发明名称
一种中压柱快速分离油茶饼粕中黄酮苷的制备方法

摘要
本发明公开了一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，包括以下步骤：将茶籽脱壳破碎，用非极性溶性脱脂，再用乙醇水溶液进行提取，过滤浓缩得到粗提物浸膏，通过中压柱快速分离得到90%以上的黄酮苷混合物，进一步采用高效液相色谱制备，得到95%以上的黄酮苷单体，分别为：山奈酚3-0-[2-O-β-D-半乳糖-6-0-α-L-鼠李糖]-β-D-葡萄糖苷（I）和山奈酚3-0-[2-O-β-D-木糖-6-0-α-L-鼠李糖]-β-D-葡萄糖苷（II）。该方法可用于批量量制备，为油茶饼粕中黄酮苷药物和保健功能产品的开发提供了优质原料。
1. 一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，其特征在于由以下步骤组成：
第一步，脱脂；
油茶籽脱壳，籽破碎，采用石油醚、乙醚、正己烷、戊烷和正戊烷等有机溶剂脱脂，茶籽
质量与有机溶剂的体积比例为 1：15-35g/mL，温度 30℃-80℃，提取 1-3h，提取 1-4 次，过
滤后得到滤渣，得到脱脂的油茶籽粕；
第二步，提取；
将油茶籽粕以 1g 原料加入 15-30mL 的不同浓度醇 - 水溶液提取 1-4 次，提取温度
60-80℃，提取时间 1-3h，提取后，过滤，合并滤液，真空浓缩得到油茶籽粕黄酮苷粗提取物；
第三步，萃取；
将提取物得到的浸膏用正丁醇等有机溶剂萃取 2-5 次，将水层浓缩，得到粗提物；
第四步，中压柱纯化；
将油茶籽粕黄酮苷粗提取物与中压柱填料按质量比 1：15-50 吸附，洗脱剂为氯仿、正
丁醇、乙酸乙酯、甲醇、乙醇和水中的一种或几种的混合溶液，中压柱柱长 20-300cm，柱直径
2-30cm，柱压为 3-20MPa，检测波长 220-360nm，流速 2-200mL/min，富集黄酮苷部位，室温真
空回收溶剂，经 HPLC 分析，制备得到 90% 以上黄酮苷混合物；
第五步，HPLC 制备分离；
以中压柱制备得到的 90% 以上的黄酮苷混合物为原料，采用高效液相进行制备，得到两
种黄酮苷单体，分别为山奈酚 3-O-[2-0-β-D-半乳糖-6-O-α-L-鼠李糖]-β-D-葡萄糖苷（I）和山奈酚
3-O-[2-0-β-D-木糖-6-O-α-L-鼠李糖]-β-D-葡萄糖苷（II），经 HPLC 分析，含量在 95% 以上。
2. 根据权利要求 1 所述的一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，其特征在
于步骤 2 中的不同浓度的醇 - 水溶液为乙醇、甲醇和水中的一种或几种的混合溶液，优选
60-90% 的乙醇水溶液。
3. 根据权利要求 1 所述的一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，其特征在
于步骤 3 中的有机溶剂为丙酮、乙酸乙酯和正丁醇或它们中的一种或者两种。
4. 根据权利要求 1 所述的一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，其特征在
于中压柱填料可选择 200-500 mesh 硅胶和氧化铝中的一种或二种任意比，洗
脱剂为氯仿、乙酸乙酯、正丁醇和甲醇中的一种或几种的混合溶液，优选氯仿：甲醇＝
100：1-30（v/v）混合溶剂。
5. 根据权利要求 1 所述的一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，其特征在
于中压柱填料也可选择孔径为 60A，40-60 μm 的 ODS C18、C8 和 Sephadex LH-20 材料，洗
脱剂为甲醇、乙醇和水中的一种或几种的混合溶液，优选 5%～50% 的甲醇水溶液。
6. 根据权利要求 1 所述的一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，其特征在
于高效液相制备的条件为：色谱柱 XB-C18（Φ 10mm×250mm，5 μm）；流动相：甲醇：水＝
2：3（V/V），紫外 270nm，流速：3ml/min。
7. 根据权利要求 1 所述的一种中压柱快速分离油茶饼粕中黄酮苷的制备方法，其特征在
于 HPLC 分析条件为：色谱柱 Hypersil ODS2（Φ 4.6mm×200mm，5 μm）；流动相：甲醇：水＝
4：6（V/V），紫外 270nm，流速：1ml/min。
一种中压柱快速分离油茶饼粕中黄酮苷的制备方法

