PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 92/21081
Al
GO6F 1/08, 1/26, 1/32, 5/00, 12/16 (43) International Publication Date: 26 November 1992 (26.11.92)
(21) International Application Number: PCT/US92/04169 (US). MART, Gregory, Allen ; 1430 Trebor Road, Saint
Joseph, MI 49085 (US). VANDERHEYDEN, Randy, J.
(22) International Filing Date: 15 May 1992 (15.05.92) ; 2502 Bristol Terrace, Saint Joseph, MI 49085 (Us).
GRABON, Robert, J. ; 3905 Maple Lane, Berrien
(30) Priority data: Springs, MI 49103 (US). PANDYA, Chandrakant, H. ;
705,039 17 May 1991 (17.05.91) Us 2890 Cleveland Avenue, #228, Saint Joseph, MI 49085
703,026 17 May 1991 (17.05.91) uUs (US). TERRY-GRAY, Neysa, K. ; 9100 Holden Road,
752,342 30 August 1991 (30.08.91) Us Baroda, MI 49101 (US).
865,048 3 April 1992 (03.04.92) US
866,787 3 April 1992 (03.04.92) US| (74) Agents: SMITH, T. Murray et al.; Flynn, Thiel, Boutell &
Tanis, 2026 Rambling Road, Kalamazoo, MI 49008
(71) Applicant: ZENITH DATA SYSTEMS CORPORATION (Us).
[US/US]; 2150 East Lake Cook Road, Buffalo Grove, IL :
60089 (US). (81) Designated States: AT (European patent), BE (European
patent), CA, CH (European patent), DE (European pa-
(72) Inventors: FOSTER, Mark, J. ; 3800 Peach Street, Stevens- tent), DK (European patent), ES (European patent), FR
ville, MI 49127 (US). FAKHRUDDIN, Saifudden, T. ; (European patent), GB (European patent), GR (Euro-
2708 Lake Shore Drive, #402, Saint Joseph, MI 49085 pean patent), IT (European patent), JP, LU (European
(US). WALKER, James, L. ; 2800 North M-63, Apt. Z, patent), MC (European patent), NL (European patent),
Benton Harbor, MI 49022 (US). MENDELOW, Mat- SE (European patent).
thew, B. ; 435 Shamrock Circle, Saint Joseph, MI 49085 .
(US). SUN, Jiming ; 4192 Browning Drive, Saint Joseph, | Published
MI 49058 (US). BRAHMAN, Rodman, S. ; 2945 Wind- With international search report. :
PDrlvle%Sgalwm Jtoi?[ph,] I\{I 4908B5 (US)H K%AU,MI\;HZI;S% Before the expiration of the time limit for amending the
.3 est Maple Lane, Benton Harbor, clai 10 be shed in the event of the receint of
(US). WILLOUGHBY, Brian, D. ; 1903 Orchard Drive, omensiand L0 be republished in the event of the receipt o
Stevensville, MI 49127 (US). MADDIX, Michael, D. : : '
1434 Catherine Circle, Saint Joseph, MI 49085 (US).
BELT, Steven, L. ; 2160 Pawnee Path, Stevensville, MI
49127 (US). HOVEY, Scott, A. ; 3890 Washington Ave-
nue, Saint Joseph, MI 49085 (US). RU THENBECK,
Mark, A. ; 5611 Dennis, Stevensville, MI 49127

(54) Title: SUSPEND/RESUME CAPABILITY FOR A PROTECTED MODE MICROPROCESSOR AND HARD DISK,
AND IDLE MODE IMPLEMENTATION - '

-+ MDMRI
- BATTLOW
- EXTPMI
s ADDRESS AND [V0TRAP | e
L
£
361 MASK TRAP
MASK] TRAP <
MAN o FDO TRAP Y
— = o (]
BREAK | [TGGAT
EVEN LOCAL ’
46 TOGAL—] STANDBY _[Tioek KBCLK
%7 | GENERATION| —
PARITY ~51 CPUSUREQ
s o B o -
Q1,6 ol GLOBAL CLocK
9,12, 14 EVENT GLOBAL
SEL 5 “~a82
MASK]
MASK| SUBPEND
wy» oo
341
342 SUSPEND -
313 366 ENABLE
: AUTO
MANUAL SRBIN SUSPEND PMI HDOSLY
SWITCH
— s61 SOFTWARE PMI——
g { ESUME STATUS
© ALARM, REBET Py

(57) Abstract

A portable computer system includes a protected mode microprocessor (311) capable of operating in restricted
and unrestricted modes, and an arrangement which in response to a predetermined condition saves information from the
processor and then forcibly switches the processor to its unrestricted mode of operation. When running a multi-tasking
operating system where an application program is being executed in a restricted mode, certain types of processing can be
carried out after the unrestricted mode is entered due to the predetermined condition, then the interrupted application
can be resumed with the restricted mode back in effect. An idle mode feature can automatically decrease and increase the
speed of the processor clock (387) when user activity stops and later starts again, to conserve power.

applications under the PCT.

AT
Al
BB
BE
BF
BG
BJ

BR
CA
CF
CcG

i
M
Cs
DE
DK
ES

FOR THE PURPOSES OF INFORMATION ONLY

Codes used 10 identify States party to the PCT on the front pages of pamphlets publishing international

Ausiria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria
Benin

Bravril

Canada
Cuentral African Republic
Congo
Switeetland
Cote d’lvoire
Cameroon
Crechoslovikit
Germany
Denmark
Spain

Kl

FR
GA
GB

GR
Hy
iE

JP
KP

KR
LI
LK
LU
MC
MG

Finland

France

Gabon

United Kingdom
Guinea

Greeee

Hungary

becland

Ttaly

Japan

Democratic People’s Republic
of Korea
Republic of Korea
Licchtenstein

Sri Lanka
Lusemboury
Monaco
Madagascar

ML
MN
MR
Mw
NL.
NO
PL
RO
RU
SD

SN
Su
™D
TG
us

Mali

Mangolia
Mauritania

Malawi
Netherlands
Norway

Poland

Romania

Russian Federation
Sudan

Sweden

Senegal

Soviet Union

Chad

Togo

United States of America

WO 92/21081 PCT/US92/04169

10

20

SUSPEND/RESUME CAPABILITY FOR A PROTECTED
MODE MICROPROCESSOR AND HARD DISK,
AND IDLE MODE IMPLEMENTATION

TECHNICAL FIELD

This invention relates generally to a computer system

having suspend/resume capability in a protected mode.
BACKGROUND ART

There are existing microprocessors which have the
capability to operate in both a protected mode and an
unprotected mode. In the unprotected mode, a program
running in the microprocessor has access to all operational
capabilities of the microprocessor, whereas in one or more
protected modes the program has different degrees of
accessibility to the operational capabilities of the
microprocessor. While computer systems based on protected
mode microprocessors have been adequate for most purposes,
they have not been satisfactory in all respects.

One problem with systems based on protected-mode
processors is that it is normally not possible to change
certain features of the system configuration while running
an application program under existing multi-tasking
operating systems. One must exit an application program
and operating system, make necessary system configuration
adjustments, and then re-enter the multi-taking operating
system in the application program, which is tedious and

time-consuming.

WO 92/21081

10

20

30

PCT/US92/04169
-2

A further consideration is that some operating systems
maintain time and date information separate from the time
and date information maintained in hardware, and while the
hardware will automatically keep its time and date accurate
during a suspend, the time and date in the operating system
may become static at the point suspend is entered.

A further consideration is that, while the systenm is in
the suspend mode, a user may remove a floppy disk which was
present in a floppy disk drive of the system at the time
was powered down, and may even replace it with a different
disk. When the interrupted application program is resumed
at the end of the suspend mode, there is the danger that it
will not realize that the original disk has been replaced
with a new disk, and attempt to write data to the new disk
with the assumption that it is really the original disk,
thereby destroying information on the new disk which the
user did not wish to lose.

Tt may be desirable for a battery-operated system to
automatically enter suspend mode when the system is not
being actively used in order to conserve battery power, but
this can be annoying to the user, and is not absolutely
necessary where the system is temporarily operating on AC
power.

While separate switches can be used to turn system power
on and off and to place the system in suspend mode, this
adds to the cost of the hardware and presents the risk that
the user may inadvertently actuate the power-off button and
thus lose the current operational state of the system in a
situation where the user basically intends to always enter
and leave suspend mode without losing the existing state of
the systen.

A further consideration is that, when a user loans his
system to another user and the latter changes the system
configuration, the configuration set by the original user
is lost and the original user is thus faced with the
tedious task of attempting to restore his configuration

when the system is returned to him.

ow

WO 92/21081 PCT/US92/04169

10

20

30

-3

A further problem is that a user may wish to leave his
system for a brief period of time without exiting the
application program or turning the system off, and yet want
to prevent others from using the keyboard (or other input
device) to make alterations or to examine information in
the computer system.

A further factor is that conventional floppy disk drives
often have internal registers which can be written but
cannot be read. If such a disk drive is turned off in
order to save power during a suspend mode, the contents of
the internal register must be restored when the disk drive
is turned back on at the end of suspend mode. However, it
is not possible to read the register before suspend mode is
enter in order to determine its contents. The desire of
users to have a computer system which is compatible with
pre-exiting disk drives makes it impractical to simply
design a new drive in which all the registers are readable.

A further consideration is that it is often desirable to
be able to upgrade the firmware in a computer system from
time-to-time in order to obtain new features, but sometimes
upgraded firmware is compatible only with more recent
versions of the hardware. Unfortunately, the current state
of the hardware must normally be determined by dissembling
the unit and studying a revision code on the circuit board
in order to determine whether upgraded firmware will be
compatible with the board, which is a tedious and time
consuming process.

When implementing suspend mode, maintaining power to the
main memory is commonly viewed as necessary in order to
avoid .losing the current state of the application program
which has been temporarily interrupted, but the maximum
duration of the suspend interval is less than it might
otherwise be as a result of the fact that a battery
powering the system will lose power faster when it has to
maintain the main memory than when it does not.

Commercially available hard disk drives can often be
selectively programmed in different ways. For example,
there are hard disk drives which can be programmed to a

WO 92/21081

10

20

30

PCT/US92/04169
-4-

multiple mode setting which allows data transfer to occur
in multiple sector blocks with only one interrupt at the
end of the block. Also, there are drives which can be
given a predetermined time value and, whenever this time
period elapses without an access to the drive, the drive
automatically stops its motor, and does not start the motor
again until a further access occurs. Moreover, there are
hard disk drives which can be configured for a specific
number of tracks per disk, sectors per track and number of
heads. In a commercially available drive, these features
are initialized by sending commands/data to the drive, but
the drive usually does not provide any way for the system
to subsequently obtain from the drive an indication of how
these features have been set. It is assumed that the
operating system already knows how it has set these
features.

In order to use a hard disk of this type with a system
having suspend/resume capability, and since the electronic
circuitry in the drive will forget its current status
during the suspend operation because of the fact that power
to the drive circuitry is turned off, it is important that
the exact status of the hard disk drive prior to the
suspend operation be stored before the suspend, and that
this status be restored in the hard disk drive when
operation subsequently resumes. Otherwise, the hard disk
drive will operate differently after the suspend operation
than it did before the suspend operation, which in turn may
cause the application program to operate differently and/or
improperly, which would obviously defeat the entire purpose
of the suspend/resume capability.

Consequently, it is important for the hardware of a
computer system (including the firmware in read only
memory) to be designed so that it maintains externally of
the hard disk drive a record of the specific settings to
which the drive has been programmed. Thus, in a
traditional system of the IBM compatible type, the firmware
program commonly referred to as the basic input/output
system (BIOS) would maintain this external record of the

-

WO 92/21081 PCT/US92/04169

10

20

30

-5-

disk settings. So long as the operating system communi-
cated with the disk drive only through the routines of the
BIOS, the BIOS could maintain this record with no
difficulty whatsocever. However, there are commercially
available operating systems such as 0S/2 and UNIX, which
bypass the BIOS routines and directly set parameters in the
hard disk drive. When the BIOS is bypassed, it obviously
cannot maintain an accurate record of the specific settings
programmed in the hard disk drive. Consequently, a system
which implements suspend/resume capability and uses a
conventional hard disk drive cannot guarantee proper
operation with certain pre-existing programs such as 0S/2
and UNIX. On the other hand, it is desirable to avoid the
design of a new hard disk drive which would permit proper
operation of 0S/2 and UNIX in a system with suspend/resume
capability, but which is incompatible with existing inter-
face and cabling standards.

If a user inadvertently closes the 1lid without
remembering to turn off the power, the system can continue
to operate and will run down the battery. One solution to
this problem is to provide a 1id switch which, in response
to movement of the 1id to the closed position, shuts off
power to the system. However, this can be disadvantageous
because, if the user unintentionally bumps the 1lid and
causes it to close, the contents of the volatile
semiconductor memory in the computer will be lost, and thus
the user may lose important data or program information
which he or she did not wish to lose.

An alternative known approach is to respond to the close
of the 1id by producing an audible beep rather than
shutting off power to the system. This permits the user to
reopen the 1id and continue operation without any loss of
data or program information. Nevertheless, if the user
does not hear the beep or forgets to open the 1lid following
the beep, the battery may run down and cause the contents
of the semiconductor memory to be lost.

When the known system enters the standby mode, it is very
visible to the user that the standby mode has been entered,

WO 92/21081

10

20

30

PCT/US92/04169
-

because the computer turns the display off and halts
program execution. Further, if the user presses a key or a
push-button switch in order to exit standby mode and return
to normal operation, a noticeable time interval usually
elapses before the system is again running normally, which
can be very annoying to a user.

One object of the present invention is to provide a
system which is configured around a protected mode
processor and is capable of properly carrying out a suspend
and resume even when a restricted mode of operation is in
effect.

A further object is to provide a system in which system
configuration information can be changed even under a
multi-tasking operating system without exiting an
application program.

A further object is to provide a system which can ensure
that time and date information in the active operating
system is accurate following a suspend and resume.

A further object is to provide a system which can carry
out a suspend and resume operation while reducing the risk
the error due to the removal or exchange of a floppy disk
present in a floppy disk drive of the system at the time of
the suspend.

A further object is to provide a system which has respec-
tive sets of configuration parameters for use when the
system is respectively operating under AC and DC power, and
an arrangement for automatically switching between these
respective configurations when the system is switched
between AC power and DC power.

A further object is to provide a suspend/resume system
having a single button which is deactuated to place the
system in either a suspend mode or a power off mode, the
system having an internal arrangement which specifies the
effect of this button.

A further object is to provide a system having a multi-
level configuration, so that after a first user loans the
system to a second user and the second user changes the

overall configuration, the first user can quickly and

WO 92/21081 PCT/US92/04169

10

20

30

-7 =

easily restore the configuration which was in effect at the
time the system was loaned to the second user.

A further cbject is to provide a system which uses a
conventional floppy disk drive without physical
modification and which is capable of properly reconfiguring
the floppy disk drive following a suspend and resume
operation.

A further object is provide a system in which software or
firmware can directly determine the current revision status
of certain hardware in the system.

A further object is provide a system capable of carrying
out a suspend and resume operation without maintaining
power to the main system memory.

A further object of the present invention to provide a
method and apparatus facilitating use of a hard disk drive
in a computer system with suspend/resume capability so as
to maintain compatibility with pre-existing programs, while
simultaneously maintaining compatibility with existing
interface and cabling standards.

A further object of the present invention to provide such
a system in which the disk drive facilitates saving and
restoring of its current status.

A further object of the invention to provide such an
apparatus which involves little or no redesign of the
circuitry of a hard disk drive and associated cabling, so
that the disk drive has a cost comparable to that of pre-
existing drives.

A further object of the invention is therefore to provide
an arrangement for causing a system to enter and
subsequently exit suspend mode in response to closing and
subsequent opening of a lid.

A further object of the present invention to provide a
computer system having a further mode which provides a
level of power reduction over a normal operational mode but

which is effectively imperceptible to the user.

WO 92/21081

10

20

30

PCT/US92/04169
-8-

BRIEF DESCRIPTION OF THE DRAWINGS

preferred embodiments of the present invention will be
described in detail hereinafter with reference to the
accompanying drawings, in which:

Figure 1 is a block diagram of a computer system which
embodies features of the present invention;

Figure 2 is a state diagram for a state machine which is
a component of the system of Figure 1;

Figure 3 is a diagram showing the organization of a main
memory which is a component of the system of Figure 13;

Figures 4-14 are flowcharts showing respective portions
of a program executed by a main processor of the computer
system of Figure 1;

Figures 15 and 16 are diagrams representing the
organization of respective memories used in an auxiliary
processor which is a component of the system of Figure 1;

Figures 17-20 are flowcharts showing respective portions
of a program executed by the auxiliary processor;

Figure 21 is a flowchart of pertinent portions of a
program executed by a microprocessor in a hard disk drive
of Figure 1:

Figure 22 is a flowchart of an alternative embodiment of
the program represented by the flowchart of Figure 21;

Figure 23 is a flowchart of another alternative
embodiment of the program of Figure 21;

Figure 24 is a block diagram of a computer system
embodying the present invention;

Figures 25 and 26 are flowcharts of selected program
segments executed by an auxiliary processor of the system
of Figure 24;

Figures 27-31 are flowcharts of selected program segments
executed by a main processor of the system of Figure 24;

Figure 32 is a block diagram of yet another alternative
embodiment of the computer system of Figure 1;

Figures 33-36 are flowcharts which show respective
portions of a program executed by a main processor which is

a component of the system of Figure 32; and

WO 92/21081 PCT/US92/04169

10

20

30

Q-

Figures 37-40 are flowcharts of respective portions of a
program executed by an auxiliary processor which is a
component of the system of Figure 32.

DETAILED DESCRIPTION

Figures 1 is a block diagram of a "notebook" type laptop
computer system 310 which embodies features of the present
invention. The computer system 310 includes a main
processor 311, a power control circuit 312, a manually
operable power control switch 313, a system control
processor (SCP) 316, an internal keyboard 317, a video
controller circuit 318, a monochrome liquid crystal display
(LCD) unit 321, a modem 322, a hard disk drive (HDD) 323, a
main memory 326 implemented with dynamic random access
memory (DRAM) chips, a floppy disk drive (FDD) 327, a read
only memory (ROM) 328, and a flash RAM 331.

A microprocessor suitable for use in the system 310 of
Figure 1 is the Intel 386-SL, which was developed by Intel
Corporation of Santa Clara, California under a license from
the present Applicant. It will be recognized that other
functionally equivalent microprocessors may be developed
could also be used for the main processor 311. Since
detailed information regarding the Intel 386-SL is
available from Intel, the entire internal architecture
thereof has not been shown and described in detail here.
The processor 311 has an unrestricted mode and at least one
restricted or "protected" mode. In Figure 1, only features
which are important to an understanding of the present
invention are depicted and described.

More specifically, the processor 311 includes a bus
control circuit 336, which controls an address bus 337, a
control bus 338 and a bidirectional data bus 339 coupling
the processor 311 to other major component of the system.
The processor 311 also includes an interrupt selector 341
having respective inputs to which are coupled six interrupt
signals IRQ 0, 1, 6, 9, 12 and 14. An IRQ mask register
342 can be loaded by software with a mask having six bits
which each correspond to a respective one of the six
interrupt lines. When each mask bit is a binary "1", the

WO 92/21081

10

20

30

PCT/US92/04169
-10-

selector 341 actuates its single INTR output line whenever
the associated interrupt line is actuated, whereas if the
mask bit is a binary "0", the selector 341 ignores the
associated interrupt line.

A break event selector 346 and a system event selector
347 each have a plurality of inputs, and different signals
are coupled to respective inputs of both of the selectors
346 and 347. These signals include the six IRQ interrupt
signals, and the INTR signal from the interrupt selector
341. The other signals include a modem ring indicator
signal MDMRI generated by the modem 322, a battery low
warning signal BATTLOW generated by the SCP 316, a parity
signal PARITY which can be controlled by a device such as
the main memory 326 which carries out parity checking, an
input/output (I/0) channel check signal IOCHCK which can be
controlled by I/O devices, a non-maskable interrupt NMI
which has a higher priority than the IRQ interrupt signals,
the output signal SRBTN from the manual switch 313, and an
AUTO SUSPEND signal which will be described in more detail
later. Associated with each of the selectors 346 and 347
is a respective mask register 348 or 349 which is loaded by
software, and each of the selectors 346 and 347 in the
associated mask register 348 or 349 functions in a manner
similar to that described above for the selector 341 and
associated mask register 342. The break event selector 346
produces a BREAK EVENT output signal, and the system event
selector 347 produces a SYSTEM EVENT output signal.

The processor 311 includes three hardware timers 351-
353, in particular a local timer 351, a global timer 352,
and a suspend timer 353. Associated with each timer is a
respective preset register 356-358, which is controlled by
software and can be set to enable or disable the associated
timer. Further, each preset register includes a numerical
value which defines the time interval which the associated
timer is to measure. The SYSTEM EVENT signal is connected
to each of the timers 352 and 353, and each time this
signal is actuated it causes each of these timers which is

enabled to restart the timing of its specified time

o

WO 92/21081 PCT/US92/04169

10

20

30

-11-

interval. When a user is actively using the system, the
SYSTEM EVENT signal will be actuated so frequently that the
timers 352 and 353 will typically not be able to time out
the full specified time interval. On the other hand, if
the user walks away from the system for a period of time,
the SYSTEM EVENT signal may remain deactuated for a long
period of time, in which case the timers 352 and 353 may
time out. When the timer 352 times out, it actuates an
output signal GLOBAL STANDBY, and when the timer 353 times
out it actuates the signal AUTO SUSPEND. Although the
timer 353 is a hardware timer provided to time a suspend
interval, in the preferred embodiment this hardware timer
is kept disabled, and the suspend interval is timed by
software in the SCP in a manner described in more detail
later. The local timer 351 operates in a similar manner to
the timers 352 and 353 and produces an output signal LOCAL
STANDBY if it times out, but the signal used to restart the
timer 351 is a different signal FDD TRAP, which is
discussed below.

The processor 311 includes an I/O trap logic circuit 361
which receives address and control information at 363 from
the bus control unit 336, and which is controlled by an I/O
trap control register 362. The register 362 is set by
software and, in the preferred embodiment, defines a range
of I/0 addresses assigned to control registers in the
floppy disk drive 327, and the I/O address assigned to the
system event mask register 349. Whenever the I/O trap
logic 361 detects that one of these addresses is being
accessed, it actuates its FDD TRAP output signal if the
floppy drive is being accessed and its MASK TRAP signal if
the mask register is being accessed, the FDD TRAP signal
having the effect of restarting the local timer 351, as
mentioned above.

