实用新型名称
三维亥姆霍兹线圈交直流磁场发生装置

摘要
本实用新型公开了一种三维亥姆霍兹线圈交直流磁场发生装置，包括产生磁场的线圈和控制装置，控制装置包括电脑以及控制器，线圈由两两互相垂直的三对亥姆霍兹线圈组成，所述的三对亥姆霍兹线圈的轴向方向分别对应三维坐标轴中的X轴、Y轴和Z轴，三对亥姆霍兹线圈的中心点为坐标原点。该磁场发生装置结构简单、成本低，能根据用户的需求，在设定的大小和任意三维方向上产生交直流磁场，给较多磁传感器的设计、测试以及应用等场合带来了便利。
1. 一种三维亥姆霍兹线圈交直流磁场发生装置，包括产生磁场的线圈和控制装置，所述的控制装置包括电脑以及连接电脑和线圈的用于控制和驱动线圈的控制器，其特征在于，所述的线圈为由两两互相垂直的三对亥姆霍兹线圈组成的三维亥姆霍兹线圈，所述的三对亥姆霍兹线圈的轴向方向分别对应三维坐标轴中的 X 轴、Y 轴和 Z 轴，三对亥姆霍兹线圈的中心点为坐标原点。

2. 根据权利要求 1 所述的三维亥姆霍兹线圈交直流磁场发生装置，其特征在于，所述的控制器包括依次连接的用于运算和处理电脑串口发送的磁场信息的芯片机、用于产生三路电压信号的数模转换芯片以及用于放大三路电压信号的输出电流的运算放大器；所述的运算放大器输出的放大的三路电压信号的输出电流分别与三对亥姆霍兹线圈连接；

所述的数模转换芯片以及运算放大器采用射极跟随器的方式进行连接。

3. 根据权利要求 2 所述的三维亥姆霍兹线圈交直流磁场发生装置，其特征在于，所述的芯片机为 PIC18F6722 型单片机。

4. 根据权利要求 2 所述的三维亥姆霍兹线圈交直流磁场发生装置，其特征在于，所述的数模转换芯片为 AD5724 型数模转换芯片。

5. 根据权利要求 2 所述的三维亥姆霍兹线圈交直流磁场发生装置，其特征在于，所述的运算放大器为 OPA548 型运算放大器。
三维亥姆霍兹线圈交直流磁场发生装置

技术领域
[0001] 本实用新型涉及亥姆霍兹线圈磁场发生装置，具体涉及一种能在设定的大小和任意三维方向产生交直流磁场的三维亥姆霍兹线圈交直流磁场发生装置。

背景技术
[0002] 亥姆霍兹线圈是由一对半径为 R、同轴放置且间距等于半径 R 的圆线圈构成的，由于它结构简单又能在均匀性较好的磁场，同时在不通电的情况下不会产生环境磁场，它可以作为一个稳定的磁场发生器来被人们使用和测试，因而成为磁测量等物理实验的重要组成部件。

[0003] 目前，传统的亥姆霍兹线圈磁场发生装置通常由一维或者二维亥姆霍兹线圈以及控制器组成，只能产生一维或者二维方向上的磁场，而且一般为直流磁场。但是在涉及磁传感器的设计、测试以及应用等较多场合，不仅仅需要直流磁场，而且还需要三维空间方向的交流磁场来对传感器的响应性能做出判断，便于后期的设计、优化以及处理，这在涉及磁传感器的较多领域具有非常重要的意义。因而，有必要开发一种能产生三维空间方向的磁场的磁场发生装置。

发明内容
[0004] 本实用新型提供了一种能在设定的大小和任意三维方向产生交直流磁场的三维亥姆霍兹线圈交直流磁场发生装置。

[0005] 一种三维亥姆霍兹线圈交直流磁场发生装置，包括产生磁场的线圈和控制装置，所述的控制装置包括电脑以及连接电脑和线圈的用于控制和驱动线圈的控制器，所述的线圈由两两相互垂直的三对亥姆霍兹线圈所组成的三维亥姆霍兹线圈，所述的三对亥姆霍兹线圈的轴向方向分别对应三维坐标轴的 X 轴、Y 轴和 Z 轴，三对亥姆霍兹线圈的中心点为坐标原点。

