）的材料和方法，包括其药学上可接受的盐，酯，酰胺或前药。式1的化合物包括如上所定义的取代基R1和R2。有用的式1化合物因而包括这样的化合物，其中R1是氢原子，且R2是C12烷基，C3-12环烷基，或被取代的C3-12环烷基，或这样的化合物，其中R2是氢原子，且R1是C1-12烷基，C5-12环烷基，或被取代的C3-12环烷基。特别有用的式1化合物包括这样的化合物，其中R1是氢原子，且R2是C1-6烷基或C3-7环烷基，或这样的化合物，其中R2是氢原子，且R1是C1-6烷基或C3-7环烷基。特别有用的式1化合物包括这样的化合物，其中R1是氢原子，且R2是C3-8烷基，例如普瑞巴林（式9）。

[0164] 图1显示了制备旋光活性的γ-氨基酸（式1）的方法。该方法包括下述步骤：使用氨基-取代的二酯（式4）和/或组成的反应混合物与酶相接触或结合，生成包含旋光活性的二羧酸单酯（式3）和旋光活性的二酯（式5）的产物混合物。氨基-取代的二酯（式4）具有立体生成中心，其标有星号（“*”），且如下面所述，可以根据图2所示的反应方案制备。在接触酶之前，氨基-取代的二酯（式4）典型地包含式5二酯和它的相应反应体的外消旋的（等摩尔的）混合物。式3，式4，和式5中的取代基R1，R2和R3，和式4中和式5中的取代基R4如上面关于式1所定义的。通常，除了有相同的陈述外，当结合式首次定义特定的取代基标识（R1，R2，R3，等）时，在随后的式中使用的相同的取代基标识将具有与在前式中相同的含义。

[0165] 酶（或生物催化剂）可以是任意的蛋白质，尽管对式5化合物具有很少的作用或没有作用，但将催化它的相反应体的水解，生成二羧酸单酯（式3）。对映选择性地将式4化合物水解成式3化合物的有用的酶因而可以包括水解酶，包括脂肪酶，某些蛋白酶，和其它对映选择性的酯酶。这样的酶可以从许多天然来源得到，包括动物器官和微生物。见例如，关于商业上可得到的水解酶的非限制性实例的表2。

