The flush volume at the outlet 30 of the valve 60563 having the plunger 60 is dependent on the movement of the plunger along the first axis 20 and the second axis 70. Actuation along the first axis results in a different flush volume than actuation along the second axis.
DUAL FLUSH ACTIVATION

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims priority from United States Provisional Patent Applications 60/776,993 filed February 27, 2006 and 60/849,042 filed October 3, 2006, herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] The present invention relates generally to the field of flush valves in general. More particularly, the present invention relates to dual flush volume flush valves.

[0003] Flush valves are used to selectively control the flushing of a urinal or toilet with a certain volume of water. Typically, flush valves include a flexible diaphragm with forms a seal between the inlet and outlet, whereby a disruption of the diaphragm will result in a flow of water into the urinal or toilet. This disruption controls the volume of the flush, and is generally fixed.

[0004] Commercial toilets and urinals have traditionally utilized a single flush volume in their operations. This flush volume is designed to provide the maximum amount of water needed that may be needed to clear solid waste products. However, solid waste and liquid waste require different volumes of water. In a single flush system, the higher volume of water necessary to flush solid waste is also used to flush liquid waste, with the result that more water than is necessary is often used. There is a need for a dual flush volume toilet which allows for the use of a lower volume of water when a full volume is not needed to clear waste.

[0005] Some prior art flush valves provide for a dual flush. However, such prior art dual flush mechanisms typically rely on modifying the action of the flush handle. This presents a user with a non-standard flushing experience and lessens the likelihood of proper usage.

[0006] Due to the ubiquitous nature of urinals and toilets, their operation has become an afterthought for most users. Therefore, there is a need for a dual flush toilet which allows for easy of operation and provides operation and design similar to current commercially used systems.
SUMMARY OF THE INVENTION

[0007] One embodiment of the invention relates to systems and apparatus for providing more than one flush volume. A user is able to select between a greater and a lesser flush volume, either via manual actuation or automatic actuation.

[0008] In one embodiment, the flush device relates to a handle comprising a housing mountable to a valve body having a diaphragm valve disposed therein with a stem extended downwardly therefrom. The handle pivotally is mounted to the housing and engagable with the stem via a plunger. The plunger has an outer end for engaging the handle, an inner end for engaging the stem, and a shank therebetween, the plunger being axially slidable through a passage in a bushing. The bushing is positioned between the handle and the valve. The passage comprises a first axis and a second axis, the axes in substantially the same vertical plane and intersecting at a point. The point of intersection is a pivot point of the plunger. Actuation of the handle in a first direction moves the plunger axially along the first axis and actuation of the handle in a second direction moves the plunger axially along the second axis.

[0009] In one embodiment, the pivot point is proximate the valve body. In another embodiment the pivot point is opposite the valve body. In one embodiment, the first axis is horizontal and the second axis is tilted either up or down therefrom. In another embodiment, the passage comprises a third axis which is tilted in relation to the first axis opposite the tilt of the second axis.

[0100] These and other objects, advantages, and features of the invention, together with the organization and manner of operation thereof, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, wherein like elements have like numerals throughout the several drawings described below.

BRIEF DESCRIPTION OF THE FIGURES

[0011] Figure 1 illustrates a longitudinal cross-section of a valve body;
[0012] Figure 2 illustrates a longitudinal cross-section of the handle assembly;
[0013] Figures 3A-3F illustrate various handle and plunger arrangement embodiments;
Figures 3A-3C illustrate embodiments having a pivot point proximate the handle and Figure 3D-F having a pivot point proximate the valve body;
[0014] Figures 4A-C illustrate the operation of one embodiment of the invention;
Figure 5a illustrates a view along axis A-A of Figure 1, illustrating the relative circumferences of the plunger head, the bore at the pivot point, and the opposite end thereof the bore; Figure 5b illustrates a perspective partial cut-away view of the plunger and plunger sleeve along axis A-A.

Figures 6A-C illustrate the operation of one embodiment of the invention having a manual handle with a bead and a conical plunger head.

