wo 2012/075336 A1 | I 00N OO OO 0 A R A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

7 June 2012 (07.06.2012)

WIPOIPCT

(10) International Publication Number

WO 2012/075336 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

International Patent Classification:
GO6F 11/00 (2006.01) GO6F 12/16 (2006.01)
GO6F 12/14 (2006.01)

International Application Number:
PCT/US2011/062957

International Filing Date:
1 December 2011 (01.12.2011)

English
English

Filing Language:
Publication Language:

Priority Data:

61/418,580 Us

Applicant (for all designated States except US):
SOURCEFIRE, INC. [US/US]; 9770 Patuxent Woods
Drive, Columbia, Maryland 21046 (US).

1 December 2010 (01.12.2010)

Inventors; and

Inventors/Applicants (for US only): FRIEDRICHS,
Oliver [US/US]; 9770 Patuxent Woods Drive, Columbia,
Maryland 21046 (US). HUGER, Alfred [US/US]; 9770

(74

(8D

(84)

Patuxent Woods Drive, Columbia, Maryland 21046 (US).
O'DONNELL, Adam J. [US/US]; 9770 Patuxent Woods
Drive, Columbia, Maryland 21046 (US).

Agents: DAVIS, Peter ct al.; Whiteford, Taylor & Preston
LLP, Seven Saint Paul Street, Baltimore, Maryland 21202-
1636 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

[Continued on next page]

(54) Title: DETECTING MALICIOUS SOFTWARE THROUGH CONTEXTUAL CONVICTIONS, GENERIC SIGNATURES
AND MACHINE LEARNING TECHNIQUES

CLIENT

(57) Abstract: Novel methods, components, and systems that enhance traditional

techniques for detecting malicious software are presented. More specifically, meth-

Processor

Memory
Generic fingerprint
generation modute

Communications
Network

Fig. 4

ods, components, and systems that use important contextual information from a cli-
ent system (such as recent history of events on that system), machine learning tech-
niques, the automated deployment of generic signatures, and combinations thereof,
to detect malicious software. The disclosed invention provides a significant im-
provement with regard to automation compared to previous approaches.

wO 2012/075336 A1 AT 00N 0RO RO

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2012/075336 PCT/US2011/062957

DETECTING MALICIOUS SOFTWARE THROUGH CONTEXTUAL CONVICTIONS, GENERIC SIGNATURES AND MACHINE
LEARNING TECHNIQUES

Field of the Invention

[0001] The present invention relates to the security of general purpose computing devices
and more specifically to the detection of malicious software (malware) on a general purpose

computing device.
Background of the Invention

[0002] It is known in the art that each day, many tens of thousands of new malicious software
programs are discovered. These programs can compromise the security of general computing
devices. Possible security violations include, but are not limited to, the theft of data from the
system, the usurping of the system for other nefarious purpose (like sending spam email), and, in
general, the remote control of the system (by someone other than its owner) for other malicious

actions.

[0003] One popular technique in the art for detecting malicious software comprises the

following steps:

a. Establishing through some independent means that the application is malicious (e.g.,
by having a human being manually analyze it and pinpoint the presence of one or more

malicious behaviors).

b. Computing a hash or fingerprint of this software. A hash is a mathematical
transformation that takes the underlying binary contents of a software application and
produces a relatively short string, with the idea being that two different applications will,
with overwhelmingly high probability, have distinct fingerprint values. Common
functions for performing this fingerprinting or hashing step include, but are not limited
to, SHA-256, SHA-1, MDS5, and others. Besides hash and fingerprint, another term used
in the art to describe this transformation is a signature. For the purposes of this invention,
the terms hash, fingerprint and signature will be used interchangeably. These terms are
not synonymous with each other, but for the purposes of the invention described, the

differences are immaterial.

c. Publishing this hash so that it is accessible to end-users operating a general purpose

WO 2012/075336 PCT/US2011/062957

computing device (for example, the hash can be posted to a blacklist of known malicious

applications).

d. Having the device compare this published fingerprint with the fingerprint of any new

software applications that have arrived on the system.

e. Applying a set of steps based on a given policy if the fingerprints match (e.g.,
blocking the installation of the application).

[0004] The technique just described suffers from the drawback that it only works when an
application is determined to be malicious ahead of time. Put differently, it is a reactive approach.
It is understood in the art that often times superficial changes to a malicious application will
cause it to have a different fingerprint even though the underlying actions of the application
continue to be malicious. In other words, the application will look ostensibly different from the
outside, but underneath its operations will be identical (analogous to how a criminal can put on
different disguises involving wigs and sunglasses, even though underneath it is the same person).
If the file is modified, then the corresponding fingerprint might change. If the fingerprint
changes, then it will no longer match the one that was initially established for the application, and
consequently the application can potentially evade detection by any anti-malware technology that

uses a reactive signature-based approach.

[0005] The recent explosion in malware instances appears to be a result of malware authors
making frequent, but innocuous, changes to a smaller number of applications rather than creating

entirely new applications.

[0006] To address this issue, one technique in the art involves developing what are known as
generic signatures. These signatures are designed to be invariant to superficial changes in the
underlying binary contents of a software application. If a malicious party only performs a
restricted set of superficial changes to the binary, then the resulting hash value will not change.
For example, one way to construct a generic signature would be to do the following. First,
extract out structural properties of the file (such as the sizes of the different sections, the number
of symbols, the entropy of the various sections). Second, normalize these values or put them in
buckets. For example, if the size is between 0 bytes and 100 bytes, then it would belong in
bucket one. If the size is between 100 and 200 bytes, it would belong in bucket two, and so on.

Now, rather than using the original file to construct a signature, we could use the normalized

WO 2012/075336 PCT/US2011/062957

structural features as the basis of the signature. The idea is that superficial changes to the file
would likely yield little to no changes to the underlying structure of the file, and after

normalization or bucketing, you would see no changes.

[0007] Consequently, a single generic signature can be used not only to detect a given base
threat, but also be used to detect minor variations of that threat. To give a physical analogy that
might help make the concept of a signature more clear, imagine you are trying to describe a
criminal. You could do so by identifying very specific characteristics (such as hair color, eye
color, what they were wearing when last seen, etc.). However, if the criminal wore a wig or had
colored contact lenses on, then characteristics like hair or eye color would not be useful. If
instead, one were to focus on structural attributes, such as the criminal’s height, weight, build,
race, etc., then even in the presence of disguises these attributes would be constant. Furthermore,
if one were to normalize these attributes (e.g., saying he is approximately 6 feet tall rather than
exactly 6 feet and 2 inches, or saying the he is heavyset rather than specifying a very specific
build), you could potentially identify the criminal even if they wore platform shoes and baggy
clothing.

[0008] However, it is known in the art that even generic signatures have shortcomings.

These shortcomings include, but are not limited to the following:

a. Creating generic signatures might require manual intervention. (For example, a
human computer virus analyst may have to directly examine the binary contents of the
software application and determine how a signature should be computed so that it is
invariant to innocuous changes in the applications.) In the context of the human criminal
analogy listed above, one might have to identify exactly which attributes are interesting,

and what range of values they should take.

b. Generic signatures are prone to false positives (i.e., a situation in which they
incorrectly identify an application as malicious, even though it is in fact benign). Since
generic signatures are designed to identify not just a single base software application, but
also other applications that are related to it, there is a risk that a legitimate application
might inadvertently be identified as malicious because its underlying binary contents bear
some similarity to the malicious application off of which the signature was based. In the
context of the human criminal analogy given above, if we were too vague in the

description — then every 6 foot tall heavy-set person might fit the description of the

3

WO 2012/075336 PCT/US2011/062957

criminal.

[0009] There is, accordingly, a need in the art to develop methods, components, and systems
for detecting malicious software in a way that addresses the above limitations. The present
invention addresses these needs by providing a) an improved method for using generic signatures
by using automation to reduce the amount of manual analysis and the risk of false positives in the
system, b) a method of using contextual information, such as the presence of other recent
(malicious) activity on a system, to formulate a more accurate picture regarding whether or not a
particular software application running on the system might be malicious, ¢) a method of using
machine learning technologies to train a corpus to develop a machine learning model for the
evaluation of applications of interest, and d) methods including two or more of methods (a)

through (c).
Summary of the Invention

[00010] According to one aspect of the present invention, a system is provided that uses
contextual information from a client system together with more aggressive detection engines to
determine if a given software application is malicious. The system comprises the following
phases. First, a client encounters a software application for which it would like to know a
disposition — that is whether the application is benign or malicious. The client extracts metadata
about the application, including but not limited to, traditional fingerprints (like a SHA-256),
generic signatures such as those used in the art by many Anti-Malware technologies, machine
learning feature attributes, etc. The client also gathers additional contextual information. For
example, recent infection history, applications running on the system, web sites visited, etc. This
information is encoded, as appropriate, using any technique known in the art. Next, the
information about the application as well as the contextual information is transmitted (if
necessary over a network) to a server component. (This component need not be a remote server;
instead the logic can reside on the client itself. To clarify the description, however, it helps to
imagine a separate component that processes information transmitted by the client.) The server
examines both the contextual information as well as the application information and makes a
determination about the application (for example, that the application is safe to run). The server
provides a response back to the client that encodes a recommendation for what the client should
do. Finally, the client determines what actions to take, according to local policy, as a function of

the server's.

WO 2012/075336 PCT/US2011/062957

[00011] According to another aspect of the present invention, a client component is provided
that continuously gathers contextual information, optionally transmits this information to a
server, and makes a determination with the possible help of a server about whether a given
software application poses a threat. The determination utilizes traditional techniques for
identifying a threat together with the contextual information. The contextual information may
include, but is not limited to, applications recently installed on the system, information about
recent threats found on the system as well as when those threats were found, any recent web sites
the client visited, geographic location as well as Internet Protocol (IP) address of the client, and a
client identifier. The client identifier is a sequence of symbols that can be used to identify a
client for the purposes of being able to link different transactions by the same client from the

perspective of a server.

[00012] According to another aspect of the present invention, a component is provided that can
reside on either a client or a server, and includes logic that uses contextual information passed by
the client to determine whether a given software application is malicious. The server can also use
additional contextual information that can be gathered from a plurality of clients, such as the
frequency and timing with which an application of interest is queried by other clients as well as
the context of that application as described by other clients. Once that determination is made, a

corresponding recommendation is determined, and is transmitted to the client.

[00013] According to another aspect of the present invention, the underlying method
(executed on the client system) gathers contextual information from a client to assist in
determining if a given software application of interest is a threat. Examples of underlying
information include recent security events on the client (such as the detection of other malicious
software or malware) or the presence of particular “risky” software applications on the system

(such as peer-to-peer file sharing applications).

[00014] According to another aspect of the present invention, a method is provided that
examines data about a given software application of interest together with contextual information
associated with that application on a user system, and makes a determination about that
application (such as whether the application is malicious and should be blocked or removed).
The method might use a set of simple rules. For example, if the system has seen 10 threats in the
last hour, and the present application has a 65% chance of being malicious based on another

threat detection system, (e.g., one derived using machine learning techniques, or one using

WO 2012/075336 PCT/US2011/062957

generic signatures), then determine the application is malicious (with the idea being that in the
absence of any other information, having only a 65% chance of being right is typically
insufficient to make a conclusive determination, but that with the addition of contextual
information of 10 recent threats, the likelihood that the application is malicious is much greater).
The method might also employ machine learning techniques to generate either a set of rules or

generate a more generic model that effectively encodes additional rules.