[0166] 表2. 商业上可得到的水解酶
<table>
<thead>
<tr>
<th>酶</th>
<th>商品名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>猪胰脂肪酶</td>
<td>Altus03</td>
</tr>
<tr>
<td>CAL-A，冻干的</td>
<td>Altus11</td>
</tr>
<tr>
<td>溶胞念珠菌(\textit{Candida lipolytica})脂肪酶</td>
<td>Altus12</td>
</tr>
<tr>
<td>CAL-B，冻干的</td>
<td>Altus13</td>
</tr>
<tr>
<td>念珠地丝菌(\textit{Geotrichum candidum})脂肪酶</td>
<td>Altus28</td>
</tr>
<tr>
<td>\textit{Pseudomonas aroginosa}脂肪酶</td>
<td>Altus50</td>
</tr>
<tr>
<td>黑曲霉(\textit{Aspergillus niger})脂肪酶</td>
<td>Amano 脂肪酶 A</td>
</tr>
<tr>
<td>洋葱假单胞菌(\textit{Pseudomonas cepacia})脂肪酶</td>
<td>Amano 脂肪酶 AH</td>
</tr>
<tr>
<td>荧光假单胞菌(\textit{Pseudomonas fluorescens})脂肪酶</td>
<td>Amano 脂肪酶 AK</td>
</tr>
<tr>
<td>敝褶念珠菌(\textit{Candida rugosa})脂肪酶</td>
<td>Amano 脂肪酶 AY</td>
</tr>
<tr>
<td>德列马根霉(\textit{Rhizopus delemar})脂肪酶</td>
<td>Amano 脂肪酶 D</td>
</tr>
<tr>
<td>稻根霉(\textit{Rhizopus oryzae})脂肪酶</td>
<td>Amano 脂肪酶 F</td>
</tr>
<tr>
<td>沙门氏脑干酪青霉(\textit{Penicillium camembertii})脂肪酶</td>
<td>Amano 脂肪酶 G</td>
</tr>
<tr>
<td>爪哇毛霉菌(\textit{Mucor javanicus})脂肪酶</td>
<td>Amano 脂肪酶 M</td>
</tr>
<tr>
<td>酶</td>
<td>商品名称</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>洋葱假单胞菌 脂肪酶</td>
<td>Amano 脂肪酶 PS</td>
</tr>
<tr>
<td>威地青霉(Penicillium roqueforti)脂肪酶</td>
<td>Amano 脂肪酶 R</td>
</tr>
<tr>
<td>霉菌属(Aspergillus)物种蛋白酶</td>
<td>BioCatalytics101</td>
</tr>
<tr>
<td>假单胞菌属(Pseudomonas)物种脂肪酶</td>
<td>BioCatalytics103</td>
</tr>
<tr>
<td>真菌脂肪酶</td>
<td>BioCatalytics105</td>
</tr>
<tr>
<td>微生物的，冻干的脂肪酶</td>
<td>BioCatalytics108</td>
</tr>
<tr>
<td>CAL-B，冻干的</td>
<td>BioCatalytics110</td>
</tr>
<tr>
<td>念珠菌属(Candida)物种，冻干的</td>
<td>BioCatalytics111</td>
</tr>
<tr>
<td>CAL-A，冻干的</td>
<td>BioCatalytics112</td>
</tr>
<tr>
<td>喇梭丝孢菌属(Thermomyces)物种脂肪酶</td>
<td>BioCatalytics115</td>
</tr>
<tr>
<td>产碱杆菌属(Alcaligines)物种，冻干的脂肪酶</td>
<td>BioCatalytics117</td>
</tr>
<tr>
<td>Chromobacterium viscosum 脂肪酶</td>
<td>Altus 26</td>
</tr>
<tr>
<td>CAL-B，L2 Sol</td>
<td>Chriazyme L2 Sol</td>
</tr>
<tr>
<td>产酰假丝酵母(Candida utilis)脂肪酶</td>
<td>Fluka6</td>
</tr>
<tr>
<td>雪白根霉(Rhizopus niveus)脂肪酶</td>
<td>Sigma L8</td>
</tr>
<tr>
<td>假单胞菌属物种脂蛋白脂肪酶</td>
<td>Sigma L13</td>
</tr>
<tr>
<td>Thermomucodes lanuginosus 脂肪酶</td>
<td>Sigma L9 Lipolase</td>
</tr>
<tr>
<td>Thermomucodes lanuginosus 脂肪酶</td>
<td>Sigma L10 Novo871</td>
</tr>
<tr>
<td>米根根毛霉(Rhizomucor miehei)脂肪酶</td>
<td>Sigma L6 Palatase</td>
</tr>
<tr>
<td>假单胞菌属物种脂肪酶</td>
<td>Sigma L14 XIII 型</td>
</tr>
<tr>
<td>小麦胚脂肪酶</td>
<td>Sigma L11</td>
</tr>
<tr>
<td>无根根霉(Rhizopus arrhizus)脂肪酶</td>
<td>Sigma L7 XI 型</td>
</tr>
<tr>
<td>胰脂肪酶 250</td>
<td>Valley Research V1</td>
</tr>
<tr>
<td>胰蛋白酶</td>
<td>Altus33</td>
</tr>
<tr>
<td>木瓜凝乳蛋白酶</td>
<td>Altus38</td>
</tr>
<tr>
<td>萝萝蛋白酶</td>
<td>Altus40</td>
</tr>
<tr>
<td>黑曲霉蛋白酶</td>
<td>Altus41</td>
</tr>
<tr>
<td>米曲霉(Aspergillus oryzae)蛋白酶</td>
<td>Altus42</td>
</tr>
<tr>
<td>青霉菌属(Penicillium)物种蛋白酶</td>
<td>Altus43</td>
</tr>
<tr>
<td>霉菌属物种蛋白酶</td>
<td>Altus45</td>
</tr>
<tr>
<td>肾素小牛胃蛋白酶</td>
<td>Sigma P24</td>
</tr>
<tr>
<td>Subtilisin Carlsberg 蛋白酶</td>
<td>Altus10</td>
</tr>
<tr>
<td>迟缓芽孢杆菌(Bacillus lentus)蛋白酶</td>
<td>Altus53</td>
</tr>
<tr>
<td>黑曲霉蛋白酶</td>
<td>Amano Acid 蛋白酶 A</td>
</tr>
<tr>
<td>酶</td>
<td>商品名称</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>雪白根霉蛋白酶</td>
<td>Amano Acid 蛋白酶 II</td>
</tr>
<tr>
<td>雪白根霉蛋白酶</td>
<td>Amano Newlase F</td>
</tr>
<tr>
<td>雪白根霉蛋白酶</td>
<td>Amano 蛋白酶 R</td>
</tr>
<tr>
<td>稻根霉蛋白酶</td>
<td>Amano Proleather FGF</td>
</tr>
<tr>
<td>枯草芽孢杆菌(Bacillus subtilis)蛋白酶</td>
<td>Amano 蛋白酶 A</td>
</tr>
<tr>
<td>米曲霉蛋白酶</td>
<td>Amano 蛋白酶 M</td>
</tr>
<tr>
<td>米曲霉蛋白酶</td>
<td>Amano 蛋白酶 N</td>
</tr>
<tr>
<td>枯草芽孢杆菌蛋白酶</td>
<td>Amano 蛋白酶 P</td>
</tr>
<tr>
<td>青霉曲霉(Aspergillus niger)蛋白酶</td>
<td>Amano 蛋白酶 SG</td>
</tr>
<tr>
<td>催热脂肪芽孢杆菌(Bacillus steatorrhophilus)蛋白酶</td>
<td></td>
</tr>
<tr>
<td>猪肝酶, 煎干的</td>
<td>BioCat Chirazyme E1</td>
</tr>
<tr>
<td>猪肝酶, 冻干的</td>
<td>BioCat Chirazyme E2</td>
</tr>
<tr>
<td>链霉菌属(streptomyces)物种蛋白酶</td>
<td>BioCatalystics118</td>
</tr>
<tr>
<td>Tritirachium album 蛋白酶</td>
<td>Fluka P6 蛋白酶 K</td>
</tr>
<tr>
<td>牛胰蛋白酶</td>
<td>Sigma P18 α 凝乳蛋白酶 I</td>
</tr>
<tr>
<td>灰色链霉菌(streptomyces griseus)蛋白酶</td>
<td>Sigma P16 Bacterial</td>
</tr>
<tr>
<td>牛胰蛋白酶</td>
<td>Sigma P21β 腐乳蛋白酶</td>
</tr>
<tr>
<td>溶组织梭状芽孢杆菌(Clostridium histolyticum)蛋白酶</td>
<td>Sigma P13 枯菌蛋白酶</td>
</tr>
<tr>
<td>牛肠蛋白酶</td>
<td>Sigma P17 肠肽酶</td>
</tr>
<tr>
<td>猪肠蛋白酶</td>
<td>Sigma P25 肠肽酶</td>
</tr>
<tr>
<td>芽孢杆菌属(Bacillus)物种蛋白酶</td>
<td>Sigma P8 Esperase</td>
</tr>
<tr>
<td>米曲霉蛋白酶</td>
<td>Sigma P1 Flavourzyme</td>
</tr>
<tr>
<td>高温粉芽孢杆菌(Bacillus amyoliquefaciens)蛋白酶</td>
<td>Sigma P5 Neurase</td>
</tr>
<tr>
<td>香瓜(Carica papaya)蛋白酶</td>
<td>Sigma P12 木瓜蛋白酶</td>
</tr>
<tr>
<td>Bacillus thermoproteolyticus rokko</td>
<td>Sigma P10 蛋白酶</td>
</tr>
<tr>
<td>激烈火球菌(Pyrococcus furiosus)蛋白酶</td>
<td>Sigma P14 蛋白酶 S</td>
</tr>
<tr>
<td>芽孢杆菌属蛋白酶</td>
<td>Sigma P9 Savinase</td>
</tr>
<tr>
<td>牛胰蛋白酶</td>
<td>Sigma P19 I 型 (粗制的)</td>
</tr>
<tr>
<td>多粘芽孢杆菌(Bacillus polymyxa)蛋白酶</td>
<td>Sigma P7 IX 型</td>
</tr>
<tr>
<td>蘑菇芽孢杆菌(Bacilluslicheniformis)蛋白酶</td>
<td>Sigma P6 VIII 型</td>
</tr>
<tr>
<td>Aspergillus saitoi 蛋白酶</td>
<td>Sigma P3 XIII 型</td>
</tr>
<tr>
<td>酱油曲霉(Aspergillus sojae)蛋白酶</td>
<td>Sigma P4 XIX 型</td>
</tr>
<tr>
<td>米曲霉蛋白酶</td>
<td>Sigma P2 XXIII 型</td>
</tr>
<tr>
<td>细菌蛋白酶</td>
<td>Sigma P11 XXIV 型</td>
</tr>
</tbody>
</table>
酶 | 商品名称
---|---
根霉芽属(Rhizopus)物种 Newlase | Sigma15 Newlase
Validase FP Conc. | Valley05
Bromelian Conc. | Valley10
来自曲霉属物种的脂肪酶 | Amano Am1
猪胰脂肪酶 | Sigma A-S2 脂肪酶 1
青霉素 G 脂肪酶 | Altus06
来自 Mucor mehei 的酯酶 | Fluka
嗜碱性肽酶 | Altus31
猪胰弹性蛋白酶 | Altus35
胆固醇酯酶 | BioCatalytics
PLE-硫酸铵 | BioCatalytics 123
兔肝酯酶 | Sigma ES2
胆固醇酯酶假单胞菌属物种 | Sigma ES4

[0171] 如实施例部分中所述，对氨基-取代的二酯（式 4 和式 12）向需要的旋光活性的二羧酸单酯（式 3 和式 11）的对映选择性转化有用的酶包括脂肪酶。特别有用的脂肪酶包括源自微生物疏松棉状嗜热丝孢菌的酶，例如可以商品名称LIPOLASE®（CAS号 9001-62-1）从Novo-NordiskA/S得到的那些。通过浸渍发酵使用疏松棉状嗜热丝孢菌 DSM 4109 的编码脂肪酶的氨基酸序列的 DNA 遗传修饰的米曲霉微生物，可以得到 LIPOLASE®酶。LIPOLASE® 100L 和 LIPOLASE® 100T 可以分别作为液体溶液和固体得到，各自具有 100kLU/g 的标称活性。其它形式的LIPOLASE®包括LIPOLASE® 50L，其具有 LIPOLASE® 100L 的活性的一半，和 LIPOZYME® 100L，其具有与 LIPOLASE® 100L 相同的活性，但为是食品级。