Figures 7A-C illustrate the operation of one embodiment of the invention having an automatic handle and a conical plunger head.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to a flush valve system having at least two flush volumes. As illustrated in Figure 1, the flush valve system 10 of the present invention includes a body 11 having an inlet 12 and an outlet 14. When installed the inlet 12 is connected to a water supply [not shown] and the outlet 14 is connected to a fixture [not shown] such as a toilet or urinal. A valve member is indicated generally at 16. The valve member 16 may be any of the various assemblies shown in the art that utilize a plunger and sleeve mechanism. In the illustrated embodiment, the valve member 16 is a valve assembly but it could be otherwise, such as a piston assembly. In one embodiment, the valve member 16 includes a diagram 18 peripherally held to the body 11 by an inner cover 20. The diaphragm 18 is seated upon a shoulder 22 at the upper end of body 11 by an inner cover 20. The diaphragm edge 52 of the diaphragm 18 is clamped in this position by the inner cover 20. An outer cover 21 is attached to the body 11 to hold the inner cover 20 in position.

The valve member 16, in addition to diaphragm 18 and the relief valve 30, includes a retaining disk 43, a refill ring 42 and a flow control ring 44. The underside of the retaining disk 43 is attached, such as threaded, to a collar 46, which in turn is attached, such as threadedly, at its exterior to a collar flow sleeve 48 which carries the refill ring 42. The above described assembly of elements firmly holds the diaphragm 18 between the upper face of the refill ring 42 and a lower facing surface of the collar 46. Above the valve member 16 is a pressure chamber 50 which maintains the valve member 16 in a closed position when the flush valve system 10 is in a resting state, i.e. not being flushed.

The valve member 16, is closed upon a valve seat 26 formed at the upper end of a barrel 28. The barrel 28 forms the fluid conduit connecting the valve seat 26 with outlet 14. The valve member 16 includes a relief valve 30 having a downwardly extending stem 32, in
one embodiment telescopically carrying a movable sleeve 34. The handle assembly 37 of the present invention is described in further detail below and illustrated in Figure 2. In general, the handle assembly 37 includes a handle 38 that actuates the plunger 36, manually or automatically. Sleeve 34 is positioned for contact by a plunger 36 when operated by a handle 38.

[0021] As is known in the art, when the handle 38 is operated, the plunger 36 will contact sleeve 34, tilting the relief valve 30 off its seat on the retaining disk 43. This will permit the discharge of water within the pressure chamber 50 down through the chamber flow sleeve 48. Inlet pressure will then cause the diaphragm 18 to move upwardly off its seat 26, permitting direct communication between the inlet 12 and the outlet 14 through the space between the bottom of the valve member 16 and the seat 26. The raising of the diaphragm 18 also lifts the relief valve sleeve 34, allowing it to clear the plunger 36 and return to a vertical, non-tilted position even if the user has held the handle 38 in an actuated position. Once the sleeve 34 clears the plunger 36 the relief valve reseats on the retaining disk 43. As soon as this operation has taken place, the pressure chamber 50 will begin to fill through the filter and bypass orifice 54 in the valve assembly. As flow continues into the pressure chamber 50, the valve assembly will move back down toward its valve seat 26 and when it has reached that position, the flush valve will be closed.

[0022] It will be appreciated that as a result of the interaction of the sleeve 34, stem 32, and diaphragm 18, the position on the sleeve's vertical axis at which the plunger 36 contacts the sleeve 34 as well as the distance the plunger 36 travels after initially contacting the sleeve 34 (generally referred to as "the throw" of the plunger 36) control the volume of water that will flow past the diaphragm 18. Dropping the plunger tip 35 to a lower position will permit the sleeve 34 of the relief valve 30 to clear the plunger tip 35 sooner than is the case when the plunger travels on the horizontal axis and the tip is at position 108. As a result of the earlier plunger clearance, the relief valve 30 closes sooner. This allows reestablishment of the pressure in chamber 50 sooner, resulting in earlier closure of the diaphragm 18 and lesser volume per flush cycle. So when the user pushes the handle 38 upwardly, the plunger 36 will be angled downwardly and there will be a minimum or reduced flush. When the user pushes the handle 38 in any direction but up, the plunger 36 will move on the horizontal axis and a greater or maximum flush volume will result. Similarly, the opposite motion of the plunger tip 35 results in the opposite effect, i.e. the sleeve 34 is not able to clear the plunger tip 35 until later and thus the relief valve 30 remains open longer.
The handle assembly 37 fits through an opening in the valve body 11 and is retained therein. In one embodiment, the handle assembly 37 is retained on the valve body 11 by a nut 45. The handle assembly 37 includes the handle 38 having an inner end 39 proximate valve body and an outer end 40 opposite the valve body 11. The handle 38 includes a face plate 58 at its inner end 39. The face plate 58 is held within a chamber 61 formed by a handle socket 60. In one embodiment, the handle 38 is partially disposed within the handle socket 60. The socket 60 includes an inner end 63 proximate the valve body 11 and an outer end 64 distal the valve body 11. An inwardly extending flange 62 on the socket's outer end 64 retains the handle face plate 58. A covering 65 may line the socket chamber 61 and flange 62. In one embodiment, the inner end 63 of the socket 60 is threaded into the bushing 66 in one embodiment. The skirt 71 is threaded to the socket 60 in one embodiment. The handle assembly 37 may include a handle 38 for manual activation or engagable with an automatic actuation mechanism (Figure 7).