[00015] According to one aspect of the present invention, a system is provided that can
compute generic fingerprints for a given software application as well as determine if applications
possessing that same generic fingerprint should be deemed malicious, in which case, a prescribed

set of actions against that software would be taken.

[00016] According to another aspect of the present invention, a server-side component is
provided that can perform the following steps: first, apply a mathematical transformation to a
software application to produce a generic fingerprint; second, record the fingerprint of said
software application; third, apply one or more steps that can be executed on a general purpose
computing device to determine if that generic signature should be deemed malicious; and fourth,

communicate that information to a client component.

[00017] According to another aspect of the present invention, a client-side component is
provided that can: first, compute a generic fingerprint for a software application it encounters;
second, transmit that generic fingerprint data to a server component (or can replicate those steps
locally if it has knowledge of the server's relevant data and relevant logical operations); third,
follow a prescribed set of actions provided by the server, such actions including, but not limited
to: (1) Ignoring the application if it is deemed safe by other methods beyond the generic
fingerprint; (2) Removing the application from the system if it is deemed unsafe; (3) transmitting

the application to a possibly different server-side component for further processing and analysis.

[00018] According to another aspect of the present invention, a method is provided for
identifying whether a given software application is a candidate for having a generic signature
computed. In one embodiment of the present invention, this method will be performed on the
server by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, etc.),
software (such as is run on a general purpose computer system or a dedicated machine), or a
combination of both. It is to be understood, however, that the choice of where and how the

method is performed is not to be limited by the present description, and it should be apparent to a

6

WO 2012/075336 PCT/US2011/062957

person of ordinary skill in the art that many such choices exist.

[00019] According to another aspect of the present invention, a method is provided for
identifying whether an application possessing a given generic signature should be deemed
malicious (or clean) primarily on the basis of possessing that signature value. In one
embodiment of the present invention, this method will be performed on the server by processing
logic that may comprise hardware (e.g., circuitry, dedicated logic, etc.), software (such as is run
on a general purpose computer system or a dedicated machine), or a combination of both. It is to
be understood, however, that the choice of where and how the method is performed is not to be
limited by the present description, and it should be apparent to a person of ordinary skill in the art

that many such choices exist.

[00020] According to one aspect of the present invention, a system is provided that uses
machine learning techniques to identify a software application as malicious. The system
comprises the following phases. First, there is a training phase in which a corpus of training data
is used to derive a model. The model takes as input a feature vector that can be derived by
applying a mathematical transformation to a software application. Second, there is a feature
extraction phase in which a client system can extract a feature vector from a potentially malicious
software application and either evaluate it directly using the model or transmit it to a back-end
server for evaluation. Third, there is an evaluation phase wherein the model is applied to the
extracted feature vector to determine whether the application of interest is likely malicious or
benign (optionally producing not just a binary classification but possibly a score that represents
the likelihood of this distinction — e.g., a score from 0 to 100 where 0 represents that an
application is with overwhelming likelihood clean and 100 means an application is with
overwhelming likelihood malign). Fourth, based on this determination, an appropriate policy may
be applied. According to another aspect of the present invention, one or more server-side
components are presented that may perform the training phase. In one embodiment, the data
used to derive the model can be taken directly from transaction logs of actual client systems that
communicate with the server side component. The methods by which training can be done
include, but are not limited to, Support Vector Machines, Neural Networks, Decision Trees,
naive Bayes, Logistic Regression, and other techniques from supervised, semi-supervised, and
unsupervised learning. The training or “model-derivation” aspect of the invention may be
practiced with any of the above techniques so long as they can yield a method for classifying

software applications. Once the training is complete and a model is derived, the server side

7

WO 2012/075336 PCT/US2011/062957

component can automatically create a module that uses the model to evaluate the feature vectors

of new software instances.

[00021] According to another aspect of the present invention, a client-side component is
provided that may perform the following steps: first, extract relevant feature vector values from a
software application; second, optionally compare these values to a local model to determine if the
application is malicious or benign or requires further investigation; third, optionally compress the
feature vector so that it can be encoded in with a small number of bytes; fourth, transmit the
(compressed or uncompressed) feature vector to a server; fifth, apply a policy based on the
server's response. The policy based on the server's response might include, but would not be
limited to one or more options. First, if the application is conclusively malicious, the client side
component may remove it from the system or block any installation attempt by the user. Second,
if the application is possibly, but not conclusively malicious, the client side component may
transmit a copy of the application itself to the server for subsequent more extensive processing
and analysis. According to another aspect of the present invention, a server-side component is
provided that may perform the following steps: first, receive a feature vector (that was
transmitted by the client); second, optionally decompress this feature vector if it was compressed
by the client; third, evaluate this feature vector and determine how likely it is to be malicious;
fourth, transmit this information to the client together with optional instructions for how the
client should respond. Note that in one embodiment of the present invention, the actual policy for
how to handle different server responses can be stored on the client itself, and the server can
provide a simple response. According to another aspect of the present invention, a method is
provided for training a model that can be used to determine if a software application is potentially
malicious. The method can potentially leverage actual in-field usage data. According to another
aspect of the present invention, a method is provided for a client to extract a feature vector from a
software application together with related contextual information on the system, (optionally)
compress this information, and then transmit it to a server-side component. According to another
aspect of the present invention, a server-side component is provided that can take a possibly
compressed feature vector, decompress it if is compressed, evaluate the feature vector against a
model, compare the results to those achieved from other methods for identifying malicious

software, and then provide a disposition to a client.

[00022] According to another embodiment of the invention, two or more of the generic

signatures, contextual convictions, or machine learning derived model are applied, at either or

8

WO 2012/075336 PCT/US2011/062957

both of a client application and a server application, to determine whether a software application
is malicious. According to this embodiment, a client application may perform two or more of the
following steps: (i) extract a feature vector from said software application; (ii) extract metadata
about the application and gather contextual information about a system on which the application
may be installed; and (iii) computing a generic fingerprint for the application; then transmit the
information related to data obtained to a server application. Once the server application process
the information it will transmit a determination or related information back to the client
application, and the client application may take an action with respect to the application based on

the information received from the server component.

[00023] According to a related embodiment, the server application may receive from a client
application two or more of the following: (i) a feature vector from said software application; (ii)
metadata about the application and contextual information about a system on which the
application may be installed; and (iii) a generic fingerprint for the application. Depending on
what information is received, the server application will apply a machine-learning derived
classification algorithm to a feature vector, if feature vector information is received from the
client application; examine metadata concerning the software application and contextual
information about the client system, if metadata and contextual information are received from the
client system, and/or determine whether the generic signature should be deemed malicious, if a
generic signature for the software application is received from the client. Once these steps are
completed, the server application may make a determination as to whether the software
application should be deemed malicious with regard to the client application and transmit
information concerning the determination as to whether the software application should be

deemed malicious to the client application.
Description of the Drawings

[00024] The subsequent description of the preferred embodiments of the present invention

refers to the attached drawings, wherein:

a. Figure 1 represents a flowchart of the operation of a client in accordance with a

generic signature embodiment of the present invention.

b. Figure 2 represents a flowchart of a method for determining if a fuzzy fingerprint is

conclusively bad in accordance with an aspect of the present invention.

WO 2012/075336 PCT/US2011/062957

c. Figure 3 represents a flowchart of a method for determining if a fuzzy fingerprint is
possibly bad in accordance with an aspect of the present invention. Note that the steps of
this method are largely identical to those for determining if an application is conclusively
bad. The difference in the reduction to practice would be in the choice of values for the
numeric parameters M and C. (To determine if an application is conclusively bad rather
than just possibly bad, we would expect the value of M to be at least as big and the value of
C to be at least as small.) It is expected that one of ordinary skill in the art can identify

suitable values to use for these parameters.

d. Figure 4 is a client component including a generic fingerprint generation module in

accordance with an embodiment of the present invention

e. Figure 5 is a server component including a module for analyzing log data for
determining if convictions should be made for generic fingerprints in accordance with an

embodiment of the present invention

f. Figure 6 represents a flowchart of the training procedure in accordance with a

machine learning embodiment of the present invention.

g. Figure 7 represents a flowchart of a client-side feature extraction method in

accordance with a machine learning embodiment of the present invention.

h. Figure 8 represents a flowchart of the server-side evaluation method in accordance

with a machine learning embodiment of the present invention.

1. Figure 9 is a representation of a client component including a feature vector extraction

module in accordance with a machine learning embodiment of the invention.

] Figure 10 is representation of a server component including a feature vector
evaluation module and a training module in accordance with a machine learning

embodiment of the present invention.

k. Figure 11 is a flowchart representing steps in a method for collecting contextual
attributes for the purposes of identifying if an application of interest is malicious

according to an embodiment of the invention.

1. Figure 12 is a flowchart representing steps in a method for using contextual attributes to

10

WO 2012/075336 PCT/US2011/062957

identify malicious applications according to an embodiment of the invention.

m. Figure 13 is a representation of a client component including a context gathering

module according to an embodiment of the invention.

n. Figure 14 is a representation of a server component including a contextual conviction

module according to an embodiment of the invention.

o. Figure 15 is a representation of an exemplary computer system according to an

embodiment of the invention.
Detailed Description of the Invention

[00025] In the following description, numerous details are set forth to provide a more
thorough explanation of the present invention. It will be apparent, however, to one skilled in the
art, that the present invention may be practiced without these specific details. In other instances,
well-known structures and devices are shown in block diagram form, rather than in detail, in

order to avoid obscuring the present invention.

[00026] Some portions of the detailed descriptions that follow are presented in terms of
algorithms and symbolic representations of operations on data bits within a computer memory.
These descriptions and representations are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work to others skilled in the art. The steps
are those requiring physical manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to these signals as bits, values, elements,

symbols, characters, terms, numbers, or the like.

[00027] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as apparent from the following discussion, it
is appreciated that throughout the description, discussions utilizing terms such as “processing” or
“computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic computing device, that manipulates and

transforms data represented as physical (electronic) quantities within the computer system's

11

WO 2012/075336 PCT/US2011/062957

registers and memories into other data similarly represented as physical quantities within the
computer system memories or registers or other such information storage, transmission or display

devices.

[00028] The present invention also relates to apparatus for performing the operations herein.
This apparatus may be specially constructed for the required purposes, or it may comprise a
general-purpose computer selectively activated or reconfigured by a computer program stored in
the computer. Such a computer program may be stored in a computer readable storage medium,
such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs,
and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing

clectronic instructions, and each coupled to a computer system bus.

[00029] The descriptions presented herein are not inherently related to any particular computer
or other apparatus. Various general-purpose systems may be used with programs in accordance
with the teachings herein, or it may prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for a variety of these systems will
appear from the description below. In addition, the present invention is not described with
reference to any particular programming language. It will be appreciated that a variety of
programming languages may be used to implement the teachings of the invention as described
herein. A machine-readable medium includes any mechanism for storing or transmitting
information in a form readable by a machine (e.g., a computer). For example, a machine-readable
medium includes read only memory (“ROM”); random access memory (“RAM”); magnetic disk
storage media; optical storage media; flash memory devices; electrical, optical, acoustical or

other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.

[00030] The description that follows will reference terminology that is generally known in the
art. In the art, the term malware refers to a malicious software application. Such an application
can have a number of nefarious purposes. For example, malware can be used to perform a
number of malicious actions. These actions include, but are not limited to: stealing digital
information from a victim's machine; using the victim's machine in the perpetration of other
malicious activities (such as sending out unsolicited email messages or spam); remotely control
the victim's machine; and inhibiting the machine from operating normally. In the art, a computer

virus is generally considered one example of malicious software. In addition to computer viruses,

12

WO 2012/075336 PCT/US2011/062957

other types of malware in the art include Trojans, Worms, Downloaders, and Misleading

Applications.