The BATTLOW signal, the FDD TRAP signal, the MASK TRAP
signal, the LOCAL STANDBY signal, the GLOBAL STANDBY
signal, the AUTO SUSPEND signal and the SRBTN signal are
all connected to respective inputs of an OR gate 366. A
further input of the gate 366 is connected to an external

WO 92/21081

10

20

30

PCT/US92/04169
-12~-

power management interrupt signal EXTPMI from the SCP 316,
and another input is connected at 367 to a power management
interrupt signal which can be selectively actuated by
software. A flip-flop 368 disables the output of the gate
366 when it is set, and can be controlled by software.

When any one of the inputs to the gate 366 is actuated, the
gate 366 generates at its output a power management
interrupt signal PMI.

In response to actuation of the PMI signal, the PMI
enable flip-flop is automatically set, and a status
register 371 is automatically loaded with an image of the
logical states of the inputs to the gate 366, soO that
software can subsequently examine the register 371 and
identify one or more of the inputs to gate 366 which were
responsible for generating the PMI interrupt signal. 1In
addition, a circuit 372 receives address and control
information at 373 from the bus control unit 336, and is
effectively a first-in/first-out (FIFO) memory which stores
the last several I/O bus cycles performed by bus control
336. 1In response to actuation of the PMI signal, the
circuit 372 stops storing this information, and thus
contains a static indication of the most recent I/0 cycles.

The processor 311 also includes a real time clock (RTC)
circuit 376, which includes a small amount of RAM 337 which
is accessible to software. The RAM 337 contains the date,
the time-of-day, and a certain amount of system
configuration information. When the computer system 310 is
completely turned off, the real time clock circuit 376
nevertheless receives a small amount of power at 378 from a
back-up battery 379 in the power control circuit 312, so
that the real time clock circuit 376 can keep the date and
time information in RAM 337 accurate. The interrupt signal
IRQO is generated by the real time clock circuit 376, and
in particular is actuated in a periodic manner, so that an
operating system or application program which maintains its
own time or date can keep that time and date updated. The
real time clock circuit 376 can also be programmed by

WO 92/21081 PCT/US92/04169

10

20

30

]33~

software to actuate an ALARM output at a specified date and
time.

The ALARM signal is connected to one input of a resume
selector 381, the other three inputs of which are connected
to the SRBTN signal from manual switch 313, the BATTLOW
signal from SCP 316, and the modem ring indicator signal
MDMRI from the modem 332. A resume mask register 382 which
can be set by software is used to selectively mask the
ALARM signal, the MDMRI signal, or the BATTLOW signal. It
is not possible for the mask register 382 to directly mask
the SRBTN signal from the switch 313. However, if the
BATTLOW signal is actuated and is not masked by the mask
register 382, it will mask all three of the signals SRBTN,
ALARM and MDMRI. Summarizing, if the BATTLOW signal is
masked or is not masked but is deactuated, the selector 381
will produce a RESUME RESET signal at its output in
response to actuation of the signal SRBTN, and also in
response to actuation of either of the signals ALARM and
MDMRI when not masked by the register 382. The RESUME
RESET signal is a special reset of the processor 311, which
will be discussed again later. The processor 311 includes
a hardware resume flag 383, which is forcibly set by the
RESUME RESET signal and is forcibly cleared by other types
of reset signals. The RESUME flag 383 can be tested and
cleared by software.

The processor 311 also includes a refresh control circuit
386, which controls the refresh of the DRAM chips in the
main memory 326. The refresh control circuit 386 can be
set to refresh the memory chips at different rates, the
power consumption of DRAM chips being lower for lower
refresh rates than for higher refresh rates.

The processor 311 also includes a clock generation
circuit 387 which generates a CPU clock signal, and a
keyboard clock signal KBCLK which is supplied to an
interrupt input of the SCP 316. A speed control register
388 can be set by software to select one of a range of
frequencies for the CPU clock signal, or to completely stop
the CPU clock signal. Power consumption within the

WO 92/21081

10

20

30

PCT/US92/04169

processor 311 is dependent on its clock speed, and in
particular is lower for lower clock speeds.

The processor 311 outputs a signal 391 which is connected
to a conventional piezo speaker 392 and, when actuated, can
cause the speaker 392 to beep. In addition, the processor
generates a signal CPUSUREQ which is connected to the SCP
and is described in more detail later. Further, the
processor generates two signals FDDSLT and HDDSLT which,
when deactuated, turn off or at least reduce power to the
floppy disk drive 327 and hard disk drive 323,
respectively. The processor also generates two control
signals SYSPWROFF and KILLVCC which are connected to the
power control circuit 312 and are described in more detail
below.

As mentioned above, the power control circuit 312
includes a back-up battery 379. In addition, the power
control circuit 312 has a rechargeable battery 396, and has
a connector 397 to which can be releasably connected a
conventional external AC to DC convertor 398 adapted to be
plugged into a standard wall socket. When the convertor
398 is present and supplying power to the power control
circuit 312, the power from the convertor 98 is used by the
circuit 312 to provide power needed throughout the entire
system 310, and to simultaneously recharge the rechargeable
battery 396. When no convertor 398 is connected to the
connector 397, power required throughout the system 310
when the system is on is drawn from the rechargeable
battery 396. In the event no convertor 398 is present and
the rechargeable battery 396 either becomes discharged or
is removed for replacement, the back-up battery 379 is used
to supply enough power to maintain the system in at least a
low power mode.

The power control circuit 312 has a power output PMVCC on
which it supplies power to the processor 311, main memory
326, and flash RAM 331, and has a power output SYSVCC on
which it supplies power to other system components. The
supply of power to these two power outputs is controlled by
a state circuit 401. Figure 2 is a state diagram showing

WO 92/21081 PCT/US92/04169

10

20

30

-15=-

the basic operation of the state circuit 401 of the power
control circuit 312. The state diagram includes three
states 406-408. The state 406 represents a situation where
the computer system 310 of Figure 1 is entirely off. 1In
this state, SYSVCC and PMVCC are both off, and only the
real time clock circuit 376 in the processor 311 and the
state circuit 401 in the power control circuit 312 are
receiving power. The second state 407 corresponds to
normal operational modes of the computer system 310, and
also corresponds generally to a global standby mode in
which certain system components are placed in a low power
mode and the processor 311 stops operating in order to
conserve power, as described in more detail later. In this
state SYSVCC and PMVCC are both on, the real time clock
circuit drawing its power from PMVCC rather than from the
battery 379. The third state 408 corresponds generally to
a suspend mode. In state 408, the power output PMVCC is
turned on, but the power output SYSVCC is turned off in
order to conserve power.

Starting from a condition in which the system is off and
the state circuit 401 is. in state 406, when a user manually
actuates the switch 313 in order to turn the system on, the
state machine 401 proceeds at 409 to state 407, where it
turns on both SYSVCC and PMVCC. If at some point in time
the processor 311 intends to enter a suspend mode, it will
actuate the signal SYSPWROFF to the state circuit 401,
which will cause the state circuit 401 to transition at 411
to state 408, where it keeps PMVCC on but turns off SYSVCC.
Since SYSVCC is used to supply power to virtually all
components other than the processor 311, memory 326 and RAM
331, the power consumption of components normally powered
by SYSVCC is reduced to zero. Meanwhile, PMVCC maintains
the information in main memory 326 during the suspend mode,
and also provides power to the processor 311 and RAM 331 so
that it will be able to wake up from the suspend mode.

When the processor 311 does wake up from the suspend mode,
it deactuates the signal SYSPWROFF, so that the state
machine 401 transitions from state 408 back to state 407

WO 92/21081

10

20

30

PCT/US92/04169

and turns the supply SYSVCC back on, thereby repowering the
peripheral components of the system so that they can be
used again. If it is determined at some point that the
system is to be turned completely off, then the processor
311 ultimately actuates the signal KILLVCC to the state
machine 401, which causes the state machine to transition
at 413 from state 407 back to state 406, where it turns off
both SYSVCC and PMVCC.

The power control circuit 312 produces a signal DC/AC to
the system control processor (SCP) 316, to indicate whether
the system is running on AC power from the convertor 398 or
on DC power from battery 396 (or battery 397). The
terminal voltage of rechargeable battery 396 is also
supplied in the form of an analog signal RBATT to the SCP
316, so that the SCP 316 can monitor the state of the
battery charge. In particular, the SCP 316 has an analog-
to-digital (A/D) convertor 416, which converts the analog
terminal voltage from battery 396 into a digital signal
that can be analyzed by the SCP 316. When the SCP
determines that the voltage is too low, it actuates the
above-mentioned BATTLOW signal to the main processor 311.

Turning to the SCP 316, the SCP in the preferred
embodiment is based on an Intel 87C51GB processor, but it
will be recognized that there are other commercially
available processors which could be used for the SCP. The
SCP generates a speaker control signal 417 which is
connected to the speaker 392 and can be used to cause the
speaker 392 to beep. In addition, the SCP generates the
signals IRQ1l and IRQ12, which as mentioned above are
connected to interrupt inputs of the main processor 311.
Further, the SCP 316 is coupled to an external connector
418, to which can optionally be coupled a conventional
external keyboard or mouse 421. The SCP 316 1is also
coupled at 422 to the internal keyboard 317. The SCP
outputs to the video controller 318 a signal CRT/LCD, which
indicates whether the video controller 318 should consider
the active display unit to be the liquid crystal display
unit 321 or a conventional external CRT 426 which can be

WO 92/21081 PCT/US92/04169

10

20

30

-17~-

optionally wired to a connector 427 coupled to the video
controller 318. The SCP 316 sends the video controller 318
a signal VIDEN which, when disabled, causes the video
controller 318 to turn itself off or to at least reduce its
power consumption.

The SCP sends to the liquid crystal display unit 321 a
signal LCDPWR, which turns on and off the power to the
liquid crystal display in the unit 321. The display
includes a backlight 431 which illuminates the liquid
crystal display. The display unit 321 is provided on a 1lid
of the laptop computer which, in a conventional manner, can
be moved between positions covering and exposing the keys
of the internal keyboard 317, and a lid switch 432 is
provided to indicate whether the 1lid is open or closed.

The SCP 316 generates a signal BLON which turns on and off
the backlight 431 of the display unit 321, and receives
from the 1id switch 432 a signal LIDSW which indicates
whether or not the switch is actuated and thus whether or
not the 1lid is open or closed.

The SCP 316 also generates a signal MDMEN which causes a
power control section of the modem 322 to shut off power to
the modem 322, or to at least place the modem in a low
power consumption state. The SCP 316 receives from the
modem 322 the previously-mentioned modem ring indicator
signal MDMRI, which is actuated when an incoming telephone
call reaches the modem through a telephone jack 434 to
which the modem 322 is coupled, the jack 434 of the system
310 being.adapted to be optionally coupled to a standard
telephone line 436.

The hard disk drive 323 produces an output signal LED
which is used in a conventional manner to control a
conventional and not-illustrated light emitting diode in
order to provide the computer user with a visual indication
of the activity of the hard disk drive. This LED signal is
connected to the SCP and to one input of a two-input AND
gate 438, the hard disk not busy output HDNB of which is
connected to an input of an OR gate 433 and indicates that
the hard disk is not busy. The other input of the gate 438

WO 92/21081

10

20

30

PCT/US92/04169

-]8=-

is coupled to an ENABLE output signal of the SCP 316, and
thus the SCP can selectively enable and disable the gate
438. The SCP also produces an output signal at 435 which
is connected to a second input of the OR gate 433, and the
output of the OR gate 433 serves as the previously-
mentioned EXTPMI signal to the main processor 311. The
hard disk drive 323 also generates the interrupt signal
IRQ14, which as mentioned above is coupled to the main
processor 311.

The internal keyboard 317 includes a set of keys 441
which form a standard laptop computer keyboard, four light
emitting diodes (LEDs) 442 which are visible to the system
user and provide typical status information, and a
controller circuit 443 which interfaces the keys 441 and
LEDs 442 to the SCP 316.

The video controller 318 includes control registers 446,
and a video RAM 448 which is coupled to the buses 337-339
and is a 128 KB memory arranged as 64K by 16 bits.

The SCP 316 includes an electrically programmable read
only memory (EEPROM) 439, in which it stores configuration
information, a password, -an extended set-up information, as
discussed in more detail later. Further, the SCP includes
a ROM 437 which stores a program executed by the SCcp, and a
RAM 440 in which the SCP can store and retrieve information
during system operation. The SCP also includes several I/0
registers, which can be used to pass data between the main
processor 311 and the SCP 316.

The flash RAM 331 is a conventional semiconductor device
which can be electrically modified, but is not volatile and
will retain the information stored in it when power to it
is turned off. The flash RAM 331 is 128 KB, and contains
the basic input/output system (BIOS) program, as well as
factory configuration settings. The ROM 328 contains a
program which is normally not used, but which can be used
to control the system while the flash RAM 331 is reloaded
in the event an unusual circumstance causes the contents of

the flash RAM to be lost.

WO 92/21081 PCT/US92/04169

10

20

30

-]19~

The conventional floppy disk drive 327 includes a floppy
disk controller (FDC) circuit 451, which controls the
floppy disk drive and can also generate the interrupt
signal IRQ6 to the processor 311.

The main memory 326 includes a portion PMRAM 453. The
bus control unit 336 of processor 311 automatically
prevents software from accessing the PMRAM section 453 of
the main memory 326, except in two specific situations.
First, the service routine for the power management
interrupt PMI is stored in the PMRAM section 463 of the
main memory 326, and in response to a PMI the bus control
unit 336 automatically permits access to the PMRAM 453 so
that the state of the processor 311 can be stored there and
so that the service routine there for the PMI can be
executed. Second, software running in the unrestricted
mode of the processor 311 can selectively enable and
disable the capability to access to the PMRAM 453, so that
the PMRAM can be initialized.

Figure 3 is a diagrammatic representation of some of the
information stored in the main memory 326. The
organization of this information shown in Figure 3 is
exemplary, and it will be recognized that the format in
which the information is stored could be reorganized
without departing from the present invention. Further,
there may be additional information which is stored in the
main memory 326 but is not essential to an understanding of
the present invention, and which is therefore not
illustrated and described in detail.

A portion 471 of the main memory is used to store an
operating system, for example Disk Operating System (DOS)
available from Microsoft Corporation. The operating system
maintains time and date information at 472, and also
maintains a disk change (D/C) flag 473 which is used to
indicate that a disk has been changed. Two additional
portions 476 and 477 in the main memory each contain a
respective application program, the portion 476 containing
the stack, instructions and data for a word processor, and
the portion 477 containing the stack, instructions and data

WO 92/21081

10

20

30

PCT/US92/04169
-20=-

for a spreadsheet. A further portion 478 of the main
memory is used to store an image of the video RAM 448, as
will be described in more detail later.

The PMRAM portion 453 of the main memory includes a state
save portion 481, where the processing unit 311
automatically saves its state in response to a PMI
interrupt. A further portion 482 is used to save
information regarding other devices, and a portion 483 is
used for a partial state save of the SCP 316 which will be
discussed later. A portion 485 is used to record the
current palette being used for the LCD 321, as will be
described later, and a portion 486 serves as shadow
registers which are used to maintain an image of all
control registers within the floppy disk drive 327, as also
described later. A byte 47 is used for several one-bit
flags, including a fast clock (FC) flag which is set to
indicate that the user has selected a fast clock speed for
the processor 311, a floppy off (FO) flag which is set to
indicate that the power to the floppy disk drive is off, a
disk in floppy drive (DF) flag which can be set to indicate
that a disk is present in the floppy disk drive, a
time/date valid TV flag which is set if the current
operating system supports time and date information, and a
standby (ST) flag which is set under certain circumstances
to indicate to the processor whether it is to enter standby
mode or suspend mode when a particular event occurs.

The software routine which handles the power management
interrupt (PMI) is also stored in the PMRAM portion 453 of
the main memory 326, as shown at 491 in Figure 3. A
portion 492 of the PMRAM serves as a stack area for use by
the PMI handler routine. Figures 4-14 are flowcharts
showing the operation of the PMI handler routine and a
reset handler routine.

Beginning with Figure 4, a PMI from any source causes the
hardware of the processor 311 to automatically save its
state in the state save area 481 of the PMRAM portion 453
of the main memory, as shown diagrammatically at 501 in
Figure 4. Then, the processor 311l automatically begins

WO 92/21081 PCT/US92/04169

10

20

30

-21-

execution of the PMI handler routine 491 in the PMRAM at a
predetermined point, which is shown at 502 in Figure 4.
Regardless of the source of the PMI, the first thing the
PMI handler does is to check the resume flag 383 (Figure 1)
in the processor 311 in order to see whether the processor
311 is in the process of resuming from a suspend state. If
a resume is in progress, then at block 503 control is
transferred to a resume handler, which will be discussed
later.

In the case of any other PMI, control proceeds to block
506, where the processor sets itself up to use the stack
492 in the PMRAM, because the PMI handler routine must
always be capable of proper operation, and has no way of
knowing whether the current stack in the interrupted
application program is a valid and usable stack. Then, the
processor 311 unlocks certain internal configuration
registers so that they can be altered, such as the control
register 388 which can be used to change the speed of the
CPU clock. Then, the processor changes the register 388 in
order to force the CPU to run at a fast clock speed, so
that the PMI routine will execute as fast as possible.

Control then proceeds to block 507, where the processor
checks to see whether the last instruction executed before
the PMI was a HALT instruction. If it was, then the image
of the instruction pointer register saved at 481 in the
PMRAM is decremented at 508, so that when the PMI handler
is exited the instruction which is fetched and executed is
the HALT instruction rather than the instruction which
follows the HALT instruction, in order to be certain that
the processor again enters the HALT mode. Then, control
proceeds to block 511, where the processor begins a
successive check of the six possible sources of a PMI, as
represented by the six blocks 511-516. Each of these will
be discussed in more detail in a moment.

After detecting and servicing the source of the PMI,
control proceeds to block 521, where the processor checks
to see whether one or more other sources of the PMI are
pending. If so, control returns to block 511, so that the

WO 92/21081

10

20

30

PCT/US92/04169
—-22=-

processor can again scan for the particular source of each
PMI, and service it. When it is determined at block 521
that every pending PMI has been serviced, control proceeds
+to block 522, where the processor restores the speed
control register 388 to select the CPU clock speed which
was in effect at the time the PMI occurred. The FC flag
shown in Figure 3 indicates to the processor whether this
was a fast or slow clock speed. Then, the processor
restores the protection level (if any) which was in effect
for the internal configuration registers, including the
speed control register 388. The processor can determine
the level of protection which was in effect by examining
the image of the CPU state which is present at 481 in the
PMRAM. Then, the processor enables the PMI, and clears an
internal bit automatically set within the processor 311 by
the PMI to prevent the processor from responding to a reset
during servicing of the PMI. Then, at 523, the processor
executes an instruction which ends the PMI handler routine
by restoring the internal state of the processor from the
state save area 481, which of course causes the processor
to resume execution of the interrupted application program.

As previously explained, a software instruction can
generate a PMI as shown diagrammatically at 367 in Figure
1, but in the preferred embodiment this capability is used
only to reenter the PMI handler when the system is in the
process of resuming from a suspend mode, and in that case
control is routed from block 502 to block 503 as discussed
above, and should never proceed to block 515.
Consequently, a software PMI should not normally be
detected at block 515 in Figure 4. Nevertheless, since it
is possible that some other program may execute a software
instruction which generates a software PMI, block 515 will
intercept this condition, but transfers control at 526
directly to block 521, thereby handling the software PMI
without doing anything at all.

Block 516 checks for a hardware PMI, the sole source of
which in the preferred embodiment is the manual switch

WO 92/21081 PCT/US92/04169

10

20

30

-23-

shown at 313 in Figure 1. In particular, deactuation of
this switch produces a PMI which is detected at block 516,
and causes control to proceed to block 517, where a
subroutine call is made to a hardware PMI handler routine,
which is illustrated in Figure 5.

Referring to Figure 5, the processor begins at 528 by
instructing the SCP 316 to send it a portion of the set-up
information stored in EEPROM 439, in particular a bit which
can be set by the user as part of the system configuration,
and which specifies whether deactuation of the switch 313
is to cause the system 310 to completely turn itself off,
or to enter the suspend state in which it is capable of
resuming the interrupted application program. Whenever the
processor needs to send a command to the SCP while
servicing a PMI instruction, it first actuates the CPUSUREQ
signal to the SCP so that the SCP will stop sending
information to the processor and thus the interface will be
clear. Once the command is accepted, the processor may
deactuate the CPUSUREQ signal. Control proceeds to block
529, where the processor checks the information received
back from the SCP. If the user has specified that
deactuation of the switch 313 is to place the system in
suspend mode, the system proceeds to block 531, where it
calls a suspend handler which will be described in detail
later. on the other hand, if the user has specified that
in response to deactuation of the switch 313 the system is
to be turned off, control proceeds from block 529 to block
532, where the processor 511 causes the video circuitry to
display a warning which reminds the user that power will be
turned completely off and requesting confirmation to
proceed. This is because turning power off will cause the
loss of everything in the main memory 326, and it is thus
important to be certain that the user is not assuming that
the system will be entering suspend mode, where this
information would be maintained. The user response is
checked at .block 533, and if the user confirms that power
is to be turned off then control proceeds to block 536
where the processor actuates the KILLVCC line so that the

WO 92/21081

10

20

30

PCT/US92/04169

power control circuit 312 turns SYSVCC and PMVCC off in the
manner described above in association with Figure 2. On
the other hand, if it is determined at block 533 from the
user response that the user did not want the power turned
off, then control proceeds to block 537, where a return is
made from the hardware PMI handler without taking any
action at all.

Referring again to Figure 4, if it is determined at 511
that the source of the PMI interrupt is an I/O trap
condition, this means that one of the signals MASK TRAP or
FDD TRAP shown in Figure 1 has been actuated and created
the PMI. Block 511 therefore transfers control to block
541, where a subroutine call is made to an I/O trap handler
routine, which is shown in Figure 6.

Referring to Figure 6, this routine begins at block 542
by checking the status register 371 (Figure 13) in order to
determine whether the source of the interrupt was the FDD
trap signal. If it was not, then it must have been the
MASK TRAP signal, and control proceeds to block 543. The
occurrence of the MASK TRAP signal means that the processor
hardware has detected an access to the mask register 342
which controls the enabling and disabling of the various
TRQ interrupt lines. If the purpose of the access to the
MASK register 342 is to mask an IRQ interrupt, then at
block 543 the system also updates the mask in system event
mask register 349 to mask this IRQ interrupt. This avoids
a system problem, because if the IRQ interrupt signal
becomes actuated but is masked at 342, the normal inter-
rupt servicing routine will not recognize the interrupt and
thus the signal will remain actuated. If this IRQ
interrupt is not masked at 349, then the continuously
actuated signal will have the effect of preventing the
SYSTEM EVENT line from changing, as a result of which the
timers 352 and 353 will not be restarted and will time out
even when the system is actually very active. Therefore,
by conforming the mask register 349 to the mask register
342 at block 543, the disabled IRQ interrupt signal will be
prevented from inhibiting the SYSTEM EVENT signal, and thus

WO 92/21081 PCT/US92/04169

10

20

30

-25=

other active inputs to the selector 347 will be able to
cause the SYSTEM EVENT signal to actively change in
response to system activity so that the timers 352 and 353
are properly restarted by system activity.