The bushing 66 has a plunger sleeve 68 defining a bore or passage 78 in the handle assembly 37 and an outer skirt 71 joined by a wall 72. The passage 78 having an inner end 77 proximate the valve body 11 and an outer end 79 proximate the handle 38. Further details of the passage 78 will be described below. The inner end 69 of the plunger sleeve 68 has, in one embodiment, a beveled nose 74 that mounts a handle packing or seal 76. The plunger 36 includes a shank 80 and an inner end 81 proximate the valve body 11 and an outer end 82 opposite the valve body 11. In one embodiment, a head 83 is positioned on the outer end 82 of the plunger shank 80. The head 83 interacts with the face plate 58 of the handle 38. In an exemplary embodiment, the handle assembly 37 includes a biasing mechanism 84. The biasing mechanism 84 provides force to retain the handle 38 in a neutral (i.e. horizontal) position despite the force of gravity. In one embodiment, a compression spring or other suitable biasing device 84 fits between the bushing 66 and the head 82 to urge the plunger 36 into engagement with the face plate 58 of the handle 38.

In one embodiment, it can be seen that the diameter of the passage 78 (as defined by sleeve 65) is at its smallest, just slightly larger than that of the plunger 36. Thus, the plunger 38 can slide and tilt freely in the circular opening 92 but it cannot move up, down or sideways appreciably. This contrasts with the oval opening 94 which permits appreciable up and down movement of the plunger at that point. The result of the combination of the passage 78 and the openings 92, 94 is the plunger 38 can tilt up and down as well as slide axially.
The present invention provides a mechanism to engage the sleeve 34 with the plunger 36 at two or more positions along the vertical axis of the sleeve 34. Figures 3A-F depict several embodiments which provide two or more flush volumes. Figures 3A-3C illustrate embodiments having a pivot point 130 proximate the handle 38. In one embodiment, the handle 38 engages the plunger 36 generally as described above. A movement of the handle 38 pivoting the plunger 36 about pivot 130 such that the inner end of the plunger pivots, resulting in a changed flush volume.

The embodiments illustrated in Figures 3D-F have a pivot point 130 proximate the valve body. The positioning of the pivot point at the opposite end of the plunger 36 from the handle 38 results in an increased need for a plunger 36/handle 38 interface able to create a moment to pivot the plunger 36. Motion of the handle 38 pivots the plunger 36 about the pivot 130, resulting in a changed flush volume.

The interface of the handle 38 and the plunger 36 maybe any of the various designs that achieve the movement of the plunger 36 about the pivot point 130 as dictated by statics. As such, the embodiments utilizing at the inner end, i.e. proximate the valve body 11 rather than the handle 38, generally require a plunger head 83 and or a handle face plate 58 which has a particular shape designed to create a moment. In one embodiment, the plunger 36 of Figures 3A and B include head 83 having a flattened conical shape (best illustrated in Figure 6). A downward movement of the handle 38 pivots the plunger upward in this embodiment. The plunger head 83 may comprise any shape to enable the creation of a moment to pivot the plunger about the axis. For example, an alternative embodiment utilizes an inverted flattened conical shape and imparts the opposite relationship between handle 38 movement and plunger 36 pivot, i.e. a downward movement of the handle 38 pivots the plunger 36 downward as well. Thus, the handle 38/plunger 36 interface maybe selected to provide a specific use profile.