[0172] 可以使用多种筛选技术来鉴别合适的酶。例如，使用下面实施例部分中所述的高通量筛选技术，可以筛选大量商业上可得到的酶。使用富集分离技术，可以筛选其它酶（或酶的微生物源）。这样的技术典型地包含使用添加了富集底物的碳-限制的或氮-限制的培养基，所述底物可以是外源的底物（式 4）或结构上类似的化合物。选择潜在地有用的微生物，用于基于它们在含有富集底物的培养基中生长的能力的进一步研究。随后，通过使用微生物细胞的悬浮液接触外源底物，并使用手性 HPLC、气液色谱法、LC/MS 等分析方法，测试希望的旋光活性的二羧酸单酯（式 3）的存在，来评价这些微生物的对映选择性地催化酯水解的能力。

[0174] 酶可以是完整的微生物细胞、透化的微生物细胞、微生物细胞的提取物、部分纯化的酶、纯化的酶等。酶可以包含具有基于体积小于约 0.1mm（细微分散体）或约 0.1mm 或更大（粗分散体）的平均粒度的颗粒分散体。粗酶分散体提供超过细微分散体的潜在加工优点。例如，可以在批分过程或半连续或连续过程中重复使用粗酶颗粒，且通常可以以酶的细微分散体更容易地从生物转化的其它组分中分离（例如，通过过滤）。

[0176] 反应混合物可以包含单一相，或可以包含多个相（例如，二-或三-相系统）。例如，可以在单一相中，其含有酶，最初的外消旋的底物（式4），不希望的旋光活性的二酯（式5）和希望的旋光活性的二羧酸单酯（式3），发生图 1 所示的对映选择性的水解。或者，反应混合物可以包含多相系统，其包括与固相（例如，酶或产物）相接触的水相，与有机相相接触的水相，或与有机相和固体相相接触的水相。例如，可以在由固相和水相组成的两相系统中进行对映选择性的水解，所述固相含有酶，所述水相含有最初的外消旋的底物，不希望的旋光活性的二酯，和希望的旋光活性的二羧酸单酯。

[0177] 或者，可以在由固相、有机相和水相组成的三相系统中进行对映选择性的水解，所述固相含有酶，所述有机相最初含有外消旋的底物（式4），所述水相初步含有小部分外消旋的底物。由于希望的旋光活性的二羧酸单酯（式3）具有比未反应的旋光活性的二酯（式5）更低的pKa，因此会表现出更大的水溶性，随着反应的进行有机相富集了未反应的二酯，而水相富集了希望的二羧酸单酯。

[0178] 在对映选择性的水解中使用的外消旋的底物（式4）和生物催化剂的量取决于，除了别的以外，特定的氨基取代的二酯和酶的性质。但是，通常，反应可以采用具有约 0.1M 至约 3.0M 的最初浓度的底物，且在许多情况下，具有约 1.5M 至约 3.0M 的最初浓度。另外，反应通常可以采用约 1%至约 10%的酶装载，且在许多情况下，可以采用约 3%至约 4%（v/v）的酶装载。

[0179] 对映选择性的水解可以在广范围的温度和 pH 下进行。例如，可以在约 10°C 至约 50°C 的温度进行反应，但是典型地在约 RT 进行。这样的温度通常允许在合理量的时间（约 2h 至约 24h）上完全转化（例如，约 42%至约 50%）外消旋物（式4），而不使酶失活。另外，可以在约 5 时 pH 至约 10 的 pH，更典型地在约 6 的 pH 至约 9 的 pH，且经常在约 6.5 的 pH 至约 7.5 的 pH，进行对映选择性的水解。

[0180] 在没有 pH 控制的情况下，由于二羧酸单酯（式3）的形成，反应混合物 pH 会随着底物（式4）的水解的进行而降低。为了补偿该变化，水解反应可以在内部 pH 控制（即，有合适的缓冲剂存在）下进行，或可以在外部 pH 控制（通过加入碱）下进行。合适的缓冲剂
包括磷酸钾、磷酸钠、醋酸钠、醋酸铵、醋酸钙、BES、bicine、HEPES、MES、MOPS、PIPES、TAPS、TES、TRICINE、tris、TRIZMA®，或具有约 6 的 pKa 至约 9 的 pKa 的其它缓冲剂。缓冲剂浓度通常为约 5mM 至约 1mM，典型地为约 50mM 至约 200mM。合适的碱包含有 KOH、NaOH、NH₂OH 等的水溶液，或具有约 0.5m 至约 15m 的浓度，或更典型地，约 5m 至约 10m。也可以使用其它无机添加剂，例如磷酸钙。

[0181] 在外消旋物（式 4）的酶促转化后或在该过程中，使用标准的技术，从产物混合物分离希望的旋光活性的二羧酸单酯（式 3）。例如，在单一（水）相分批反应的情况下，可以用非极性的有机溶剂，例如己烷或庚烷，其分离分别在水相和有机相中的希望的二羧酸单酯（式 2）和未反应的二酯（式 5），萃取产物混合物一次或多次。或者，在采用分别富集了希望的单酯（式 3）和未反应的二酯（式 5）的水相和有机相的多相反应的情况下，可以在反应后逐批分离单酯和二酯，或可以在对映选择性的水解过程中半连续或连续地分离。

[0182] 如图 1 所示，可以从有机相分离未反应的二酯（式 5），并用消旋，生成外消旋的底物（式 4）。可以再循环得到的外消旋物（式 4），或与未转化的外消旋的底物结合，后者随后经历如上述所述的向式 3 的酶促转化。再循环未反应的二酯（式 5），使对映选择性的水解的总产率增加超过 50%，从而提高该方法的原子经济性，并降低与处理不希望的对映体有关的成本。

[0183] 用足以提取丙二酸酯成分的酸性 α-质子的强碱处理二酯（式 5），通常会导致立体生成中心的反转和外消旋的底物（式 4）的产生。有用的碱包括有机碱，例如醇盐（例如，乙醇钠），线性脂肪族胺，如环状胺，和无机碱，例如 KOH，NaOH，NH₂OH 等。反应是在兼容的溶剂中进行，包括极性的质子溶剂，例如 EtOH，或质子惰性的极性的溶剂，例如 MTBE。超过室温的反应温度，典型地会提高外消旋过程的产率。

[0184] 如图 1 所示，使用至少 3 种不同的方法，可以将实质上对映纯的二羧酸单酯（式 3）转化成旋光活性的 γ-氨基酸（式 1）。其中一种方法中，在有酸催化剂或碱催化剂存在下，水解单酯（式 3），生成旋光活性的氨基-取代的二羧酸（式 6）和对应的盐。还原得到的二羧酸（或它的盐）的氨基部分，生成旋光活性的 γ-氨基二羧酸（式 7）和对应的盐，随后通过用酸处理，通过加热，或二者，使其脱羧基，生成希望的旋光活性的 γ-氨基酸（式 1）。通过在有催化量的钯内镍、钯、铂等存在下与 H₂ 反应，或通过与还原剂，例如 LiAlH₄，BH₃-Me₂S 等反应，可以还原氨基部分。对水解和脱羧基反应有用的酸包括无机酸，例如 HClO₄，H₂SO₄，HBr，HCl 等。对水解反应有用的碱催化剂包括多种碱和碱金属氢氧化物和氧化物，包括 LiOH，NaOH，KOH 等。