After the processor sets the mask at block 543, control
proceeds to block 546, where the processor restarts the I/O
access to the mask register 342. In particular, the PMI
trap interrupt intercepted the access to the mask register
342, and thus this mask register was not in fact actually
changed. However, and as previously discussed, the I/O
cycles which would have accessed this register have been
captured at 372 (Figure 1), and thus in block 546 the
processor uses this information to restart the I/O access
to register 342 so that it properly completes. Then, at
block 547, control is returned to the main routine of
Figure 4.

Oon the other hand, if it was determined at block 542 that
the PMI was caused by the FDD TRAP signal, then control
proceeds to block 551. This means that an I/O access to a
control register of the floppy disk drive 327 has been
intercepted. As will be.described later, the system turns
the floppy disk drive 327 off if a specified period of time
elapses without any system access to the floppy disk drive.
Thus, it is possible that the intercepted access to the
floppy disk drive was an attempt to access the floppy drive
while it does not have any power. Accordingly, at block
551, the processor checks the FO flag (Figure 3) in order
to determine whether the floppy disk drive is powered down.
If it does have power, then block 552 is skipped.
Otherwise, block 552 is entered in order to bring up the
floppy disk drive.

In particular, the processor 11 actuates the FDDSLT line
to restore normal power to the floppy disk drive 327, and
enables interrupt IRQ 6 which is used by the floppy disk
drive in a conventional manner during normal operation.
Then, the processor loads control registers in the
controller circuit 451 of the floppy disk drive 327 from
the shadow registers 486 in the PMRAM. As will be

WO 92/21081

10

20

30

PCT/US92/04169
-26-

described in a moment, the shadow registers contain an
image of the internal state of the floppy disk drive just
before its power was turned off. Then, the processor
enables the local standby timer 351 (Figure 1), which as
described in more detail later as the timer used to monitor
the length of time since the last access to the floppy disk
drive so that a decision can be made as to when it should
be powered down. Finally, the processor clears the FO flag
(Figure 3) to indicate that the floppy disk drive is
currently up and running.

Control then proceeds from block 552 to block 553. As
just mentioned, the shadow registers 486 (Figure 3) are an
image of the control registers in the floppy disk drive
451. Every time any program stores anything in these
control registers, the same information must be stored in
the shadow registers 486 so that the shadow registers
contain an accurate image of the actual registers in the
floppy disk drive. Thus, at block 553, the processor
checks to see whether the intercepted I/O access to the
control registers of the floppy drive constitute a write of
information into a register, as opposed to a read of
jnformation from the register. If it is determined that
control information is being written into the floppy disk
drive, then at 554 the same information is written into the
shadow register area 486. On the other hand, if data is
being read from the floppy disk drive, then block 556 is
skipped at 557. In either case, control ultimately
proceeds to block 546, where the I/O access to the floppy
drive is restarted as discussed above so that the hardware
completes the interrupted I/O access. Then, at 547,
control returns to the routine of Figure 4.

In Figure 4, if it is determined at block 512 that the
local standby timer 351 has expired, then control proceeds
to block 559, where a subroutine call is made to a local
standby handler routine, which is shown in Figure 7.
Referring to Figure 7, the fact that the local standby
timer has timed out is an indication that the floppy disk

drive has not been accessed for a specified period of time

WO 92/21081 PCT/US92/04169

10

20

30

-2 7=

and is thus probably not currently in use and can be turned
off in order to conserve power. However, it is first
important to make sure that the floppy disk drive motor is
not running, because power should preferably not be shut
off while the motor is running. Therefore, at block 561,
the processor reads a register in the floppy disk drive
327, which in a conventional manner includes an indication
of whether the motor is currently enabled. If it is,
control proceeds to block 562, where the processor simply
restarts the local standby timer 351 at 562 and then
returns at 563 to the routine of Figure 4. Typically,
however, the motor will not be running, and control will
thus usually proceed to block 566, where the floppy disk
drive will be powered down in order to conserve power. In
particular, the processor disables interrupt IRQ 6, which
is used by the floppy drive, and then deactuates the FDDSLT
signal so that the floppy disk drive turns itself off or at
least enters a low power state. Then, the processor
disables the local standby timer 351, and sets the FO flag
(Figure 3) in order to indicate that power to the floppy
drive is currently off. Then, the processor returns at 563
to the calling routine shown in Figure 4.

In Figure 4, it may be determined at block 514 that the
source of the PMI was created by the SCP 316 using the line
EXTPMI, in which case control proceeds to block 568, where
a subroutine call is made to the EXTPMI handler routine
shown in Figure 8. There are three possible reasons why
the sScP may have initiated a PMI. Therefore, at 571 in
Figure 8, the processor begins by asking the SCP 316 to
send a byte indicating which of the three conditions was
the reason for the PMI. Upon the receipt of this byte, the
processor proceeds to block 572, where it checks for the
first of these conditions.

In order to discuss this first condition, it is important
to understand that, if the system has attempted to enter
either the global standby mode or the suspend mode, and if
it found that the hard disk drive 323 was still busy, then
as described in more detail below and in the previously-

WO 92/21081

10

20

30

PCT/US92/04169

mentioned copending application, the SCP will actuate the
ENABLE line to the gate 438, and then return to the
interrupted application program. Then, the instant the
hard disk drive 323 finishes what it is doing and
deactuates the LED line which controls its light emitting
diode, the gate 438 will actuate the HDNB line to gate 433
which in turn will actuate the EXTPMI line.

consequently, at block 572, the processor 311 checks the
jnformation received from the SCP in order to see whether
the reason for the PMI was the signal from the hard disk.
If it was, then control proceeds to 573, where the
processor checks the ST flag (Figure 3) in order to
determine whether it was previously attempting to enter
suspend mode or global standby mode when it found that it
had to wait for the hard disk. If the flag is not set
because the system was attempting to enter the suspend
mode, then control proceeds to block 576, where a
subroutine call is made to the suspend handler routine,
which will be described in more detail later. On the other
hand, if it is determined at 573 that the system is
attempting to enter global standby mode, then at 577 the
processor instructs the hard disk 323 to spin down its
motor, and control then proceeds to block 578 where a
subroutine call is made to a routine which causes the
processor to enter the global standby mode, as discussed in
detail later. Upon termination of the suspend mode or the
global standby mode, control proceeds from block 576 or 578
to block 579. Also, if it had been determined at block 572
that the source of the PMI was not a signal from the hard
disk, then control would have proceeded at 581 directly to
block 579. In 579, the processor checks for the second
condition which may have caused the SCP 316 to initiate the
PMI. 1In particular, the SCP monitors the DC/AC signal from
the power control circuit, which indicates whether the
system is currently receiving DC power from the battery 396
or is receiving AC power from the converter 398. When the
SCP detects that a change has been made from AC power to DC

power, or from DC power to AC power, it actuates the EXTPMI

WO 92/21081 PCT/US92/04169

10

20

30

-20-

signal to the main processor. If it is determined at block
579 that this is the reason for the PMI, then control
proceeds to block 582. A feature of the system is that the
SCP maintains configuration data for use under AC power
which is different from the configuration information it
maintains for use under DC power. For example, when
operating on AC power, power consumption is less of a
concern, and thus the user may elect to keep the floppy
disk drive 327 powered up all the time when operating under
AC power, and to allow the system to automatically power it
down when not in use as described above only when operating
under DC power. Accordingly, at block 582, the main
processor instructs the SCP to send it appropriate
configuration values, namely AC values if a switch has been
made to AC mode and DC values if a switch has been made to
DC mode. Then, the processor implements these values in
the system configuration, for example by reloading the
preset registers 356 and 357 with their AC preset values
rather than their DC preset values. The processor sends
two timer preset values back to the SCP for use in a
suspend timer and a backlight timer maintained by the SCP,
as described later. Control then proceeds to block 583.
Control also proceeds directly from block 579 to block 583
if it is determined at block 579 that the source of the PMI
was not a change between AC and DC power.

In block 583, the processor checks for the third of the
conditions which would cause the SCP to initiate a PMI. 1In
particulaf, some of the keys 441 of the internal keyboard
317 can be pressed simultaneously, and the SCP is capable
of detecting these special multi-key or hot key
combinations. When the processor detects one of several
special multi-key combinations, it actuates the EXTPMI line
to the main processor, so that any program in progress is
immediately interrupted, a special function is carried out,
and then the program in progress is resumed. If it is
found at 583 that one of the special multi-key or hot key
combinations has been pressed, control proceeds to block
586, which is the first in a sequence of eight blocks 586-

WO 92/21081

10

20

30

PCT/US92/04169

=30~

593 checking for each of the special multi-key combinations
which can cause the SCP to initiate a PMI. This
information is in a coded field in the byte sent by the SCP
at 571 to indicate the reason for the PMI.

In block 586, the processor checks to see if the multi-
key or hot key combination was one which indicates that the
user wants the CPU to run at a slow clock speed. 1In a
situation where the user is operating on battery power and
is running a program which does not require fast processor
speed, intentionally reducing the- processor speed will
reduce power consumption and thus permit the user to
operate the system longer before the battery requires
recharging. Thus, in block 596, the processor actuates
line 391 (Figure 1) to cause the speaker 392 to beep once,
and then clears the FC flag (Figure 3) in order to indicate
that the selected CPU speed is a slow speed. The processor
does not immediately change the clock speed because, as
mentioned above in association with blocks 506 and 522 in
Figure 4, the PMI handler routine always executes at a fast
clock speed. The slower speed selected in block 596 by
clearing the FC flag will be implemented in block 522 as
the processor prepares to leave the PMI handler routine.
on the other hand, if the hot key is not a request for slow
CPU operation, then control proceeds from block 586 to
block 587, where a check is made to see if the hot key is a
request for fast CPU operation. If it is, control proceeds
to block 597, where the processor causes the speaker 392 to
beep twice and then sets the FC flag in order to indicate
that a fast processor speed is desired.

If it is determined in block 587 that the hot key is not
a request for a fast processor speed, then control proceeds
to block 588, where a check is made to see if the hot key
is a request for a pop-up/set-up screen, which permits the
user to change system set-up information in the middle of
an application program. If this is the hot key pressed,
then control proceeds to block 598, where a subroutine call
is made to a pop-up/set-up handler routine. This handler

WO 92/21081 PCT/US92/04169

10

20

30

-31-

routine will be described after the other hot keys shown in
Figure 8 have been described.

If the actuated hot key is not the pop-up/set-up key,
then control proceeds to block 589, where a check is made
to see if the hot key pressed is a user request that the
system enter the global standby mode. A user might want to
enter global standby mode when he knows that he will not be
using the system for a short period of time and wants to
conserve power, but does not want to enter full suspend
mode. If it is found that the user has requested
intentional entry to global standby, then control proceeds
from block 589 to block 601, where the processor reads a
status register in the hard disk drive 323 in order to see
if the hard disk drive 323 is busy. If the hard disk drive
is not busy, then control proceeds directly to block 602,
where a subroutine call is made to a routine which guides
the system into standby mode, this routine being described
in detail later. _

On the other hand, if the hard disk is busy, then the
entry to standby mode must wait until the hard disk is not
busy. Therefore, control would proceed from block 601 to
block 603, where the processor instructs the SCP to actuate
the ENABLE signal in order to enable the gate 438, as
previously mentioned. The processor also sets the ST flag
(Figure 3) in order to indicate that, when the hard disk is
no longer busy, the system should enter global standby mode
rather than suspend mode, in particular as already
discussed above in association with block 572 of Figure 8.
Thus, after block 603, the PMI handler routine will
continue and will eventually return control to the
interrupted application program, and then when the hard
disk drive 323 ultimately finishes what it is doing and
deactuates its LED control line, a further PMI will be
generated and will cause the system to eventually reach
previously-described blocks 572, 573, 577 and 578 in order
to enter the standby mode.

If it is determined at block 589 that the hot key pressed
is not the request to intentionally enter the global

WO 92/21081

10

20

30

PCT/US92/04169

-32-~

standby mode, the processor proceeds to block 590, where a
check is made to see if the hot key is a request by the
user for a change in the palette used for the ICD 321
(Figure 1). In this regard, the LCD 321 in the preferred
embodiment is a monochrome display rather than a color
display, and the flash RAM 331 contains 16 predefined
palettes which represent respective variations of the gray
scale capabilities of the monochrome LCD 321. Since most
application programs are written to operate with color
displays, the screens they produce can sometimes be
somewhat difficult to read when presented on a monochrome
display. However, the screens may be easier to read with
some gray scale palettes than with others.

The present system permits a user to quickly run through
an adjustment of palettes while within an application
program, where he can immediately see the effect of each
palette. In pre-existing systems, it was typically
necessary to exit the application program, adjust the
palette selection in the set-up data, and then re-enter the
application program to see the effect of the new palette,
which is obviously tedious and time consuming when there
are several possible palettes which need to be tried.

Thus, if it is determined at 590 that the user wants to
shift down one palette in the table of 16 palettes, control
is transferred to block 606, where the processor retrieves
an identification of the current palette stored at 485 in
the PMRAM, obtains the next lower palette from the table of
16 palettes in the flash RAM 331, configures the registers
446 of the video controller 318 to implement this new
palette, and records an identification of this new palette
at 485 in the PMRAM.

If it is determined at 590 that the hot key is not a
request to shift down a palette, control proceeds to block
591 where a check is made to see if the request is to shift
up one palette. If so, control proceeds to block 607,
where the processor carries out a sequence similar to that
in block 606 except that it shifts up one palette in the
table rather than down one palette. If it is determined

WO 92/21081 PCT/US92/04169

10

20

30

-33-

at block 591 that the actuated hot key is not a request to
shift up a palette, then control proceeds to block 592,
where a check is made to see if the hot key pressed is a
request that the current display device be swapped, in
particular from the LCD 321 to an external CRT 426 if the
LCD is currently active, or from the external CRT to the
LCD if the CRT is active. If the user has requested this
change, then control proceeds from block 592 to block 608,
where the processor instructs the SCP to identify the
active video unit. The response- from the SCP is examined
at 609, and if the LCD is active control proceeds to block
610, where the processor instructs the SCP to deactuate the
line LCDPWR to power down the LCD, and to set the CRT/LCD
line to select the CRT. Then, the processor configures the
video controller for operation with the CRT. On the other
hand, if the CRT is found to be active at 609, then control
proceeds to 614, where the processor configures the video
controller for operation with the LCD, and then instructs
the SCP to set the CRT/LCD line to select the LCD, and to
actuate the LCDPWR line to power up the LCD.

If it is determined at block 592 that the actuated hot
key is not a request for a display swap, then control
proceeds to block 593, where a check is made to see if the
hot key pressed is a request to temporarily lock up the
system. If it is not, then control proceeds to block 611,
which is the common return from the EXTPMI handler to the
calling routine of Figure 4. Otherwise, control proceeds
from block 593 to block 612, where the processor 311
instructs the SCP 316 to send a system password which is
stored in the EEPROM 439 of the SCP. Then, at block 613,
the processor uses the display to ask the user to enter a
password, waits for a line of information, and accepts the
line of information entered by the user on the keyboard.
Then, at block 616, the system compares the passwords from
the user and the SCP, in order to see whether they are the
same. If they are not, the system continues to loop
through blocks 613 and 616. Otherwise, control proceeds
from block 616 to the return at 611. By using this hot

PCT/US92/04169

WO 92/21081

10

20

30

-34-

key, the user can essentially leave his system when it is
up and running while preventing another from using it while
he is gone, because the system will not respond unless the
correct password is entered. When the user returns, he
enters the correct password, and then can return to
whatever he was doing.

Referring back to block 598 in Figure 8, the pop-up/set-
up handler is shown in Figure 9, and will now be described.
Execution begins at block 618 in Figure 9, where the
processor instructs the SCP to dova partial state save, in
response to which the SCP sends the processor two bytes
containing mode information. For example, the mode
information indicates whether the interrupted application
program currently has the keyboard disabled. Obviously,
the keyboard needs to be enabled where the FMI handler
needs to obtain input from the user through the keyboard,
and thus this mode information is saved so that the SCP can
change its mode of operation to meet the needs of PMI
handler, and after meeting these needs the original mode
information is restored as described below so that the
system will be returned to the interrupted application
program in the same mode it was in when the application
program was interrupted. After receiving the two bytes of
mode information at 618 from the SCP, the processor stores
them at 483 (Figure 3) in the capital PMRAM. Then, the
processor instructs the SCP to send the current password.
If it is determined at block 621 that the password is
active, the user enters the password and it is checked at
blocks 622 and 623 in a manner similar to that described
above in association with blocks 613 and 616 of Figure 8.
If the user enters a password which is not correct, then
the portion of the handler which permits the user to change
set-up information is skipped at 626. However, if the
password is found to be correct at 623, or is found not to
be active at 621, control proceeds to block 627, where the
user is presented with a menu or menu system which permit
the user to specify a set-up parameter to be changed and to
then enter a new value for that parameter. At block 628,

WO 92/21081 PCT/US92/04169

10

20

30

-35-

the processor accepts and saves this parameter. The types
of parameters which can be entered include an AC value and
a DC value for the preset time period for each of the
timers 351 and 352, an AC value and a DC value for the
suspend timer and backlight timer which are implemented in
the software of the SCP (as described later), a user
indication of whether the mask for the resume mask register
382 should permit a resume reset in response to an ALARM
signal from the real time clock 376 or a modem ring signal
MDMRI from the modem, a user indication of whether
deactuation of the manual switch 313 should place the
system in a suspend condition or a power-off condition, a
user indication of whether the LCD or an external CRT
should be used as the active display, and a user
specification of a new password. Other set-up information
which is conventional and not pertinent to the present
invention can also be entered. As each item is entered,
the processor 311 sends it to the SCP 316 with a command
instructing the SCP to store the information in the EEPROM
439. At 631, the processor can loop to continue to
accepting information at 627 and 628 so long as the user
wants to change set-up values. When the user is done,
control proceeds to block 632, where the processor 311
instructs the SCP 316 to accept and restore the two mode
bytes which the SCP sent to the processor 311 at block 618,
and then follows the command with the two bytes. Then, at
633, a return is made to the calling routine.

Referring once more to Figure 4, if it is determined at
block 513 that the source of the PMI is a time out of the
global standby timer 352 (Figure 1), control proceeds from
513 to block 636. Time out of this timer means that there
has been little or no activity in the system for a
predetermined period of time, and therefore the system is
going to automatically transition to a global standby mode
in which the processor 311 places the number of system
components in a reduced power mode and then halts itself in

order to conserve power, or to the suspend mode.

WO 92/21081 PCT/US92/04169

-36-

At block 636, a subroutine call is made to a global
standby handler routine, which is shown in Figure 10. A
condition for entering global standby mode is that the
floppy disk drive 327 and the hard disk drive 323 be
quiescent. Therefore, the processor reads status infor-
mation from the floppy disk drive and the hard disk drive
in a conventional manner, and checks this information at
638 and 639 of Figure 10 in order to determine whether the
floppy disk drive motor is running or the hard disk drive

10 controller circuitry is busy. If the motor is running or
the circuitry is busy, then control proceeds to block 641,
where the global standby timer 352 is restarted, and then
at 642 a return is made to the calling routine without any
entry to the standby mode or suspend mode.

More typically, the floppy disk drive and the hard disk
drive will not be busy, and thus control will proceed
through blocks 638 and 639 to block 643, where the
processor 311 checks the set-up information in the SCP in
order to see whether the user has specified that time out

20 of the global timer 352 is to be interpreted to mean that
the system enters standby mode, or proceeds directly
suspend mode. In particular, if the user has specified a
standby preset, then a timeout of timer 352 means the
system will enter standby mode. On the other hand, if the
user has not specified a standby preset but has specified a
suspend preset after which the system is to enter suspend
mode, then the suspend preset is used for timer 352, and
when it expires the system enters suspend mode. If the
system is to go to suspend mode, then control proceeds to

30 block 647, where a subroutine call is made to the suspend
handler which places the system in suspend mode, as
described in more detail later. On the other hand, the
more common determination at 643 is that the user intends
the system to go to standby mode, and thus control would
proceed to block 646, where a subroutine calls is made to
the previouély-mentioned routine which guides the system
into global standby mode. This routine will now be

described in association with Figure 11.

WO 92/21081 PCT/US92/04169

10

20

30

-37-

In Figure 11, the system begins by sending commands to
the SCP which instruct it to deactuate the LCDPWR line in
order to power down the LCD display if the display is not
already powered down, to deactuate the VIDEN line in order
to power down the video controller, to deactuate the BLON
line in order to power down the backlight for the LCD
display, and to deactuate the MDMEN line in order to turn
off the modem 322. Then, the processor 311 deactuates the
FDDSLT line in order to power down the floppy disk drive.
Then, the processor either sets of clears the TV flag
(Figure 3) in order to indicate whether or not the
operating system 471 (Figure 3) supports time and date
information. Then, the processor 311 sends a command to
the hard disk drive 323 which tells it spin down its motor,
and sends a command to the SCP which advises the SCP that
the processor 311 is entering the standby state, after
which the processor 311 stops its clock. Thus, the
processor 311 essentially stops operating. It remains in
this state until some form of system activity causes the
selector 346 to actuate the BREAK EVENT signal.

While the processor 311 is in this inactive state, the
SCP 316 remains fully active, and in fact has the
responsibility of waking up the main processor 311 in the
event certain things occur. In particular, if a key on the
keyboard 317 is pressed, then SCP will actuate interrupt
signal IRQ1l, as it normally does for a standard key press.
The IRQ1l interrupt signal is connected to the selector 346,
and will actuate the BREAK EVENT signal to wake up the
processor 311. Also, the SCP 316 monitors the modem ring
signal MDMRI from the modem 322, and will wake up the
processor 311 in the event there is an incoming ring signal
from a telephone line connected to the jack 434. Further,
if the user has specified a suspend timer preset, the SCP
will maintain a software timer starting from the point in
time when the main processor 311 enters the standby mode.
The basic pﬁilosophy is that, if the system has been in
global standby mode for the specified time period with no

activity sufficient to wake it up, it will automatically

PCT/US92/04169

WO 92/21081

10

20

30

-38-

proceed to the suspend mode when the time interval expires
in order to further conserve power. O0f course, the user
can specify that this timer is not to be active, in which
case the system will simply remain in the standby mode.
However, for purposes of explaining the present invention,
it will be assumed that the user has enabled the suspend
timer function, and that the SCP therefore maintains this
timer in software. In the event this timer in the SCP
expires, or in the event the SCP detects a modem ring
signal, the SCP generates a false keystroke signal by
actuating the interrupt signal IRQ1l in order to actuate the
BREAK EVENT signal in the processor 311 and thus wake the
processor up. Whereas in the case of a real keystroke the
SCP sends the processor a coded representation of the
particular key pressed, in the case of suspend timer
expiration or a modem ring signal, the SCP sends one of two
respective codes which do not correspond to any existing
key on the keyboard and which the processor 311 is
programmed to recognize as representing the timer
expiration or the modem ring signal.