[00031] It is understood that the maliciousness of an application can be subjective; it often
depends on the user and typically includes a well-defined set of rules. For the purposes of this
disclosure, a malicious application shall be understood to mean an application that is unwelcome

to the user.

[00032] Inthe art, the term false positive references a situation in which an otherwise
legitimate application is accidentally deemed malicious. Similarly, a true positive references a
situation in which a malicious application is correctly identified as such. The false positive rate
represents the likelihood that a legitimate application will be incorrectly called malicious by an
anti-malware technique. The true positive rate represents the likelihood that a malicious
application will be correctly called malicious by an anti-malware technique. It is therefore the
objective of anti-malware software to achieve a high true positive rate while having a low false
positive rate. In general, however, there is an inverse tradeoff between these two quantities. If an
anti-malware technology is very aggressive and detects many threats, there is a greater chance it
will have more false positives. Conversely, if an anti-malware technology is conservative and
identifies fewer threats, it may lead to fewer false positives. In the art, the true positive rate is
also referred to sometimes as the detection rate. It should be borne in mind, however, that the
true positive and false positive rates are generally approximated using a data sample. Anti-
malware vendors try to develop technology that will offer a favorable tradeoff between the false
positives and the true positive rates. If a legitimate critical business application is incorrectly
identified as malicious, then it could cause significant financial damage to the customer.
Therefore, false positives are highly undesirable. In some instances, a false positive is so
undesirable that one is willing to accept a lower true positive rate to ensure a very low false

positive rate.

[00033] In the art, the term signature references a relatively short sequence of values that can
be used to identify if an application is malicious or not. In its most general incarnation, the
signature is computed as a transformation applied to an entire software application. In the art, a
signature is typically computed on a known piece of malware. The signature is either transmitted
onto a client's system or it is stored on a server. When a client encounters a new piece of

software, it will compute a signature on that software, and determine if that signature matches

13

WO 2012/075336 PCT/US2011/062957

one associated with a known piece of malicious software either by checking its local data store or
by querying a server. It is understood in the art that a signature can either be specific or generic.
If two software applications have the same specific signature, then with overwhelming
likelihood, these two applications are entirely identical. One example of a specific signature in

the art is a SHA-256 hash.

[00034] A generic signature differs from a specific signature in that it permits the possibility
that variations on a given application will continue to have the same signature. If an application
is taken, and superficial changes are made to it, then the generic signature on this application
might continue to be the same as the original whereas a specific signature on it will with
extremely high likelihood be different from that computed on the original. One example of a
generic signature in the art is the PEhash. Another example of a generic signature in the art is

ssdeep.

[00035] In the art, the term fingerprint is often associated with a traditional signature and the
term fuzzy fingerprint is often associated with a generic signature. A fuzzy fingerprint is a
transformation whose input is a software application and whose output is a (preferably shorter)
sequence of symbols. Ideally, a fuzzy fingerprint will have two properties. First, if two
applications are very close in nature (e.g., one application can be derived from the other with a
small set of superficial changes), then the respective fuzzy fingerprints of these applications
should be identical. Second, if two applications are considerably different, then the fuzzy
fingerprints of these applications should ideally be different. These properties are ideal
properties, and a fuzzy fingerprint still has value even if both properties fail to hold in a plurality
of instances. A fuzzy fingerprint is an instance of a generic signature, though not all approaches
to computing generic signature would yield a corresponding fuzzy fingerprint. In particular, a
fuzzy fingerprint can be used to identify if an application is malicious by seeing if the fuzzy
fingerprint of this application coincides with a plurality of fuzzy fingerprints associated with
known malicious software applications. Since slightly different applications can have the same
fuzzy fingerprint value, it can serve as a generic signature. One example of a fuzzy fingerprint in

the art is the PEhash. Another example of a fuzzy fingerprint in the art is ssdeep.

[00036] In the art, the term conviction refers to a situation in which a piece of software is

identified as malicious on a client system.

[00037] In the art, the term digital signature refers to a standard technology for computing a

14

WO 2012/075336 PCT/US2011/062957

relatively short string from a file using techniques from the field of public-key cryptography. The
transformation to compute the string from the file requires the use of a so-called private signing
key. A public verification key can be used to determine if a purported signature on a file has been
correctly computed. A secure signature scheme is such that without knowledge of the private
signing key, it is computationally infeasible for one to compute a signature that will be construed
as valid. A digital signature should not be confused with the types of signatures mentioned above
for detecting malicious applications (even though in the art these notions all use the term

“signature”).

[00038] The following description will also reference terminology from the field of machine
learning, and is known to those skilled in the art. In its simplest form, machine learning
techniques can be used to classify objects into one of a plurality of sets. Within the context of
anti-malware solutions, machine learning techniques would be used to identify whether a given
software application is likely to be malicious or benign, and potentially produce a score that
reflects the confidence in that classification. To avoid obscuring the details of the invention, in
the following, the nomenclature associated with machine learning techniques will be described in
reference to their application towards the classification of software applications as being either
malicious or benign. Machine learning approaches first tend to involve what is known in the art
as a “training phase”. In the context of classifying software applications as benign or malicious,
a training “corpus” is first constructed. This corpus typically comprises a set of software
applications. Each application in this set is optionally accompanied with a “label” of its
disposition, for example “benign”, “malign”, or “unknown”. The labels can be determined either
through manual analysis or through some other independent and possibly more expensive means.

It is desirable to have fewer unknown samples, though at the same time is understood in the art

that labeled data may be more expensive to obtain.

[00039] Furthermore, it is desirable for the corpus to be representative of the real world
scenarios in which the machine learning techniques will ultimately be applied. For example, in
the context of classifying software applications, it might be desirable if the applications in the
corpus are reflective of what might be found on a typical end-user computer system and
specifically be reflective of the files on that system that will be classified using machine learning
techniques. In the first phase of the training process, a feature vector is extracted from each
software application. A feature vector is a series of values that represent the salient features of a

software application in the corpus. The expectation is that these values are especially relevant for

15

WO 2012/075336 PCT/US2011/062957

identifying whether the application is more likely to be malicious versus benign.

[00040] For example, one feature value might be a single binary digit (0 or 1) representing
whether the file is digitally signed. This feature might be relevant since in practice illegitimate
applications are infrequently digitally signed. Another relevant feature might be the size of the
file containing the software application. This feature might be relevant since malicious
applications tend to have a smaller size than benign ones. It is important to note that any single
feature might not yield any conclusive evidence over whether an application is malicious or
benign, but examining a plurality of such feature values could provide conclusive evidence. It is
also important to note that in many instances the kind of features to use in a machine learning
system is often determined through specific domain expertise rather than being derived through
entirely automated means. For example, it might require domain expertise to determine that

knowing whether a file is digitally signed is valuable information.

[00041] Once feature vectors are extracted from the training corpus, then these vectors,
together with the labels associated with any of the files themselves, are fed into an algorithm that
implements the “training phase.” The goal of this phase is to automatically derive a “model”. A
model effectively encodes a mathematical function whose input is a feature vector and whose
output is a classification. In the context of using machine learning to detect malware, the output
of the model might be a binary label of either “benign” or “malign”. Certain machine learning
models are also capable of producing a score that reflects the confidence in the label. For
example, the output might be an encoding of the form (“malign”, 0.95) which can be taken to
mean that the model believes that the feature vector has a 95% chance of corresponding to a
malicious software application. A machine learning algorithm should ideally produce a classifier
that is reasonably consistent with the labels provided in the training examples and that has a
reasonable likelihood of generalizing to new instances. Generalization is important since it is
expected that in practice the model will be evaluated on instances whose dispositions are not

already known.

[00042] Specific machine learning algorithms in the art include the Naive Bayes Algorithm,
Artificial Neural Networks, Decision Trees, Support Vector Machines, Logistic Regression,
Nearest Neighbors, etc. The term classifier is also used to describe a model. For example, one
may refer to a Support Vector Machine classifier. Once the classifier/model is established, it can

be used to evaluate new instances of software applications that are presented to the computer or

16

WO 2012/075336 PCT/US2011/062957

computer network in practice.

[00043] In the context of detecting malware, a client system would first extract the feature
vector associated with a software application and then apply the model to that feature vector to
obtain a disposition and optionally a confidence value. Finally, it would apply a policy based on
this information. The actual classification process need not happen locally on the client. Instead,
it could be performed on a remote server, in which case it is expected that the client will transmit
an encoding of the feature vector to the server. The server would, in turn, apply evaluate the
feature vector using the classifier and make a corresponding determination about whether the
application of interest is good or bad. The policy associated with the final classification could be
complex if the classification also includes a confidence value. For example, if a system is highly
critical or holds very sensitive information, then an application might be blocked unless there is a
high likelihood of it being benign. On the other hand, if the system is not as sensitive then, the
converse stance can be taken. Specifically, only applications that have a high likelihood of being

malicious would be blocked.

[00044] The following description will also make use of the concept of a log, which is known
in the art. A log is a record of transactions and actions made on a given system. For example, if a
system were a web server, then a log would comprise a description of the plurality of clients who
connected to the system, the times they connected, and what actions they took. With a log, one
can construct a reasonable synopsis of what happened on a given system. In the context of an
Anti-Virus system, including one that uses a server component for assisting a client that desires a
disposition for a given software application, a log entry could include, but not necessarily be
limited to, the following: a client identifier that can be used to link disparate transactions from
the same client, a timestamp specifying the time a client made a particular request for the
disposition of a particular application, the location of the client (as specified by its Internet
Protocol or IP address), a description of the file whose disposition is being requested (e.g., as
encoded by a file fingerprint such an MD5 or a SHA-256), any Anti-Virus fingerprints associated
with the application (including, but not limited to traditional fingerprints and generic
fingerprints), attributes of the software application in question (including, but not limited to a
machine learning feature vector of the attributes of the application of interest), contextual data
about the application of interest that may aid in determining its disposition, the response of the
server component (including, but not limited to the final assigned disposition of the application, a

sub-disposition that provides additional description about the application such as that the

17

WO 2012/075336 PCT/US2011/062957

application was previous unseen or is common in the field, the recommendation the server makes
to the client about that application, and the dispositions assigned by different sub-technologies
that were used in the process of coming up with a final disposition, and a caching time or time-

to-live for the response that indicates how long the response might be valid for).

[00045] Since queries to a server can be complex and multi-faceted, the log entry can also
include an entry that specifies a query type. For example, in one query to a server, a client might
only include a basic fingerprint. In a subsequent query for the same file the client might include
additional information. These two queries can be recorded separately with different query types
(though when analyzing the logs, it might help to link the fact that the same client made two
queries about the same file). A log would them comprise a plurality of log entries transmitted by
a plurality of clients. In the context of the disclosed invention, the machine learning techniques

that will be deployed can be trained directly off of log data.