[0185] 在另一种方法中，二羧酸单酯（式 3）经历还原环化，形成旋光活性的环状 3-羧基-吡咯烷-2-酮（式 2），后者随后用酸处理，生成希望的对映体-富集的 γ-氨基酸（式 1）。通过在有催化量的钯内镍、钯、铂等存在下使单酯（式 3）与 H₂ 反应，可以进行还原环化。可以使用一种或多种酸来水解和脱羧基化得到的内酰胺酸（式 2），包括无机酸例如 HClO₄，H₂SO₄，HBr，和 HCl，和有机酸例如 HOAc，TFA，p-TSA 等。酸的浓度范围可以是约 1N 至约 12N，酸的量的范围可以是约 1eq 至约 7eq。可以在约 RT 或更高的温度，或在约 60℃或更高的温度，或在约 60℃至约 130℃的温度范围，进行水解和脱羧基反应。

[0186] 在第三种方法中，首先水解二羧酸单酯（式 3）的酯部分，生成如上述所述的氨基-取代的二羧酸（式 6 或它的盐）。随后使得到的二羧酸（或它的盐）脱羧基，生成旋光
活性的氮基 - 取代的羧酸或它的盐 (式 8, 其中 R' 是氢原子, 尽管 R' 也可以是如下指出的 C_{12}-烷基, C_{12} 烷基, 或芳基 - C_{16} 烷基)。可以使用相同的使内酰胺 (式 2) 或 γ - 氨基羧酸 (式 7) 脱羧基的条件。不是首先水解酯, 通过将二羧酸单酯 (作为盐) 的水溶液从约 50°C 的温度加热至回流, 可以首先直接使二羧酸单酯 (式 3) 脱羧基, 生成氨基取代的单酯 (式 8)。也可以使用 Krapcho 条件 (OMSO/NaCl/水)。在任一种情况下, 随后还原式 8 化合物的氨基部分, 生成旋光活性的 γ - 氨基酸 (式 1)。除了酸内酯以外, 还可以使用许多其它的催化加还原式 3, 6 和 8 化合物的氨基部分。它们包括, 但不限于, 非均质的催化剂, 其含有约 0.1% 至约 20%, 更典型地约 1% 至约 5% (按重量计) 的过渡金属例如 Ni, Pd, Pt, Rh, Re, Ru, 和 Ir, 包括氧化物和其组合, 其典型地支持在多种材料上, 包括 Al_{2}O_{3}, C, CaCO_{3}, SrCO_{3}, BaSO_{4}, MgO, SiO_{2}, TiO_{2}, ZrO_{2} 等。许多这样的金属, 包括 Pd, 可以掺有硫化物或第二种金属, 例如 Pb, Cu, 或 Zn。有用的催化剂因而包括把催化剂如 Pd/C, Pd/SrCO_{3}, Pd/Al_{2}O_{3}, Pd/MgO, Pd/NaCO_{3}, Pd/BaSO_{4}, PdO, Pd 黑, PdCl_{2} 等, 其含有约 1% 至约 5% Pd, 以重量计。其它有用的催化剂包括 Rh/C, Ru/C, Re/C, PtO_{2}, Rh/C, RuO_{2} 等。

[C187] 氨基部分的催化还原典型地在有一种或多种极性溶剂存在下进行, 包括但不限于, 水, 醇, 酮, 酯, 酸, 例如 MeOH, EtOH, IPA, THF, EtOMe, 和 HOMe。反应可以在约 5°C 至约 100°C 的温度范围进行, 尽管在室温的反应是常见的。通常, 底物与催化剂的比例范围可以为约 1:1 至约 1000:1, 按重量计, 并且 H_{2} 压力范围可以为约大气压, 0psig, 至约 1500psig。更典型地说, 底物与催化剂的范围为约 4:1 至约 20:1, 并且 H_{2} 压力范围为约 25psig 至约 150psig。

[C188] 可以使用所有的前述方法, 将实质上对映纯的单酯 (式 3) 转化成旋光活性的 γ - 氨基酸 (式 1), 但是各自可以提供优于其它方法的某些优点。例如, 在采用还原环化的过程的酸后处理后, 可以通过将其萃取出有机溶剂中, 而分离和纯化内酰胺酸 (式 2)。而氨基 - 取代的二羧酸 (式 6) 可能更难以分离, 因为它的相对更高的水溶性。内酰胺酸 (式 2) 的分离, 会减少水溶性的杂质转入最终的产物混合物, 并在水解和脱羧基过程中允许更高的反应物浓度 (例如, 约 1M 至约 2M), 从而增加过程通量。另外, 通过加热二羧酸单酯 (式 3) 的水溶液直接脱羧基, 会提供高反应率的氨基单酯 (式 8)。通过在有机溶剂中萃取, 或通过直接的相分离, 可以从反应介质中分离该化合物, 确保从水相中有效地去除无机杂质。高反应通量和强酸性条件的避免, 是该方法的两个优点。

[C189] 图 2 举例说明了制备氨基 - 取代的二酯 (式 4) 的方法, 其可以用作图 1 所示的酶促的对映选择性的水解的底物。该方法包括交叉羟醛缩合, 其包含在有催化量的碱存在下, 使不对称的酮或醛 (式 17) 与丙二酸二酯 (式 18) 反应, 生成 α- 和 β-不饱和的丙二酸二酯 (式 19) 其中 R, R', R'', 和 R' 如上关于式 1 所定义的。这类交叉羟醛反应称为 Knoevenagel 缩合, 其在许多文献综述中有所描述。见例如, B. K. Wilk, Tetrahedron 53:7097-7100 (1997), 和其中引用的文献。其完整内容写入本篇为所有目的引作参考。

[C190] 通常, 可以使用任何的能从丙二酸二酯 (式 18) 产生烯醇型离子的碱, 包括仲胺, 例如二 - 正丙基胺, 二 - 异丙基胺, 吡咯烷, 等, 和它们的盐。反应可以包括酰胺, 例如 HOMe, 以中和产物, 并使不对称的酮或醛 (式 17) 的烯醇化最小化。包含不对称的酮的反应, 也可以采用路易斯酸, 例如四氯化钛, 氯化锌, 酸酸锌等, 以促进反应。该反应典型地在回流条件下下在烃溶剂中进行。有用的溶剂包括乙烷, 二烷, 环己烷, 苯, 甲苯, 甲基叔丁基醚等, 并共沸地
除去水。【0191】在随后的步骤中，氢化物源，例如 HCN，丙酮氰醇，碱金属氰化物（NaCN，KCN 等），或碱土金属氰化物（氰化镁，等），经历向 α，β-不饱和的丙二酸二酯（式 19）的 β-碳的共轭加成。反应典型地在一种或多种极性的质子溶剂中进行，包括 EtOH，MeOH，正丙醇，异丙醇，或极性的非质子溶剂，例如 DMSO 等。随后的酸后处理生成氰基－取代的二酯（式 4）。关于图 2 所示的方法在制备普瑞巴林前体（式 12）中的应用，见 Grote 等的美国专利号 5,637,767，以其整体为所有目的并入本文引作参考。

【0192】通过经典的拆分、手性色谱或重结晶，可以进一步富集本文公开的任一种化合物的希望的 (S) 或 (R) 对映体。例如，可以使用旋光活性的 γ-氨基酸（式 1 或式 9）与对映体－纯的化合物（例如，酸或碱）反应，生成非对映立体异构体对，其各自与单个的对映体组成，它们通过例如分级结晶法或色谱法分离。随后，从适当的非对映异构体，再生希望的对映体。另外，当它可以足够的量得到时（例如，典型地不过分低于约 85% ee，且在有些情况下，不过分低于约 90% ee），通过在合适的溶剂中结晶，经常可以进一步富集希望的对映体。