Thus, when the BREAK EVENT signal is eventually actuated
in order to wake the processor up, the hardware of the
processor 311 automatically restarts the CPU clock, and
then the processor 311 proceeds at 652 with the software
routine of Figure 11, in which it accepts and examines the
code from the SCP. If it is determined at 653 that the
code is an indication that the software suspend timer
maintained by the SCP during standby has expired, then
control proceeds to block 654, where a subroutine call is
made to the routine which handles entry into the suspend
mode, and thus the system proceeds automatically from
standby mode into suspend mode. On the other hand, if it
is determined at 653 that the BREAK EVENT signal was caused
by any other condition, such as an actual keystroke on the
keyboard or a modem ring indicator signal, then the
processor 311 needs to return to the normal operational

mode, and therefore proceeds to block 657.

WO 92/21081 PCT/US92/04169

10

20

30

-39~

In block 657, the processor 311 checks the TV flag
(Figure 3), which it set before entering standby in order
to provide an indication of whether the operating system
maintains time and date information. If the flag is set to
indicate that it does, then control proceeds to block 658,
where the processor 311 extracts up-to-date time and date
information from the real time clock circuit 376 (Figure
1), and updates the time/date information at 472 (Figure 3)
in the operating system.

Control then proceeds to block'661, where the processor
11 checks the shadow register information at 486 (Figure 3)
for the floppy disk drive, in order to determine the
operational mode the floppy disk drive was in before the
floppy disk drive was powered down for the standby state.
The floppy disk drive can be operated in an ALWAYS ON mode
in which it is never turned off except for standby and
suspend, an AUTO ON mode in which it is left off when the
system is powered up but will be turned on and then remain
on if it is accessed at any point, and a FULL AUTO mode in
which it is turned on and off as needed as a function of
the extent to which it is being accessed, as already
described above. With respect to the FULL AUTO mode, the
I/0 trap logic 361 and the local timer 351 are set to
disable the FDD TRAP and the LOCAL STANDBY signals except
when the floppy disk drive is being operated in the full-
auto mode. If the floppy disk drive is not being operated
in the FULL AUTO mode, then control proceeds from block 661
to block 662, where the processor 311 actuates the line
FDDSLT in order to restore the power to the floppy disk
drive 327, and restores the state of the floppy disk drive
from the shadow registers stored at 486 (Figure 3) in the
main memory. In either case, control proceeds to block
663, where the processor 311 instructs the SCP 316 to
actuate the line MDMEN in order to restore power to the
modem 322, and to actuate the line VIDEN in order to
restore power to the video controller 318. The processor
311 then asks the SCP to identify whether the active video
unit is the LCD 321 or an external CRT 426. If the reply

PCT/US92/04169

WO 92/21081

10

20

30

-40-

from the SCP indicates that the active unit is the LCD,
then control proceeds to block 667, where the processor 311
instructs the SCP to set the line CRT/LCD to select the
ILcD, and to actuate the signal BLON in order to turn on the
backlight to the LCD. On the other hand, if the external
CRT is the active unit, then control proceeds from block
666 to block 668, where the processor 311 instructs the SCP
to set the line CRT/LCD to select the external CRT 426. In
either case, control returns at 669 to the calling routine.

Subroutine calls to the suspend handler routine which
guides the system into suspend mode have previously been
mentioned in association with block 531 in Figure 5, block
576 in Figure 8, block 647 in Figure 10, and block 654 in
Figure 11. The suspend handler routine will now be
described in association with Figure 12. As previously
mentioned, suspend mode is not entered while the hard disk
is busy. Therefore, the processor 311 begins at 671 in
Figure 12 by reading in a conventional manner certain
status information from the hard disk drive 323 in order to
determine whether it is busy. If it is, control proceeds
to block 672, where the érocessor instructs the SCP to
actuate the ENABLE signal to the gate 438, and then clears
the ST flag (Figure 3) in order to indicate that, when the
processor 311 is signalled that the hard disk is no longer
busy, the processor will decide at block 573 in Figure 8 to
enter the suspend mode at block 576 rather than the standby
mode at block 578, as already described in association with
Figure 8. From block 672, control proceeds to 673, where a
return is made from the suspend handler routine without
entry into the suspend mode.

on the other hand, if the hard disk is not busy at block
671, then control proceeds to block 676, where the
processor 311 reads the current status of the hard disk
drive 323 and saves it in the portion 482 of the PMRAM
(Figure 3). The precise manner in which this occurs is
discussed later. After this information has been obtained

from the hard disk and stored in the memory, the processor

WO 92/21081 PCT/US92/04169

10

20

30

-4]1-

311 deactuates the line HDDSLT in order to place the hard
disk drive in a reduced power mode.

Control then proceeds to block 677, where the processor
checks the BATTLOW line from the SCP in order to determine
the state of the battery power. If it is determined that
the battery power is waning, then control proceeds directly
to block 678, which is described in a moment and causes the
system to proceed into suspend mode. On the other hand, if
the battery power is sufficient, then control proceeds to
block 681, where the processor checks to see if the floppy
disk drive is busy. If it is, then control will proceed to
block 682, where the processor 311 actuates line 391
(Figure 1) in order to cause the speaker 392 to beep, and
warns the user on the display that the floppy disk drive is
active. Then, at 673, control is returned to the calling
routine without entry into the suspend mode. On the other
hand, if it is determined at block 681 that the floppy disk
drive is not busy, then control proceeds to block 678 to
begin the final sequence of entry into the suspend mode.

In block 678, the processor 311 extracts from its stack
492 (Figure 3) an indication of the point from which the
suspend handler routine was called, in particular in the
form of the value of the instruction pointer which has been
saved on the stack and which indicates the point to which
program control is to be returned. The processor 311 saves
this in the main memory for use during a subsequent resume,
as described later. Then, at block 683, the processor 311
checks to see whether it is carrying out an automatic entry
to suspend mode from standby mode, in particular through
block 654 in Figure 11. If it is, then the processor 311
has already addressed whether or not the operating system
supports time and date information as part of its entry
into the standby mode. On the other hand, if it is not
entering suspend mode directly from standby mode, it
proceeds to block 686, where it either sets or clears the
TV flag (Figure 3) in dependence on whetherror not the
current operating system supports time and date

WO 92/21081 PCT/US92/04169

-42-

information. In either case, control then proceeds to

block 687.

In block 687, the processor 311 takes the CPU state saved
at 481 (Figure 3), and creates a copy of it at 488. This
is because a further PMI interrupt will be intentionally
induced during a resume from the suspend mode in a manner
described later, at which point the hardware will
necessarily overwrite the information saved at 481. Since
this information is needed to resume the interrupted

10 application program, a copy of it is temporarily saved at
488. In addition, the processor 311 saves at 488 some
selected internal registers which are not automatically
saved at 481 in response to a PMI. This is because the PMI
handler routine can service most PMI interrupts without
altering these selected registers, and thus in order to
speed up handling of most PMI interrupts the processor 311
does not save the selected registers. On the other hand,
these registers must be saved in order to enter suspend
mode, because the portion of processor 311 which contains

20 them will be powered down during suspend mode and the
contents of these registérs would thus be lost. Therefore,
before entering suspend mode, they are saved at 488.

Ccontinuing with block 687 in Figure 11, the processor
reads status information from the floppy disk drive in
order to determine whether a floppy disk is present in the
floppy disk drive, and sets the DF flag (Figure 3) if a
disk is present or clears the flag if a disk is not
present. This is so that when operation resumes it will
know if a disk should be present in the drive, because it

30 is possible that a user might remove the disk while the
system is in suspend mode or, worse yet, replace the disk
with a different disk. If the interrupted application
program were in the middle of writing data to the disk when
the suspend occurred, it would have no way of knowing at
resume that the disk had been changed, and might complete
jts task of writing data to the floppy disk drive without
knowing that it was writing the data on to the wrong disk.

WO 92/21081 PCT/US92/04169

10

20

30

-4 3=

Then, still at block 687, the processor reads 3 bytes of
status information in a conventional manner from the mouse
421 (if one is present), and stores the bytes at 482. An
external keyboard, on the other hand, has no such status
information which must be saved, but instead is always
maintained in exactly the same configuration and mode as
the internal keyboard. Then, the processor 311 configures
and loads into mask register 382 (Figure 1) the resume mask
which determines the events which will wake the processor
up from the suspend mode. Then, the processor reads the
video RAM 448 from the video controller 318, compresses the
video information using a conventional data compression
technique, and then stores the compressed data in the
portion 478 (Figure 3) of the main memory. Then, the
processor 311 sends a series of commands to the SCP which
instruct the SCP to deactuate the line LCDPWR in order to
power down the LCD display, to deactuate the line VIDEN in
order to power down the video controller, to deactuate the
line BLON to turn off the backlight for the LCD display,
and to deactuate the line MDMEN in order to power down the
modem. Then, the processbr 311 sends the SCP a command
which instructions the SCP to send the processor 311 the
contents of its RAM 440 and certain internal registers.

The processor 311 accepts this information from the SCP,
and stores it at 482 (Figure 3) in the PMRAM. Then, the
processor 311 sets the refresh control circuit 386 (Figure
1) to carry out extremely slow refresh to the main memory,
and then deactuates the signal SYSPWROFF to the power
control circuit 312 so that the power control circuit turns
off the SYSVCC power to the SCP, keyboards, video con-
troller, hard disk drive, LCD display, modem, floppy disk
drive, and ROM 328. The power control circuit 312 is, of
course, still supplying PMVCC power to the main memory 326,
the processor 311, and flash RAM 331. Finally, the
processor 311 executes a software instruction which causes
it to enter suspend mode, as a result of which the
processor 311 stops operating and internally turns off
power to most of its circuits, with the exception of

WO 92/21081

10

20

30

PCT/US92/04169

-4 4 -

circuits such as the real time clock 376 which must
continue to maintain time and date information, the resume
control circuitry 381-383 which must be capable of
detecting conditions causing operation to resume, and the
refresh control circuit 386 which is maintaining the data
in main memory 326.

If the user has specified that an ALARM signal from the
real time clock 376 or a modem ring indicator signal MDMRI
from the modem 322 is to be capable of waking up the
processor, then the processor will have configured the
resume mask 382 so that either of these events will produce
a RESUME RESET signal. However, the most common cause for
a resume is manual actuation of the switch 313 by a user.

The RESUME RESET signal sets the resume flag 383, where-
as this flag is automatically reset by any other reset
signal. Further, the RESUME RESET causes the processor 311
to internally restore power throughout its internal
circuitry, and the processor automatically brings the
refresh control circuitry 386 back to a normal state so
that the main memory 326 can be accessed. In response to
any type of reset, the processor 311 automatically goes to
a predetermined location in the flash ram 331 and executes
the first instruction of a reset handling routine stored
there. This routine is shown in Figure 13. The processor
311 may begin by doing some internal diagnostics, but this
is conventional and therefore not illustrated in Figure 13.
For purposes of the present invention, the first
significant step performed by the processor 311 is to
deactuate SYSPWROFF in order to cause the power control
circuit 312 to turn system power SYSVCC back on, so that
the SCP, keyboard, video controller, LCD display, modem,
hard disk drive and floppy disk drive again have access to
a source of power.

Then, at 692, the processor checks the resume flag 383
(Figure 1). If it is set, then the processor will attempt
to configure the system using the set-up information stored
in the EEPROM 439 of the SCP. If it is not set, then the
system is performing a cold boot and will attempt to

WO 92/21081 PCT/US92/04169

10

20

30

45

configure itself using the set-up information stored in the
RAM 377 of the real time clock circuit 376. More
specifically, if the resume flag is set to indicate that
the system is resuming from suspend mode, then control will
proceed from block 692 to block 696, where the system will
attempt configuration using the current set-up information
stored in the EEPROM 439 of the SCP.

In particular, at block 696, the processor 311 instructs
the SCP to send current set-up information to it. It
performs a checksum on this information and compares it at
697 to a checksum value present in the set-up information
itself in order to determine if the set-up information is.
valid. If it is, then control proceeds directly to block
698, where the system will configure itself using this set-
up information. On the other hand, if it is determined at
block 697 that the current set-up information is not valid,
then control proceeds to block 701, where the system warns
the user that the current set-up information is not valid
and asks for authorization to use the boot set-up informa-
tion stored in the real time clock circuit 376. If the
user refuses, then block 702 transfers control to block
703, where the system halts. The user would have the
option of restarting the system with a conventional set-up
disk in order to configure it in a desired manner.
Typically, the user would approve use of the boot set-up
information, and control would thus proceed from block 702
to block 693, where the processor 311 would run a checksum
on the boot set-up information in the real time clock
circuit 376 and compare the checksum to a checksum stored
in the real time clock circuit 376. If the checksum was
accurate, then control would proceed directly to block 706,
where as described below the system would be configured
using the boot set-up information. Otherwise, control
proceeds to block 707, where the processor 311 warns the
user that the boot set-up information is not valid and asks
for authorization to use the factory default set-up
information stored in the flash RAM 331. If the user

WO 92/21081 PCT/US92/04169

-4 6=

refuses permission, then at 708 control is transferred to
block 711, where the system halts.

Ootherwise, control proceeds to block 712, where the
processor runs a checksum on the factory default set-up
information in the flash RAM 331 and compares the result to
a checksum stored in the flash RAM. If an error is
detected, control proceeds to 713, where the user is warned
that the system has no usable set-up information, and then
the processor halts at 711. However, if the factory

10 default set-up information is found to be accurate at block
712, then control proceeds to block 716, where the factory
default set-up information is copied from the flash RAM to
the RAM 377 in the real time clock circuit 376. Then, at
block 706, the set-up information in the real time clock
circuit 376 is sent to the SCP, and the SCP stores it in
the EEPROM 439 for use as the current set-up information.
Then, at block 698, the processor 311 configures the system
according to the set-up information which is stored in the
SCP.

20 Then, at block 707, the processor again checks the resume
flag 383 in order to determine if a resume is being
performed. If it is not, then control proceeds to block
708, where the processor starts the operating system in a
conventional manner. Otherwise, control proceeds from
block 707 to block 711, where the processor 311 executes a
software instruction which generates a PMI interrupt in
order to invoke the previously-described PMI handler
routine. Thus, the software PMI causes the processor to
continue with the PMI handler routine shown in Figure 4.

30 In particular, at previously-described block 502, the
system checks the resume flag again in order to determine
whether the PMI handler has been entered as a function of
resuming from a suspend state, or for some other reason.
Since in this case the flag will be set, control proceeds
to block 503, where a branch is made to a resume handler
routine which is shown in Figure 14.

At block 713 in the resume handler routine of Figure 14,

the processor 311 begins by extracting from portion 488

WO 92/21081 PCT/US92/04169

10

20

30

-47-

(Figure 3) of the main memory the states of selected
registers which it stored there, and restoring these values
directly to the registers in the processor itself. Then,
the processor transfers from the portion 488 to the portion
481 the states of the remaining processor registers,
thereby overriding the information stored at 481 by the
software PMI used to reenter the PMI handler, so that at

.the end of the resume handler the hardware will be able to

find and restore these register states to the registers of
the processor 311 when the PMI handler is terminated and
the interrupted application program is resumed. Then,
still at 713 in Figure 14, the processor instructs the SCP
to carry out restoration of its state, and sends the SCP
the contents of the SCP registers and RAM stored by the
processor 311 in the main memory prior to entering suspend
mode. Then, the processor instructs the SCP to actuate
the VIDEN signal in order to turn on the video controller.
Then, the processor restores the configuration of the video
registers 446, and then uncompresses and restores the video
RAM from the state of the video RAM saved at 478 in the
main memory. Then, the processor 311 instructs the SCP to
identify from the set-up information in EEPROM 439 the
active video unit. Then, if the processor finds at block
716 that the LCD display is the active video unit selected
by the user, it proceeds to block 717 where it instructs
the SCP to actuate the LCDPWR signal in order to power up
the IcD, and to actuate the BLON signal in order to turn on
the backlight for the LCD display. On the other hand, if
it is determined at 716 that the user has selected the
external CRT 426 as the active video unit, control proceeds
to block 718 where the processor instructs the SCP to set
the CRT/LCD signal to select the CRT. In either case, at
block 721 the processor then instructs the SCP to actuate
the MDMEN line in order to power up the modem 322. Then,
at block 722, the processor checks the shadow register
information at 486 in order to determine if the floppy disk
drive is being operated in FULL AUTO mode. In not, then at
block 723 the processor actuates the FDDSLT line in order

WO 92/21081

10

20

30

PCT/US92/04169

-4 8=

to power up the floppy disk drive, and sends the shadow
registers stored at 486 to the floppy disk drive in order
to restore the configuration of its control registers.

Control ultimately proceeds to block 726, where the
processor sets the DC flag 473 (Figure 3) in order to force
an indication to the operating system that a floppy disk
change has occurred. This will force the operating system
to reread certain standard tables from the disk to an image
of the disk in memory, thereby ensuring that if a user has
changed the disk while the system 'was in suspend mode, the
image of these tables in memory will at least correspond to
the tables of the disk which is actually present in the
disk drive, as opposed to tables on a disk which is no
longer present in the disk drive.

Then, still in block 726, the processor 311 actuates the
1ine HDDSLT in order to power up the hard disk, and then
sends the hard disk the information regarding the state of
the hard disk which the processor obtained from the hard
disk and stored before entering the suspend mode. This
restores the hard disk to the state it was in before
operation of the system was suspended. Then, the processor
instructs the SCP to do a partial state save as previously
discussed in association with block 618 of Figure 9. Then,
the processor instructs the SCP to send it the current
password, and then if it is determined at 727 that the
password is an active password, the processor requests and
accepts a password from the user at 728 and then compares
the passwords at 729. If they do not compare, the
processor remains at 728 and 729, in order to prevent an
unauthorized user from using the system.

If they do compare, control proceeds to 731, where the
processor checks the DF flag (Figure 3) in order to
determine whether a disk was present in the floppy drive
when the system was turned off. If a disk was present,
then control proceeds to block 732, where the processor
uses the active video unit to ask the user to verify that
the same floppy disk is still in the floppy drive or has
been reinserted in the floppy drive. A check is made at

WO 92/21081 PCT/US92/04169

10

20

30

-4 9=

733 to be sure that the user has confirmed that this floppy
disk is present. If it is not, control remains at blocks
732 and 733. Once user confirmation is obtained, control
proceeds to block 736, where the processor instructs the
SCP to do a partial restore, and sends it the two bytes
which were received at block 726. Also, if a mouse 421 is
present, the processor takes from portion 482 of the main
memory the 3 bytes obtained from the mouse before the
suspend, and loads them back into the mouse in a
conventional manner.

Then, at block 737, the processor checks the TV flag
(Figure 3) in order to determine whether the operating
system supports time and date information. If it does,
then in block 738 the processor reads up-to-date time and
date information from the real time clock 376 (Figure 1),
and uses it to update the time and date information
maintained at 472 (Figure 3) in the portion 471 of the main
memory used for the operating system. Then, at 741, the
processor instructs the SCP to send it the set-up
information stored in the EEPROM 439 for the timers 351 and
352, and uses this information to configure the registers
356 and 357 for the timers 351 and 352 so that the timers
start running (or to disable the timers if the timers will
not be used). Then, at 741, the processor uses the pointer
saved at block 678 in Figure 12 to modify its stack 492 so
that, when it immediately thereafter does a subroutine
return at 742, the processor 311 will return to the point
from which the suspend handler subroutine was called before
the processor entered the suspend mode, or in other words
to one of the blocks 531, 576, 647 and 654 respectively
appearing in Figures 5, 8, 10 and 11. Following the
subroutine return, the system continues execution of the
PMI handler routine from the point at which execution was
placed on hold so that the system could enter and resume
from the suspend mode. When execution of the PMI routine
is eventually completed, the processor 311 will exit from
the PMI handler at blocks 522 and 523 of Figure 4 in the
manner previously described, so that execution of the

WO 92/21081

10

20

30

PCT/US92/04169

-50—-

interrupted application program resumes as though there had
been no interruption at all.

Turning now in more detail to the system control
processor (SCP) 316, Figure 15 is a diagrammatic view of a
portion of the information stored in the EEPROM 439 of the
SCP. A portion 751 of this device is used to store current
set-up information of the type commonly found in
conventional and commercially available personal computers.
In addition, portions 752 and 753 store two different
values of a preset time for the local timer 351, one value
being used when the system is operating on AC power and the
other being used when the system is operating on DC power.
Similarly, portions 756 and 757 store respective AC and DC
values for use in the global standby timer 352, portions
758 and 759 store respective AC and DC values of a suspend
timer preset for the suspend timer maintained in software
by the SCP, and portions 761 and 762 contain respective AC
and DC preset values for a backlight timer maintained by
the SCP. A portion 763 contains the current system
password, and a portion 766 contains a value representing a
board revision number of the main circuit board on which
the processor 311 and SCP 316 are mounted. A further por-
tion 767 contains some flags, including an LC flag which
indicates whether the LCD 321 or the external CRT 426 is
presently the active display device, and an SP flag which
indicates whether manual deactuation of the switch 313 is
to place the system in suspend mode or the power off state.

Figure 16 is a diagrammatic view of the SCP RAM 440 and
some of the information stored therein. 1In particular, a
portion 771 stores a preset for the backlight timer. This
is the value which is currently specified for use in
operating the timer, and in particular is the AC back light
preset stored at 761 in the EEPROM if the system is
operating under AC power, and is the DC backlight preset
stored at 762 if the system is operating under DC power.
Similarly, the SCP RAM stores at 772 a suspend preset which
is one of the AC and DC suspend presets stored at 758 and

WO 92/21081 PCT/US92/04169

10

20

30

-51~

759 in the EEPROM. The SCP RAM also includes locations 773
and 774 which respectively serve as the backlight timer and
the suspend timer. Each timer is started by storing in the
associated location the appropriate preset, which is a
positive number representing the time interval to be timed.
The number of each timer is then periodically decremented
by software in a manner described later, and the timer
expires when the value in the location reaches zero.

The SCP RAM 440 also includes a PMI byte 776. When the
main processor asks the SCP to identify the source of an
external PMI, the SCP sends the main processor the PMI byte
776. This byte includes an HD bit which is set to indicate
that the hard disk LED signal was the source of the PMI,
and AC bit which indicates that the power supply has just
changed to AC power, a DC bit which indicates that the
power supply has just changed to DC power, and a HK bit
which indicates that a hot key multi-key combination has
been pressed on the keyboard and was the reason for the
PMI. In addition, the PMI byte includes a code which
identifies the most recent hot key actuated on the
keyboard. '

The RAM also includes two mode bytes 778 and 779, which
control modes in which the SCP and the keyboard operate.
For purposes of understanding the present embodiment, a
single bit from one of these bytes is shown, which is a
keyboard enable (KE) flag. This KE flag indicates whether
or not information is to be accepted from the keyboards.
Certain application programs may temporarily cause this ‘
flag to be cleared in order to prevent the user from
entering information on the keyboard.