[0006] 所述的控制装置包括依次连接的用于运算和处理电脑串口发送的磁场信号的单片机，用于产生三路电压信号的数模转换芯片以及用于放大三路电压信号的输出电流的运算放大器；所述的运算放大器输出的放大后的三路电压信号的输出电流分别与三对亥姆霍兹线圈连接。

[0007] 所述的数模转换芯片以及运算放大器采用射极跟随器的方式进行连接。

[0008] 所述的单片机为 PIC18F6722 型单片机。

[0009] 所述的数模转换芯片为 AD5724 型数模转换芯片。

[0010] 所述的运算放大器为 OPA548 型运算放大器。

[0011] 所述的电脑用于通过程序如编写的 Labview 程序来采集用户输入的磁场大小和磁场方向信息，磁场方向信息采用了垂直投影输入的方法即磁场方向信息由磁场在 X-Y 平面中的投影与 x 轴的夹角 α 以及磁场方向与 X-Y 平面的夹角 β 确定，用户只要输入磁场大小 B，磁场在 X-Y 平面中的投影与 x 轴的夹角 α 以及磁场方向与 X-Y 平面的夹角 β 就可
以确定三维磁场，然后再通过计算便可以得到 X 轴、Y 轴、Z 轴各自的磁场强度 Bx、By、Bz 并以二进制的形式发送给控制器中的单片机进行处理。

本实用新型产生三维方向磁场的原理如下；

根据毕奥 - 萨伐尔定律，一对亥姆霍兹线圈的磁场发生公式为：

$$ B = \frac{4}{5} \pi u_0 N \times I \times R $$

其中 u_0 为真空磁导率，N 为环绕线圈的匝数，I 为线圈中的电流值，R 为线圈的半径；当线圈半径以及匝数不变的情况下，改变电流值I 即可以改变磁场B 的大小；当输入电流值I 为直流时产生的磁场为直流磁场，当输入电流值I 为交流时产生的磁场即为交流磁场，同理通过调整空间内互相垂直的三对亥姆霍兹线圈的输入电流 1x、1y、1z，便可以改变三对亥姆霍兹线圈的磁场 Bx、By、Bz，从而根据向量叠加的方法 $B = B_x + B_y + B_z$，便可以得到一个三维方向上的交直流磁场。

本实用新型的有益效果是：

1. 本实用新型三维亥姆霍兹线圈交直流磁场发生装置能根据用户的需要，在设定的大小和任意三维方向上产生交直流磁场，给较多传感器的设计、测试以及应用等场合带来了便利。

2. 本实用新型的三维线圈设计结构简单，组装简便，成本较为低廉。

3. 本实用新型设计的控制装置操作简洁，控制界面的磁场方向设置采用了三维垂直投影的角度输入法，非常直观形象，并且大大减小了人工因素的干预。

附图说明

图 1 为本实用新型三维亥姆霍兹线圈交直流磁场发生装置的结构示意图；

图 2 为本实用新型三维亥姆霍兹线圈交直流磁场发生装置的控制器的结构示意图；

图 3 为本实用新型三维亥姆霍兹线圈交直流磁场发生装置的线圈的结构示意图；

图 4 为本实用新型三维亥姆霍兹线圈交直流磁场发生装置中输入的磁场方向的坐标示意图。

具体实施方式

如图 1、图 2 和图 3 所示，本实用新型三维亥姆霍兹线圈交直流磁场发生装置包括产生磁场的三维线圈 3 和控制装置，控制装置包括电脑 1 以及连接电脑 1 和三维线圈 3 的用于控制和驱动三维线圈 3 的控制器 2。

控制器 2 包括依次连接的 PIC18F6722 型单片机 21、AD5724 型数模转换芯片 22 以及 OPA548 型运算放大器 23。单片机 21 负责运算和处理电脑 1 串口发送过来的二进制磁场信息，然后以 SPI 通讯方式控制数模转换芯片 22 产生三路电压信号，最后通过运算放大器 23 放大这三路电压信号的输出电流后分别给三对三维线圈提供驱动电源，从而达到产生用户所设定交直流磁场的目的。电源 24 负责给组成控制器 2 的所有器件供电。