【0193】如在本说明书书中描述的，许多公开的化合物具有立体异构体。有些这样的化合物可以作为单一对映体（对映纯的化合物）或对映体的混合物（富集的和外消旋体的样品）存在，其依赖于样品中的一种对映体比另一种的相对过量，可以存在旋光活性。这样的立体异构体，它们是不可重叠的链痕，具有立体生成轴或一个或多个立体生成中心（即，手性）。其它公开的化合物可以是非镜像的立体异构体。这样的立体异构体被称作非对映异构体，可以是手性的或非手性的（不含有立体生成中心）。它们包括含有链烯基或环状基团的分子，这样顺 / 反（或 Z/E）立体异构体是可能的，或含有 2 个或更多个立体生成中心的分子，其中单一立体生成中心的反转，会产生对应的非对映异构体。除非陈述或另有清除的说明（例如，通过使用立体键，立体中心描述符，等），本发明的范围通常包括参照化合物和它的立体异构体，无论它们是各自纯的（例如，对映纯的）还是混合物（例如，对映体富集的或外消旋的）。

【0194】有些化合物也可以含有醇或肟基团，这样可能发生互变异构现象。在这样的情况下，本发明通常包括互变异构形式，无论它们是各自纯的还是混合物。

【0195】许多本发明所述的化合物，包括由式 1 和式 9 代表的那些，能形成药学上可接受的盐。这些盐包括，但不限于，酸加成盐（包括二酸）和碱盐。药学上可接受的酸加成盐包括无毒的源自无机酸的盐，例如盐酸，磷酸，硫酸，氢溴酸，氢碘酸，氢氟酸，亚磷酸等的盐，以及无毒的源自有机酸的盐，例如脂肪族的单－和二羧酸，苯基－取代的酰胺，羟基酰胺，酰胺二酸，芳族酸，脂肪族的和芳香族的磺酸等的盐。这样的盐因而包括硫酸盐，焦硫酸盐，硫酸氢盐，亚硫酸盐，亚硫酸氢盐，磷酸盐，磷酸氢盐，磷酸二氢盐，偏磷酸盐，焦磷酸盐，氯化物，溴化物，碘化物，醛酸盐，三氯醋酸盐，丙酸盐，辛酸盐，异丁酸盐，草酸盐，丙二酸盐，琥珀酸盐，辛二酸盐，癸二酸盐，延胡索酸盐，马来酸盐，扁桃酸盐，苯甲酸盐，氯代苯甲酸盐，甲基苯甲酸盐，二硝基苯甲酸盐，酰酸盐，苯磺酸盐，甲苯磺酸盐，苯酸盐，柠檬酸盐，乳酸盐，苹果酸盐，酒石酸盐，甲烷磺酸盐等。

【0196】药学上可接受的碱基包括无毒的源自碱的盐，包括金属阳离子，例如碱或碱土金属阳离子，以及胺。合适的金属阳离子的实例包括，但不限于，钠阳离子（Na+），钾阳离子

[0197] 通过使化合物的游离碱（或游离酸）或两性离子接触足量的需要的酸（或碱），生成无毒的盐，可以制备药物可接受的酸加成盐（或碱盐）。如果盐从溶液中沉淀，可以过滤分离它；否则，可以经过蒸发溶剂，回收盐。通过使酸加成盐接触碱（或使碱盐接触酸），也可以再生游离碱（或游离酸）。尽管游离碱（或游离酸）和它各自的酸加成盐（或碱盐）的某些物理性质可能不同（例如，溶解度，晶体结构，吸湿性，等），但对于本发明的目的却是相同的。

[0198] 公开的和要求保护的化合物可以以未溶剂化的和溶剂化的形式存在，和作为除盐以外的其它类型的复合物存在。有用的复合物包括复合物或化合物-宿主包含复合物，其中化合物和宿主以化学计量的或非化学计量的量存在。有用的复合物也可以含有 2 种或更多种化学计量的或非化学计量的有机的，无机的或有机的和无机的组分。得到的复合物可以是离子化的，部分地离子化的或未离子化的。关于这样的复合物的评论，见 J. K. Halleylian, J. Pharm. Sci. 64(8): 1269-88 (1975)。药学上可接受的溶剂化物也包括水合物和溶剂化物，其中结晶溶剂可以是被同位素性地取代的，例如 D₂O, d₋₄ 丙酮，d₋₄-DMSO，等。通常，为本公开的目的，提及未溶剂化形式的化合物也包括对应的溶剂化或水合形式的化合物。

[0199] 公开的化合物也包括所有的药学上可接受的同位素体变体，其中至少一个原子被替换为具有相同原子序数，但是其原子质量与通常自然界发现的原子质量不同的原子。适合包含在公开的化合物中的同位素的实例包括，但不限于，氢的同位素，例如 ²H 和 ³H；碳的同位素，例如 ¹³C 和 ¹²C；氮的同位素，例如 ¹⁴N；氧的同位素，例如 ¹⁷O 和 ¹⁸O；磷的同位素，例如 ³¹P 和 ³²P；硫的同位素，例如 ³⁴S；氟的同位素，例如 ¹⁹F；和氯的同位素，例如 ³⁵Cl。使用同位素变体（例如，氘²H），可以提供某些源自更大的代谢稳定性的治疗优点，例如，增加的体内半衰期或降低的剂量需求。另外，公开的化合物的某些同位素变体可以结合放射性同位素（例如，氯³⁵Cl, ¹⁴C），其可以用于药物和/或底物组织分布研究中。

具体实施方式

[0200] 下面的实施例意在举例说明而不是限制，且代表着本发明的特定的实施方案。

[0201] 一般材料和方法

[0202] 使用 96- 孔平板进行酶筛选，其被描述在 D. Yazbeck 等，Synth. Catal. 345: 524-32 (2003)。其完整内容在本文中为所有目的引作参考。在筛选平板中使用的所有酶（见表 2）都从商业酶供应商得到，包括 Amano (Nagoya, 日本), Roche (Basel, 瑞士), Novo Nordisk (Bagsvaerd, 丹麦), Altus Biologics Inc. (Cambridge, MA), Biocatalysts (Pasadena, CA), Toyobo (Osaka, 日本), Sigma–Aldrich (St. Louis, MO) 和 Fluka (Buchs, 瑞士)。在 Eppendorf Thermomixer–R(WWR) 中，进行筛选反应。随后的更大规模的酶促拆分采用 LIPOPLASE® 100L 和 LIPOPLASE® 100T，其可以从
Novo-Nordisk A/S (CAS号 9001-62-1) 得到。

[0203] 核磁共振

[0204] 在装配了5mm可自动切换的PHQNP探头的BRUKER 300UltraShieldTM 上，得到300MHz1H NMR 和75MHz13C NMR 光谱。通常在接近室温采集光谱，并采用标准的自动锁定、自动补偿和自动增益路线。通常在20Hz 旋转样品，进行1D实验。使用30°度顶角脉冲，1.0 秒再次循环延迟，和0.25Hz/点的分辨率的16 扫描，采集1H NMR 光谱。采集窗口典型地是8000Hz，从+18 至-2ppm（参照TMS, 在0 ppm），并用0.3Hz 谐波线宽增益。典型的采集时间是5-10 秒。使用30°度顶角脉冲，2.0 秒再次循环延迟，和1Hz/点的分辨率的2048 扫描，采集常规13C NMR 光谱。光谱宽典型地是25KHz，从+235 至-15ppm（参照TMS, 在0 ppm）。连续应用质子解耦，并在处理过程中应用1Hz 谐波线宽增益。典型的采集时间是102 分钟。