技术领域
[0001] 本发明涉及植物提取物技术领域，特别涉及一种中压快速分离方法从油茶饼粕中制备黄酮苷类化合物。

背景技术
[0002] 油茶 (Camellia oleifera Abel.)，别名茶籽树、油茶树、白花茶，属山茶科(Theacea) 山茶属 (Camellia) 植物，为多年生乔木或灌木，品种多达百余种。油茶是我国特有的木本油料，在我国有 2000 多年的栽培历史，现主要分布于我国淮河、长江流域及其以南的 14 个省的 1100 多个县。我国每年产毛茶油约 20 万吨，而榨油后剩余的茶籽粕每年约 50 万吨。经榨油后的油茶饼粕中含有蛋白质、粗纤维、糖类物质、茶皂素、单宁、生物碱、黄酮和少量的植物酸以及多酚，具有很高的经济价值。油茶种植的发展必须重视油茶籽的综合开发利用，只有这样才能使得油茶种植的综合效益得到进一步体现。目前的现状是大部分饼粕当作燃料被烧掉，或廉价出口到日本、东南亚等国家和地区，这种局面应该得到有效改善。茶皂素是一种天然非离子型表面活性剂，具有良好的乳化性、分散性、湿润性、发泡性、稳泡性和去污等性能，可广泛应用于日化、建材、食品等行业，其生物活性主要表现在溶血和鱼毒性、抗渗透性、止咳镇痛、抗炎、杀菌以及抑制酒精吸收、缓生物活性等方面。目前国内外对茶籽饼粕中茶皂素进行了大量的研究，并且在国内外市场上也有很多成品在出售。但是油茶饼粕中还有其它有效成分，如黄酮苷、黄酮及黄酮苷类是一大类天然化学产物，在植物界分布广泛，从中植物中提取的该类化学产物具有保护心脑血管、抗炎、抗氧化、改善记忆、抗抑郁、抗焦虑、中枢抑制和神经保护等多种生理活性，它是许多中草药的主要活性成分，其中有许多被开发成新型植物药，如银杏黄酮、大豆异黄酮等，获得良好效果。

[0003] 国内文献有报道，俞斌等人采用硅胶柱层析从油茶枯饼中分离得到两种主要黄酮苷，并建立了它的液相色谱分析方法，但是普通的硅胶柱层析分离过程缓慢，得率低。利用新的中压柱快速分离方法制备油茶枯饼的两种黄酮苷，得到高含量高得率的黄酮苷化合物，国内没有任何报道。

发明内容
[0004] 本发明的目的在于提供一种利用中压快速分离油茶饼粕中的黄酮苷类化合物的方法，该方法工艺简单、得到的产品含量高、适合大批量制备。
[0005] 本发明的技术方案为：中压柱快速分离油茶饼粕中黄酮苷的制备方法，包括以下步骤：
[0006] 第一步，脱脂；
[0007] 油茶籽剥壳，籽破碎，采用石油醚、乙醚、正已烷、戊烷和正戊烷等有机溶剂脱脂，茶籽质量与有机溶剂的体积比例为 1：15-35g/mL，温度 30℃-80℃，提取 1-3h，提取 1-4次，过滤后得到滤渣，得到脱脂的油茶籽粕；
[0008] 第二步，提取；
[0009] 将油茶籽榨以 1g 原料加入 15-30mL 的不同浓度醇水溶液提取 1-4 次，提取温度 60-80℃，提取时间 1-3h，提取后，过滤，合并滤液，真空浓缩得到油茶籽黄酮苷粗提取物；
[0010] 第三步，萃取；
[0011] 将提取物得到的浸膏用正丁醇等有机溶剂萃取 2-5 次，将水层浓缩，得到粗提物；
[0012] 第四步，中压柱纯化；
[0013] 将油茶籽黄酮苷粗提取物与中压柱填料按质量比 1：15-50 吸附，洗脱剂为氯仿、正丁醇、乙酸乙酯、甲醇、乙醇和水中的一种或几种的混合溶液，中压柱柱长 20-300cm，柱直径 2-30cm，柱压为 3-20MPa，检测波长 220-360nm，流速 2-200mL/min，富集黄酮苷部位，室温真空回收溶剂，经 HPLC 分析，制备得到 90% 以上黄酮苷化合物；
[0014] 第五步，HPLC 制备分离；
[0015] 以中压柱制备得到的 90% 以上的黄酮苷混合物为原料，采用高效液相进行制备，在此色谱条件下：色谱柱 XB-C18（Φ10mm×250mm，5 μm）；流动相：甲醇：水 = 2：3（V/V），紫外 270nm，流速 3mL/min。制备得到两种黄酮苷单体，分别为山奈酚 3-O-［2-O-β-D-半乳糖 -6-O-α-L-鼠李糖］-β-D-葡萄糖苷（Ⅰ）和山奈酚 3-O-［2-O-β-D-木糖 -6-O-α-L-鼠李糖］-β-D-葡萄糖苷（Ⅱ），经 HPLC 分析，含量在 95% 以上。
[0016] 本方法中采用醇溶液进行提取，经过萃取，中压柱快速分离得到 90% 以上的黄酮苷化合物，再进一步通过高效液相制备分离得到两种黄酮苷单体，经过 MS，IR，1H-NMR 和 13C-NMR 鉴定为山奈酚 3-O-［2-O-β-D-半乳糖 -6-O-α-L-鼠李糖］-β-D-葡萄糖苷（Ⅰ）和山奈酚 3-O-［2-O-β-D-木糖 -6-O-α-L-鼠李糖］-β-D-葡萄糖苷（Ⅱ），其结构为；
附图说明