[00046] Forthe purposes of the disclosed invention, it will be helpful to distinguish between
two sets of applications running on a client system. The term “applications of interest” are used
to refer software applications that reside on a client system or are about to reside on a client
system, and where the user or an Anti-Malware component on the client system is interested in
the disposition of these applications. Aside from applications of interest, this disclosure
references other types of software applications, for example, a software application that might be
running while the application of interest is running. Such a software application might include,
but not be limited to, a web browser, a Peer-to-Peer file sharing client, a Banking Application, or
a PDF reader. If a Peer-to-Peer file sharing application is running while an application of interest
is running, that might point to a slightly increased likelihood that the application of interest is
malicious, since malicious applications are often transmitted via Peer-to-Peer networks. Along
similar lines, if a banking application is running, then regardless of whether the application of
interest is malicious, it might make sense to block it or otherwise suspend its operations since
even if there is a small risk that the application of interest is malicious, the risk would not be
worth the cost of having financial data compromised or stolen. It should be borne in mind that
these considerations are simply signals associated with the likelihood that the application of
interest is malicious. Taken individually, these signals are likely not enough to warrant taking
action against the application. However, a plurality of such signals together with information
about the application of interest can provide more conclusive evidence as to whether or not the

application has malicious intent. By viewing these signals as attributes in a feature vector,

18

WO 2012/075336 PCT/US2011/062957

machine learning methods can also be applied to these signals.
Generic Signatures Embodiment

[00047] In one embodiment of the present invention, the client and server components would
function as follows. The server would engage in an optional initialization phase wherein it would
compute a fuzzy fingerprint on both known malicious and known clean files. These results
would be stored in a data store such as a traditional database or even in a flat file. The algorithm
for computing the fuzzy fingerprint could be any one known in the art, examples of which
include PEHash and ssdeep. Alternatively, a manual or custom algorithm can also be employed.
The choice of fingerprinting implementation does not impact the reduction to practice of the

invention so long as the choice is consistent (i.e., the client and server use the same algorithm).

[00048] If the server has determined that there is sufficient evidence that the fuzzy fingerprint
is conclusively bad (for example, if there are a large number of known malicious applications
that have this same fingerprint and no known good applications that have this same fingerprint),
then the fuzzy fingerprint can be marked conclusively bad. To assist in this determination, the
server can maintain a data structure comprising fuzzy fingerprints associated with applications
that are either known to be good or strongly believed to be good based on their attributes. Any
software application whose fuzzy fingerprint is found in this data structure would preferably not
be marked as conclusively bad. This disposition can be transmitted directly to a client (and
stored locally on it) or can be stored on the server itself (to be made available should a client

query for it), or some combination thereof.

[00049] If the server has noticed that there is some evidence, but not yet conclusive evidence,
that the fuzzy fingerprint might be bad (for example, there are no known good files with this
same fuzzy fingerprint but there are one or more bad files, including the one just processed, with
this fuzzy fingerprint), it can note that the fingerprint is possibly bad. If the server has noticed
that there is some evidence, but not yet conclusive evidence, that the fuzzy fingerprint might be
good (for example, there some known good files with this same fuzzy fingerprint), it can note
that the fingerprint is possibly good. Similarly, if the server has noticed that there are both good
and bad applications associated with a particular fuzzy fingerprint, then it can classify the

fingerprint as conflicted.
[00050] When a client encounters a new file, it could first optionally use standard techniques

19

WO 2012/075336 PCT/US2011/062957

in the art to determine if the application poses a threat. The steps to do so would optionally
include computing a traditional fingerprint (e.g., a SHA-2, an MDS3, or other technique known in
the art) of the application and optionally gathering other metadata that can be used to determine

(possibly with the help of a remote server) whether a file is malicious.

[00051] The client would also compute a fuzzy fingerprint of the application. It can optionally
look up the fuzzy fingerprint in its local data store to determine if it is known to be malicious,
and if so, take an appropriate action. Otherwise, it can query a remote server and provide it with
the fuzzy fingerprint value, and any other data collected about the application, such as the

traditional fingerprint and other file metadata.

[00052] The server, in turn, can record the information it receives. If the fingerprint has been
deemed conclusively bad (using the information that the server already stored possibly with the
information it just received about the application), then the server can inform the client of this
distinction. The client can then take an appropriate action (in one embodiment of the present
invention, this action could involve outright deleting the application or otherwise blocking a user
from installing it). If the fingerprint has been deemed possibly bad, then the server can inform
the client of this distinction. The client can then take an appropriate action (in one embodiment
of the present invention, this action could involve providing the server with an actual copy of the

software application for further analysis).

[00053] In one embodiment of the present invention, the server can put a number of
safeguards in place to reduce the risk that a given application is called malicious. These
safeguards can include, but are not limited to the following. First, if the application is known to
be good through a more direct means (such as the traditional fingerprint, like a SHA-256,
matching one on a known whitelist of good software applications), then the server can override
the fuzzy fingerprint distinction. Second, the use of the fuzzy fingerprint can be throttled. For
example, the server can limit the number of convictions associated with this fingerprint to a
modest number like 5. Along similar lines, convictions based on fuzzy fingerprints can be
limited to situations where the popularity of the application of interest is below a certain
threshold. In this scenario, a parameter N can be introduced into the system and an application
would only be convicted if fewer than N systems appear to have this application. This restriction
would ensure that if there is a mistake, its damage would at least be contained. It is also known

in the art that malicious files tend to be less popular than benign ones. Therefore if a file is

20

WO 2012/075336 PCT/US2011/062957

popular, one would have to be more careful if convicting it. Third, convictions with a fuzzy
fingerprint could be restricted to certain classes of files that have a slightly higher likelihood of
being malicious. For example, it is known in the art that files with a smaller size have a higher
likelihood of being malicious compared to larger files. This is the case since malicious parties
have a higher chance of success of transmitting a smaller file onto a victim's machine. It is also
known in the art that digitally signed files have a smaller likelihood of being malicious compared
to digitally unsigned files. Similar considerations can apply for other file attributes as well.
Therefore, in one embodiment of the present invention, fuzzy fingerprint based convictions can
be optionally restricted specifically to software applications whose size is below a certain
threshold and that are not digitally signed. Fourth, convictions with a fuzzy fingerprint can be
reserved for specific situations. In one embodiment of the present invention, if a machine has a
propensity for getting infected with a specific threat (for example, it has encountered this type of
threat previously or it is in a geographic region associated with a particular threat), then we can

apply a fuzzy fingerprint to such cases.

[00054] In one embodiment of the present invention, the server can make an independent
determination about whether a particular fuzzy fingerprint corresponds to a malicious or clean
file. In this case, the server can rely on third-party knowledge, such as the presence of a plurality
of software applications from collections of known malware that have a certain fuzzy fingerprint.
Alternatively, the server can look for the presence of a plurality of software applications from
collections of known clean files that have a certain fuzzy fingerprint. Finally, the server can
examine user log data to determine the likelihood that applications are malicious or clean. In
particular, if an application with a particular fuzzy fingerprint is very popular, but not otherwise
known to be malicious, then it is generally very likely that the application is in fact benign. In

this case, it would be risky to call applications with this same fuzzy hash value malicious.
Example 1

[00055] Example 1 is provided to illustrate one aspect of the invention. This example
illustrates one possible work flow according to the invention and is intended to help make the
invention more clear. It is not meant to restrict the invention in any way since there are
numerous variations not described in Example 1that nevertheless fall within the scope of the

overall invention, but which are left out of the Example 1 to avoid obscuring it.

[00056] According to Example 1, a client and a server are provided. A new software

21

WO 2012/075336 PCT/US2011/062957

application arrives on the client. The client computes both a generic and specific fingerprint on
this file and transmits it to the server. The server examines both of these fingerprints. If from
these two pieces of information alone, it knows the application to be either conclusively good or

bad (e.g., the file is on a known blacklist or whitelist), then the server will return this disposition.

[00057] If no conclusive determination can be made from either of these two pieces of
information, then the server will look up every specific fingerprint it has seen in the past
associated with the generic fingerprint sent up in the query. (Note that because multiple distinct
files can have the same generic fingerprint, it is possible that we will have multiple specific
fingerprints that can be associated with the same generic fingerprint.) For simplicity, imagine
that we have the following fingerprints in our queries: (G, S0), (G, S2), (G, S3), ..., (G, S9),
where S1, ..., S9 are distinct specific fingerprints all of which correspond to the same generic
fingerprint G. Now, suppose a threshold of these specific fingerprints are malicious (e.g.,
imagine that SO, ..., S7 all correspond to known malware). Further, suppose that none of these
specific fingerprints seen in the past is associated with a known benign file (i.c., a file on a
whitelist). In other words, S8 and S9 have previously unknown disposition (i.e., they could be
malicious or benign — but no one has made a determination yet). In that case, a pattern emerges.
The vast majority of the specific fingerprints associated with the generic fingerprint G appear to
be malicious. In this case, it seems reasonable to draw the conclusion that the generic fingerprint

itself should be marked as malicious.

[00058] The server, following this line of steps, will mark the generic fingerprint "G" as

malicious and return the corresponding answer to the client.

[00059] Note that while we described the decision making process as happening in real time
(i.e., on the fly), in practice, it can happen separately. In other words, a software module on the
server can periodically go through logs of previous queries, and attempt to pick out generic
fingerprints that appear to be malicious because the overwhelming majority of the specific
fingerprints associated with them appear to be malicious. These generic fingerprints can then, as

such, be marked malicious.

[00060] In this manner, when the server is asked to make a decision, it can simply perform a
look-up rather than trying to perform the computation on the fly. At the same time, this approach

will not leverage any relevant information gathered since the last time the logs were analyzed.

22

WO 2012/075336 PCT/US2011/062957

Machine Learning Embodiment

[00061] In one embodiment of the present invention, the client and server components would
function as follows. During the initialization phase, the server would train a classifier. In one
embodiment, the training data can be taken directly from actual existing user logs where a
fingerprint for a file was submitted earlier and was classified possibly through independent
means. For example, the file might have been known to be benign or malicious because of its

presence on an existing whitelist or blacklist.

[00062] The log data can be optionally stratified or partitioned based on different criteria such
as whether the users have natural groupings and sub-groupings that can include, but not be
limited to, geographic groupings (i.c., the users are from similar locales) and affiliate groupings
(that is, the users might be affiliated with each other — for example, they may all be members of
the same enterprise or may have acquired the system or software of the invention through a
common source — such as a common download server or common distribution channel). If the
training data is stratified or partitioned according to some criteria, then the training data used can
be derived from a plurality of partitions or strata from the logs. A benefit of partitioning the
training data is that machine learning classifiers can be fine-tuned to a specific portion of the
input space and as a result can have improved performance on instances of this portion of the
space. The training phase would have multiple parameters. Once a classifier is developed, it may

be deployed in the field.

[00063] In one embodiment, one could automatically generate actual computer instructions (or
some appropriate encoding of computer instructions that can be subsequently interpreted) that
implements the mathematical function specified by the classifier. In one embodiment, these
instructions can be stored on a remote server. In an alternative embodiment, these instructions

can be transmitted to a plurality of client systems.

[00064] In another embodiment of the present invention, when a client system encounters a
new software application, it would extract a feature vector associated with this application
together with any other data that might independently determine if the application is benign or
malign. The feature vector need not be limited to attributes of the specific application, but could
also include other attributes of the system on which the application is running. The attributes in
the feature vector associated specifically with the binary contents of the application could

include, but not be limited to, the following: properties of the binary contents of the application;

23

WO 2012/075336 PCT/US2011/062957

list of Dynamic Linked Libraries (DLLs) referenced by the application; values of specific
positions within the binary contents; the number of sections, number of symbols, and positions of

the different sections of the binary; size of the binary.

[00065] In some embodiments, the feature vector will include an encoding of which Dynamic
Linked Libraries are referenced by the application. In other embodiments, the feature vector will
include the number of sections, number of symbols, and positions of the different sections of the
binary. In other embodiments, the feature vector will include the size of the binary. Attributes of
the feature vector associated with the application in general could include, but not be limited to:
information about the registry keys used in the application as well as any modifications made to
the registry (typically for threats that execute on Windows); the filename of the application;
behavioral attributes of the application, such as network ports used and Application Programmer
Interface calls made; files modified and created by the application; and services stopped or

started by the application.