三维线圈 3 分别由三对铝合金圆作为框架然后绕线的丙两互相垂直的三对亥姆霍兹线圈组成，三对亥姆霍兹线圈的轴向方向分别对应三维坐标轴中的 X 轴、Y 轴和 Z 轴，三对亥姆霍兹线圈的中心点为坐标原点，绕线时按照右手螺旋定理以便确定每组线圈的正
负极接线。本实用新型采取了垂直投影定位法对三对亥母霍兹线圈定位，先准备了支撑板 31，然后经过测量计算后在支撑板 31 上绘制出每个线圈的垂直投影位置，以此来确定各线圈间的位置关系，最后使用金属粘合剂对三对线圈进行固定和安装，其中线圈 32 和线圈 33 组成一对 Z 轴亥母霍兹线圈，线圈 34 和线圈 35 组成一对 Y 轴亥母霍兹线圈，线圈 36 和线圈 37 组成一对 X 轴亥母霍兹线圈。

[0027] 运算放大器 23 输出的放大的三路电压信号的输出电流分别与三对亥母霍兹线圈连接。

[0028] 数模转换芯片 22 以及运算放大器 23 采用射极跟随器的方式进行连接。

[0029] 本实用新型的工作流程为：

[0030] 如图 4，三维磁场的矢量方向由磁场在 X-Y 平面中的投影与 X 轴的夹角 α 以及磁场方向与 X-Y 平面的夹角 β 确定。电脑①通过编写的 Labview 程序采集用户输入的磁场大小和磁场方向信息，用户只要输入磁场大小 B、X-Y 轴面中的 α 角以及 Y-Z 轴面中的 β 角就可以确定三维磁场，然后再通过计算便可以得到 X 轴、Y 轴、Z 轴各自的磁场强度 Bx、By、Bz 并以二进制的形式发送给控制器 2 中的单片机 21 进行处理。

[0031] 其中，

\[
B_x = B \cos \alpha \cos \beta \quad (2)
\]

[0032] \[
B_y = B \cos \beta \sin \alpha \quad (3)
\]

[0033] \[
B_z = B \sin \beta \quad (4)
\]

[0034] 一对亥母霍兹线圈的磁场发生公式为：

[0035] \[
B = (4/5)^{3/2} \times u_0 \times N \times I \times R \quad (1)
\]

[0036] 其中 u_0 为真空磁导率，N 为环绕线圈的匝数，I 为线圈中的电流值，R 为线圈的半径，当线圈半径以及匝数不变的情况下，改变电流值 I 即可以改变磁场 B 的大小，当输入电流值 I 为直流时产生的磁场为直流磁场，当输入电流值 I 为交流时产生的磁场即为交流磁场，同理通过调整空间内互相垂直的三对亥母霍兹线圈的输入电流 Ix、Iy、Iz，便可以改变三对亥母霍兹线圈的磁场 Bx、By、Bz，从而根据向量叠加的方法 \[B = B_x + B_y + B_z\]，便可以得到一个三维方向上的交直流磁场。

[0037] 用户设定的磁场信息由电脑①按照公式 (2)、(3)、(4) 计算处理以后以二进制格式通过 RS232 串口 25 发送给单片机 21，单片机 21 按照公式 (1) 对这些数据进行分析以及处理以后，通过 SPI 通讯方式控制数模转换芯片 22 输出三路一定频率以及大小的电压信号，这些信号最后再经过运算放大器 23 进行电流放大以后连接到输出端口 26，输出端口 26 再分三路分别与 X 轴、Y 轴、Z 轴的三对亥母霍兹线圈连接。三维线圈 3 最终得到的磁场由这三对亥母霍兹线圈分别产生的磁场叠加而成。若输入三维线圈 3 的是直流电压，则产生直流磁场，若输入三维线圈 3 的是交流电压，则产生交流磁场。