The RAM 440 also includes a portion 781 containing an
additional flag, in particular a standby (SB) flag which is
set to let the SCP know that the main processor is
currently in standby mode. The RAM 440 also includes a
portion 783 which has bits corresponding to each of the
four LEDs 442 on the keyboard 317, and these bits each
indicate whether the associated LED on the keyboard should
presently be on or off for purposes of normal operation.

WO 92/21081

10

20

30

PCT/US92/04169

-5H2=-

The RAM 440 also includes a queue area 786, which is
discussed below, and the usual stack area 787. Each time
power to the SCP is turned on, including the situation
where the system is resuming from the suspend mode, the
hardware of the SCP automatically causes it to execute a
program instruction stored at a predetermined location in
the ROM 437, which is the first instruction of the firmware
program which controls the SCP. Figures 17-20 are
flowcharts of this firmware progdram. Following a power-up
reset at 801, block 802 represents the first portion of the
firmware program, in which the SCP configures itself to a
default set-up. This includes turning power on to the
video controller 318 and LCD 321, and turning on the
backlight 431 for the LCD. This default configuration is
carried out even if the system is resuming from a suspend
mode which was entered while the active display unit was
the external CRT 426 rather than the LCD 321. If the
active display is in fact to be the external CRT 426, then
it is up to the main processor 311 to send commands to the
SCP to appropriately reconfigure it, in a manner described
below. '

After the SCP configures itself to a default set-up
configuration, control proceeds from block 802 to block
803, where the SCP checks to see if the KE flag (Figure 16)
is set to indicate that the keyboards are enabled and
information can be accepted from them. If so, then control
proceeds to block 806, where the SCP scans only the
internal keyboard in order to determine if a key has been
pressed. If one has, then control proceeds to block 807,
where the SCP restarts the backlight timer 773 (Figure 16)
by taking the current backlight preset stored at 771 and
storing it in the backlight timer location at 773. Thus,
so long as keys are being pressed the timer will be
periodically restarted before it can expire and thus will
keep the backlight on, whereas if the backlight timer
expires the SCP will turn off the backlight in a manner

described below in order to conserve power.

WO 92/21081 PCT/US92/04169

10

20

30

-53-

Then, still at block 807, the system forcibly disables
the suspend timer 774, even if this timer is already
disabled, for example by storing a negative number in
location 774. The fact that a key has been pressed means
that, if the main processor 311 did happen to be in the
suspend mode, the SCP would be waking it up in order to
pass it the keystroke, and thus the suspend timer
necessarily needs to be stopped because the main processor
will be exiting standby mode and it is no longer necessary
to measure the period of time it has been in standby mode.
For similar reasons, the SB flag (Figure 16) is forcibly
cleared to indicate that the main processor is not in the
standby mode.

Then, at block 808, a check is made to see if the key
which has been pressed is a hot key, or in other words one
of several specific predefined multi-key combinations. If
not, then at 811 a code representing the particular key
pressed is placed in the queue section 786 of the SCP RAM
440, from which it will be sent in due course to the main
processor. On the other hand, if it is determined at 808
that the key which has been pressed is a hot key, then
control proceeds to block 812, where the SCP updates the
PMI byte 776 (Figure 16) by setting the HK bit to indicate
that a hot key has been pressed and by placing in the code
section of the PMI byte a unique code corresponding to the
particular hot key. Then, the SCP places an unused code in
the queue, which will have the effect of waking up the
processor if it is in the standby mode but which in any
case will be discarded by the processor 311 if it
ultimately reaches the processor 311. Then, still in block
812, the SCP produces an output signal which actuates the
EXTPMI line in order to produce a PMI in the main
processor.

Control ultimately proceeds to block 816, where the SCP
checks to see if the queue 786 is empty. If it is not,
then it contains information waiting to be sent to the main
processor, and control proceeds to block 817, where the SCP
checks to see if the CPUSUREQ line from the main processor

WO 92/21081

10

20

30

PCT/US92/04169

-54-

is actuated to indicate that the main processor is about to
send a command to the SCP. If it is actuated, the SCP does
not send information from the queue, in order to keep the
interface to the main processor clear so that the inter-
face will be available for any information which the SCP
needs to send back to the main processor in response to the
command, while also avoiding the possibility that
information from the queue being sent to the main processor
at about the same time that the main processor issues a
command will be misinterpreted by the main processor as
being a response to the command. If it is determined at
817 that the CPUSUREQ line is not actuated, then at block
818 the SCP takes a code from the queue and places it in an
output register in the interface to the main processor, and
then generates an IRQ 1 interrupt signal in order to
indicate to the main processor that the output register
contains information for the main processor. In the event
the main processor happens to be in standby mode, the IRQ 1
interrupt signal will wake it up from the standby mode, as
already described above in association with the discussion
of the main processor. The processor then loops at 819
through blocks 803 and 818, which constitutes the main loop
of the program in the SCP.

This main loop can be interrupted by different events,
one of which is an attempt by an external keyboard or mouse
421 to send information to the SCP. In response to an
interrupt caused by such an attempt to send information,
the SCP executes the interrupt service routine shown in
Figure 18. In this routine, the SCP first checks the KE
flag at 821 in order to determine whether the user is
currently allowed to input information. If the flag is not
set, then control proceeds to 822, where a return is made
from the interrupt handler without accepting the
information. Typically, however, it will be determined at
821 that the information can be accepted, and therefore it
will be accepted at block 823, and then at block 826 the
system will determine whether it is dealing with an
external keyboard or mouse, and if the device is a keyboard

WO 92/21081 PCT/US92/04169

10

20

30

55

the SCP will proceed to block 827 where it places a code
representing the actuated key in the queue 786. Hot Kkeys
are recognized only for the internal keyboard and not an
external keyboard. If a hot key actuation were received
from an external keyboard, it could be discarded. All
valid codes are thus placed directly in the queue. Then,
the SCP restarts the backlight timer, disables the suspend
timer and clears the SB flag, for reasons similar to those
discussed above in association with block 807, and then
returns at 822 to the interrupted routine.

On the other hand, if it is determined at 826 that the
external device is a mouse, control proceeds to block 828,
where the code received from the mouse is placed in an
output register, and then the SCP actuates interrupt line
IRQ 12, which is reserved for use with a mouse and
indicates to the processor that information from a mouse is
being sent to the processor. Then, the SCP restarts the
backlight timer, disables the suspend timer and clears the
SB flag, and returns at 822.

Another source of interrupts to the main routine shown in
Figure 17 are pulses of tﬁe keyboard clock signal KBCLCK
received from the clock generation circuitry in the main
processor. This interrupt occurs at regular intervals and
thus each occurrence of this interrupt represents the
elapse of an amount of time equal to this interval. The
occurrence of this interrupt is therefore used to keep
track of time, as well as to perform some housekeeping
functions. The firmware service routine for this interrupt
is shown in Figure 19, where the SCP begins at 831 by
decrementing the numbers in each of the timer locations 773
and 774 if they are greater than zero. As mentioned above,
the expiration of each timer occurs when the positive value
in it is decremented to a value of zero.

Then, at 832, the system checks to see if the SB flag is
set, or in other words whether the main processor is
currently in standby mode. If the main processor is in
standby mode, then control proceeds to block 833, where the
SCP checks to see if the suspend timer has just expired, or

WO 92/21081

10

20

30

PCT/US92/04169

-56-—

in other words whether the value in location 774 has just
been changed from one to zero at block 831. If it has,
then the system has remained inactive for a predetermined
period of time while the main processor was in standby
mode, and therefore the main processor is to be shifted to
suspend mode in order to further conserve power until the
user again begins using the system. Thus, at block 836,
the SCP clears the SB flag in order to indicate that the
main processor is no longer in standby mode, because the
SCP is going to break the main processor out of standby
mode so that the main processor can enter suspend mode.
Then, the SCP clears the queue 786, so that the gqueue can
be used to send the main processor a unique code which is
not used by the keyboard and which indicates that the
suspend timer has expired and that the main processor
should transition from standby to suspend mode.

on the other hand, if it is determined at block 833 that
the suspend timer has not yet expired, then at block 837
the SCP checks to see if the modem ring signal MDMRI from
the modem 322 has just been actuated in order to indicate
that there is an incominé call. If it has, then control
proceeds to block 841, where the SCP turns off the suspend
timer 774 and then takes the same actions described above
in association with block 836, except that the unigque code
placed in the queue is a different unique code not used for
the keyboard which will be interpreted by the main
processor -to mean that the modem ring signal has occurred.

If it is determined at 837 that no ring signal is being
received from the modem, then control proceeds to block
842, where the four LEDs 442 on the keyboard are controlled
in a manner which causes them to be sequentially 1lit, which
serves as a visual indication to the user of the system
that the main processor is in standby mode. In contrast,
if it had been determined at block 832 that the SB flag was
not set and that the main processor thus was not in standby
mode, control would have proceeded directly to block 843,
where the LED states stored at 783 in the SCP RAM would

WO 92/21081 PCT/US92/04169

10

20

30

-57-

have been used to set the LEDs 442 in the keyboard 317 to
their normal operational states.

In any event, control ultimately proceeds to block 846,
where the SCP reads the value of the RBATT signal from the
power control circuit 312 through the A/D converter 416,
and then analyzes the state of the signal. The SCP
preferably analyzes the rate of change of this signal over
time, because an inherent characteristic of the
rechargeable battery 396 is that its terminal voltage will
drop very slowly while it has a strong charge, and will
then begin dropping much more quickly a short period of
time before the battery reaches a state where it would not

have enough power to operate the system. Consequently,

‘when it is determined that the rate of change of this

signal has exceeded a predetermined reference value, the
SCP actuates the BATTLOW signal to the main processor 311
as an indication that the battery power is getting low.
However, it will be recognized that a detailed analysis of
the RBATT signal is not necessary, and that the SCP could
alternatively just determine whether the RBATT signal had
dropped below a predefinéd voltage, and then actuate the
BATTLOW signal to the main processor 311.

Thereafter, at block 847, the SCP checks the DC/AC signal
from the power control circuit 312 in order to determine
whether this signal has just changed from one state to
another state. If it has, then control proceeds to block
848, where the SCP sets either the AC bit or DC bit in the
PMI byte 776 to indicate the current source of system power
is AC or DC. Then, the SCP outputs a signal at 435 which
actuates the EXTPMI signal in order to generate a PMI in
the main processor.

At block 851, the SCP checks the LIDSW switch from the
1id switch 432 for the lid on which the LCD display 321 is
mounted. If the 1lid is closed, then control proceeds to
block 852, where the SCP checks to see if the 1lid has just
been closed. If the 1lid was already closed then block 853
is skipped, but if the 1id has just been closed control
proceeds to block 853, where the SCP actuates line 417 to

PCT/US92/04169

WO 92/21081

10

20

30

—58—

cause the speaker 392 to beep, and then deactuates the BLON
line in order to turn the backlight 431 off. It should
thus be noted that if the 1id is closed during system
operation the system does not automatically enter standby
mode or suspend mode, but instead simply beeps to warn the
user that the system is still active, and turns off the
backlight for the LCD in order to conserve power.

If it was determined at block 851 that the 1lid is open,
then at 854 the SCP checks to see if the LCD is currently
the active display, and if it is checks at 855 to see if
the backlight timer has expired, and if the backlight timer
has not expired proceeds to block 856 where it ensures that
the BLON signal is actuated in order to turn on the
backlight 431. On the other hand, if the LCD display is
not active or the backlight timer has expired, then at
block 857 the SCP deactuates the BLON signal to turn off
the backlight. Thus, if the user does not press any key
for a predetermined period of time specified by the
backlight preset at 771, the backlight is automatically
turned off in order to conserve power, but will be
automatically turned back on when the user again presses a
key. After appropriately controlling the backlight, the
SCP proceeds to 858, where control is returned to the
calling routine.

A further event which can interrupt the SCP from the main
routine shown in Figure 17 occurs when the main processor
sends a command to the SCP, the loading of this command
into an interface register automatically generating an
interrupt to the SCP. The interrupt routine which handles
the command is shown in Figure 20. At 866 in Figure 20,
the SCP examines the command which the main processor has
sent it. At 867, if the command indicates that the SCP is
to select the LCD as the active video display, control
proceeds to block 868, where the SCP sets the CRT/LCD
output to select the LCD 321, and then updates the LC flag
(Figure 15) to reflect this setting. On the other hand, if
it were determined at 867 that the command was not to
select the LCD, but it was determined at 871 that the

WO 92/21081

10

20

30

PCT/US92/04169

—59_

command was to select the external CRT 426 as the active
display unit, then control would proceed to block 872,
where the SCP would set the CRT/LCD line to select the CRT,
and update the LC flag. Otherwise, control would proceed
to block 873, where the SCP would check to see if the
command was an indication that the main processor was
entering standby mode, in which case the SCP would proceed
to block 876, where it would set the SB flag to indicate
that the main processor was in standby mode, and would take
the preset value from location 772 (Figure 16) and place it
in location 774 if it is a positive number, in order to
start the suspend timer.

If it were determined at 877 that the command was to
enable the LED signal from the hard disk, the SCP would
actuate its ENABLE output to the gate 438 at block 878.
Otherwise, if it were determined at block 881 that the
command was a request for the SCP to identify the reason
for generation of a PMI through actuation of the EXTPMI
signal, control would proceed to block 882, where it would
check to see if the ENABLE signal to the gate 438 and the
LED signal from the hard disk 323 were both actuated, in
which case it would proceed to block 883 and set the HD bit
in the PMI byte 776. 1In either case, at 886 it would send
the PMI byte to the main processor. If the SCP
proceeded directly from block 881 to block 887, and
determined there that the command was to power up the LCD,
then at block 888 it would actuate the LCDPWR line to the
LCD 321. Otherwise, it would proceed to block 891, and if
it determined there that the command was to power down the
LCD, at block 892 it would deactuate the LCDPWR line to the
LCD.

If the SCP proceeded directly from block 891 to block 893
and determined there that the command was to power up the
backlight, it would proceed to block 896 and actuate the
line BLON in order to turn on the backlight. Otherwise, it
would proceed to block 897, and if it determined there that
the command was to power down the backlight, it would

WO 92/21081

10

20

30

PCT/US92/04169

-60~—

proceed to block 898 where it would deactuate the BLON line
in order to turn off the backlight.

In a similar manner, if the SCP proceeded from block 897
to block 901 or 903 and determined that the command was to
power up or power down the video controller, it would
proceed to one of blocks 902 and 906 and either actuate or
deactuate the VIDEN signal in order to appropriately
control the power to the video controller. Likewise, if
the SCP proceeded to block 907 or 911 and determined that
the command was to power up Or power down the modem, it
would proceed to one of the blocks 912 and 913 and actuate
or deactuate the MDMEN signal in order to appropriately
control the power to the modem.

If the processor proceeded through blocks 907 and 911 to
block 916 and determined that the command was to do a
partial state save, control would proceed to block 917,
where the SCP would send the main processor the two mode
bytes 778 and 779 (Figure 16), and then set the location
778 and 779 in the RAM 440 to a default configuration which
would ensure that information could be sent from the
keyboard through the SCP to the main processor, and thus
for example the KE flag would be set to indicate that the
keyboard is enabled. Otherwise, the SCP would proceed to
block 918, and if it determined there that the command was
to do a partial restore of the SCP, it would accept two
mode bytes from the main processor at 921 and place those
mode bytes into locations 778 and 779 of the RAM 440.

If the SCP proceeded through blocks 916 and 918 to block
922, and determined there that the command was to effect a
full state save of the SCP, it would proceed to block 923,
where it would send the main processor a value representing
the total number of bytes to be sent to the main processor,
followed by the entire contents of the SCP RAM 440, and
selected internal registers of the SCP. Then, the SCP
would enter a continuous loop at 926 (for example by
executing an instruction which performs an unconditional
branch to itself), and wait for the main processor to turn

WO 92/21081 PCT/US92/04169

10

20

30

-5l~

off the power to the SCP as a part of the process of
placing the system in the suspend mode.

If the SCP proceeded from block 922 to block 927, and
determined that the command was to effect a full
restoration of the state of the SCP, it would proceed to
block 928, accept information from the main processor, and
place this information in the SCP RAM and selected
registers of the SCP.

If the SCP proceeded to block 931 and determined that the
command was to send the main processor the current
password, the SCP would proceed to block 932, and would
take the password stored at 763 (Figure 15) in the EEPROM
439 and send it to the main processor. Otherwise, the SCP
would proceed to block 933, and if it determined there that
the command was to accept a new password from the main
processor, it would proceed to block 934, where it would
accept a new password from the main processor and store it
in the location 763 of the EEPROM. '

In a similar manner, each of the other items stored in
the EEPROM 439 are capable of being sent to the main
processor and updated by the main processor in response to
respective commands. This is handled in a manner similar
to that shown above for the password at blocks 931-934, and
thus these separate commands are not all illustrated, but
instead a broken line at 937 is provided to
diagrammatically represent their existence. If the command
is not any of these, then at 941 the SCP checks to see if
the command is an instruction to accept a preset value for
the backlight timer, in which case at 942 the SCP accepts
the preset value and stores it at 771 in the SCP RAM 440.
Similarly, if it is determined at 943 that the command is
to accept a suspend timer preset, then at 946 the SCP
accepts the suspend timer preset and stores it at 772 in
the RAM 440.

There are other commands which are not pertinent to an
understanding of the present embodiment and which are thus
not illustrated and described in detail, but a broken line
has been provided at 948 in order to diagrammatically

WO 92/21081

10

20

30

PCT/US92/04169

-62-

represent their existence. Upon completing the execution
of each command, control proceeds to block 951, which
transfers control back to the calling routine.

Another alternate embodiment of the invention is best
described in reference to Figure 14. In block 726,
reinitialization of the hard disk drive requires several
seconds to complete because the hard disk drive must be
brought up to speed. In an alternate embodiment, reini-
tialization of the hard disk drive would be removed from
block 726 except for asserting power to the hard disk
drive, setting a flag indicating that hard disk accesses
are not allowed, and starting a timer which will generate
an interrupt two or three seconds later. At the timer
interrupt, when the disk drive is up to speed, the disk
initialization procedure is completed and the flag
preventing hard disk drive access is cleared. Under this
approach, all hard disk drive accesses must be trapped by
the PMI handler, and the access flag must be checked before
a hard disk drive access is allowed to proceed. This
allows the processor to run the application program during
the time required for the hard disk drive to get up to
speed, rather than waiting for the hard disk drive to come
up to speed before resuming execution of the application
program. The net result is a much faster resumption from
suspend mode for any application that does not require an
jmmediate hard disk access upon resuming from suspend mode.

Turning now in more detail to the hard disk drive 323 of
Figure 1, the hard disk drive includes a not-illustrated
conventional microprocessor which controls the output lines
LED and IRQ14, which is coupled to a not-illustrated ROM in
drive 323 containing a program executed by the
microprocessor and to a not-illustrated RAM in drive 323,
which is interfaced to the busses 337-339 in order to
communicate with the main processor 311, and which is
interfaced to a conventional and not-illustrated physical
drive located within disk drive 323. The physical drive
includes conventional components such as one or more
rotating magnetic platters, one or more movable read-write

WO 92/21081 PCT/US92/04169

10

20

30

-(3=-

heads each engagable with a platter surface, a mechanism
for moving each head relative to its platter, and the
electrical support circuitry for each head. All of the
signals which couple the hard disk drive to other parts of
the system are part of an industry standard interface for
hard disk drives, and thus the hard disk drive uses
conventional cables and connectors. In fact, the hard disk
drive 323 is a conventional hard disk drive, except that
the program stored in its ROM and executed by the
microprocessor includes some changes which are discussed in
detail later.

The microprocessor of the hard disk maintains certain
status information which can be passed to the main
processor 311 on request, including a DRQ status bit which
is set when the hard disk drive is carrying out a command
and a BSY bit which can be repeatedly set and reset as a
given command is carried out in order to provide
handshaking information which facilitates transfer of data
between the processor 311 and the hard disk drive 323. The
DRQ bit is the bit tested at block 601 in Figure 8 and at
671 in Figure 12 in order to determine whether the hard
disk drive is busy. The present invention involves changes
to the program stored in the ROM of the hard disk drive,
but aside from this the hard disk drive 323 is structurally
conventional in all respects.

In order to facilitate an understanding of the operation
of the hard disk drive, some additional detail is
appropriate regarding a few of the flowchart blocks
described above in association with Figures 12 and 14.

More specifically, in Figure 12, it has previously been
explained that block 676 obtains and saves the internal
state of the hard disk drive. 1In order to effect this, the
processor 311 sends a SUSPEND command to the hard disk
drive 323 in order to tell the hard disk drive that the
system is going to enter the suspend state, subsequently
sends a REQUEST command to the hard disk drive 323 in order
to cause the hard disk drive 323 to send its internal state
to the main processor 311 in the form of a 512 byte block

WO 92/21081

10

20

30

PCT/US92/04169

-64~

of data, and then accepts the 512 byte block of data from
the hard disk drive and saves it in the portion 482 of the
PMRAM (Figure 3). Turning now to block 726 in Figure 14,
it has previously been explained that the processor powers
up the hard disk and restores its state. On a more
specific level, after restoring power to the hard disk
drive, the processor 311 sends the hard disk drive 323 a
RESTORE command which tells the hard disk drive that the
512 byte block of data saved at block 676 in Figure 12 is
about to be returned to the hard disk drive, and then sends
the 512 byte block to the hard disk drive, the hard disk
drive accepting the block and using the contents of the
block to restore its registers and other volatile memory
jocations to the precise state which they had when entry to
the suspend mode was initiated.

Figure 21 is a flowchart showing portions of the program
which is stored in the ROM of the hard disk drive 323 and
which is executed by the microprocessor of the hard disk
drive. A power-up reset situation causes execution to
start at 1176, and to proceed to 1177 where, as shown
diagrammatically at 1178, the disk microprocessor waits for
the processor 311 to send it a command. When a command is
received, control proceeds to one of several different
routines in dependence on the specific command. In
particular, if the command is a SUSPEND command or a
RESTORE command, control proceeds as shown respectively at
1179 and 1181, whereas other commands which are
conventional cause control to proceed along respective
paths designated at 1182, 1183 and 1184. For purposes of
the present invention, it is sufficient to briefly describe
one of these other commands, for example the command
corresponding to a transfer at 1183 to block 1186. This
might, for example, be a command instructing the hard disk
drive 323 to accept a block of data from the processor 311
and to store this data on the hard disk of the physical
drive section. At 1186, the microprocessor sets the LED
line in order to turn its LED on, the LED providing visual

indication that the hard disk drive is carrying out an

WO 92/21081 PCT/US92/04169

10

20

30

-65-

operation. Then, the microprocessor sets the DRQ bit, so
that if the processor 311 requests status information the
DRQ bit will indicate that the hard disk drive is carrying
out an operation. Then, as indicated diagrammatically by
the broken line at 1187, the microprocessor carries out the
specific steps necessary to carry out the command.