[00066] In some embodiments, the feature vector will include the filename of the application
and registry keys used. Attributes of the feature vector associated with general context of the
application could include, but not be limited to: the processes running on the system at the time
the application is encountered; the source of the application (e.g., CD ROM, USB Stick, Web
Site); the infection history of the machine; the geographic location of the machine; and the IP
address of the machine. In some embodiments, the feature vector would include the source of the
application and the processes running on the system at the time the application is encountered. In
other embodiments, the feature vector would include the IP address of the machine. In general,

the feature vector would include information about a plurality of these features.

[00067] It should be borne in mind that in constructing the feature vector, the foregoing
feature values need not be transmitted verbatim, but would be encoded in a way that facilitates
the application of machine learning techniques. For example, rather than listing every Dynamic
Linked Library associated with an application, instead a binary value can be used to denote
whether a specific Dynamic Linked Library was used, such as winsock.dll. In one embodiment,
in addition to the feature vector, the client can compute a traditional fingerprint such as a SHA-
256 or a generic fingerprint such as one obtained through PEHash or SSdeep (both of which are
known in the art), or a combination of both. While the feature vector is primarily relevant in

classifying the file using the machine learning techniques that have been outlined in the

24

WO 2012/075336 PCT/US2011/062957

foregoing, the other data might be of use for future training. For example, a file whose
disposition was unclear at the time it is first encountered might be subsequently found on a
blacklist of known malicious applications. If that list is indexed by SHA-256, then having both
the client compute both the SHA-256 value as well as the feature vector would subsequently
allow the feature vector to be associated with a specific disposition. This feature vector can then

be added to the training corpus for future training phases.

[00068] In one embodiment of the present invention, the client can take the feature vector
value and compress it. While there are general-purpose techniques in the art for compressing
data, for this particular instance, special-purpose techniques that yield desirable performance
parameters, particularly with respect the amount of data communicated between the clients and

the server could also be used.

[00069] Upon optionally compressing this feature vector, in one embodiment of the present
invention, the resulting data would be transmitted to a remote server. The client may alternatively

store the logic associated with the server so that a remote look-up is avoided.

[00070] In one embodiment of the present invention, the server would decompress, if
necessary, the data transmitted by the client, which includes the feature vector provided by it, and
then evaluate the feature vector against the model it has in place. If the client provided other data
such as a traditional fingerprint or a generic fingerprint, then the server can optionally override
the results from the classifier with a disposition arrived through more traditional means. For
example, if the client transmitted the SHA-256 value of the application is it concerned with, and
this value happens to be on a known whitelist of good applications, then the server can respond
that the application in question is good regardless of what the machine learning model says. The
premise behind this approach is that the machine learning model may be more fallible than a
direct whitelist or blacklist (though one should keep in mind that whitelists and blacklists have
limitations as well — e.g., they may only have a modest number of entries, whereas a machine
learning model can be applied to any file, even one that was not previously known). The server
would then provide a response to the client regarding what its ultimate verdict was together, if
necessary, with information on what actions it would like the client to perform. The transaction
record associated with this transaction, comprising a client identifier, a timestamp, the feature
vector values, the other fingerprint values, and the ultimate disposition and information on how

that disposition was derived, information on what type of action the server would like the client

25

WO 2012/075336 PCT/US2011/062957

to perform, among other things, is optionally recorded. This transaction record can be used
subsequently in the training phase of a new classifier since it has three desirable characteristics of
a training corpus. First, it contains a feature vector that can be provided as input into a machine
learning training algorithm. Second, it contains a disposition, which many training algorithms
require. It should be borne in mind, however, that for training purposes it would be desirable to
use dispositions attained through independent means like generic or specific fingerprints rather
than previous machine learning based dispositions, otherwise there is a risk of introducing a
circular feedback loop. Third, the training example generated from this data is coming from an
actual user instance in the field and hence is likely to be a good representation of what a typical

user will encounter in the future.

[00071] In one embodiment of the present invention, the client would receive a verdict from
the server as well as possible actions associated with that verdict, and act in accordance with that
response according to a specified policy. In one embodiment, the possible response could
comprise, but not be limited to, the following: convicting the application (i.e., removing it from
the system or blocking a user from installing it) and optionally transmitting a copy to the server;
or allowing the application to stay on the system; and/or requesting the application to be

transmitted from the client to the server for additional analysis.

[00072] The last option would, for example, be relevant if the server thinks that the application
is potentially malicious, but its confidence is not high enough and has an uncomfortably high risk
of causing a false positive (in this case, by transmitting the file to the server, additional more
extensive analysis can be performed on it — such analysis might be too expensive to perform for
each file encountered, but might be suitable when applied just to the subset of files that are

suspicious).

[00073] In one embodiment of the present invention, the server can put a number of
safeguards in place to reduce the risk that a given benign application is incorrectly called
malicious. These safeguards can include, but are not limited to the following. First, as mentioned
in the foregoing, if the application is known to be good through a more direct means (such as the
traditional fingerprint, like a SHA-256, matching one on a known whitelist of good software
applications), then the server can override the disposition provided from the machine learning
classifier. Second, the use of the machine learning classifier can be throttled. For example, the

server can limit the number of convictions associated with this classifier to a modest number.

26

WO 2012/075336 PCT/US2011/062957

Even further, the number of classifications associated with a given application can be throttled.
For example, for every SHA-256, it can be convicted no more than N times (for a modest choice
of N like 3) using machine learning classifiers. This measure would ensure that if there is a
mistake, its damage would be contained (and since most malicious software tends to have low
frequency because of its fly-by-night danger, this type of throttling can yield a favorable tradeoff
between the detection rate and false positive rate). Third, convictions with a machine learning
classifier could be restricted to certain classes of files that have a slightly higher likelihood of
being malicious. For example, it is known in the art that files with a smaller size have a higher
likelihood of being malicious compared to larger files. This is the case since malicious parties
have a higher chance of success of transmitting a smaller file onto a victim's machine. It is also
known in the art that digitally signed files have a smaller likelihood of being malicious compared
to digitally unsigned files. Similar considerations can apply for other file attributes as well.
Therefore, in one embodiment of the present invention, machine learning classifier based
convictions can be optionally restricted specifically to software applications whose size is below
a certain threshold and that are not digitally signed. Fourth, convictions with a machine learning

classifier can be reserved for specific situations.

[00074] In one embodiment of the present invention, if a machine has a propensity for getting
infected with a specific threat (for example, it has encountered this type of threat previously or it
is in a geographic region associated with a particular threat), then we can apply a machine
learning classifier to such cases. Fifth, classifiers can be made to model specific threat instances.
For example, one popular malicious software threat in the art is known as Conficker. There are
many variations of Conficker, but there is sufficient commonality among these variations to view
them as part of the same overall family. In one embodiment of the present invention, therefore, a
classifier can be trained specifically to target a specific threat. To do so, the clean files and
feature vectors in the corpus can remain the same, but only malicious files and feature vectors
associated with a specific threat can be included. A benefit of this approach is that a classifier
which is fine-tuned to a specific threat might yield a low false positive rate for that threat and
also some end-users might desire to know which particular threat targeted their system. Sixth, the
application of the classifiers can be restricted to files whose popularity is below a specified
threshold. In one embodiment, a parameter N can be introduced into the system and an
application would only be convicted if fewer than N systems appear to have this application.
Seventh, the application of some classifiers can be restricted to situations in which the system in

question has a slightly higher chance of being infected with a threat. Indicators that suggest an
27

WO 2012/075336 PCT/US2011/062957

increase in likelihood of being infected include, but are not limited to, an observation of recent
infections on the system, knowledge that the system was recently targeted for attack, the presence
of vulnerable software applications on the system, the presence of applications on the system that
are common vectors for infections (such as Peer-to-Peer file sharing clients), and the presence of

open network ports on the system.

[00075] Tt should be borne in mind, however, that practices that attempt to reduce the false
positive rate also generally reduce the detection rate since some actual malware might be
inadvertently be called good as a result of this safety net. In the art, it is acknowledged that such
a tradeoff exists and depending on the specific application, it would be determined whether this
tradeoff happens to be desirable. For example, if the risk of a false positive is reduced
dramatically whereas the detection rate is only reduced slightly, then the tradeoff may be
favorable. Alternatively, if the cost of a false positive is very high, which is very possible given
that blocking a legitimate application could translate into monetary business losses, then it may
be desirable to take a more conservative stance that reduces it substantially even if that creates a
corresponding substantial drop in detection rate. On the other hand, if the cost of a missed
detection (or false negative) is very high, such as what might happen for a system that needs to
be highly secured, then a high false positive rate might be tolerable so long as the risk of a threat

infiltrating the system is made very small.
Example 2

[00076] This example illustrates a specific instance of the invention, describing the steps and
actions along the way. This example is provided to help clarify the description, and it should not
be considered limiting in any way. For example, the above invention description covers many
variations and extensions. To avoid obscuring the description, these variations and extensions

are not discussed below.

[00077] To begin, consider a piece of agent software running on a user’s machine. According
to this example, the agent software contains a Microsoft Windows filesystem mini-filter driver
that can detect when a new (executable) file is being written to the file system. Other software
that can detect when a new executable file is being written to the file system can also be used.
Following notification that there has been or is an attempt to write a file to the file system, the
software agent computes two values. First, it computes a “traditional” fingerprint, such as a

SHA-256, on the file. Second, it computes a machine learning feature vector from the file. The

28

WO 2012/075336 PCT/US2011/062957

feature vector will comprise a number of attributes associated with the file on this system,
including, but not limited to: which DLLs are referenced by the application, the values of specific
positions of the binary contents, the number of sections in the file (and any attributes associated
with those sections — such as whether it is readable, writeable, or executable), the number of
symbols, the size of the binary, whether the binary is digitally signed, etc. All of these attributes
are easily computed from the binary contents of the file. In addition, other contextual pieces of
information are included in the feature vector, including, but not limited to, the file system
timestamp, properties of the filename (note that the same file may have different names on
different systems, so this attribute is specific to an instance of the file on a given system),
information about other software applications installed on the system (e.g., whether the system
has any vulnerable software or software that commonly leads to a system infection, etc.), and
recent infection history of the system (e.g., such as whether the user experienced any infections
in the last half an hour). These attributes are encoded appropriately, and compressed as well (for

compact transmission).

[00078] The client then sends the fingerprint and the feature vector to a server. In addition to
these two values, the client may optionally include an identifier (to help link other transactions

from the same client).

[00079] The server, in turn, first looks up the file in any blacklists and whitelists (using, for
example, the traditional fingerprint to perform this look-up). If this look-up results in a
conclusive disposition (e.g., the file is conclusively known to be malicious or benign), then this
disposition is communicated to the client. The server at this stage can optionally look-up
additional information about the file (e.g., how many users it has, etc.), and then store the
fingerprint, the basic feature vector, the additional information, the timestamp of the query, the
user’s identifier, and the disposition per the blacklists/whitelists. The storage format may be a

server transaction log.

[00080] If the server does not find the file in any blacklists or whitelists, then it will perform
the following steps. First, it can optionally augment the feature vector provided by the client
with other attributes that it is able to compute. These attributes can include, but not be limited to,
the frequency with which the file appears in the user base and a server-side time stamp

representing the first time the file was ever seen on the server.

[00081] The server then evaluates this augmented feature vector using a machine learning

29

WO 2012/075336 PCT/US2011/062957

classifier (e.g., a Support Vector Machine, Decision Trees, Neural Networks, etc.). The client is
provided with a disposition (e.g., malicious / benign) and an optional confidence rating, and the

transaction is logged for future analysis.