As can be seen in Figures 3A-F, the plunger 36 may be provided with a plurality of axes. For example, instead of having the widened opening of the passage at the outside end of the sleeve, it could be at the inner end. Or, instead of having the lowermost edge of the passage be horizontal and the uppermost edge be angled as shown, this arrangement could be reversed. A further alternative is to provide a sleeve passage with a horizontal axis and an angled axis wherein the inner end of the plunger is angled above horizontal. In that case the horizontal travel, caused by an upward actuation of the handle 38, would provide the lower flush volume. Similarly, the upwardly angled travel, caused by a downward actuation of the
handle 38, would provide the higher volume flush. Some shortening of the relief valve sleeve might be needed in conjunction with this setup. Yet another possible alternate construction of the bushing passage 78 is to make the inside diameter of the bushing passage 78 appreciably larger than the outside diameter of the plunger. This would cause the plunger to tilt somewhat no matter which direction the handle 38 is actuated, but only tilting in the vertical plane would affect the volume of the flush.

[0030] In one embodiment, shown in Figures 3A and 3D, the plunger includes an axis A-A which is substantially horizontal, similar to traditional plunger 36 arrangements. The plunger 36 of Figures 3A and 3D is also provided with an axis B-B which is tilted upward from the axis A-A but remains in the same vertical planes such that axes A-A and B-B are non-parallel and intersect at the pivot point 130. When the plunger travels along axis B-B, it strikes the sleeve 34 at a higher point on the sleeve's vertical axis resulting in a higher flush volume than if the plunger 36 travels along axis A-A. Thus, for the embodiment of Figure 3A, a downward motion of the handle 38 results in a maximum flush volume and other motions result in a lesser flush volume. For the embodiment of Figure 3D, an upward motion of the handle 38 results in a reduced flush volume and a downward or lateral motion results in a maximum flush volume.

[0031] In another embodiment, shown in Figures 3B and 3E, the plunger includes an axis A-A which is substantially horizontal, similar to traditional plunger 36 arrangements. The plunger 36 of Figures 3B and 3E is also provided with an axis C-C which is tilted downward from the axis A-A but remains in the same vertical planes such that axes A-A and C-C are non-parallel and intersect at the pivot point 130. When the plunger travels along axis C-C, it strikes the sleeve 34 at a lower point on the sleeve's vertical axis resulting in a lower flush volume than if the plunger 36 travels along axis A-A. Thus, for the embodiment of Figure 3B, an upward motion of the handle 38 results in a reduced flush volume and a downward or lateral motion results in a maximum flush volume. For the embodiment of Figure 3E, an upward motion of the handle 38 results in a reduced flush volume.

[0032] In one embodiment, shown in Figures 3C and 3F, the plunger includes an axis A-A which is substantially horizontal, similar to traditional plunger 36 arrangements. The plunger 36 of Figures 3C and 3F is also provided with an axis B-B which is tilted upward from the axis A-A and an axis C-C which is tilted downward from axis A-A. All of these axes remain in the same vertical planes such that axes A-A, B-B, and C-C are non-parallel and intersect at the pivot point 130. When the plunger travels along axis B-B, it strikes the sleeve 34 at a
higher point on the sleeve's vertical axis resulting in a higher flush volume than if the plunger 36 travels along axis A-A or axis C-C. When the plunger travels along axis C-C, it strikes the sleeve 34 at a lower point on the sleeve's vertical axis resulting in a lower flush volume than if the plunger 36 travels along axis A-A or axis B-B. If the plunger travels along axis A-A, the flush volume is between the volume triggered by a path along B-B and that trigged by a path along C-C. Thus, for the embodiment of Figure 3C, a downward motion of the handle 38 results in a maximum flush volume and an upward motion results in reduced flush volume.

[0033] The embodiments shown in Figures 3A, 3B, 3D, and 3E exhibit an orientation of the handle 38 to the plunger 36 and to the valve body 11. For embodiments where the plunger 36 has a horizontal axis A-A and either a upward tilted axis B-B or a downward tilted axis C-C, the handle 38 and plunger 36 must be orientated correctly with each other and with the bushing 66 and valve body 11 to achieve the appropriate tilting of the plunger 36 within the passage 78. That is, because of the need to create a moment in order to tilt the plunger 36, the plunger 36 and or handle 38 include a specific profile. Since this tilt of the axis (i.e. the plunger 36 only occurs upward (Figures 3A and 3D) or downward (Figures 3B and 3E), only one direction of operation of the handle 38 need achieve a moment.