For example, in the case of a transfer of a block of data
from the processor 311 to the hard disk in the physical
drive section, the disk microprocessor can toggle the busy
bit BSY to provide an indication of when it is ready to
accept each byte, and the processor 311 can monitor the BSY
bit and supply an additional byte each time the BSY bit is
cleared. The microprocessor initially stores these
received bytes in its RAM. After a predetermined number of
bytes have been transferred, which may for example be equal
to the number of bytes in a sector of the hard disk, the
processor 311 may return to other processing while the disk
microprocessor retrieves these bytes from the RAM and
stores them on the hard disk in its physical drive section.
Then, the disk microprocessor can send an IRQ1l4 signal in
order to interrupt the processor 311, causing the processor
311 to send another portion of the data block which is to
be stored. This is all represented diagrammatically in
Figure 21 by the broken line 1187.

Toward the end of execution of the command, the disk
microprocessor reaches a point at block 1188 where it sets
the BSY bit for the last time, for example where it has
accepted from the processor 311 the very last byte to be
stored. It then proceeds to store this information on the
hard disk in the physical drive section and to do any
associated final housekeeping, and at some point during
this process it clears the DRQ bit and, at block 1191,
deactuates the LED line to turn the LED off. Thereafter,
at 1192, the microprocessor clears the BSY bit. It is a
requirement of the present invention that, at the com-
pletion of a command, the LED be turned off before the BSY
bit is cleared, for the following reason.

WO 92/21081

10

20

30

PCT/US92/04169

-66—

As described above, when the system is attempting to
enter the suspend mode, the processor 311 checks the DRQ
bit (at 601 in Figure 8 and at 671 in Figure 12). If the
drive microprocessor is in the middle of a command, for
example at 1187 in Figure 21, the DRQ bit will be set, and
thus the processor 311 will cause the LED line to be
enabled and will then return control to the application
program to wait for the hard disk drive 323 to complete
what it is doing. It is important that the application
program not be able to instruct the hard disk drive to
start a new command. So long as the BSY bit is set, the
application program which the processor 311 is executing
will not try to send the hard disk drive 323 a new com-
mand. Further, as also described above, when the disk
microprocessor turns off its LED using its LED line, the
same signal will propogate through gates 438 and 433 to
create another PMI interrupt which returns control of the
processor 311 to the routine of Figure 4, at which point
the application program no longer has control of the
processor 311 and thus cannot tell the hard disk drive to
begin a new command. Therefore, with reference to blocks
1191 and 1192 in Figure 21, keeping the BSY bit set at the
end of the command until the LED is turned off ensures that
the BSY bit will keep the application program from starting
a new command until the deactuation of the LED occurs and
creates an interrupt which shifts control of the processor
311 from the application program to the PMI handling
routine, which can then proceed with the suspend operation.

At this point, the PMI handling routine would proceed to
block 676 in Figure 12 where, as described above, the
processor 311 sends the hard disk drive a SUSPEND command.
In Figure 21, this causes the disk microprocessor to
proceed at 1179 from block 1177 to block 1193, where it
collects every facet of its current status and formulates
in its RAM a 512 byte block of data which includes all of
this status. The status may take up only a portion of the
512 available bytes, and the remaining bytes can in fact be
"garbage". Then, at block 1194, the disk microprocessor

WO 92/21081 PCT/US92/04169

10

20

30

YA

waits for a request command from the processor 311, as
shown diagrammatically at 1196. Eventually, the processor
311 sends the REQUEST command. In response to the REQUEST
command, the disk microprocessor proceeds from block 1194
in Figure 21 to block 1197, where it transmits to the
processor 311 the 512 byte block of data it formulated in
its RAM. Then, at block 1198, the disk microprocessor
halts, and waits for the processor 311 to shut off power to
the hard disk drive 323 in the manner already described
above. '

When the processor 311 eventually exits from the suspend
mode, it will turn the power to the hard disk drive 323
back on, as discussed above. In Figure 21, this produces a
power-up reset event which forces the disk microprocessor
to block 1176 in Figure 21, following which the
microprocessor, typically after doing some initialization,

- proceeds to block 1177, where it waits at 1178 for a

command from the processor 311. Meanwhile, the processor
311 sends the RESTORE command to the hard disk drive 323.
This causes the disk microprocessor to proceed at 1181 from
the block 1177 to the block 1201, where it accepts the 512
byte block which the processor 311 is transmitting. This
is, of course, precisely the 512 byte block which the disk
microprocessor sent to the processor 311 at block 1197, and
thus at block 1202 the disk microprocessor can use the data
in this block to completely restore every facet of the
status which was present in hard disk drive before its
power was turned off.

Figure 22 is a flowchart showing an alternative
embodiment of the program of Figure 21. Equivalent
elements in Figures 21 and 22 are designated with identical
reference numerals. Only the differences are described in
detail below.

More specifically, in response to the SUSPEND command,
the disk microprocessor proceeds at 1179 from block 1177 to
block 1211 of Figure 22. 1In block 1211, the microprocessor
collects every facet of its status. Then, in block 1212,
the disk microprocessor waits for the REQUEST command from

WO 92/21081

10

20

30

PCT/US92/04169

-58~

the processor 311, as shown diagrammatically at 1213. When
the REQUEST command is received, the disk microprocessor
proceeds to block 1214, where it stores the collected
status on a reserved portion of the hard disk in its own
physical drive section. Then, at block 1216, it transmits
512 bytes to the processor 311. These 512 bytes may be
undefined "garbage" data, and are transmitted only for
purposes of compatibility (because the processor 311
expects to receive and store 512 bytes). Then, the
microprocessor halts at 1217 and waits for its power to be
turned off. After power is turned back on, the disk
microprocessor receives the RESTORE command from the
processor 311, and proceeds at 1181 from block 1177 to
block 1218, where it retrieves the status information which
it stored on the hard disk in block 1214, and then restores
from this stored data at block 1219 every facet of the
status which the hard disk drive 323 had before its power
was turned off. Then, at block 1221, it accepts the 512
bytes which the processor 311 sends, but it simply discards
this data because it has no need for it.

Figure 23 is a flowchart similar to Figure 21 but showing
another alternative embodiment of the invention. Elements
in Figure 23 which are equivalent to elements in Figure 21
are designated with the same reference numerals. Only the
differences are described in detail below.

More specifically, in the embodiment of Figure 21, it is
a requirement that the hard disk control its LED line in a
specific manner, in particular by promptly deactuating it
as soon as the current command has been completed. There
are some disk drives which may have difficulty with this
approach, but on the other hand it is possible to send
these drives a command while they are in the process of
executing another command. Thus, in Figure 12, regardless
of whether it is determined in block 671 that the hard
drive is busy, a SUSPEND command is immediately sent to the
disk drive at 672 or 676.

In Figure 23, receipt of the SUSPEND command causes
control to proceed at 1243 to block 1244, where the disk

WO 92/21081 PCT/US92/04169

10

20

30

_69-.

drive enters a mode where it ignores further commands other
than the REQUEST command. While waiting for the REQUEST
command, the drive completes the activity which is already
in progress. Then it deactuates its LED line in order to
indicate that at some point the activity has been
completed, after which the processor sends the REQUEST
command. In response to the REQUEST command, the disk
drive formulates the 512 byte block at 1193, then resumes
accepting all commands at block 1245, and then at block
1197 transmits the 512 byte block to the processor.

In the embodiment disclosed in Figures 1-20, power is
supplied to the main memory 326 during suspend in order to
maintain the information stored there. In a variation, a
portion of the hard disk 323 is reserved, the entire
contents of the main memory are written to the reserved
portion of the hard disk after the status of all devices
had been saved to the main memory, then both the hard disk
and main memory are powered down, and then the processor
enters the suspend state. Upon resuming, steps with the
opposite effect are carried out in reverse order to restore
the system. This is slower than the approach taken in the
preferred embodiment, but uses less power and thus allows
the system to remain in suspend longer on a single battery
charge. By using conventional compression techniques on
the data from the main memory being stored on the disk, the
amount of space required on the disk could be reduced, but
the time required to enter and exit from suspend mode would
increase as a result of the extra time required for
compression and uncompression of the data.

Figure 24 is a block diagram of a sysﬁem 2010 which is a
variation of the system 310 of Figure 1. The computer
system 2010 includes a main processor 2011, a power control
circuit 2012, a signal processing circuit 2013, a manually
operable power control switch 2016, a system control
processor (SCP) 2017, an internal keyboard 2018, a video
controller 2019, a monochrome liquid crystal display (LCD)
2021, a modem 2022, a hard disk drive 2023, a main memory
2024 implemented with dynamic random access memory (DRAM)

WO 92/21081

10

20

30

PCT/US92/04169

-70-

chips, a floppy disk drive 2026, a read only memory (ROM)
2027, and a flash RAM 2028. The main processor 2011 is
implemented with the Intel 386SL. Components in Figure 24
which correspond functionally to components in Figure 1 are
not described again in detail here.

The processor 2011 includes a power management interrupt
(PMI) generator 2036, which generates the PMI interrupt in
response to several conditions, three of which are shown in
Figure 24. The first is the occurrence of a signal on a
line 2037 in response to manual actuation of the manual
switch 2016, the second is a signal EXT PMI on a line 2038
from an external source, and the third is an interrupt
which is internally generated by software running in the
processor 2011 and which is indicated diagrammatically at
2039.

The processor 2011 has several conventional modes of
operation, one of which is an mynprotected” mode in which
the program running in the processor 2011 has access to all
operational capabilities of the processor 2011, whereas the
other modes are "protected" modes in which the program
running in the processor.zcll has different degrees of
accessibility to the operational capabilities. The
occurrence of a PMI interrupt automatically forces the
processor into the unprotected mode of operation, while the
restore instruction will restore the processor to the mode
of operation which it was in at the time the PMI interrupt
occurred. . Consequently, an application program which is
running in one of the protected modes can be interrupted,
the processor can carry out various functions in the
unprotected mode without any of the limitations which would
be present in one of the protected modes, and then the
application program can be resumed from the point at which
it was interrupted with its own protected mode back in
effect.

A resume control circuit 2041 is responsive to several
conditions, two of which are shown in Figure 24. The first
is an output signal on line 2042 from the signal processing

circuit 2013, which is described in more detail later. The

WO 92/21081 PCT/US92/04169

10

20

30

—7 1-

other is a modem ring indicator signal MDMRI on a line 2043
from the modem 2022. When the system is in the suspend
mode and a signal occurs on one of the lines 2042 and 2043,

the resume control circuit 2041 produces a resume reset

which internally resets the main processor 2011 and which
also sets a resume flag 2044. The resume flag 2044 remains
set in order to provide an indication to the software that
the reset was the result of a resume event and not a
standard system reset of the type which occurs when power
is first applied to the system. The reset causes the
processor to begin executing a special software routine in
the flash RAM 2028, as described in more detail 1later.

Turning to the System Control Processor 2017, the SCP in
the preferred embodiment is based on an Intel 87C51GB
microprocessor, but other commercially available
microprocessors could also be used for the SCP.

A register 2077 is coupled to the bus 2047 and produces
an output on a line 2078 which is coupled to an input of
the signal processing circuit 2013 and which is discussed
in more detail later.

The signal processing circuit 2013 includes an R/C
divider 2086 tied to the LIDSW output from the 1lid switch
2068, and an inverter 2087 which has an input connected to
the signal LIDSW. The output 2088 of the inverter is
connected to one input of a two-input exclusive-OR gate
2089, and through a resistor 2090 to an input of a further
inverter 2091. The output of inverter 2091 is coupled
through a resistor 2092 to the other input of the gate
2089, which is coupled to ground by a capacitor 2093. The
output of the gate 2089 is connected to the trigger input
of a monostable multivibrator or "one-shot" 2096, the time
period of which is controlled by an R/C network 2097. When
the 1id switch 2068 closes or opens, the change in the
state of its output signal LIDSW is applied through
inverter 2087 on line 2088 to one input of the gate 2089,
causing the output of gate 2089 to change, and a short
period of time later is applied through resistor 2090,
inverter 2091 and resistor 2092 to the other input of the

WO 92/21081

10

20

30

PCT/US92/04169

-72=

gate 2089, causing the output of the gate 2089 to return to
its original state. Thus, every time the 1id switch 2068
opens or closes, the exclusive OR gate 2089 will produce a
pulse equal in length to the propogation delay through the
circuit branch containing resistor 2090, inverter 2091,
resistor 2092 and capacitor 2093. This pulse will trigger
the one-shot 2096, so that it produces an output which is
applied to one input of an OR gate 2098, the other input of
which is coupled to the output 2037 from the manual switch
2016. The output of the OR gate 2098 is the line 2042,
which is connected to the resume control portion 2041 of
the main processor 2011.

The signal processing circuit 2013 also includes a D-
type flip-flop 2101 having a clock input to which is
coupled the line 2078 from the register 2077. The inverted
output of the flip-flop is connected to the D input, so
that the flip-flop changes state or "toggles" each time the
signal on line 2078 changes from a logic low to a logic
high. The output of the flip-flop 2101 is connected to a
reset input of the one-shot 2096. Consequently, by
appropriately controlling the register 2077, the main
processor 2011 can set or reset the flip-flop 2101, so that
it enables or disables the one-shot 2096 and thus permits
or prevents the one-shot 2096 from producing an output in
response to a pulse from the gate 2089.

Figure 25 is a flowchart of a portion of a main loop from
the operational program executed by the SCP 2017. Only the
portion of the loop which is pertinent to an understanding
of the present invention is shown and described in detail.
In particular, this portion begins at block 2111, where the
SCP checks the LIDSW signal (Figure 24) in order to
determine the state of the lid switch 2068 and thus whether
the 1id is open. If the 1id is open, then at block 2112
the SCP checks an internal flag to determine whether the
backlight is presently supposed to be on, and if so then
the SCP turns on the backlight at block 2113 and then
continues with the main loop. On the other hand, if it is
determined at block 2112 that the'backlight is not supposed

WO 92/21081 PCT/US92/04169

10

20

30

-73~

to be on, then block 2113 is skipped and the main loop
continues.

If it was determined at block 2111 that the 1lid is
closed, then control proceeds to block 2121, where a check
is made to determine what is to happen when the 1lid is
closed. In particular, the user is allowed to configure
the system set-up information to specify that a 1lid close
is to (1) place the system in the suspend mode, (2) turn
off the backlight without stopping the system from
operating, or (3) produce an audible beep and turn off the
backlight without stopping system operation. If it is
determined at block 2121 that the user wants the system to
enter the suspend mode if the 1lid is closed, the control
proceeds to block 2122, where the SCP sets a suspend
request bit in a PMI byte. The PMI byte is a byte (8 bits)
which is sent on request to the main processor in order to
inform the main processor of the reason why the SCP
generated a PMI interrupt. Then, also in block 2122, the
SCP produces a signal on output line 2074 (Figure 24) in
order to produce an external PMI to the main processor,
which is handled in a manner described later.
Alternatively, instead of producing the external PMI
interrupt in block 2122, the SCP could set a flag in block
2122 which causes an entirely different portion of the SCP
program to actually generate the PMI interrupt upon noting
that the flag has been set.

If it is determined in block 2121 that a 1lid close is not
to cause the system to be placed in suspend mode, then
control proceeds to block 2123, where a check is made to
see if an audible beep is to be produced when the 1lid is
closed. If so, then the beep is produced at block 2124.
In either case, control proceeds to block 2125, where the
SCP turns off the backlight and clears the backlight flag.
From blocks 2122 and 2125, execution of the main loop
continues.

An event which can interrupt the SCP from the main
routine shown in Figure 25 occurs when the main processor
sends a command to the SCP. The loading of this command

WO 92/21081

10

20

30

PCT/US92/04169

-T74-

into an SCP interface register 2081 by the main processor
automatically generates an interrupt to the SCP. The
interrupt routine which handles the commands is shown in
the flowchart of Figure 26. The command handler of Figure
26 is capable of handling a number of commands, only two of
which are pertinent to the present invention and are
depicted in Figure 26. In particular, execution begins at
block 2131, and at 2132 the SCP examines the command from
the main processor. The SCP then attempts to identify the
particular command so that it can be handled. In
particular, control can eventually proceed to block 2133,
where the SCP checks to see if the command is instructing
it to identify why the SCP generated an external PMI
interrupt to the main processor. If this is the command
sent by the main processor, then control proceeds to block
2134, where the SCP checks to see whether its ENABLE output
is active and the LED signal from the hard drive 2023 is
simultaneous inactive, and if so proceeds to block 2136,
where it sets a bit in the PMI byte to identify this
condition and then deactuates its ENABLE output. Then, or
if it was determined at block 2134 that the signals do not
have the specified states, control proceeds to block 2137,
where the SCP passes the PMI byte to the main processor
2011 through the registers 2081l. Control then proceeds to
block 2138, where the SCP exits the interrupt handler of
Figure 26 and returns to the point in its main program at
which it was interrupted.

If it was determined at block 2133 that the command is
not a request to identify the source of an external PMI,
then control proceeds to block 2139 where the SCP checks to
see if the command is instructing it to enable the hard
disk drive LED signal, or in other words to actuate its
ENABLE output. If so, the SCP proceeds to block 2140,
where it actuates its ENABLE output, and then continues to
block 2138, where a return is made to the calling routine.

Figure 27 is a flowchart of pertinent portions of the
special interrupt handling routine executed by the main
processor 2011 when a PMI interrupt occurs. In particular,

WO 92/21081 PCT/US92/04169

10

20

30

-75=

a PMI from any source causes the hardware of the processor
311 to automatically save its state in the portion 2040 of
the main memory 2024, as shown at 2146 in Figure 27. Then,
the processor automatically begins execution of the PMI
handler routine (which is located at a predetermined point
in the portion 2040 of the memory 2024). Regardless of the
source of the PMI, the first thing the PMI handler does is
to check the resume flag 2044 (Figure 24) in the processor
2011 in order to see whether the processor 2011 is in the
process of resuming from a suspend state. If a resume is
in progress, then at block 2148 control is transferred to a
resume handler, which will be discussed later.

In the case of any other PMI, control proceeds to block
2149, where the processor sets up a special stack for use
by the PMI handler, and unlocks configuration registers so
that they can be altered, such as the control register 2032
which can be used to change the speed of the clock. Then,
the processor changes the register 2032 in order to force
the CPU to run at its fastest clock speed, so that the PMI
routine will execute as fast as possible. The processor
then proceeds to deal with various possible sources of the
PMI, one of which is of interest and is shown at blocks
2151 and 2152. In particular, block 2151 checks to see if
the PMI was generated as a result of a signal on the line
2038 from the SCP, and if so proceeds to block 2152, where
an external PMI handler routine is shown in Figure 28 and
is called. The external PMI handler routine will be
described later.

After all possible sources of the PMI have been handled,
control reaches block 2153, where the main processor
restores to register 2032 the clock speed which was in
effect when the PMI occurred, based on the information
saved at block 2146. Then, the main processor locks the
configuration registers, enables PMI interrupts, and clears
an internal condition which prevents a reset from occurring
during execution of the PMI handler routine. Then, at
2154, the processor executes a restore instruction which
causes the hardware to restore to the CPU all of the state

WO 92/21081

10

20

30

PCT/US92/04169

-76=-

information which at block 2146 was saved in memory portion
2040, after which the CPU continues with execution of the
program which was interrupted.

Figure 28 is a flowchart of the external PMI handler
routine called by block 2152 in Figure 27. In Figure 28,
execution begins at block 2156, and at block 2157 the main
processor sends a command to the SCP asking it to identify
the reason for the external PMI interrupt. The SCP returns
the PMI byte (see blocks 2133-2134 and 2136-2137 in Figure
26). At block 158, the main processor checks the PMI byte
to see if the SCP has initiated a request for suspend mode
in response to closing of the 1id. If so, then at block
2159 the main processor checks to see if the hard disk
drive is busy. If it is not, then at block 2160 the main
processor calls the suspend handler routine, which is
described later. If the hard disk drive is busy, however,
then implementation of the suspend mode must wait until the
hard disk drive finishes whatever it is doing. The main
processor therefore proceeds from block 2159 to block 2161,
where it sends a command to the SCP which instructs the SCP
to actuate its ENABLE output (see blocks 2139-2140 in
Figure 26). From blocks 2160 and 2161, execution proceeds
to block 2162. Execution can also proceed directly to
block 2162 from block 2158 if it is determined at block 158
that the external PMI interrupt was not caused by closing
of the 1lid.

At block 2162, the main processor checks the PMI byte
from the SCP to see if the LED signal from the hard disk
drive 2023 produced the PMI interrupt through the gates
2072 and 2073. If so, then at block 2163 the main
processor checks to see whether it has been waiting for the
hard disk drive to finish an operation so that it can enter
suspend mode or so that it can enter another mode which is
called standby and which is not pertinent to the subject
matter of the present invention. If the system is to enter
standby mode, then at block 2164 the processor turns off
the hard disk drive motor, and enters the standby mode.
Otherwise, at block 2166, the processor calls the suspend

WO 92/21081 PCT/US92/04169

10

20

30

-77-

handler in order to enter the suspend mode. In either
case, when the standby or suspend mode is eventually
terminated, control proceeds to block 2167, where a return
is made to the routine of Figure 27.

Figure 29 is a flowchart of the suspend handler routine.
Execution begins at block 2168, and at block 2169 the main
processor saves the states of various peripherals such as
the hard disk drive 2023 and video controller 2019. The
main processor also turns off power to certain peripherals.
Then, the main processor sends a command to the SCP which
instructs it to send its state to the main processor, and
the main processor accepts and stores the contents of the
RAM 2079 and all registers of the SCP. Then, the main
processor sets the refresh control circuit 2033 to carry
out a refresh of the main memory 2024 at a very slow rate,
and instructs the power control circuit 2012 to turn off
SYSVCC power, which is the power for most system
components. Then, the main processor uses register 2077 to
toggle the flip-flop 2101, which in turn enables the one-
shot 2096 so that a signal from lid switch 2068 due to
opening or closing of the 1id will initiate a resume. The
main processor then executes a special instruction which
stops its own clock and which places it in the suspend
mode, where power consumption is very low.

As previously mentioned, and with reference to Figure 24,
the main processor 2011 exits the suspend mode when the
resume control circuit 2041 receives a signal on line 2042
or 2043 and produces a resume reset, the resume reset
setting the resume flag 2044. Any system reset, including
the resume reset, causes the main processor 2011 to execute
a special reset handler routine which is stored at a
predetermined location in the flash RAM 2028 and which is
shown in Figure 30. Execution of this routine begins at
block 2171, and at block 2172 the main processor uses the
register 2077 to toggle the flip flop 2101 and thus disable
the one-shot 2096 so that, if the 1lid is opened or closed
during normal operation, a further reset does not occur.