[00082] Periodically, the server can scour through all previous logs and retrieve all feature
vectors associated with files whose fingerprints are on known whitelists/blacklists. The server
can create a training corpus associated with the feature vectors corresponding to fingerprints
from known whitelists and blacklists (i.e., those items on the whitelists would be the “benign”

subset of the corpus and those items on blacklists would on the “malicious” subset of the corpus.

[00083] A machine learning classifier (e.g., a Support Vector Machine, Decision Trees, Neural
Networks, etc.) can be trained on this corpus. Note that there are several ways to initiate or
“jumpstart” the system. We can begin with a data collection phase (e.g., imagine some type of

silent detection capability).
Contextual Conviction Embodiment

[00084] According to one embodiment of the present invention, the client and server
components would function as follows. When a client encounters a software application that it
would like to classify as either malicious or benign, it would gather both data about the
application that is used for traditional detection of malware together with contextual data about
the system. The data gathered could include, but is not limited to, recent infection history on the
system, the geographic location of the client, the Internet Protocol or IP address of the client, the
virus identifiers and times associated with recent infections, and a client identifier that can be

used to link transactions made by the same client on multiple occasions.

[00085] The infection history can be gathered either by a custom agent or by a third-party
agent that exposes infection events. The client would transmit both traditional data about the
application as well as contextual information. The data can be transported in a raw fashion or
could be encoded in a way that permits efficient transmission over a network. The choice of
encoding mechanism is orthogonal to the main aspects of the present invention and there are
many techniques in the art for encoding data. The server receives data from the client and makes
a determination about whether the application in malicious. If the application is deemed
malicious or benign through traditional means like a signature that appears on a whitelist or

blacklist, then the determination can be made without reference to the additional context passed

30

WO 2012/075336 PCT/US2011/062957

by the client. If the application is suspicious on the basis of the data being sent, but not suspicious
enough to warrant calling it outright malicious, then the contextual information can be
considered. In one embodiment, if an application is suspicious and the machine had one or more
recent infections, then the server can make a determination that the application is malicious.
Once the server provides its recommendation, this information is passed back to the client, which
in-turn, can apply a policy based on that recommendation. In one embodiment, if the server
deems the application as malicious then the client can delete it from the system or otherwise
block its installation onto the system. In a different embodiment, the client can block the
application if the machine is in a more security sensitive state. For example, if the machine is
currently running sensitive software like a banking application, then it is in a more security
sengsitive state (since a compromise could lead to direct financial loss). In this case, the client can
block software that is suspicious (but not confirmed as malicious) from executing until the

banking application has finished executing.

[00086] According to another embodiment of the present invention, a client-side component
gathers information relevant to making a contextual conviction. In one embodiment, the client
side component would simply provide a client identifier to the server. The client can optionally
send one or more of the following pieces of information: a list of recent infections together with
timestamps and virus identifiers associated with those infections; information about web sites the
client visited recently; information about applications running on the system; information about
applications installed on the system; information about which network ports are opened on the
system; the client's geographic location; the clients Internet Protocol or IP address. In one
embodiment, this component could be running constantly in the background collecting
information and transmitting at periodic intervals to the server or transmitting it whenever an
application of interest is encountered. In a varying embodiment, this component could collect
information at the time that it is needed. In yet another embodiment, this component would
combine information collected in the background as well as information collected at the time of

interest.

[00087] According to another embodiment of the present invention, a server-side component
analyzes information about an application in addition to contextual information about the
machine that encountered application, and uses that information to make a determination
regarding whether the application is malicious. In one embodiment, the server might choose to

upgrade an otherwise suspicious application to a malicious application if the context in which it

31

WO 2012/075336 PCT/US2011/062957

came increases the prior probability that the application is malicious. In another embodiment, a
suspicious application might be deemed malicious if a recent infection were seen on the system.
Although the embodiment just described involves making this determination on the server, the
logic itself could be executed on the client or on some combination of the client or the server. In
one embodiment, the server can reference the client's identifier as provided by the client, and use
that identifier to mine the history of the client's transactions with the server. This information can
be used to add context to the decision. For example, if the client had a recent transaction with the
server where an application of interest that it queried about turned out to be malicious, then the
server can treat that as a situation in which the prior probability that an application is malicious
probability has gone up. In another embodiment, the server can use contextual information
gathered from a plurality of clients. In this case, the server can use information that includes, but
is not limited to the frequency with which a particular application is queried and the contexts

from other clients associated with those queries.

[00088] According to another embodiment of the present invention, a method is executed on a
client system for collecting contextual data that pertains to helping identify whether an
application is malicious or benign. The method comprises the following steps, each of which is
optional. First, obtain a client identifier that can be used to associate transactions from the same
system. In one embodiment, this identifier can be a Global Unique Identifier (or GUID). In an
alternate embodiment, this identifier can be constructed by a server at the time the client is
initialized and passed to the client. The client, in-turn, would store this data in some form of non-
volatile storage. Second, record any malicious threats identified either using a custom agent or
using a third-party agent that have been identified on the system together with information about
the time those threats entered the system. In the context of Anti-Malware technology, threats can
be identified by a Virus ID, a generic fingerprint, a SHA-256, or some combination thereof.
Typically, a Virus ID would yield the most generic labeling of the threat and a SHA 256 would
yield the most specific labeling (identifying only that one threat). A generic fingerprint would
provide a level of specificity in between these two ends. Third, record any web sites the user has
visited. Fourth, record any software applications the user installed within a specified time
window. Fifth, record any applications that were running at the time the application of interest
(that is, the application whose disposition we are interested in) was introduced. Sixth, capture
information about the client's Internet Protocol (or IP) address. Seventh, capture information
about the client's netblock. Eight, capture information about the client's geographic location.

Ninth, capture information about the language being used on the client system. Tenth, capture
32

WO 2012/075336 PCT/US2011/062957

information about the network ports open on the system. Eleventh, capture information about
what applications are running on the system. Twelfth, capture information about how the
application of interest arrived on the system. This information includes, but is not limited to, the
software application it might have arrived through, such as a web browser; the location the file
came from, such as from a web site, a CD Rom, or a USB drive. Thirteenth, what rights the
application of interest is looking to obtain, such as whether it would like to run under
administrative privileges. Fourteenth, the web sites that the user is currently browsing when
queried about the application of interest. Fifteenth, the current state of the application, such as
whether the application is executing on the system or whether it is dormant. It should be borne in
mind that not all of these pieces of information are compulsory, and that they may even be
redundant. The list is included to elucidate the different aspects of the invention. For example, if
the client sends just an identifier together with data about the application of interest to the server,
then the server can use knowledge of the client's previous transactions and previous requests for
applications of interest to formulate contextual information. In particular, the server can
determine which applications of interest the client queried for previously, when it queried for
those applications, which of those applications were deemed to be malicious, and if applicable
what threats those applications corresponded to. From this information, the client's infection
history can be constructed. Similarly, the server can obtain information about the client's Internet
Protocol address and, as a result, information about the geographic location of the client, but
using information included as part of the network protocol used by the client to communicate
with the server. Specifically, if the protocol used were the Transmission Control Protocol /

Internet Protocol (TCP/IP), then the Internet Protocol address is automatically included.

[00089] According to another embodiment of the present invention, a method is provided for
using contextual information together with relevant metadata about an application of interest to
make a final determination about whether that application is malicious or benign. The method
comprises the following steps. First, a traditional evaluation of the application of interest is
performed. If the application is deemed conclusively benign or conclusively malicious, then this
information, together with a recommendation can be provided to the client. If the application's
disposition is unknown, the gathered data about the application as well as the contextual
information provided is analyzed. In one embodiment, if the gathered data as well as the
contextual information can be used as a feature vector for a machine learning system, then the
results of the machine learning classifier can be applied. To label the examples in such a corpus,

one might have to appeal to either traditional techniques or to manual analysis of the executables.
33

WO 2012/075336 PCT/US2011/062957

However, this process is suggested as a way to “jumpstart” the operations. The labeling of
examples for the building of a training corpus can be done in any number of ways known to
persons of ordinary skill in the art. Once a sufficient number of feature vectors have been labeled
in conjunction with a file, a machine learning classifier can be trained as described in the
machine learning embodiment described herein. The result would be a “model” that can then be

applied to new (unclassified) instances.

[00090] According to another embodiment, if the gathered data indicates that the application is
suspicious and the machine has a recent history of infections, the application can be deemed
malicious. In another embodiment, if the contextual information suggests that the machine's

security position is compromised, then more aggressive detection capabilitics can be applied.

[00091] These detection capabilities can include, but are not limited to, the following: generic
fingerprints of malicious applications that catch variations of threats, but that may be more prone
to false positives; aggressive machine learning classifiers that can catch threats based on generic
characteristics; and fingerprints of software samples that are likely to be malicious, but which
have not been scrutinized yet. Contextual information that may be indicative of a machine's
security position being compromised can include, but is not limited to, the following: recent
infections on the system; visiting web sites that have been discovered to be compromised (where
a list of such sites as well as techniques for identifying such sites are orthogonal to the disclosed
invention); and installing software applications that are considered risky, such as a peer-to-peer
file sharing client. In addition, some contextual information can be useful in determining if a
machine is potentially at risk of being compromised. Such contextual information can include,
but is not limited to the following: the presence of software applications that have known security
vulnerabilities; and the presence of software applications, such as web browsers, that can be used
as a conduit by attackers wishing to download threats onto the system. In another embodiment, if
the contextual data suggests that a security sensitive application, such as a banking application, is
running on the system, then a recommendation can be made to suspend the application of interest
temporarily if it is deemed even remotely suspicious. The premise is that under such
circumstances, the risk of a false positive is tolerable given the cost of becoming potentially
compromised. In another embodiment, if the contextual information indicates a client is coming
from or operating in a specific geographic region, then detection capabilities associated with
threats from that region can be applied. For example, the Bancos Trojan is a known malware

threat that targets users in Brazil (specifically focusing on stealing information associated with

34

WO 2012/075336 PCT/US2011/062957

Brazilian bank accounts). If the computer system being protected is located in Brazil, a more
aggressive technique for identifying Bancos can be applied. This technique could be, for
example, a machine learning classifier that was trained specifically to identify Bancos. In a
related embodiment, if the contextual information indicates that the user visited specific web
sites, then aggressive techniques that identify threats associated with those web sites can be
applied. As in the foregoing example, if a user visits a banking web site that coincides with the
list of targets of the Bancos Trojan, then detection capabilities can be applied for Bancos. Along
similar lines, if a user visits a site like Facebook, then detection capabilities for a threat like the

Koobface worm can be applied.

Example 3

[00092] This example is intended to illustrate one aspect of the invention to help clarify the
invention by walking through one possible implementation. It should not be viewed as limiting

the scope of the invention in any way.

[00093] Agent software (part of the invention) is running on a client system (e.g., a laptop or
desktop PC). The software monitors for the presence of security-related events. For example,
the agent software might implement a Microsoft Windows mini-filter driver that monitors file
access. Whenever a new file is created on the file system, it will analyze that file to see if it is
malicious using traditional techniques (such as blacklisting). This process can take place by

querying a remote service hosted elsewhere (e.g., a “Cloud-based” service).

[00094] On the back end, whenever such a query is received, several methods can be applied
to determine if the application is malicious. These methods can involve heuristic approaches as
well as blacklisting approaches. If a file is determined to be conclusively malicious (without
needing any more evidence), the result can be returned back to the client (and the transaction can

be logged for future processing).