[0034] However, in some embodiments of the handle assembly 37, the orientation of the handle 38 to the plunger 36 and to the valve body 11 is irrelevant to the flush volume, i.e. assembly is orientation neutral. Embodiments with no orientation provide for simpler assembly and maintenance. As opposed to Figures 3A-B and 3D-E, the embodiments of Figures 3C and 3F provide for both upward and downward tilting and thus require a handle 38 / plunger 36 interface that is capable of creating a moment regardless of whether the handle 38 is moved up or down. Such an orientation-free design is particularly useful where it is desired to have an ambidextrous flush valve assembly so that the handle 38 may be either left-handed or right-handed, particularly where the handle 38 is automatically actuated (See Figures 7A-C).

[0035] Turning now to Figs. 4A - C, details of the bushing passage 78 of one embodiment (that illustrated generally in Figure 3F) are shown. The passage 78 can be considered to be defined by a plurality of bores, such as first and second bores 88 and 90 extending through the plunger sleeve 68. Each bore corresponds with an axis as described above. For example, first bore 88 corresponds with axis A-A and second bore 90 corresponds with axis B-B (a third bore 91 would correspond with axis C-C). The bores 88, 90 are preferably substantially
centered on the same vertical plane. The first bore 88 is horizontal and defines a horizontal plunger travel axis A. The second bore 90 is not horizontal. The second bore 90 is tilted from the end adjacent the handle 38 to the end adjacent the valve member 16 at the outer end 70 of the plunger sleeve 68 and defines an angled plunger travel axis B. The second bore can be considered a tilted portion of the bushing passage 78. The bores preferably each have a diameter slightly greater than that of the plunger shank 80. The bores overlap and merge together at the inner end 69 of the plunger sleeve 68 so that they define a substantially circular opening 92 at the inner end 69. At the outer end 94, the bores’ divergent axes result in an oval-shaped opening. Figure 5A illustrates a view along axis A-A illustrating the relative shape and positions of the two openings. Figure 5b illustrates a perspective partial cut-away view of the plunger 36 and plunger sleeve 68 along axis A-A. In one embodiment (Figures 3B and 3E), at the outer end 70 of the plunger sleeve, the second bore 90 is above the first bore 88. In another embodiment, the outer end of the second bore 90 is below the first bore 88. As seen in Fig. 5, the opening 94 at the outer end 70 of the plunger sleeve 68 includes an upper arcuate portion 96, a lower portion 98, and a pair of extension portions 100 and 102 joining the upper and lower arcuate portions. The result is a somewhat oval, although not strictly elliptical, shaped opening 94. As seen on Fig. 5, the opening 92 at the inner end 69 of the plunger sleeve 68 includes an upper arcuate portion 104, a lower arcuate portion 106. In one embodiment the height of the extension portions at the opening has shrunk to essentially zero so the arcuate portions 104 and 106 join one another.