The main processor then causes the power control circuit

WO 92/21081

10

20

30

PCT/US92/04169

-78~

2012 to turn on SYSvcc power, and then configures itself
and the SCP for normal operation based on set-up data
specified by the user in a conventional manner. Then, at
block 2173, the processor checks the resume flag 2044 in
order to see whether it is set. If it is not set, then the
reset was a regular reset rather than a resume reset, and
at block 2174 the processor starts the resident operating
system. On the other hand, if the resume flag 2044 is set
to indicate that a resume reset occurred, then at block
2176 the processor uses software to produce a PMI interrupt
in order to force entry to the PMI handler routine of
Figure 27. In Figure 27, the resume flag is again checked
at 2147 and will be found to be set, so that control
proceeds to block 2148 where a branch is made to the resume
handler routine.

The resume handler routine is shown in Figure 31.
Execution of the resume handler routine begins at block
2181, and at block 2182 the main processor sends a command
to the SCP indicating that the state of the SCP is to be
restored, and then sends to the SCP the contents of the SCP
RAM and registers which were previously stored at block
2169 of Figure 29. Then, the main processor instructs the
SCP to check the state of the 1id switch 2068 and advise
the main processor 2011 of the state of the switch. Based
on the information from the SCP, the main processor
determines at block 2183 whether the 1id is closed. If it
is found that the 1id is closed, then the system is to be
returned fo suspend mode, and so at block 2184 the system
carries out steps similar to those shown at block 2169 in
Figure 29 in order to return the system to suspend mode.

on the other hand, if the 1id is open, then the main
processor 2011 proceeds from block 2183 to block 2186 and
continues with the process of resuming from suspend mode,
in particular by supplying power to and restoring the state
of the various peripheral devices of the system. Then, at
block 2187, the processor executes a return, which
effectively returns control to the point at which the
suspend handler was called when the system was originally

WO 92/21081 PCT/US92/04169

10

20

30

-79=

suspended, for example one of the blocks 2160 or 2166 in
Figure 28. Control then proceeds from that point, and will
ultimately return to blocks 2153 and 2154 of Figure 27,
where the state of the processor will be restored so that
the interrupted application program resumes operation from
the point at which it was interrupted and as if it had not
been interrupted.

The operation of the system 2010 in a typical situation
will now be briefly described. Assume that the system is
up and running and is executing an application program, and
that the user has specified that closing of the 1lid is to
place the system in suspend mode. If, while using the
system, the user closes the 1id, the main loop of the SCP
program (Figure 25) will determine at block 111 that the
1lid is now closed, will determine at block 121 that system
operation is to be suspended, and at block 122 will
initiate an external PMI interrupt to serve as a request to
the main processor that the suspend mode be entered. This
interrupt will cause the application program to be
interrupted and the PMI handler routine of Figure 27 to be
entered, and control will proceed through block 2151 of
Figure 27 to block 2152, where the external PMI handler
routine of Figure 28 is called.

In Figure 28, it will be determined at block 158 that the
PMI was generated because the lid closed. Control will
therefore proceed to block 2159, where for purposes of this
discussion it is assumed that the processor finds that the
hard disk drive is busy and proceeds to block 2161, where
it sends to the SCP a command instructing the SCP to
actuate its ENABLE output. The SCP services this command
at blocks 2139 and 2140 of Figure 26, and actuating the
ENABLE output has the effect of enabling one input of AND
gate 2072. Meanwhile, the main processor exits the
interrupt handler via blocks 2162, 2167, 2153 and 2154, and
continues with execution of the interrupted application
program.

When the hard disk drive 2023 finishes what it is doing,
it deactuates its LED output, which causes the AND gate

WO 92/21081

10

20

30

PCT/US92/04169

80—

2072 to produce an output signal indicating that the hard
drive is not busy (HDNB), which passes through the OR gate
2073 and causes the PMI generator 36 to generate a further
PMI interrupt, which causes another entry to the routine of
Figure 27 and a call at block 2152 to the routine of Figure
28. 1In Figure 28, it will be determined at block 2158 that
the 1id did not just close, and so blocks 2159-2161 will be
skipped. At block 2162, the main processor will recognize
from the PMI byte that the SCP generated the PMI because
the hard disk drive is no longer- busy, and thus the suspend
mode (which was not entered at blocks 2159-2160) can now be
entered. Therefore, the main processor will proceed
through block 2163 to block 2166, where the suspend handler
of Figure 29 is called.

The suspend handler of Figure 29 has already been
described, and concludes by placing the main processor 2011
in a low power mode in which its clock is turned off and
program execution is halted. The processor remains in this
mode until an event occurs which is intended to cause it to
resume operation. In particular, if the lid is opened, the
1id switch 2068 will, through the signal processing circuit
2013, cause the resume control circuit 2041 to produce a
resume reset, which in turn causes the processor 2011 to
begin executing the reset handler routine of Figure 30.

The processor will proceed through blocks 2172 and 2173 to
block 2176, where it generates a software PMI to effect
reentry to the PMI handler routine of Figure 27. It will
be determined at block 2147 that the resume flag 2044
(Figure 24) is set, and so at block 2148 the processor will
branch to the resume handler of Figure 31. In the resume
handler of Figure 31, execution will proceed through blocks
2182, 2183 and 2186, and the return at 2187 will return
control to block 2166 in Figure 28, where execution will
proceed to block 2167 for a return to block 2152 in Figure
27, after which an exit from the PMI handler routine is
made through blocks 2153 and 2154. Execution of the
interrupted application program thus continues from the

point at which it was interrupted.

WO 92/21081 PCT/US92/04169

10

20

30

-81~-

In the foregoing example, the system exited suspend mode
in response to a resume reset produced by opening the lid.
Events other than opening the 1id can also produce a resume
reset. For example, if the system is in the suspend mode
and the modem 2022 receives an incoming telephone call, the
modem ring indicator signal MDMRI on line 2043 will cause
the resume control circuit 2041 to produce a resume reset.
This resume reset will be handled in precisely the same
manner as described in the foregoing example, except that
when block 2183 in Figure 31 is reached, the system will
find that the 1id is still closed. Therefore, control will
proceed to block 2184, where the main processor 2011 will
return to the suspend mode in order to wait for another
resume reset caused by subsequent opening of the lid.

Also, there are events other than closing of the 1lid
which can place the system into the suspend mode. For
example, manual actuation of the switch 2016 can place the
system in suspend mode, while the 1lid remains in an open
position. If the 1id is then closed while the system is in
suspend mode, the signal from the 1id switch 2068 will
cause the signal processing circuit 2013 to produce a pulse
on line 2042, which in turn will cause the resume control
circuit 41 to produce a resume reset. In general, this
resume reset will be handled in the manner described in the'
preceding paragraph for the modem ring. At block 2183, it
will be determined that the 1lid is now closed, and
therefore the resume sequence will be terminated and at
block 2184 the system will return to the suspend mode in
order to wait for a further resume reset caused by
subsequent raising of the 1lid.

Figure 32 is a block diagram of a computer system 3010
which is a further variation of the system 310 of Figure 1.
The computer system 3010 includes a main processor 3011, a
conventional numeric coprocessor (NPX) 3012, a cache memory
3013, a power control circuit 3016, a system control
processor (SCP) 3017, an internal keyboard 3018, a video
controller circuit 3021, a monochrome ligquid crystal
display (LCD) unit 3022, a modem 3023, a hard disk drive

WO 92/21081

10

20

30

PCT/US92/04169
-82-

(HDD) 3026, a main memory 3027 implemented with dynamic
random access memory (DRAM) chips, a floppy disk drive
(FDﬁ) 3028, a read only memory (ROM) 3031, and a flash RAM
3032. The main processor 3011 is implemented with an Intel
386SL microprocessor. Components in Figure 32 which
correspond functionally to compenents in Figure 1 are not
described again in detail here.

The processor 3011 includes a number of hardware timers,
two of which are shown at 3041 and 3042. These timers
correspond to the local standby.timer 351 and global
standby timer 352 of Figure 1, but they are respectively
referred to in the following discussion as an override
timer and an idle timer in order to more accurately reflect
the particular functions for which they are used according
to the invention. Associated with each timer is a
respective preset register 3043 or 3044.

The processor 3011 includes a trap logic circuit 3047,
which receives address and control information at 3048 and
which is controlled by a control register 3049. The
register 3049 is set by software and, in the preferred
embodiment, defines a range of input/output (I/0) addresses
which are not accessed during normal system operation. If
one of the addresses in this range is accessed, the trap
logic circuit 3047 generates a signal at 3051 which resets
the override timer 3041. However, since the range of
addresses has been intentionally selected to include only
addresses which should not be normally accessed, during
normal system operation the output 3051 of the trap logic
circuit 3047 should never be actuated and should thus never
restart the override timer 3041. Consequently, and as
discussed in more detail later, the override timer 3041 is
intended to run until it expires, unless the software
restarts it or disables it before it reaches expiration.

Associated with the bus control circuit 3063 is a direct
memory access (DMA) circuit 3066, which can control certain
transfers across the bus. A circuit 3067 is coupled to the
bus 3064 and detects situations where the bus is being used
to write information into video control registers or a

WO 92/21081 PCT/US92/04169

10

20

30

-83-

video memory located in the video controller 3021, in
response to which the circuit 3067 actuates its output line
IRQ11l, which is one of the IRQ lines coupled to inputs of
the selectors 3036 and 3038.

Turning to the SCP 3017, the SCP in the preferred
embodiment is based on an Intel 87C51GB processor, but
other commercially available processors could be used for
the SCP.

Before explaining pertinent portions of the programs
running in the main processor and the SCP, a brief overview
will be given of the idle mode, which is a part of the
present invention. In the preferred embodiment, the preset
for the idle timer at 3044 in Figure 32 is set to a value
representing 8 seconds. So long as there is system
activity generating input signals to the system event
selector 3036, the selector 3036 will be producing periodic
pulses on the SYSTEM EVENT line, which periodically restart
the idle timer 3042 and prevent it from expiring. The most
common source of active input signals to the system event
selector 3036 is the group of interrupt lines IRQ,
including IRQ1 which is generated by the SCP 3017 when a
user presses a key on the keyboard, IRQ12 which is
generated by the SCP when the user generates input with a
mouse, and IRQ11l which is generated when the executing
program writes data to registers or memory in the video
controller 3021. Consequently, if the timer 3042 does
expire, it is because a period of eight seconds has elapsed
without any such activity.

Following eight seconds of inactivity, the computer
system 3010 enters the idle mode, in which the system
continues to operate but with certain power saving factors,
such as having the processor 3011 run at a slower clock
speed. The idle mode is entirely transparent to the user,
in that there is no visible sign to the user that the
system has entered or exited idle mode. If certain events
occur while the system is in idle mode, for example if the
user presses a key or the executing program reaches a
portion where it updates the video display, the system will

WO 92/21081

10

20

30

PCT/US92/04169
-84~

initiate an exit from the idle mode. On the other hand, if
the system remains in the idle mode for a predetermined
period of time, then the system will automatically
transition to a standby mode, which in and of itself is
conventional.

In the standby mode, various system peripherals are
shifted to a low power state, the backlight for the video
display is turned off, and the processor 3011 is halted.
Obviously, the standby state is visible to the user,
because the backlight is turned off. If an event such as a
keypress occurs while the system is in standby mode, the
break event selector 3038 will actuate its BREAK EVENT
output, which will cause the processor 3011 to start
running again and to restore peripherals to their normal
operational state. Since the standby mode is itself
conventional, it is not discussed here in further detail.
The system is technically capable of entering a further
mode which is called suspend mode or rest mode, in which
power is shut off to substantially all of the system.
However, the suspend mode is conventional and not pertinent
to an understanding of the present invention, and is
therefore not described in detail.

Figures 33-36 are flowcharts of respective portions of a
program executed by the main processor 3011. Figure 33
shows pertinent portions of a PMI handler routine which is
executed in response to a PMI interrupt. More
specifically, when the processor is executing an
application program, a PMI from any source causes the
hardware of the processor 3011 to automatically save its
state in the portion 3057 of the main memory 3027, as shown
diagrammatically at block 3101 in Figure 33. Then, the
processor 3011 automatically begins execution of the PMI
handler routine at a predetermined point, which is shown at
3102 in Figure 33. In particular, the PMI handler begins
by setting up a special stack for its own use in the
portion 3057 of the memory 3027, and unlocks certain
internal configuration registers so that they can be
altered, including the control register 3062 which is used

WO 92/21081 PCT/US92/04169

10

20

30

-85~

to change clock speeds. Then, the processor changes the
register 3062 in order to force the CPU to run at its
fastest clock speed, so that the PMI routine will execute
as fast as possible.

The processor 3011 then checks the bits of the status
register 3058 in order to determine what event initiated
the PMI interrupt. In particular, at 3103 the processor
checks a bit of the status register 3058 to determine if
the PMI was caused by expiration of the override timer
3041, and if so proceeds to block 3104 where it calls an
override handler discussed in more detail later. Other-
wise, control proceeds to block 3106, where the processor
checks the status register to see if the PMI was caused by
expiration of the idle timer 3042 and, if so, proceeds to
block 3107 where it calls an idle/standby handler discussed
in more detail later. If the PMI was not caused by the
expiration of the idle timer, then control proceeds from
block 3106 to block 3108, where the processor checks to see
if the PMI was caused by an external PMI signal generated
on line 3054 by the SCP 3017. If so, control proceeds to
block 3109, where a call is made to an external PMI handler
routine discussed in more detail later.

Ultimately, control will reach block 3111 in Figure 33,
where the processor 3011 will look in the state infor-
mation saved in the portion 3057 of the memory 3027 at
block 3101 of Figure 33, to determine the CPU clock speed
which was in effect at the time the PMI interrupt occurred.
The processor sets the control register 3062 to restore the
CPU to this clock speed. Then, the processor locks its
internal configuration registers, so that they cannot be
changed. The processor then enables the occurrence of PMI
interrupts, so that the next such interrupt will be
serviced, and clears a reset inhibit status which prevents
system resets from occurring while a PMI interrupt is being
serviced. Finally, at 3112, an instruction is executed
which causes the saved state of the processor to be
restored to the processor from the portion 3057 of main
memory 3027. With its state restored, the processor

WO 92/21081

10

20

30

PCT/US92/04169
-86-

continues execution of the interrupted application program
from the location at which it was interrupted and as if it
had not been interrupted.

Figure 34 is a flowchart of an idle/standby handler
routine which is called by block 3107 in Figure 33 when the
idle timer 3042 expires. When the routine of Figure 34 is
called in response to expiration of the idle timer,
execution begins at block 3116 and proceeds to block 3117.
At block 3117, the processor checks a software COUNT value,
which is always initialized to zero when the system is
first turned on. Accordingly, when the idle timer 3042
first expires after a period of system activity, the COUNT
will be zero and control will therefore proceed from block
3117 to block 3118, where COUNT is incremented and the idle
timer is restarted. Then, at block 3119, the main
processor 3011 obtains from the SCP 3017 an indication of
whether the system is operating on AC power or DC power.

If operating on AC power, then the system does not enter
idle mode, and in particular subsequent blocks 3121 and
3122 are skipped. However, if the system is operating on
DC power, or in other words battery power, the system
enters idle mode in blocks 3121 and 3122 in order to
conserve power. In block 3121, the processor enables the
override timer 3041 which, in the preferred embodiment, has
a preset corresponding to a time interval of 12 seconds, oOr
in other words a preset a little longer than the 8 second
preset of the idle timer. Then, the main processor 3011
advises the SCP 3017 that idle mode is being entered. 1In
block 3122, the processor 3011 extracts the clock speeds
for the CPU 3011, DMA 3066 and NPX 3012 from the data saved
in the portion 3057 of memory 3027 at block 3101 of Figure
33. The processor 3011 saves these clock speeds at a
different location in the portion 3057 of the memory.

Then, in the saved state data in portion 3057 of memory
3027, the processor 3011 changes the clock speeds for the
cPU, DMA and NPX to the slowest possible speed for each.

It is important to note that the PMI handler routine
continues to run at the maximum clock speed, and thus the

WO 92/21081 PCT/US92/04169

10

20

30

-87 -

slow speed clocks will not be implemented until the saved
state information is restored to the processor at block
3112 in Figure 33, or in other words when the application
program is resumed. Finally, still in block 3122, the
processor 3011 disables the cache memory 3013. In some
systems, disabling of the cache memory may cause the system
to use more power than when the cache is enabled, in which
case disabling of the cache can be omitted. However, in
systems where disabling the cache memory reduces power
consumption, it is implemented at this point.

In the preferred embodiment, the conventional hard disk
drive 3026 has internal circuitry which will automatically
shift it to a reduced power mode when it has not been
actively accessed for a period of time. Likewise, the
conventional floppy disk drive 3028, in conjunction with
some conventional software, is shifted to a reduced power
mode when it has not been actively accessed for a period of
time. Consequently, it is not necessary to forcibly shift
either to a reduced power mode in blocks 3121 and 3122 of
Figure 34. However, in some systems the operational mode
of these two drives may be under the direct control of the
processor, in which case they could be shifted to reduced
power modes in block 3122. |

Also, it would be possible to provide the usual parallel
port interface circuitry, but with the capability for the
main processor to shift this circuitry between a normal
operational mode and a reduced power mode. In block 3122,
the procéssor could shift this interface circuitry to its
reduced power mode as idle is entered.

It should be noted that the video display is not altered
as idle mode is entered. The user will continue to see the
usual screen display and thus will not realize that idle
mode has been entered.

From block 3122, control proceeds to block 3123, where a
return is made to the calling routine of Figure 33, and
then a return at 3112 to the interrupted application

program.

WO 92/21081

10

20

30

PCT/US92/04169
-88~

Assuming that there is a continued period of inactivity,
after eight more seconds the idle timer will expire again.
Tt should be noted that the twelve second override timer
will still have four seconds remaining. Thus, expiration
of the idle timer causes a further entry to the PMI handler
of Figure 33, which will in turn call the routine of Figure
34 again. Since COUNT was previously incremented at block
3118, it will not be zero when checked at block 3117, and
control will therefore proceed to block 3126.

As mentioned above, it is possible for the system to go
from idle mode to the standby mode or alternatively to
suspend mode. For purposes of this discussion, it is
assumed that the system is configured to go from idle to
standby. The system determines whether it is time to enter
standby mode by counting the number of times the idle timer
expires. For example, if the system is to enter standby
mode two minutes after it enters idle mode (if there is no
intervening system activity), then the system counts 15
timeouts of the idle counter (8 seconds x 15 = 120 seconds
= 2 minutes). Therefore, in block 3126, COUNT is compared
to a value which is the standby period divided by 8
seconds. If COUNT has not yet reached this value, then
control proceeds to block 3127, where COUNT is incremented
and the idle timer is restarted. At 3128, the processor
checks to see if the system is operating on AC power. If
it is, then idle mode is not in effect and block 3129 is
skipped. Otherwise, control proceeds to block 3129, where
the override timer is restarted. Control then proceeds to
block 3123 where a return is made to the calling routine of
Figure 33, and then at 3112 to the interrupted application
program.

It is possible for the user to specify that there is to
be no automatic transition from idle mode to standby or
suspend mode, in which case the standby time interval is
set to a very long period and thus block 3126 compares
COUNT to a very large value which as a practical matter
COUNT cannot reach, and control will always go from block
3126 to block 3127 until the system exits idle mode.

WO 92/21081 PCT/US92/04169

10

20

30

~89-

However, for purposes of this discussion, it is assumed
that the user has enabled a transition from idle to
standby. After the idle timer has expired several times
and the processor has executed the branch containing blocks
3127-3129 several times, the idle timer will expire again,
and in Figure 34, it will be determined at 3126 that the
count has now reached a value corresponding to the standby
interval divided by 8 seconds. This means that standby
mode is to be entered. Control therefore proceeds to block
3131, where COUNT is reset to zero. Then, at block 3132,
the processor checks to see if the system is operating on
AC power. If it is, then idle mode is not in effect and
there is no need to execute blocks 3133 and 3134 in order
to exit idle mode. On the other hand, if it is found at
block 3132 that the system is operating on DC power, then
at block 3133 the processor disables the override timer and
advises the SCP that idle mode is being exited. Then, at
block 3134, it changes the saved state of the processor in
the portion 3059 of the main memory 3027 in a manner
restoring the clock speeds which were in effect when the
state of the processor was actually saved in the portion
3057 of the memory 3027. Again, it should be noted that
these clock speeds do not immediately take effect.

Instead, the processor 3011 continues operating at its
maximum clock speed until it eventually reaches block 3112
of Figure 33 and restores its prior state from the portion
3057 of the memory 3027, at which point the clock speeds in
the saved state are actually implemented for purposes of
continuing the interrupted application program. Finally,
still in block 3134, the cache memory is enabled. 1In
systems where the processor must directly control the
operational modes of the hard disk drive, floppy disk
drive, and/or parallel port, these components would also be
restored to a normal operational state at this point.

The system cannot enter standby mode if the floppy disk
drive is busy or the hard disk drive is busy. Accordingly,
at blocks 3136 and 3137, the state of each of these drives
is checked, and if either is busy then the entry to standby

WO 92/21081

10

20

30

PCT/US92/04169
-90~

mode is cancelled and control proceeds to block 3138, where
the idle timer is restarted. Then, a return is made at
3123 to the calling routine of Figure 33, and eventually at
block 3112 the system returns to execution of the
interrupted application program.

on the other hand, if the floppy disk drive and hard disk
drive are not busy, then control proceeds from blocks 3136
and 3137 to block 3139, where the system enters the standby
mode. As mentioned above, the system could alternatively
enter the suspend mode, but this is not important for
purposes of the present invention and it is therefore not
described in detail. The various steps carried out to
prepare for entry to the standby mode are conventional, and
they are therefore not shown in detail in block 3139. When
the processor 11 enters the standby mode in block 3139, it
stops its clock and thus halts. It remains in the halted
state until one of the inputs to the break event selector
3038 is actuated and in turn actuates the BREAK EVENT
signal, which at 3141 causes the processor to restart its
clock and then perform in reverse order the sequence of
events carried out to enter the standby mode. In block
3141, the idle timer 3042 is also restarted. Then, at
block 3123, a return is made to the calling routine of
Figure 33.

Once the system has entered the idle mode, the 8-second
idle timer 3042 should normally time out before the 12-
second override timer 3041. However, if an event occurs
which actuates the SYSTEM EVENT signal, for example
actuation of the modem ring indicator signal MDMRI in
response to an incoming telephone call, then the SYSTEM
EVENT signal will restart the idle timer before it expires,
and thus the 12-second override timer 3041 will eventually
expire before the restarted idle timer and will produce a
PMI interrupt. As previously mentioned, this will be
detected at block 3103 in Figure 33 and will result in a
call to a routine shown in Figure 35. The routine of
Figure 35 will typically handle functions other than just
expiration of the override timer, but only the portion of

WO 92/21081 PCT/US92/04169

10

20

30

-0]-

this routine which handles the override timer is pertinent
to the present invention and therefore only this portion is
shown and described in detail.