[0205] 质谱法

[0206] 使用HP Chemstation Plus 软件，在HEWLETT PACKARD 1100 MSD 上进行质谱法。LC 装配有Agilent 1100 quaternary LC 系统和作为自动采样器的Agilent 液体处理器。以ACN/水（含有0.1%甲酸）作为溶剂（10% ACN 至90%，7 分钟），在电子喷雾电离下获取数据。温度：探头是350°C，温度是150°C。阳离子的电压放电是3000V，阴离子是3000V。

[0207] 高效液相色谱法

[0208] 在配备了Agilent 220 HPLC 自动采样器，四元泵和UV 检测器的9100 AGILENT TECHNOLOGIES 仪器组上，进行高效液相色谱法（HPLC）。LC 是PC 控制的，使用HP Chemstation Plus 软件。使用从Chiral Technologies (Exton, PA) 和Phenomenex (Torrance, CA) 得到的手性HPLC 柱，进行正相手性HPLC。

[0209] 气相色谱法

[0210] 在配备了FID 检测器（其具有静电计）、7683 组分流/不分流毛细管注射器、监视4个外部事件的继电器板、和箱内打印机/绘图机的110 伏特Agilent 6890N 网络GC 系统上，进行气相色谱法（GC）。使用CHIRALDEX G-TA 柱（30mx0.25mm），用氦载气，在135°C，进行二酯（式13, R = R' = Et）和单酯（式11, R = Et）的对映体过量。在这样的条件下，单酯会分解，生成（S）-3-氰基-5-甲基-乙酸乙酯，这基于分解产物，测定ee。从Astee, Inc (Whippany, NJ) 得到在分析中使用的手性GC 柱。

[0211] 实施例1. 通过（R/S）-3-氰基-2-乙氧羰基-5-甲基-乙酸乙酯（式20）的酶促水解，生成（3S）-3-氰基-2-乙氧羰基-5-甲基-乙酸（式21），进行酶筛选

<table>
<thead>
<tr>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0212] 使用筛选试剂盒，其包含放置在96-孔平板的分开的孔中的单个的酶，进行酶筛选，所述平板预先根据D. Yazbeck 等，Synth. Catal. 345:524-32 (2003) 中所述的方法制备。每个孔具有0.3ml的空体积（浅孔平板）26-孔平板的一个孔含有磷酸盐缓冲液（10 μL, 0.1M, pH 7.2），另一个孔含有ACN（10 μL），且剩余的各孔含有表2列出的94 种酶之一。
(10 μL, 100mg/mL)。在使用前,从 -80℃保藏取出筛选试剂盒,使酶在室温解冻约 5 分钟。使用多通道移液管, 将磷酸钾缓冲液 (85 μL, 0.1M, pH 7.2) 分配到每个孔中。随后, 通过多通道移液管, 将浓缩的底物 (20, 5 μL) 加入每个孔, 在 30°C 和 750rpm 滤育 96 个反应混合物。24h 后, 通过将每个反应混合物转移到第二个 96-孔平板的分开的孔中, 漿灭反应, 并取样。每个孔具有 2μL 的空体积 (深孔平板), 且含有 EtOAc (1mL) 和 HCl (1N, 100 μL)。通过用移液管抽吸孔内容物, 混合各孔的组分。离心第二个平板, 并将 100 μL 有机上清液从每个孔转移到第三个 96-孔平板 (浅平板) 的分开的孔中。随后, 使用可穿的垫盘, 密封第三个平板的孔。一旦密封好孔, 将第三个平板转移到 GC 系统, 测定光学纯度 (ee)。

表 3 列出了筛选的一些数据, 商品名称, 供应商, 和 E 值。对于给定的酶, E 值可以解释为一对对映体 (底物) 的相对反应性。使用称作 Ee2 的计算机程序, 其可从 Graz 大学得到, 从 HPLC 数据 (转化率, x, 和 ee) 计算出表 3 列出的 E 值。通常, 表现出 S-选择性和约 35 或更大的 E 值的酶, 适用于放大规模。

表 3. 实施例 1 的筛选反应的结果

<table>
<thead>
<tr>
<th>酶</th>
<th>商品名称</th>
<th>供应商</th>
<th>E 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-选择性的</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>疏枝状嗜热丝孢菌脂肪酶</td>
<td>Lipase</td>
<td>Novozymes</td>
<td>>200</td>
</tr>
<tr>
<td>特列根根霉脂肪酶</td>
<td>脂肪酶 D</td>
<td>Amano</td>
<td>>200</td>
</tr>
<tr>
<td>白根根霉脂肪酶</td>
<td>L-9406</td>
<td>Sigma</td>
<td>66</td>
</tr>
<tr>
<td>Rhizomucor miehei 酶</td>
<td>46059</td>
<td>Fluka</td>
<td>52</td>
</tr>
<tr>
<td>假单孢菌属物种脂肪酶</td>
<td>103</td>
<td>Biocatalytics</td>
<td>51</td>
</tr>
<tr>
<td>米稀根根霉脂肪酶</td>
<td>Palatase 20000</td>
<td>Novozymes</td>
<td>41</td>
</tr>
<tr>
<td>稻根根霉脂肪酶</td>
<td>FAP15</td>
<td>Amano</td>
<td>35</td>
</tr>
<tr>
<td>Candida antarctica 脂肪酶 -A</td>
<td>CAL-A</td>
<td>Novozymes</td>
<td>5</td>
</tr>
<tr>
<td>Candida antarctica 脂肪酶 -B</td>
<td>CAL-B, Chirazyme L-2</td>
<td>Novozymes</td>
<td>3</td>
</tr>
<tr>
<td>边缘地 S-选择性的</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>猪肝酯酶</td>
<td>PLE-AS</td>
<td>Biocatalytics</td>
<td><2</td>
</tr>
<tr>
<td>脂肪酶</td>
<td></td>
<td>Sigma</td>
<td><2</td>
</tr>
<tr>
<td>猪胰酯酶</td>
<td></td>
<td>Sigma</td>
<td><2</td>
</tr>
<tr>
<td>胆固醇酯酶</td>
<td></td>
<td>Biocatalytics</td>
<td><2</td>
</tr>
<tr>
<td>R-选择性的</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>灰色链霉菌蛋白酶</td>
<td></td>
<td>Sigma</td>
<td>20</td>
</tr>
<tr>
<td>链霉菌属物种蛋白酶</td>
<td>118</td>
<td>Biocatalytics</td>
<td>11</td>
</tr>
</tbody>
</table>