[0036] The operation of one embodiment of the handle assembly 37 will now be described. In one embodiment, shown in Figures 3D and 3F, downward motion of the handle 38 results in a reduced flush volume and an upward motion results in a standard or larger flush volume. The downward movement of the handle 38 causes the face plate 58 to pivot about the upper portion of the plate (which remains in contact with the socket flange 62) with the lower portion of plate 58 moving to the right. This places a force $F_{\text{han} \text{die}}$ on the plunger 36, the plunger 36 remains centered on the horizontal plunger travel axis A-A. The handle 38 in an actuated position where it has been moved up by a user. Upward movement of the handle 38 causes the face plate 58 to pivot about the lower portion of plate with the upper portion of plate 58 moving to the right. This places a force $F_{\text{han} \text{up}}$ on the upper portion of the plunger head 58. With noted forces $F_{\text{bush} \text{ed}}$ on the plunger 36, the plunger 36 tilts upward at the left end and downward at the right end, taking the plunger 36 into the second bore 90 where it is aligned with the angled plunger travel axis B. This lowers the inner tip of the plunger 36.
As will be evident from the above description, the second bore 90 provides a tilt portion of the bushing passage 78. This produces a non-symmetrical configuration of the passage, as compared to having only a simple, single horizontal bore at 88. In order to provide the vertical plunger tip drop D with the attendant lower flush volume, the bushing 66 must be installed on the valve body such that the first and second bores 88, 90 are oriented in a generally vertical plane with the second bore 90 on top. However, since the bores are in the interior of the bushing 66 an installer can see neither the bores nor the indicia 86 once the bushing 66 goes into the valve body. The present invention solves this problem by providing an externally-visible mark or indicator 85 showing the location of the second bore. The wall 72 may have indicia 85 thereon which indicates which side of the busing 66 has an angled axis as described above. The indicia 85 may be in the form of a depression 86 in the wall. The indicia 85 will assist the installer in orienting the bushing 66 properly. Other indicia 85 may be used without varying from the scope and purpose of the invention. In the illustrated embodiment the mark 85 is simply a line which may be suitably printed on a label that is attached to the exterior portion 112 of the socket 60. The label may optionally carry additional graphics 116 to instruct the user regarding the availability of the reduced flush alternative. Instead of a label, the mark 114 could be engraved or otherwise formed directly on the socket. The mark 114 can be used in conjunction with the indicia 86 on the bushing 66. That is, at the time of installation of the handle assembly 37 on to the valve body 11, the installer can look to ensure that the mark 114 is rotationally aligned with the indicia 86 and then make sure that the mark 114 is at the top of the handle assembly 37 when the nut 45 is tightened. This will result in the bushing passage 78 having the proper orientation relative to the valve body 11 and relief valve sleeve 34. Further assurance of proper alignment may be added by placing a flat 118 on the external flange of the bushing 66. Aligning the mark 114 with the flat 116 during assembly of the handle 38 and then placing the mark at the top of the handle 38 during installation of the handle assembly 37 will result in the correct orientation.

In one exemplary embodiment actuation of the handle 38 downward results in a reduced flush volume and actuation of the handle 38 upward results in a standard flush volume. It will be appreciated that this orientation may be reversed based on the desired manner of operation of the water closet. In one embodiment shown in Figure 6, the plunger head comprises a tapered conical head and the handle face plate 58 includes a bead 61. The bead provides a discrete contact point to engage the conical head. The placement of a bead
around a circumference of the faceplate results in the handle 38 having no discrete orientation in relation to the plunger 36, thus providing for easier and more error free assembly.

[0039] In this embodiment, actuation of the handle 38 in any direction other than upward or downward results in a reduced flush volume that depends on the exact position of the handle 38 during actuation. The plunger 36 is provided with a tapered head 56 having a substantially conical shape where the diameter is much greater than the height. At least one protrusion 60, such as a bead 61, engages the conical surface of the tapered head 56 when the handle 38 is actuated. In operation, actuation of the handle 38 results in the plunger 36 tilting in the opposite direction of the motion of the handle 38. For example, where the handle 38 is actuated upwards, the bead 61 engage the top portion of the conical surface, exerting force sufficient to both move the plunger 36 laterally to engage the stem and also to pivot the plunger 36 in relation to the resting plane so that the plunger 36 strikes the stem at a position above the resting plane. The higher striking point of the plunger 36 on the stem results in the valve seat being displaced longer, thus providing a longer flush, i.e. more volume. Likewise, the opposite motion of the handle 38 results in the opposite impact on the flush volume.

[0040] The foregoing description of embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the present invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the present invention. For example, while the present invention has primarily been described in regard to on embodiment of a valve member, it will be appreciated that various other embodiments of valve members may be utilized without departing from the spirit and scope of the invention. The embodiments were chosen and described in order to explain the principles of the present invention and its practical application to enable one skilled in the art to utilize the present invention in various embodiments, and with various modifications, as are suited to the particular use contemplated.
WHAT IS CLAIMED IS:

1. A flush valve assembly comprising;
 a housing mountable to a valve body having diaphragm valve disposed therein with a stem extended downwardly therefrom;
 a handle pivotally mounted to the housing and engagable with the stem via a plunger;
 the plunger having an outer end for engaging the handle, an inner end for engaging the stem, and a shank therebetween, the plunger being axially slidable through a passage in a bushing, the bushing positioned between the handle and the valve;
 the passage comprising a first axis and a second axis, the axes in substantially the same vertical plane and intersecting at a point, the point of intersection being a pivot point of the plunger;
 wherein actuation of the handle in a first direction moves the plunger axially along the first axis and actuation of the handle in a second direction moves the plunger axially along the second axis.