[00095] If the file is not conclusively malicious, but is still suspicious (e.g., based on heuristics
the file has a 70% chance of being malicious), then additional contextual information is
examined. For example, if the system on which this file resides has recently installed a peer-to-
peer file sharing client and has had three conclusively malicious files in the last day, then the new

file may be labeled as conclusively malicious (instead of just treating it as suspicious).

[00096] The main idea is to leverage the additional context of recent infections on the system

35

WO 2012/075336 PCT/US2011/062957

to help tip the scales. In this case, the rule was fairly simple (3 recent infections and the
installation of a peer-to-peer file sharing application). However, more sophisticated rules could
be applied. Moreover, machine learning techniques can be used to create rules (or models that

effectively encode rules).
[00097] Combined Embodiment

[00098] According to a combined embodiment of the invention, two or more of the above-
described embodiments are performed in conjunction, or separately, at either or both of a client
application and a server application. In other words, two or more of the following a) generic
signatures, b) contextual convictions, and 3) machine learning derived model, are applied to
determine whether a software application is malicious. According to this embodiment, a client
application may perform two or more of the following steps: (i) extract a feature vector from said
software application; (ii) extract metadata about the application and gather contextual
information about a system on which the application may be installed; and (iii) computing a
generic fingerprint for the application; then transmit the information related to data obtained to a
server application. Once the server application process the information it will transmit a
determination or related information back to the client application, and the client application may
take an action with respect to the application based on the information received from the server

component.

[00099] Correspondingly, the server application may receive from a client application two or
more of the following: (i) a feature vector from said software application; (ii) metadata about the
application and contextual information about a system on which the application may be installed;
and (iii) a generic fingerprint for the application. If feature vector information is received from
the client application the server application will apply a machine-learning derived classification
algorithm to a feature vector; if metadata concerning the software application and contextual
information about the client system is received, the server application will examine this data; and
if a generic signature for the software application is received, the server application will
determine whether the generic signature should be deemed malicious. The server application
may make a determination as to whether the software application should be deemed malicious
based on one or more of the foregoing assessments and transmit information concerning the
determination as to whether the software application should be deemed malicious to the client

application.

36

WO 2012/075336 PCT/US2011/062957

[000100] Whereas many alterations and modifications of the present invention will no doubt
become apparent to a person of ordinary skill in the art after having read the foregoing
description, it is to be understood that any particular embodiment shown and described by way of

illustration is in no way intended to be considered limiting.

[000101] Figure 15 is a block diagram of an exemplary computer system that may perform one
or more of the operations described herein. Referring to Figure 15, the computer system may
comprise an exemplary client or server computer system. The computer system comprises a
communication mechanism or bus for communicating information, and a processor coupled with
a bus for processing information. The processor includes a microprocessor, but is not limited to a
microprocessor, such as, for example, Pentium, PowerPC, Alpha, etc. The system further
comprises a random access memory (RAM), or other dynamic storage device (referred to as main
memory) coupled to the bus for storing information and instructions to be executed by the
processor. Main memory also may be used for storing temporary variables or other intermediate

information during execution of instructions by the processor.

[000102] The computer system also comprises a read only memory (ROM) and/or other static
storage device coupled to the bus for storing static information and instructions for the processor,
and a data storage device, such as a magnetic disk or optical disk and its corresponding disk
drive. The data storage device is coupled to the bus for storing information and instructions. The
computer system may further be coupled to a display device, such as a cathode ray tube (CRT) or
liquid crystal display (CD), coupled to the bus for displaying information to a computer user. An
alphanumeric input device, including alphanumeric and other keys, may also be coupled to the
bus for communicating information and command selections to the processor. An additional user
input device is cursor control, such as a mouse, trackball, track pad, stylus, or cursor direction
keys, coupled to the bus for communicating direction information and command selections to the
processor, and for controlling cursor movement on the display. Another device that may be
coupled to the bus is a hard copy device, which may be used for printing instructions, data, or
other information on a medium such as paper, film, or similar types of media. Furthermore, a
sound recording and playback device, such as a speaker and/or microphone may optionally be
coupled to the bus for audio interfacing with the computer system. Another device that may be
coupled to the bus is a wired/wireless communication capability to communication to a phone or

handheld palm device.

37

WO 2012/075336 PCT/US2011/062957

[000103] Note that any or all of the components of the system and associated hardware may be
used in the present invention. However, it can be appreciated that other configurations of the

computer system may include some or all of the devices.

38

WO 2012/075336 PCT/US2011/062957

CLAIMS

1. A computer-implemented method for making a determination concerning whether a

software application is benign or malicious comprising:
extracting metadata about the application;
gathering contextual information concerning the system;
transmitting the metadata and the contextual information to a server component;

examining the metadata and the contextual information and making a determination

concerning the application;
transmitting a response to the client containing information relating to the determination;

making a determination as to whether to take any action concerning the application based

on the information from the server component.

2. Computer readable medium containing computer readable instructions for making a
determination concerning whether a software application is benign or malicious, said instructions

comprising instructions for:
extracting metadata about the application;
gathering contextual information concerning the system;
transmitting the metadata and the contextual information to a server component;

examining the metadata and the contextual information and making a determination

concerning the application;
transmitting a response to the client containing information relating to the determination;

making a determination as to whether to take any action concerning the application based

on the information from the server component.

39

WO 2012/075336 PCT/US2011/062957

3. Computer readable medium containing instructions for making a determination
concerning whether a software application is benign or malicious, said instructions comprising

instructions for:
extracting metadata about the application;
gathering contextual information concerning the system;

transmitting the metadata and the contextual information to a server component;
receiving a response from the servicer component relating to a determination as to

whether the application is benign or malicious;

taking an action with respect to the application based on the information received from

the server component.

4. Computer readable medium containing instructions for making a determination
concerning whether a software application is benign or malicious, said instructions comprising

instructions for:

receiving metadata about the application and contextual information concerning the

system;

examining the metadata and the contextual information and making a determination

concerning the application;
transmitting a response to the client containing information relating to the determination.

5. A computer system configured to determine whether a software application is benign or

malicious, comprising:

client software containing instructions for extracting metadata about the application;
gathering contextual information concerning the system; and transmitting the metadata and the

contextual information to a server component;

server software containing instructions for examining the metadata and the contextual
information and making a determination concerning the application; and transmitting a response

to the client containing information relating to the determination.

40

WO 2012/075336 PCT/US2011/062957

6. A method according to claim 1, wherein said extracted metadata is selected from the

group consisting of traditional fingerprints and generic signatures.

7. A method according to claim 1, wherein said contextual information is selected from the
group consisting of recent infection history, applications running on the system, web sites visited,
the geographic location of the client, the Internet Protocol (IP) address of the client, and a client

identifier.

3. A method according to claim 1, wherein said metadata and contextual information is

encoded before transmitting to said server component.

9. A method according to claim 1, wherein said server component and said client component

reside on the same computing device.

10. A method according to claim 1, wherein said server component and said client component

reside on separate and remote computing devices.

11. A method according to claim 1, wherein said client component continuously gathers

contextual information.

12. Computer readable medium according to any one of claims 2-4, wherein said extracted

metadata is selected from the group consisting of traditional fingerprints and generic signatures.

13. Computer readable medium according to any one of claims 2-4, wherein said contextual
information is selected from the group consisting of recent infection history, applications running
on the system, web sites visited, the geographic location of the client, the Internet Protocol (IP)

address of the client, and a client identifier.

14. Computer readable medium according to any one of claims 2-4, wherein said metadata

and contextual information is encoded before transmitting to said server component.

15. Computer readable medium according to any one of claims 2-4, wherein said server

component and said client component reside on the same computing device.

16. Computer readable medium according to any one of claims 2-4, wherein said server

component and said client component reside on separate and remote computing devices.

41

WO 2012/075336 PCT/US2011/062957

17. Computer readable medium according to any one of claims 2 and 3, wherein said client

component continuously gathers contextual information.

18. A computer system according to claim 5, wherein said extracted metadata is selected

from the group consisting of traditional fingerprints and generic signatures.

19. A computer system according to claim 5, wherein said contextual information is selected
from the group consisting of recent infection history, applications running on the system, web
sites visited, the geographic location of the client, the Internet Protocol (IP) address of the client,

and a client identifier.

19. A computer system according to claim 5, wherein said metadata and contextual

information is encoded before transmitting to said server component.

20. A computer system according to claim 5, wherein said server component and said client

component reside on the same computing device.

21. A computer system according to claim 5, wherein said server component and said client

component reside on separate and remote computing devices.

22. A computer system according to claim 5, wherein said client component continuously

gathers contextual information.

23. A computer implemented method for determining whether a software application is

malicious, comprising:

accessing a body of training data to derive a classification algorithm for determining

whether software applications are likely benign or malicious;
extracting a feature vector from a software application;
applying the feature vector to the classification algorithm;

using the results of the classification algorithm to determine how to treat the software

application of interest.

42

WO 2012/075336 PCT/US2011/062957

24. A computer implemented method for determining whether a software application is

malicious, comprising:

accessing a body of training data to derive a classification algorithm for determining

whether selected software applications are likely benign or malicious;
receiving from a client application a feature vector relating to a software application;
applying the feature vector to the classification algorithm;

transmitting information to the client application information based on the results of the

application of the feature vector to the classification algorithm.

25. A computer implemented method for determining whether a software application is

malicious, comprising:
extracting a feature vector from a software application;
transmitting said feature vector to a server application;

receiving information from said server application relating to results of applying said
feature vector to a classification algorithm concerning whether said software application is

benign or potentially malicious.
26. Computer readable medium containing computer instructions for:

accessing a body of training data to derive a classification algorithm for determining

whether software applications are likely benign or malicious;
extracting a feature vector from a software application;
applying the feature vector to the classification algorithm;

using the results of the classification algorithm to determine how to treat the software

application of interest.

27. Computer readable medium containing computer instructions for:

43

WO 2012/075336 PCT/US2011/062957

accessing a body of training data to derive a classification algorithm for determining

whether selected software applications are likely benign or malicious;
receiving from a client application a feature vector relating to a software application;
applying the feature vector to the classification algorithm;

transmitting information to the client application information based on the results of the

application of the feature vector to the classification algorithm.

28. Computer readable medium containing computer instructions for:
extracting a feature vector from a software application;
transmitting said feature vector to a server application;

receiving information from said server application relating to results of applying said
feature vector to a classification algorithm concerning whether said software application is

benign or potentially malicious.

29. A method according to any one of claims 23-25, wherein the classification algorithm
produces a score that represents confidence in its determination as to whether the software

application is benign or malicious.

30. A method according to any one of claims 23-25, wherein the data used to derive the
classification algorithm is can be taken directly from transaction logs of actual client systems that

communicate with the server side component.

31. A method according to any one of claims 23-25, wherein the classification algorithm is
developed using a machine learning method selected from the group consisting of Support

Vector Machines, Neural Networks, Decision Trees, naive Bayes, Logistic Regression.
32. A method according to any one of claims 23-25, wherein the feature vector is encoded.

33. A method according to any one of claims 23-25, wherein the feature vector is

compressed.

44

WO 2012/075336 PCT/US2011/062957

34. A method according to any one of claims 23-25, wherein, following application of the
feature vector to the classification algorithm, the application is transmitted to a server for further

processing.

35. A method according to any one of claims 23 and 24, wherein the body of training data

includes actual in-field usage data.

36. A method according to any one of claims 23 and 24, wherein the output of the
classification algorithm is compared to results from another method for identifying malicious

software.

37. Computer readable medium according to any one of claims 26-28, wherein the
classification algorithm produces a score that represents confidence in its determination as to

whether the software application is benign or malicious.