实施例 2. 酶促拆分 (R/S)-3- 氨基-2- 乙氧羧基-5- 甲基- 己酸乙基酯 (式 20), 生成 (3S)-3- 氨基-2- 乙氧羧基-5- 甲基- 己酸钾盐 (式 23) 和 (R)-3- 氨基-2- 乙氧羧基-5- 甲基- 己酸乙基酯 (式 22)
[0219] 给配制上置搅拌的反应器（3.92L），装载磷酸钾缓冲液（292.2L，10mM，pH 8.0）和 LIPOLASE® 100L，EX 型（3.9L）。将混合物在 800RPM 搅拌 1 分钟，并加入 KOH（2M），调节 pH 至 8.0。加入 (R/S)-3- 氮基 -2- 乙氧羰基 -5- 甲基 - 己酸乙酯（式 20，100kg），在水解过程中，用 NaOH 水溶液（50％）滴定得到的混合物，维持 pH 8.0。通过 HPLC（C18 柱，4.6mm×150mm，在 200nm 检测），监视反应的程度。在达到约 40-45％的转化后（例如，约 24h 后），将反应混合物转入分液漏斗。用庚烷（205L）萃取含水的混合物。加入 EtOH（无水的）（直到约 5％v/v），破坏形成的轻乳状液，分离水层和有机层。重复萃取步骤 2 次，可以在真空下进一步浓缩含有 (3S)-3- 氮基 -2- 乙氧羰基 -5- 甲基 - 己酸钾盐（式 23）的水层（例如，它的原始体积的 25-50％）。合并含有 (R)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸乙酯（式 22）的有机层，干燥，并浓缩。随后，根据实施例 6，外消旋得到的二乙基酯。MS m/z [M+H]+ 227。1H NMR（300MHz，D2O）：δ2.35（dd，6H），2.70（t，3H），2.85（m，1H），2.99（m，1H），3.25（m，1H），4.75（m，1H），5.60（q，2H）。13C NMR（75ppm，D2O）：δ172.19，171.48，122.85，62.70，59.49，40.59，31.83，27.91，23.94，21.74，14.77。

[0220] 实施例 3。酶促拆分 (R/S)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸乙酯（式 20），生成 (3S)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸钾盐（式 23）和 (R)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸乙酯（式 22）

[0221] 给配制上置搅拌的反应器（3.92L），装载醋酸钠缓冲液（1.47L，10mM，pH 7.0）和 (R/S)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸乙酯（式 20，1kg）。将混合物在 1100RPM 搅拌 5 分钟，并加入 KOH（5M），调节 pH 至 7.0。加入 LIPOLASE® 100L，EX 型（75ml），在水解过程中，用 KOH（5M）滴定得到的混合物，维持 pH 7.0。通过 HPLC（C18 柱，4.6mm×150mm，在 200nm 检测），监视反应的程度。在达到约 42％至 45％的转化后（例如，约 20-25h 后），将反应混合物转入分液漏斗。用己烷（100％v/v）萃取含水的混合物。加入 EtOH（无水的）（直到约 5％v/v），破坏形成的轻乳状液，分离水层和有机层。重复萃取步骤 2 次，得到含有 (3S)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸钾盐（式 23）的水层，其可以在随后的转化中不经分离地使用。合并含有 (R)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸乙酯（式 22）的有机层，干燥，并浓缩。随后，根据实施例 6，外消旋得到的二乙基酯。

[0222] 实施例 4。从 (3S)-3- 氮基-2- 乙氧羰基-5- 甲基-己酸钾盐（式 23）制备 (S)-4- 异丁基-2- 氧代- 吡咯烷-3- 甲酸（式 10）

[0223]
[0224] 给反应器中,将 0.5 M 的 (3S)-3-氯基-2-乙氧羰基-5-甲基-已酸钠溶液 (术式 23,411L, 来自实施例 2) 的水溶液。将铜内径 (50%水溶液, Sigma-Aldrich) 加入混合物,用 20h 将氢气导入铜,在反应过程中维持容器顶部空间 50psi 的压力。通过容器内容物的 H2 吸收和 HPLC 分析 (C18 柱, 4.6mm x 150mm, 在 200nm 检测)。反应后,过滤含水的混合物,去除铜内径催化剂。使用 37% HCl (约 14L), 将浓缩的溶液的 pH 调节至 3.0。用 EtOAc (50% v/v) 将得到的溶液 3 次。在真空下浓缩合并的有机层,得到 (S)-4-异丁基-2-氧代-吡咯烷-3-甲酸 (术式 10)。MS m/z [M+H]+ 186.1130。13C NMR (75ppm, CDCl3) δ 175.67, 172.23, 54.09, 47.62, 43.69, 37.22, 26.31, 23.34, 22.54。产率 40-42% ; 97% ee。

[0225] 实施例 5。从 (S)-4-异丁基-2-氧代-吡咯烷-3-甲酸 (术式 10) 制备普瑞巴林 (术式 9)

[0226]

[0227] 给反应器中 (60L) 装载 (S)-4-异丁基-2-氧代-吡喀烷-3-甲酸 (术式 10), HCl (36-38%, 30L), 和水 (29L)。将 HOAc (1L) 加入溶液, 将得到的浆在 80℃加热 36-38h, 并在 110℃另外加热 6h。通过 HPLC (C18 柱, 4.6mm x 150mm, 在 200nm 检测)。反应的程度。蒸发水和多余的 HCl, 得到油, 用 MTBE (2x1L) 洗涤。将水加入油, 搅拌混合物, 直到溶液澄清。使用 KOH (约 6kg), 将溶液的 pH 调节至 5.2-5.5, 这导致普瑞巴林的沉淀。将混合物加热至 80℃, 并随后冷却至 4℃。10h 后, 过滤晶体状的普瑞巴林, 并用 IPA (12L) 洗涤。在真空下浓缩滤液, 得到剩余的油。将水 (7.5L) 和 EtOH (5.0L) 加入剩余的油, 将得到的混合物加热至 80℃, 然后冷却至 4℃。10h 后, 过滤第二步普瑞巴林晶体, 并用 IPA (1L) 洗涤。在 45℃, 在真空干燥箱中干燥合并的普瑞巴林晶体 24h。MS m/z [M+H]+ 160.1340。1H NMR (300MHz, D2O) : δ 2.97 (dd, J = 5.4, 12.9 Hz, 1H), 2.89 (dd, J = 6.6, 12.9 Hz, 1H), 2.05-2.34 (m, 2H), 1.50-1.70 (七重峰, J = 6.9 Hz, 1H), 1.17 (t, J = 7.0 Hz, 2H), 0.85 (dd, J = 2.2, 6.6 Hz, 6H)。13C NMR (75ppm, D2O) δ 181.54, 144.32, 41.28, 32.20, 24.94, 22.55, 22.09。产率 80-85% ; ee > 99.5%。

[0228] 实施例 6。通过 (S)-3-氯基-2-乙氧羰基-5-甲基-已酸乙基酯 (术式 22) 的外消旋,制备 (R/S)-3-氯基-2-乙氧羰基-5-甲基-已酸乙基酯 (术式 20)

[0229]
[0230] 给反应器装载 (R)-3- 氰基 -2- 乙氧羰基 -5- 甲基 - 己酸乙基酯 (式 22, 49.5kg) 和 EtOH (250L)。将乙醇钠 (21% w/w, 在 EtOH 中, 79.0L, 1.1eq) 加入混合物, 在 80℃ 加热 20h。反应冷却至室温, 并通过加入 H2O (12.2L) 进行中和。蒸发 EtOH 后, 将 MTBE (150L) 加入混合物, 过滤得到的溶液, 并蒸发, 以定量的产率得到 (R/S)-3- 氰基 -2- 乙氧羰基 -5- 甲基 - 己酸乙基酯 (式 20)。

[0231] 实施例 7. 从 (3S)-3- 氰基 -2- 乙氧羰基 -5- 甲基 - 乙酸 (式 21) 制备 (S)-3- 氰基 -5- 甲基 - 己酸乙基酯 (式 24)