2. The flush valve assembly of claim 1, wherein the passage has a circular cross-section at the pivot point.

3. The flush valve assembly of claim 1, wherein the passage exhibits an oval cross-section at an end opposite the pivot point.

4. The flush valve assembly of claim 1, wherein an inner end of the plunger comprises a plunger tip.

5. The flush valve assembly of claim 1, wherein the pivot point is positioned at substantially the inner end of the passage.
6. The flush valve assembly of claim 1, wherein the pivot point is positioned at substantially the outer end of the passage.

7. The flush valve of claim 1, wherein the first axis is substantially horizontal.

8. The flush valve of claim 7, further comprising a third axis, wherein the second axis and third axis are tilted in opposite directions from the first horizontal axis.

9. A handle assembly for using with a flush valve, the handle assembly comprising; a handle assembly housing comprising a handle, a plunger and a bushing all at least partially disposed therein; the handle pivotally mounted within the housing and engagable with the plunger; the plunger having an outer end for engaging the handle, an inner end for engaging the sleeve, and a shank positioned therebetween and the plunger being axially slidable through a passage in the bushing, the bushing positioned opposite the handle within the housing; the passage comprising a first axis and a second axis in substantially the same vertical plane and which intersect, the point of intersection positioned substantially at the inner end of the passage being a pivot point of the plunger; wherein actuation of the handle in a first direction moves the plunger axially along the first axis and actuation of the handle in a second direction moves the plunger axially along the second axis.

10. The handle assembly of claim 9, wherein the passage has a circular cross-section at the pivot point.

11. The handle assembly of claim 9, wherein the passage exhibits an oval cross-section at an end opposite the pivot point.

12. The handle of claim 9, wherein the first axis is substantially horizontal.
13. The handle of claim 12, further comprising a third axis, wherein the second axis and third axis are tilted in opposite directions from the first horizontal axis.

14. The handle assembly of claim 9, wherein an outer end of the push rod comprise a head having a diameter substantially larger than the diameter of the push rod.

15. The handle assembly of claim 9, wherein the head comprises a flattened conical shape, the apex of the cone being nearest the handle.

16. The handle assembly of claim 9, wherein the head comprises an inverted flattened conical shape, the apex of the inverted cone being farthest from the handle.

17. A handle assembly comprising;
 a handle assembly housing comprising a handle, a plunger and a bushing all at least partially disposed therein;
 the plunger having an outer end for engaging the handle, an inner end for engaging the sleeve, and a shank positioned therebetween, the plunger being axially slidable through a passage in the bushing, the bushing positioned opposite the handle within the housing;
 the passage comprising a first axis and a second axis in substantially the same vertical plane and which intersect, the point of intersection being substantial at the outer end of the passage and being a pivot point of the plunger;
 wherein actuation of the handle in a first direction moves the plunger axially along the first axis and actuation of the handle in a second direction moves the plunger axially along the second axis.

18. The handle of claim 17, wherein the first axis is substantially horizontal.
19. The flush valve of claim 18, further comprising a third axis, wherein the second axis and third axis are tilted in opposite directions from the first horizontal axis.

20. A handle assembly comprising:
 a housing mountable to a valve body, the valve body having a diaphragm valve disposed therein with a sleeve extended therefrom;
 a handle pivotally mounted to the housing and engagable with the valve via a plunger,
 the plunger having an outer end for engaging the handle, an inner end for engaging the sleeve, and a shank positioned therebetween, the plunger being axially slidable through a bore in a bushing, the bushing positioned opposite the handle within the housing;
 the bore comprising a horizontal axis, first tilted axis and a second tilted axis all in substantially the same vertical plane and which intersect, the point of intersection being a pivot point of the plunger;
 wherein actuation of the handle in a first direction moves the plunger axially along the first tilted axis and actuation of the handle in a second direction moves the plunger axially along the second tilted axis and the plunger is positioned along the horizontal axis when not being actuated.

21. The handle assembly of claim 20, wherein the passage has a circular cross-section at the pivot point.

22. The flush valve assembly of claim 20, wherein the passage exhibits an oval cross-section at an end opposite the pivot point.
Figure 3

Figure 3A

Figure 3B

Figure 3C

Figure 3D

Figure 3E

Figure 3F