[0018] 图 1 为中压柱快速分离后黄酮苷化合物的 HPLC 色谱图。
[0019] 图 2 为高效液相色谱制备后黄酮苷单体 I 的 HPLC 色谱图。
[0020] 图 3 为高效液相色谱制备后黄酮苷单体 II 的 HPLC 色谱图。
[0021] 图 4 为黄酮苷化合物的 IR 谱图。
[0022] 图 5 为黄酮苷单体 I 的 MS 谱图。
[0023] 图 6 为黄酮苷单体 I 的 ¹H-NMR 谱图。
[0024] 图 7 为黄酮苷单体 I 的 ¹³C-NMR 谱图。
[0025] 图 8 为黄酮苷单体 II 的 MS 谱图。
[0026] 图 9 为黄酮苷单体 II 的 ¹H-NMR 谱图。
[0027] 图 10 为黄酮苷单体 II 的 ¹³C-NMR 谱图。

具体实施方式

[0028] 以下实施例为本发明的一些举例，不应被看做是对本发明的限定。
[0029] 实施例 I
[0030] 第一步，脱脂：
[0031] 油茶籽脱壳，籽破碎，采用石油醚脱脂，茶籽与石油醚的比例为 1:30g/mL，温度 60℃，提取 2h，提取 3 次，过滤后得到滤渣，得到脱脂的油茶籽粕；
说明书

第二步，提取：
将油茶籽粉以1g原料加入20mL的70%乙醇溶 - 水溶液提取3次，提取温度80℃，
提取时间2h，提取后，过滤，合并滤液，真空浓缩得到油茶籽黄酮苷粗提取物。

第三步，萃取：
将提取物得到的浸膏用正丁醇萃取4次，将水层浓缩，得到相提物。

第四步，中压柱纯化：
将油茶籽黄酮苷粗提取物与中压柱填料300目的硅胶按质量比1：40吸附，洗脱剂
为氯仿和甲醇混合溶液，中压柱柱长40cm，柱直径3cm，柱压为3MPa，检测波长220nm，流速
10mL/min，富集黄酮苷部位，室温真空回收溶剂，经HPLC分析，制备得到90%以上黄酮苷
化合物。

第五步，HPLC制备分离：
以中压柱制得的90%以上的黄酮苷混合物为原料，采用高效液相进行制备，在
此色谱条件下：色谱柱：XB-C18（Φ10mm×250mm,5μm）；流动相：甲醇：水=2：3
(V/V)；紫外270nm，流速3mL/min。制备得到两种黄酮苷单体，分别为山奈酚3-0-[2-O-β-D-半
乳糖-6-0-a-L-鼠李糖]-β-D-葡萄糖苷(I)和山奈酚3-0-[2-O-β-D-木糖-6-O-a-L-鼠李糖]-β-D-葡萄糖苷(II)，经
HPLC分析，含量在95%以上。

本法中采用醇溶剂进行提取，经过萃取，中压柱快速分离得到90%以上的黄酮
苷化合物，再进一步通过高效液相制备分离得到两种黄酮苷单体，经过MS，IR，1H-NMR和
13C-NMR鉴定为山奈酚3-0-[2-O-β-D-半乳糖-6-O-a-L-鼠李糖]-β-D-葡萄糖苷(I)
和山奈酚3-0-[2-O-β-D-木糖-6-O-a-L-鼠李糖]-β-D-葡萄糖苷(II)。