38. Computer readable medium according to any one of claims 26-28, wherein the data used
to derive the classification algorithm is can be taken directly from transaction logs of actual client

systems that communicate with the server side component.

38. Computer readable medium according to any one of claims 26-28, wherein the
classification algorithm is developed using a machine learning method selected from the group
consisting of Support Vector Machines, Neural Networks, Decision Trees, naive Bayes, Logistic

Regression.

40. Computer readable medium according to any one of claims 26-28, wherein the feature

vector is encoded.

41. Computer readable medium according to any one of claims 26-28, wherein the feature

vector is compressed.

42. Computer readable medium according to any one of claims 4-6, wherein, following
application of the feature vector to the classification algorithm, the application is transmitted to a

server for further processing.

42. Computer readable medium according to any one of claims 26-28, wherein the body of

training data includes actual in-field usage data.

45

WO 2012/075336 PCT/US2011/062957

44. Computer readable medium according to any one of claims 26-28, wherein the output of
the classification algorithm is compared to results from another method for identifying malicious

software.

45. A computer implemented method for determining whether a software application is likely

malicious comprising:

applying a mathematical transformation to a software application to produce a generic

fingerprint;
recording the fingerprint of said software application;

applying one or more steps that can be executed on a general purpose computing device

to determine if that generic signature should be deemed malicious; and

communicating information concerning whether the generic signature should be deemed

malicious to a client component.

46. A computer implemented method for determining whether a software application is likely

malicious, comprising:
computing at a client component a generic fingerprint for a software application;
transmitting the generic fingerprint data to a server component;

receiving at the client component information from the server component relating to the

generic fingerprint of the software application;

following a prescribed set of actions based on the information received from the server,
said actions selected from the group consisting of ignoring the application if it is deemed safe by
other methods beyond the generic fingerprint; removing the application from the system if it is
deemed unsafe; and transmitting the application to a possibly different server-side component for

further processing and analysis.

47. A computer implemented method for determining whether a software application is

malicious, comprising:
a) performing two or more of the following steps:

46

WO 2012/075336 PCT/US2011/062957

(1) extracting a feature vector from said software application;

(i) extracting metadata about the application and gather contextual information

about a system on which the application may be installed;
(iii) computing a generic fingerprint for the application;

b) transmitting information related to data obtained as a result of step (a) to a server

application;

¢) receiving information from said server application relating to a determination as to
whether the application is benign or malicious based, at least in part, on the information

transmitted in step (b); and

d) taking an action with respect to the application based on the information received from

the server component.

48. A computer implemented method for determining whether a software application is

malicious, comprising:

a) receiving at a server application information from a client application concerning two

or more of the following:
(1) a feature vector from said software application;

(i1) metadata about the application and contextual information about a system on

which the application may be installed;
(iii) a generic fingerprint for the application;

b) applying a machine-learning derived classification algorithm to a feature vector, if

feature vector information is received from the client application;

¢) examining metadata concerning the software application and contextual information
about the client system, if metadata and contextual information are received from the client

system;

d) determining whether the generic signature should be deemed malicious, if a generic
signature for the software application is received from the client;
47

WO 2012/075336 PCT/US2011/062957

¢) making a determination as to whether the software application should be deemed

malicious with regard to the client application; and

f) transmitting information concerning the determination as to whether the software

application should be deemed malicious to the client application.

49. Computer readable medium containing instructions for making a determination
concerning whether a software application is malicious, said instructions comprising instructions

for:
a) performing two or more of the following steps:
(1) extracting a feature vector from said software application;

(i) extracting metadata about the application and gather contextual information

about a system on which the application may be installed;
(iii) computing a generic fingerprint for the application;

b) transmitting information related to data obtained as a result of step (a) to a server

application;

¢) receiving information from said server application relating to a determination as to
whether the application is benign or malicious based, at least in part, on the information

transmitted in step (b); and

d) taking an action with respect to the application based on the information received from

the server component.

50. Computer readable medium containing instructions for making a determination
concerning whether a software application is malicious, said instructions comprising instructions

for:

a) receiving at a server application information from a client application concerning two

or more of the following:

(1) a feature vector from said software application;

48

WO 2012/075336 PCT/US2011/062957

(i1) metadata about the application and contextual information about a system on

which the application may be installed;
(iii) a generic fingerprint for the application;

b) applying a machine-learning derived classification algorithm to a feature vector, if

feature vector information is received from the client application;

¢) examining metadata concerning the software application and contextual information
about the client system, if metadata and contextual information are received from the client

system;

d) determining whether the generic signature should be deemed malicious, if a generic

signature for the software application is received from the client;

¢) making a determination as to whether the software application should be deemed

malicious with regard to the client application; and

f) transmitting information concerning the determination as to whether the software

application should be deemed malicious to the client application.

49

WO 2012/075336 PCT/US2011/062957

(_BE;SIN)

I Check if new application is on system I

!

Compute traditional fingerprint, additional meta data,
and fuzzy fingerprint

is application
believed bad through
traditional means?

Transmit
information
{0 server
and/or store
locally

is information about

what to do with this
fuzzy fingerprint

stored locally?

I Follow Prescribed policy (e.g., remove
application if malicious, provide server

with application if suspicious, etc.)

END
Fig. 1

1115

WO 2012/075336 PCT/US2011/062957

I Receive Application I

!

Determine through traditional means if application is
benign, malicious, etc,

1

Compute fuzzy fingerprint of application and store this
information together with traditional information about
application

if there are M or more malicious applications and C or
fewer clean applications associated with this fuzzy
fingerprint, then mark fingerprint as conclusively bad.

|

END

Fig. 2

2115

WO 2012/075336 PCT/US2011/062957

I Receive Application I

!

Determine through traditional means if application is
benign, malicious, etc,

1

Compute fuzzy fingerprint of application and store this
information together with traditional information about
application

if there are M or more malicious applications and C or
fewer clean applications associated with this fuzzy
fingerprint, then mark fingerprint as possibly bad.

|

END

Fig. 3

3/15

WO 2012/075336

CLIENT

Processor

Memory
Generic fingerprint
generation module

Communications

Network

Fig. 4

4/15

PCT/US2011/062957

WO 2012/075336 PCT/US2011/062957

SERVER

Processor

L]

Memory
Module for analyzing log
data
module for determining if
convictions shouid be
done for generic
fingerprint

Blacklist / Whitelist

Communications
Network

Fig. 5

5115

WO 2012/075336 PCT/US2011/062957

Assembile training corpus comprising a feature vector
and a disposition from user transaction data and other
sources

!

Apply a machine learning classifier such as those
based on Neural Network, Naive Bayes, Decision
Trees, or Support Vector Machines.

!

Take resulting classifier and either
transmit it an encoding of itto a one or
more client systems or keep an
encoding on a server to be accessed
by a client.

END

Fig. 6

6/15

WO 2012/075336 PCT/US2011/062957

I Client encounters software application I

Extract machine learning features from this application
as well as traditional data used for classifying (such as
a specific and/or generic fingerprint)

Optionally compress feature vector and transmit to
server

| if applicable, await response from server I

!

Apply policy based on response. For example, if
application is deemed malicious then delete/block it and
transmit copy to server. if it is deemed clean, ignore it.

if it is suspicious, then transmit copy to server.

Fig. 7

715

WO 2012/075336 PCT/US2011/062957

Server receives new feature vector + metadata from
client

!

| if applicable, server decompresses feature vector I

!

Server applies machine learning classifier to feature
vector. Server also evaluates application using
traditional techniques from meta data.

!

Based on different dispositions and sources, as well
as additional context, server provides final disposition
and recommendation for client

Server optionally logs transaction information

!

Server transmits disposition / recommendation to client

END

Fig. 8

8/15

WO 2012/075336

CLIENT

Processor

Memory

Feature vector
extraction module

&

Communications

Network

Fig. 9

8/15

PCT/US2011/062957

WO 2012/075336

SERVER

Processor

Memory

Feature vector
evaluation module

Training module

&

Communications

Network

Fig. 10

10/15

PCT/US2011/062957

WO 2012/075336 PCT/US2011/062957

Poll system (possibly in the background) to identify

relevant contextual information

identify application of interest (either by identifying
newly installed applications or because of prompting to
analyze a particular application)

}

Collect attributes about application of
interest as well as additional contextual
attributes

END

Fig. 11

11115

WO 2012/075336 PCT/US2011/062957

I Examine meta-data about application of interest I

!

If application of interest can be determined as
malicious or benign with sufficient confidence, return
appropriate disposition

!

Otherwise, examine contextual attributes

If application is otherwise suspicious and contextual
attributes increase prior probability that application is
malicious sufficiently, then mark application as
malicious

END

Fig. 12

12115

WO 2012/075336

CLIENT

Processor

Memory

Context gathering
module

Communications

Network

Fig. 13

1315

PCT/US2011/062957

WO 2012/075336

SERVER

Processor

Memory

Contextual conviction
module

Communications

Network

Fig. 14

14115

PCT/US2011/062957

WO 2012/075336 PCT/US2011/062957
MAIN STATIC MASS
MEMORY MEMORY STORAGE PROCESSOR
MEMORY
BUS
F Y
v \d \d v v
EXTERNAL DISPLAY KEYBOARD CURSOR HARD
NETWORK CONTROL COPY
INTERFACE DEVICE DEVICE
Fig. 15

15115

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/62957

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 11/00, GO6F 12/14, GO6F 12/16 (2012

USPC - 726/24

.01)

According to International Patent Classification (IPC) or to both national classification and I1PC

B. FIELDS SEARCHED

IPC (8) - GO6F 11/00, GO6F 12/14, GO6F 12/16 (2012.01)
USPC - 726/24

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 726/22, 23, 25; 713/187, 188; 707/781, 952, 999.005, E17.01; 711/E12.001, E12.091 (See Keywords Below)

Pub WEST (USPT, PGPB, JPAB, EPAB), Google Scholar

Search terms: Detect, recognize, identify, scan, filter, malicious, virus,
metadata, context, system, client, network, history, transmit, transmit,

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

spyware, harmful, threat, extract, retrieve, capture, collect, gather,
send, deliver, convey, transport, server, Central sprocessor, ...

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2009/0300761 A1 (PARK et al.), 03 December 2009 (03.12.2008), entire document, 1-19A, 19B-50
especially Abstract; para [0011]-[0012], [0023}-[0026], [0038}, [0050}-{0053], [0064]-[0066]

Y US 2009/0248696 A1 (ROWLES et al.), 01 October 2009 (01.10.2009), entire document, 1-19A, 19B-22, 47-50
especially Abstract; para [0008], [0069]-{0071]

Y US 2006/0037080 A1 (MALOOF), 16 February 2006 (16.02.2006), entire document, especially | 23-46, 48, 50
Abstract; para [0037]-[0040], [0046)-{0050], [007 3]-[0076]

A US 2009/0049549 A1 (PARK et al.), 19 February 2009 (19.02.2009), entire document, 1-19A, 198-50

A US 2006/0126522 A1 (OH), 15 June 2006 (15.06.2006), entire document, 1-19A, 19B-50

D Further documents are listed in the continuation of Box C.

L]

*

g

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as spectfied)

“0” document referring to an oral disclosure, use, exhibition or other
means

“p” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the intemnational filing date or priority
date and not in conflict with the apghqatnon but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the intemational search

27 March 2012 (27.03.2012)

Date of mailing of the international search report

04 APR:2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. s571-273-3201

.Authorized officer;
') Lee W. Young

PCT Helpdask: 571-272-4300"
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - wo-search-report