[0232] 给 50mL 圆底烧瓶装载 (3S)-3- 氰基 -2- 乙氧羰基 -5- 甲基 - 乙酸 (式 21, 3.138g, 13.79mmol), NaCl (927mg, 1.15eq), 去离子水 (477μL, 1.92eq) 和 DMSO (9.5mL)。将得到的混合物加热至 88℃ 并在该温度维持 17h。取样进行 LC 和 LC/MS 分析, 其显示原料 (式 21) 和产物 (式 24 和式 25) 的存在。随后, 将混合物的温度升高至 135℃, 并另外反应 3.5h。取第二次样品进行 LC 和 LC/MS 分析, 其显示不存在原料 (式 21), 并显示, 除了希望的产物 (式 24 和式 25) 外, 还存在未辨别的副产物。 (S)-3- 氰基 -5- 甲基 - 乙酸乙基酯 (式 24): 88℃ 后 97.4% ee; 135℃ 后 97.5% ee。

[0233] 实施例 8. (S)-4- 异丁基 -2- 氧代 - 吡咯烷 -3- 甲酸 (式 10) 的光学纯度 (ee) 的测定

[0234] 通过衍生化方法, 测定了 (S)-4- 异丁基 -2- 氧代 - 吡咯烷 -3- 甲酸 (式 10) 的光学纯度。在有催化量的在二烷中的无水 HCl 存在下, 在 70℃ 用 EtOH 酯化 (S)-4- 异丁基 -2- 氧代 - 吡咯烷 -3- 甲酸的样品。通过 HPLC (CHIRALPAK AD-H, 4.6mmx250mm), 使用已烷和 EtOH (95:5) 的流动相, 1.0mL/min 的流速, 10μL 的注射体积, 35℃ 的柱温度, 在 200nm 检测, 分析得到的内酰胺酯。

[0235] 实施例 9. 丙烯基苯 (式 9) 的光学纯度 (ee) 的测定

[0236] 通过衍生化方法, 分析了丙烯基苯的光学纯度。用 Marfey 试剂 (1- 氯代 -2-4- 二硝基苯基 -5-L- 丙氨酸酰胺) 衍生丙烯基苯的样品, 然后通过 HPLC (LUNA C18(2) 柱, 0.46mmx150mm, 3 μm), 使用含水的 NaPO4 (20mM, pH 2.0) 和 ACN 的流动相 (90:10) 进行 10 分钟, 10:90 进行 3 分钟, 90:10 进行 5 分钟), 1.2mL/ 分钟的流速, 10μL 的注射体积, 35℃ 的柱温度, 在 200nm 检测进行分析。

[0237] 实施例 10. 酶促拆分 (R/S)-3- 氰基 -2- 乙氧羰基 -5- 甲基 - 乙酸乙基酯 (式 20),
生成 (3S)-3- 氯基 -2- 乙氧羰基 -5- 甲基 - 己酸钠盐 (式 23) 和 (R)-3- 氯基 -2- 乙氧羰基 -5- 甲基 - 己酸乙酯 (式 22)

[0239]

给装配了上置搅拌的反应器 (16000L) 装载醋酸钙 (254kg)，去离子水 (1892.7kg) 和 LIPOLYME® TL 100L (食品级LIPOLVE®, 983.7kg)。完全混合后，装载 (R/S)-3- 氯基 -2- 乙氧羰基 -5- 甲基 - 己酸乙酯 (式 20, 9000kg, 85% 纯度测定)，将混合物搅拌 24h。在反应过程中，加入NaOH (2068kg 的 30% 溶液)，将 pH 维持在 7.0。通过 HPLC (C18柱，4.6mm X 150mm，在200nm 检测)，监视反应的程度。达到约 42% 至 45% 的转化后 (例如，约 20-25h 后)，停止滴定计和搅拌。立即分离有机相，并用甲苯 (780kg) 洗涤水相 2 次。含有 (3S)-3- 氯基 -2- 乙氧羰基 -5- 甲基 - 己酸钠盐 (式 23) 的水层在随后的转化（实施例 11）中不分离地使用。合并含有 (R)-3- 氯基 -2- 乙氧羰基 -5- 甲基 - 己酸乙酯 (式 22) 的有机层，并浓缩。随后，根据实施例 6 外消旋得到的二乙基酯。

[0241] 实施例 11. 从 (3S)-3- 氯基 -2- 乙氧羰基 -5- 甲基 - 己酸钠盐 (式 23) 制备 (S)-3- 氯基 -5- 甲基 - 己酸乙酯 (式 24)

[0242]

[0243] 给装配了上置搅拌的反应器 (16000L) 装载来自实施例 10 的最终水溶液 (9698.6L，含有 (3S)-3- 氯基 -2- 乙氧羰基 -5- 甲基 - 己酸钠盐，式 23)。NaCl (630kg) 和甲苯 (900L)。在回流条件 (75-85°C) 下，搅拌混合物 2h。停止搅拌；立即分离有机相，并用甲苯 (900L) 洗涤水相 2 次。合并含有 (S)-3- 氯基 -5- 甲基 - 己酸乙酯 (式 24) 的有机层，并浓缩。随后，根据实施例 12 水解乙基酯 (式 24)。

[0244] 实施例 12. 从 (S)-3- 氯基 -5- 甲基 - 己酸乙酯 (式 24) 制备 (S)-3- 氯基 -5- 甲基 - 己酸钾盐 (式 26)

[0245]

[0246] 给装配了上置搅拌的反应器 (12000L) 装载 (S)-3- 氯基 -5- 甲基 - 己酸乙基
酪 (式 24, 2196L, 来自实施例 11)。在 激烈 搅拌下，将 KOH (1795.2 kg, 45% 溶液, w/w) 和 H₂O (693.9 kg) 加入反应混合物。将温度维持在 25°C。4h 后，将反应混合物装进氢化罐 (实施例 13)，没有进一步后处理。

【0247】实施例 13. 从 (S)-3-氟基 -5-甲基 -己酸钾 (式 26) 制备普瑞巴林 (式 9)

【0248】

![化学结构式](26)

Ni, H₂ →

![化学结构式](9)

【0249】给氢化器 (12000L) 装载水 (942.1L) 和来自实施例 12 的含有 (S)-3-氟基 -5-甲基 -己酸钾 (式 26, 4122.9L) 的反应混合物。加入院内镍悬浮液 (219.6kg, 50% w/w, 在 H₂O 中)。在 50psig, 35°C 下, 进行氢化。6h 后, 过滤院内镍, 将得到的滤液转入反应器 (16000L), 进行结晶。加入 H₂O (1098L) 后, 使用 HOAc (864.7kg), 将溶液的 pH 调节至 7.0-7.5。过滤得到的沉淀, 并用 H₂O (549L) 洗涤一次, 用 IPA (每次 2, 586L) 洗涤 2 次。用 IPA (12296L) 和 H₂O (6148L) 使固体重结晶。将混合物加热至 70°C, 并随后冷却至 4°C。5-10h 后, 过滤晶体状固体, 用 IPA (5724L) 洗涤, 并在 45°C 在真空干燥箱中干燥 24h, 生成普瑞巴林, 它是白色晶体状固体 (1431kg, 30.0% 总产率, 99.5% 纯度和 99.75% ee)。

【0250】应当指出，如在本说明书和所附权利要求书中使用的，单数物品例如“一”、“1”和“该”可以指单一对象或多个对象，除非上下文另有清楚的说明。因而，例如，含有“一种化合物”的组合物可以包含单一化合物或两种或更多种化合物。应当理解，上面的描述意在举例说明，而不是限制。阅读上面的描述后，许多实施方案对本领域技术人员来说将是显而易见的。因此，应当根据所附权利要求书确定本发明的范围，且包括与这样的权利要求等同的所有范围。所有论文和参考文献的内容，包括专利、专利申请和出版物，都以其整体并为所有目的并入本文作为参考。
图 1