化合物I为淡黄色粉末，在紫外灯下显黄色荧光，盐酸-镁粉反应呈阳性，Melish
反应呈阳性，提示该化合物为黄酮苷类化合物，经薄层色谱与标准品葡萄糖，半乳糖和
鼠李糖对照RF值相同，说明所连的糖为这3种糖。经过稀酸水解后，苷元的MS，NMR数
据与标准谱库配匹配为山奈酚。MS m/z：[M+Na]+779，结合13C-NMR谱，确定分子式为
C33H40O26。红外谱图中，3357cm-1为羟基的伸缩振动，1359cm-1为羟基的弯曲振动，2968cm-1
和2850cm-1为CH3的伸缩振动，2922cm-1为CH2的伸缩振动，1450cm为CH3和CH2的弯曲
振动，1607cm和1498cm为芳环的骨架振动，1655cm为芳香酮的伸缩振动。其氢，碳
信号归属如下：1H-NMR(CD3OD,300MHz)谱中，δ7.9 (2H, d, J = 9.0Hz) 和 6.8 (2H,
δJ = 9.0Hz) 提示为环上H-2’,6’及H-3’,5’的质子信号，δ6.2 (1H, s, H-8), δ6.0
(1H, d, J = 1.8Hz, H-6), δ5.2 (2H, d, J = 1.8Hz, Glu H-1, Gla H-1), δ4.79 (Rha d, J = 1.8Hz,
H-1), δ5.3 (Rha, d, J = 6.0Hz, H-6), δ1.0 (Rha, d, H-5); 13C-NMR(CD3OD,125MHz) 谱中，
δ179 (C-4), δ167 (C-7), δ161.5 (C-5), δ160 (C-4'), δ158.6 (C-2, C-9), δ134.7 (C-3),
δ132.4 (C-2',6'), δ122.9 (C-1'), δ116.3 (C-3',C-5'), δ104.5 (C-10), δ100.3 (C-6),
δ95.1 (C-8), δ102.2 (Glu C-1), δ82 (Glu C-2), δ77.8 (Glu C-3), δ77 (Glu C-4),
δ78.3 (Glu C-5), δ69.73 (Glu C-6), δ101.2 (Gla c-1), δ75.4 (Gla C-2), δ72.3 (Gla
C-3), δ71.4 (Gla C-4), δ73.8 (Gla C-5), δ62.6 (Gla C-6), δ100 (Rha C-1), δ72 (Rha
C-2), δ71.3 (Rha C-3), δ73.8 (Rha C-4), δ68.3 (Rha C-5), δ17.9 (Rha C-6)。故鉴定化合
物I为山奈酚3-0-[2-O-β-D-半乳糖-6-O-a-L-鼠李糖]-β-D-葡萄糖苷(Kaempferol
3-0-[2-O-β-D-galactopyranosyl-6-0-a-L-rhamnopyranosyl]-β-D-glucopyranosid
化合物II为淡黄色粉末，在紫外灯下显黄色荧光。盐酸-镁粉反应呈阳性，Molish反应呈阳性，提示该化合物为黄酮苷类化合物。经薄层色谱法与标准品葡萄糖、木糖和鼠李糖对照Rf值相同，说明所鉴的糖为这3种糖。经过稀酸水解后，苷元的MS, NMR数据与标准品图谱匹配为山奈酚。HRESI-MS m/z: [M+Na] 749, 结合 13C-NMR谱, 确定分子式为C_{33}H_{35}O_{15}。红外光谱中，3346cm⁻¹为羟基的伸缩振动，1357cm⁻¹为羟基的弯曲振动，2977cm⁻¹和2844cm⁻¹为CH₃的伸缩振动，2925cm⁻¹为CH₂的伸缩振动，1447cm⁻¹为CH₁和CH₂的弯曲振动，1614cm⁻¹，1570cm⁻¹和1497cm⁻¹为芳烃的骨架振动，1653cm⁻¹为芳环酮的伸缩振动。其氢、碳信号归属如下：¹H-NMR(CD₂OD, 300mHz)谱中，δ 7.9 (2H, d, j = 9.0Hz) 和 6.8 (2H, d, j = 9.0Hz) 提示为B环上H-2"', 6'及H-3', 5'的质子信号，δ 6.2 (1H, s, H-8), δ 6.0 (1H, d, J = 1.8Hz, H-6), δ 5.2 (2H, d, J = 1.8Hz, Glu H-1, Glu H-1), δ 4.79 (Rha d, J = 1.8Hz, H-1), δ 1.3 (Rha, d, J = 6.0Hz, H-6), δ 1.1 (Rha, d, H-5); ¹³C-NMR(CD₂OD, 125mHz)谱中，δ 179.5 (C-4), δ 166 (C-7), δ 163 (C-5), δ 161.4 (C-4'), δ 158.7 (C-2, C-9), δ 134.7 (C-3), δ 132.8 (C-2, 6'), δ 122.9 (C-1'), δ 116.2 (C-3', C-5'), δ 105.2 (C-10), δ 99.9 (C-6), δ 94.9 (C-8), δ 102.1 (Glu C-1), δ 82 (Glu C-2), δ 77.0 (Glu C-3), δ 76.9 (Glu C-4), δ 78.2 (Glu C-5), δ 74.7 (Glu C-6), δ 102 (Xyl C-1), δ 74.7 (Xyl C-3), δ 72.3 (Xyl C-1'), δ 71 (Xyl C-4'), δ 66.6 (Xyl C-5), δ 100 (Rha C-1), δ 72.1 (Rha C-2), δ 71.4 (Rha C-3), δ 73.8 (Rha C-4), δ 68.1 (Rha C-5), δ 17.8 (Rha C-6)。故鉴定化合物II为山奈酚3-0-[2-O-β-D-木糖-6-0-α-L-鼠李糖]-β-D-葡萄糖苷(Kaempferol 3-0-[2-O-β-D-xylopyranosyl-6-0-α-L-rhamnopyranosyl]-β-D-glucopyranoside)。

实施例2

第一步，脱糖：

油茶籽脱壳，粉碎，采用石油醚脱脂，茶籽与石油醚的比例为1:30g/mL,温度60℃,提取2h,提取3次，过滤后得到滤渣，得到脱脂的油茶籽粒。

第二步，提取：

将油茶籽粒以1g原料加入20mL的50%甲醇溶液提取3次，提取温度80℃,提取时间2h,提取后，过滤，合并滤液，真空浓缩得到油茶籽黄酮苷粗提取物。

第三步，萃取：

将提取物得到的浸膏用丙酮萃取4次，将水层浓缩，得到粗提物。

第四步，中压柱纯化：

将油茶籽黄酮苷粗提取物与中压柱填料300目的硅胶按质量比1:40吸附，洗脱剂为氯仿和甲醇混合溶液，中压柱柱长40cm，柱直径3cm，柱压为3MPa，检测波长220nm,流速10mL/min，富集黄酮苷部位，室温真空回收溶剂，经HPLC分析，制备得到90%以上黄酮苷化合物。

第五步，HPLC制备分离：

以中压柱制备得到的90%以上的黄酮苷混合物为原料，采用高效液相色谱进行制备，在此色谱条件下：色谱柱XB-C18(Φ10mm×250mm,5μm);流动相:甲醇：水=2:3(V/V),紫外270mm,流速:3mL/min。制备得到两种黄酮苷单体,分别为山奈酚3-0-[2-O-β-D-半乳糖-6-0-α-L-鼠李糖]-β-D-葡萄糖苷（I）和山柰酚3-0-[2-O-β-D-木
糖 -6-O-a-L-鼠李糖]-β-D-葡萄糖苷(II)，经HPLC分析，含量在95%以上。

[0054] 实施例3

[0055] 第一步，脱脂；

[0056] 茶籽壳脱壳，籽破碎，采用石油醚脱脂，茶籽与石油醚的比例为1：30g/mL，温度60℃，提取2h，提取3次，过滤后得到滤渣，得到脱脂的茶籽籽仁；

[0057] 第二步，提取；

[0058] 将茶籽籽仁以1g原料加入20mL的70%乙醇溶液提取3次，提取温度80℃，提取时间2h，提取后，过滤，合并滤液，真空浓缩得到茶籽籽仁提取物；

[0059] 第三步，萃取；

[0060] 将提取物得到的浸膏用正丁醇萃取4次，将水层浓缩，得到粗提物；

[0061] 第四步，中压柱纯化；

[0062] 将茶籽籽仁提取物与中压柱填料60A，40～60μm的ODS C18按质量比1:40吸附，洗脱剂为甲醇和水混合溶液，中压柱柱长40cm，柱直径3cm，柱压为3MPa，检测波长220mm，流速10mL/min，富集黄酮苷部位，室温真空回收溶剂，经HPLC分析，制备得到90%以上黄酮苷化合物；

[0063] 第五步，HPLC制备分离；

[0064] 以中压柱得到的90%以上的黄酮苷化合物为原料，采用高效液相进行制备，在此色谱条件下：色谱柱XB-C18(Φ10mm×250mm，5μm)；流动相：甲醇：水=2:3(V/V)，紫外270mm，流速3mL/min。制备得到两种黄酮苷单体，分别分别为山奈酚3-O-α-D-半乳糖-6-O-a-L-鼠李糖]-β-D-葡萄糖苷(I)和山奈酚3-O-α-D-木糖-6-O-a-L-鼠李糖]-β-D-葡萄糖苷(II)，经HPLC分析，含量在95%以上。

[0065] 实施例4

[0066] 第一步，脱脂；

[0067] 茶籽壳脱壳，籽破碎，采用石油醚脱脂，茶籽与石油醚的比例为1：30g/mL，温度60℃，提取2h，提取3次，过滤后得到滤渣，得到脱脂的茶籽籽仁；

[0068] 第二步，提取；

[0069] 将茶籽籽仁以1g原料加入20mL的70%乙醇溶液提取3次，提取温度80℃，提取时间2h，提取后，过滤，合并滤液，真空浓缩得到茶籽籽仁提取物；

[0070] 第三步，萃取；

[0071] 将提取物得到的浸膏用正丁醇萃取4次，将水层浓缩，得到粗提物；

[0072] 第四步，中压柱纯化；

[0073] 将茶籽籽仁提取物与中压柱填料60A，40～60μm的ODS C8按质量比1:40吸附，洗脱剂为甲醇和水混合溶液，中压柱柱长40cm，柱直径3cm，柱压为3MPa，检测波长220mm，流速10mL/min，富集黄酮苷部位，室温真空回收溶剂，经HPLC分析，制备得到90%以上黄酮苷化合物；

[0074] 第五步，HPLC制备分离；

[0075] 以中压柱得到的90%以上的黄酮苷化合物为原料，采用高效液相进行制备，在此色谱条件下：色谱柱XB-C18(Φ10mm×250mm，5μm)；流动相：甲醇：水=2:3(V/V)，紫外270mm，流速3mL/min。制备得到两种黄酮苷单体，分别为山奈酚3-O-α-D-半
乳糖-6-O-α-D-鼠李糖]-β-D-葡萄糖苷（Ⅰ）和山奈酚3-O-[2-O-β-D-木糖-6-O-α-L-鼠李糖]-β-D-葡萄糖苷（Ⅱ），经HPLC分析，含量在95%以上。

【0076】实施例5

【0077】第一步，脱脂：

【0078】油茶籽脱壳，籽破碎，采用石油醚脱脂，茶籽与石油醚的比例为1：30g/mL，温度60℃，提取2h，提取3次，过滤后得到滤渣，得到脱脂的油茶籽粉；

【0079】第二步，提取：

【0080】将油茶籽粉以1g原料加入20mL的70%乙醇溶液提取3次，提取温度80℃，提取时间2h，提取后，过滤，合并滤液，真空浓缩得到油茶籽黄酮苷粗提取物；

【0081】第三步，萃取：

【0082】将提取物得到的浸膏用正丁醇萃取4次，将水层浓缩，得到粗提物；

【0083】第四步，中压柱纯化：

【0084】将油茶籽黄酮苷粗提取物与中压柱填料Sephadex LH-20按质量比1：40吸附，洗脱剂为乙醇和水混合溶液，中压柱柱高40cm，柱直径3cm，柱压为3MPa，检测波长220nm，流速10mL/min，富集黄酮苷部位，室温真空回收溶剂，经HPLC分析，制备得到90%以上黄酮苷化合物；

【0085】第五步，HPLC制备分离：

【0086】以中压柱制备得到的90%以上的黄酮苷混合物为原料，采用高效液相进行制备，在此色谱条件下：色谱柱 XB-C18（Φ10mm×250mm, 5μm）；流动相：甲醇：水= 2：3(V/V)，紫外270nm，流速：3mL/min。制备得到两种黄酮苷单体，分别为山奈酚3-O-[2-O-β-D-乳糖-6-O-α-L-鼠李糖]-β-D-葡萄糖苷（Ⅰ）和山奈酚3-O-[2-O-β-D-木糖-6-O-α-L-鼠李糖]-β-D-葡萄糖苷（Ⅱ），经HPLC分析，含量在95%以上。
图 3