Execution in Figure 35 begins at block 3146, and at block
3147 the processor checks to see if the cause of the PMI
was expiration of the override timer. If not, exiting from
the idle mode at blocks 3148 and 3149 is skipped, and the
processor continues at 150 to look for other sources of the
PMI. On the other hand, if it is determined at block 3147
that the override timer has expired, it means that a system
event has occurred and restarted the idle timer, and that
idle mode should be exited. Accordingly, at block 3148,
COUNT is set to zero, the override timer is disabled, and
the SCP is advised to exit idle mode. Then, at block 3149,
the clock speeds saved at block 3122 in Figure 34 are
restored to the saved state information in portion 3057 of
memory 3027, the cache is enabled, and the idle timer 3042
is restarted. Execution then continues at 3150.

It should be evident that, when a system event occurs and
resets the idle timer, it may be several seconds before the
override timer expires and brings the system out of idle
mode. In the case where a user presses a key on the
keyboard, it is desirable that the system immediately exit
idle mode. Accordingly, when the SCP 3017 detects that a
key has been pressed, it not only actuates interrupt line
IRQ1 in order to coordinate transfer to the processor 11 of
a control code representing the key which was pressed, but
in addition it actuates the external PMI line 3054 in order
to create a PMI interrupt in the processor 3011. In Figure
33, the fact that the PMI was initiated by the SCP is
detected at block 3108, and in block 3109 the processor
calls the external PMI handler routine, which is shown in
Figure 36.

Execution of the routine of Figure 36 begins at block
3151, and at block 3152 the main processor 3011 asks the
SCP 3017 to. identify the reason for the external PMI. 1In
reply, the SCP 3017 returns a PMI byte having several bits
which can be set to indicate respective causes for the PMI.

WO 92/21081 PCT/US92/04169

10

20

30

-92-

At block 3153, the processor 3011 checks the PMI byte to
determine if the SCP is instructing it to exit idle mode as
a result of pressing of a key on one of the internal and
external keyboards, or as a result of input from a mouse
3074. If not, then blocks 3154 and 3156 are skipped.
However, if the SCP has indicated that idle mode is to be
exited, then blocks 3154 and 3156 are executed in order to
exit the idle mode. Blocks 3154 and 3156 are similar to
blocks 3148 and 3149 in Figure 35.

At block 3157, the processor 3011 checks the PMI byte to
see if the SCP 3017 has just detected a switch from DC
power to AC power. Since power consumption is less
critical in the AC mode, idle mode can be exited if the AC
mode is in effect. Therefore, in block 3158, the processor
checks to see if it is currently in idle mode. If it is,
then blocks 3159 and 3161 are executed in order to exit
idle mode, these blocks being identical to blocks 3154 and
3156. Otherwise, blocks 3159 and 3161 are skipped.

Ultimately, control proceeds to block 3162, where a
return is made to the calling routine of Figure 33.

Figures 37-40 are flowcharts of pertinent portions of the
program executed by the system control processor (SCP)
3017. Figure 37 shows a portion of the main loop of the
SCP program. At block 3166, the SCP accepts input from the
internal keyboard 3018 in response to a user pressing a
key. Then, at block 3167, the SCP checks to see if an
internal idle flag is set. The idle flag is a software
flag which is set by the SCP when the main processor
advises the SCP that it is entering idle mode, and which is
cleared by the SCP when the main processor advises the SCP
that it is exiting idle mode. If the idle flag is set to
jndicate that the system is in idle mode, then the fact
that the user has pressed a key on the keyboard means that
the system needs to immediately exit idle mode.
Accordingly, at block 3168, the SCP updates its PMI byte to
set a bit which instructs the main processor to exit idle
mode, and then generates an external PMI on line 3054.

WO 92/21081 PCT/US92/04169

10

20

30

_93-

Figure 38 shows a portion of a routine which handles
input from a mouse or external keyboard connected to the
system, and is similar to Figure 37. 1In particular, input
from the mouse or external keyboard is accepted at block
3171, and if it is found at block 3172 that the idle flag
is set, then at block 3173 the PMI byte is updated to set
the bit instructing the main processor to exit idle mode,
and then a PMI is generated.

Figure 39 depicts part of a clock interrupt routine in
the SCP. The clock interrupt occurs periodically at
predefined intervals. At block 3177, the SCP 3017 checks
the AC/DC line 3071 from the power circuit 3016 in order to
determine whether the power control circuit 3016 has just
switched from AC power to DC power, or vice versa. If so,
then at block 3178 the SCP updates the PMI byte to identify
the particular change, and then generates a PMI.

Figure 40 shows a routine which is executed by the SCP
when it receives a command from the main processor. The
preferred embodiment includes many commands, but only three
which are pertinent to the present invention are shown. In
particular, at block 3181 the SCP accepts a command from
the main processor, and then examines the command in order
to determine what the SCP is being instructed to do.

If it is determined at block 3182 that the main processor
is advising the SCP 3017 that idle mode is being entered,
then at block 3183 the SCP sets its idle flag, and enters a
low power mode in which it continues to operate but at a
lower clock speed than normal. On the other hand, if it is
determined at block 3184 that the main processor is
advising the SCP that it is exiting idle mode, then at
block 3186 the SCP clears its idle flag and then returns
from its low power mode to its normal operational mode.
Alternatively, if it is determined at block 3187 that the
main processor 11 is instructing the SCP 3017 to identify
the reason why the SCP generated an external PMI, then at
block 3188 the SCP sends the PMI byte to the main processor
so that the main processor can examine the byte and
determine the reason that the SCP generated a PMI. From

WO 92/21081

10

20

30

PCT/US92/04169
-9 4-

each of blocks 3183, 3186 and 3188, control proceeds to
block 3189, where a return is made.

The operation of the system of Figure 32 will now be
briefly summarized. For purposes of this discussion,
assume that the system is operating on DC power. When a
user is actively typing on one of the keyboards or is using
the mouse, and/or when an executing program is periodically
updating the video display, interrupts IRQ1, IRQll and/or
interrupt IRQ12 will be periodically generated and will
cause the system event selector 3036 to output a string of
pulses on the SYSTEM EVENT line. ' The override timer will
be disabled, but the idle timer 3042 will be enabled and
will be restarted by each pulse on the SYSTEM EVENT line,
so that the idle timer does not reach expiration.

If this system activity ceases, then the idle timer will
expire after 8 seconds, and the idle mode will be entered
at blocks 3118-3119 and 3121-3122 of Figure 34, which
includes enabling the override timer 3041 and shifting the
processor 3011 to its slowest clock speed. Control then
returns to the interrupted application program. If there
is no activity for another 8 seconds, then the idle timer
will expire again and generate another PMI, which will lead
to execution of blocks 3127-3129 in Figure 34, where both
timers are restarted and the count of idle timer
expirations is incremented. Eventually, if system
inactivity continues, the count of expirations of the idle
timer will reach a value corresponding to the time interval
at which an automatic entry to standby mode is to be
effected. Therefore, at blocks 3131-3134 of Figure 34, the
system exits idle mode and then, provided the floppy disk
and hard disk are not busy, enters standby mode at block
3139. Standby includes stopping the clock of the processor
3011 so that the processor 3011 halts. The processor 3011
remains in standby mode until the user generates input
using a keyboard or the mouse, these events causing the
break selector 3038 to produce a BREAK EVENT signal which
automatically restarts the clock of the processor 3011 and

WO 92/21081 PCT/US92/04169

10

20

30

-95-

causes it to exit standby mode at block 3141, after which
execution returns to the interrupted application program.

Assuming for sake of discussion that the processor 3011
has entered and is currently carrying out program execution
in idle mode, there are various events which can force the
system out of the idle mode and back to its normal
operational mode. For example, if the modem receives an
incoming call while the system is in idle mode, the
associated ring indicator signal MDMRI will produce a
SYSTEM EVENT signal which resets the idle timer 3042.

Other not-illustrated events can have the same effect, but
they are not themselves essential to an understanding of
the present invention and are therefore not described in
detail. Since each such event resets the idle timer 3042,
the timer 3042 will not expire and generate a PMI, and
therefore the override timer 41 will in due course expire
and generate a PMI. Blocks 3147-3149 of Figure 35 show how
the system exits idle mode in response to expiration of the
override timer. It should be noted that, from the point in
time when a system event occurs and restarts the idle timer
3042, several seconds may elapse before the override timer
3041 expires and effects an exit from the idle mode in a
manner shown in Figure 35. This approach is acceptable for
certain signals (such as the modem ring indicator signal)
which are internal to the computer system and which actuate
the SYSTEM EVENT line, but it is not acceptable for a user
to have to wait several seconds after pressing a key or
using the mouse in order to have the system run normally
again. Therefore, if the SCP detects input from one of the
keyboards or from the mouse, then as shown in Figures 37
and 38 it instructs the main processor to immediately exit
the idle mode, and at blocks 3153, 3154 and 3156 in Figure
36 the system does exit idle.

As mentioned above, the processor 3011 enters idle mode
only if the system is operating on DC battery power. When
the system is operating on AC power, entry to idle mode is
not necessary because there is no critical need to save
power. With this in mind, if the user supplies AC power to

WO 92/21081 PCT/US92/04169

i0

20

30

-96-

the system while the system is in idle mode, it is
appropriate to immediately exit idle mode. In this regard,
with reference to Figure 39, when the scP detects that a
change has just occurred in the source of power, it
notifies the main processor, and if the main processor
determines at block 3157 in Figure 36 that the change is
from DC power to AC power, and if the system is found to be
in idle mode at block 3158, then at blocks 3159 and 3161
the system exits the idle mode.

In the preferred embodiment described above, the preset
register 3044 is always loaded with a value representing a
value of 8 seconds, regardless of whether the system is
operating on AC or DC power. An alternative approach is to
load the preset register with a value representing 8
seconds when the system is operating on DC power and to
load it with a value representing the actual standby time
interval when the system is operating on AC power. With
reference to Figure 36, block 3161 would, just before
restarting the idle timer 42, set the associated preset
register 3044 to the full standby time interval, because
the system is commencing.operation on AC power. The route
in Figure 36 would also jnclude a new block checking for a
switch from AC power to DC power, and upon detection of
this condition would load the preset register 3044 with a
value of 8 seconds and then restart the idle timer 3042 for
operation in DC power mode. In Figure 34, an additional
decision block would be added between blocks 3116 and 3117,
and would check to see whether the systen is currently
operating on AC power. If so, then the initial expiration
of timer 3042 represents expiration of the full standby
time interval, and control would proceed directly to block
3136, whereas if it was determined that the system was
operating on DC power, control would proceed to block 3117.
Blocks 3132, 3128 and 3119 would be omitted. Under this
approach, entry to and the various exits from the idle mode
would, at a broad level, still occur in the same manner as
for the first described embodiment and in response to the
same conditions. This alternative approach is therefore

WO 92/21081 PCT/US92/04169

10

20

=97 -

mentioned only to make it clear that it is regarded to be a
part of the present invention.

It must be emphasized that, as a practical matter, the
standby mode is very visible to the user, because the
display goes blank and, if the user presses a key, there is
a brief delay until the display returns and the system
continues operating. Thus, while the standby mode does
provide a significant power saving in order to reduce the
amount of electricity drawn from the battery, it can be
annoying to a user. The idle mode according to the
invention is intended to provide an intermediate level of
power savings in response to system inactivity in a manner
so that the user is entirely unaware that idle mode has
been entered or exited.

Although certain preferred embodiments of the invention
have been disclosed and described in detail for
jllustrative purposes, it will be recognized that there are
variations and modifications of these embodiments,
including the rearrangement of parts and data formats,
which lie within the scope of the appended claims.

WO 92/21081 PCT/US92/04169

The embodiments of the invention in which an exclusive

property or privilege is claimed are defined as follows:

1. An apparatus comprising: a first memory which can
store image information, a display, means for displaying on
said display an image based on image information from said
first memory, a second memory, and control means responsive
to a first condition for saving said image information from
said first memory in said second memory and thereafter
reducing power to said first memory, and responsive to a
second condition for restoring power to said first memory
and thereafter restoring said image information to said

first memory from said second memory.

2. An apparatus comprising: a processor operable in
normal and reduced power modes, a power supply for
supplying power to said processor, a manually acuable power
button, means for identifying as a configuration condition
a selected one of first and second conditions, and means
responsive to manual operation of said power button for
deactuating said power supply when said configuration
condition is said first condition and for placing said
processor in said reduced power state when said
configuration condition is said second condition.

3. An apparatus comprising: a processor, a power supply
for supplying power to said processor from an AC source
when said AC source is receiving AC energy and from a DC
source in response to the absence of AC energy for said AC
source, means for performing a predetermined function which
is dependent on a parameter, means for storing an AC value
and a DC value for said parameter, and means for causing
said AC value to be used as said parameter when said power
supply is supplying power from said AC source and for
causing said DC value to be used as said parameter when

said power supply is supplying power from said DC source.

A

WO 92/21081 : PCT/US92/04169

=99~

4. An apparatus comprising: a processor having normal
and reduced power modes, power supply means for supplying
power to said processor, a manually actuable power button,
means responsive to a first predetermined condition for
placing said processor in said reduced power mode, and
means responsive to a second predetermined condition which
includes manual operation of said power button for
providing an operator perceptible warning that a transition
is being made to a state where said power supply is
deactuated, and for thereafter requesting user confirmation
that said power supply is to be deactuated.

5. An apparatus comprising: a processor operable in
normal and reduced power modes, a disk drive which is
operationally coupled to said processor, and control means
responsive to a predetermined condition for checking said
disk drive and for thereafter switching said processor from
said normal mode to said reduced power mode when said disk
drive is inactive and for displaying an operator
perceptible warning and maintaining said processor in said
normal mode when said disk drive is active.

6. An apparatus comprising: a processor operable in
normal and reduced power modes, a disk drive which is
operationally coupled to said processor and can removably
receive a disk, and means responsive to a first
predetermined condition for storing an indication of
whether a disk is in said disk drive, for thereafter
placing said processor in said reduced power mode, for
thereafter restoring said processor to said normal mode in
response to the occurrence of a predetermined condition,
and for thereafter displaying an operator perceptible
warning regarding the need for the same disk in said disk
drive when said stored indication indicates a disk was in

said disk drive at said first predetermined condition.

7. An apparatus comprising: a computer system having
first memory means for storing a first set of configuration

WO 92/21081 PCT/US92/04169

-100-

information and having second memory means for storing a
second set of configuration information, and means
responsive to a predetermined condition for effecting
system configuration using the configuration information

from said first memory means.

8. An apparatus comprising: a processor having an
interrupt input, first and second mask registers controlled
by said processor and each having a bit indicating whether
an interrupt signal present at said interrupt input is
enabled or disabled, first means for respectively
permitting and obstructing recognition of said interrupt
signal by said processor when said bit of said first mask
register is respectively indicating that said interrupt
signal is respectively enabled and disabled, second means
for respectively permitting and obstructing recognition of
said interrupt signal by a further circuit when said second
mask register is respectively indicating that said
interrupt signal is respectively enabled and disabled, and
means responsive to loading of said first mask register by
said processor for conforming said bit of said second mask
register to said bit of said first mask register.

9. An apparatus comprising: a main processor operable
in a normal mode and a reduced power mode, a first memory
operationally coupled to said main processor, an auxiliary
processor operationally coupled to said main processor,
power supply means controlled by said main processor for
selectively effecting and obstructing a supply of power to
said auxiliary processor, and control means responsive to a
predetermined condition for obtaining from said auxiliary
processor and storing in said first memory information
defining an internal status of said auxiliary processor,
for thereafter causing said power supply means to terminate
power to said auxiliary processor, for thereafter placing
said main processor in said reduced power mode, for
thereafter returning said main processor to said normal
mode in response to a predetermined condition, for

k)

WO 92/21081 PCT/US92/04169

-101-

thereafter causing said power supply means to restore power
to said auxiliary processor, and for thereafter restoring
to said auxiliary processor from said first memory said
information defining said internal status of said auxiliary

processor.

10. An apparatus comprising: a processor having a
program execution mode and a non-execution mode, a memory
operationally coupled to said processor, a real time clock
circuit operationally coupled to said processor and
maintaining time information, a program executed by said
processor and maintaining time information in said memory
based on said time information in said real time clock
circuit, and control means responsive to a predetermined
condition for switching said processor from said execution
mode to said non-execution mode, for thereafter switching
said processor from said non-execution mode to said
execution mode in response to a further condition, and for
thereafter updating said time information maintained in
said memory based on said time information in said real

time clock circuit.

11. An apparatus comprising: a main processor having a
normal operational mode and a reduced power mode, an
auxiliary processor operationally coupled to said main
processor, a modem adapted to be coupled to a telephone
line and having means for producing a ring signal in
response to an incoming telephone call on the telephone
line, and means responsive to a predetermined condition for
switching said main processor from said normal operational
mode to said reduced power mode, and means for causing said
auxiliary processor to monitor said ring signal from said
modem when said main processor is in said reduced power
mode and to switch said main processor from said reduced
power mode to said normal mode in response to the
occurrence of said ring signal at said output of said

modem.

WO 92/21081 PCT/US92/04169

-102-

12. An apparatus comprising: processing means, a
pointing device coupled to said processing means and having
information stored therein, power supply means controlled
by said processing means for selectively supplying and
terminating power to said pointing device, and control
means responsive to a first predetermined condition for
causing said processing device to obtain and save said
information from said pointing device, for causing said
power supply means to thereafter terminate power to said
pointing device, for subsequently causing said power supply
means to restore power to said pointing device in response
to a second predetermined condition, and for thereafter

restoring said saved information to said pointing device.

13. An apparatus comprising: a processor having a
normal operational mode in which said processor executes
instructions and a further operational mode in which said
processor is halted, a light emitting element, and means
responsive to said processor being in said further
operational mode for flashing said light emitting element

in a predetermined pattern.

14. An apparatus comprising: a processor having a
normal operational mode in which said processor executes
instructions and a further operational mode in which said
processor is halted, a disk drive which is operationally
coupled to said processor and can removably receive a disk,
a memory operationally coupled to said processor and
containing a program which is executed by said processor
and which maintains in said memory a flag set in response
to the insertion or removal of a disk from said disk drive,
and control means responsive to a first predetermined
condition for switching said processor from said normal
operational mode to said further operational mode, and
responsive to a second predetermined condition for
switching said processor from said further operational mode
to said normal operational mode and thereafter setting said

My

&

WO 92/21081 PCT/US92/04169

-103-

flag to provide a forced indication of insertion or removal
of a disk.

15. An apparatus comprising: a processor having a
normal operational mode in which said processor executes
instructions and a further operational mode in which said
processor is halted; a disk drive which is operationally
coupled to said processor and which can removably receive a
disk; and control means responsive to a predetermined
condition for saving an indication of whether a disk is
present in said disk drive and for thereafter switching
said processor from said normal operational mode to said

further operational mode.

16. An apparatus comprising: a computer system having a
keyboard which includes a plurality of manually operable
keys, means responsive to a first predetermined key
operation for causing said system to wait for a second

predetermined key operation.

17. An apparatus comprising: a computer system having a
memory and a disk drive, said disk drive including a
register, and means responsive to a transfer of information
to said register in said disk drive for storing said
information in a shadow location of said memory.

18. An apparatus comprising: a processor, and means for
supplying to said processor in response to a request

therefrom a hardware revision level identification.

19. An apparatus comprising: a computer system which
includes a housing, a 1id supported on said housing for
movement between open and closed positions, a processor
having a first operational mode in which said processor
executes instructions and a second operational mode in
which said processor is halted, and means for generating an

operator perceptible warning in response to said lid being

WO 92/21081

PCT/US92/04169
-104-

moved to said closed position while said processor is in

said first operational mode.

20. An apparatus comprising: a processor having a
normal operational mode in which said processor executes
instructions and having a further operational mode in which
said processor is halted, a memory operationally coupled to
said processor, power supply means for selectively
permitting and obstructing a supply of power to said
memory, a disk drive having a disk therein, and means
responsive to a first predetermined condition for saving
the contents of said memory on said disk, thereafter
terminating power to said memory, and thereafter shifting
said processor from said normal operational mode to said
further operational mode, and responsive to a second
predetermined condition for shifting said processor from
said further operational mode to said normal operational
mode, thereafter restoring the supply of power to said
memory, and thereafter transferring from said disk drive to
said memory said contents of said memory stored on said

disk drive.

21. An apparatus comprising: a processor which
maintains keyboard status information, a first keyboard
coupled to said processor and operated in accord with said
keyboard status information; keyboard connector means for
releasably coupling a second keyboard to said processor;
and control means for causing said processor to turn off
power to said keyboard connector means, to subsequently
turn on power to said keyboard connector means, and to
thereafter send said status information to said second

keyboard through said keyboard connector means.

22. An apparatus comprising: a processor operable at a
first clock speed and at a second clock speed slower than
said first clock speed, said processor consuming less power
when operating at said second clock speed than when
operating at said first clock speed; and control means

£

@y

WO 92/21081 PCT/US92/04169

-105-

responsive to a predetermined condition for automatically
switching said processor from said first clock speed to

said second clock speed.

23. An apparatus comprising: a processor operable in a
normal mode and a reduced power mode, a hard disk drive
operationally coupled to said processor and having a
selectively actuable motor, means defining a timer for
measuring a time interval, and control means responsive to
a first predetermined condition for deactuating said motor
of said hard disk drive and for thereafter placing said
processor in said reduced power mode, and responsive to a
second predetermined condition for returning said processor
to said normal operational mode, for actuating said disk
drive motor, for starting said timer and for resuming
normal operation while inhibiting accesses to said hard

disk until said timer has expired.

24. A computer system, comprising: storage means for
storing data, and a peripheral having an operational
status, said peripheral having means responsive to a first
predetermined condition for facilitating storage in said
storage means of the complete operational status of said
peripheral, and responsive to a second predetermined
condition for facilitating restoration to said peripheral
of the operational status thereof stored in said storage

means.

25. An apparatus comprising: a processor which can
issue commands, including a first command and a second
command; storage means for storing data; and a peripheral
having a control circuit which has an operational status,
said peripheral having first means responsive to said first
command for facilitating storage in said storage means of
the complete operational status of said peripheral, and
second means responsive to said second command for
facilitating restoration to said peripheral of said
operational status thereof stored in said storage means.

WO 92/21081 PCT/US92/04169

-106-

26. An apparatus of Claim 25, wherein said peripheral is
a disk drive having a magnetic disk, said storage means
being a portion of said disk, said first means storing said
operational status on said portion of said disk and said

second means retrieving said operational status from said

portion of said disk.

27. An apparatus of Claim 25, wherein said storage
means is physically separate from said peripheral, wherein
said first means transmits said operational status to said
processor and said processor includes means for storing
said operational status in said storage means, and wherein
said processor includes means for retrieving said
operational status from said storage means and transmitting
said retrieved operational status to said second means.

28. An apparatus of Claim 27, wherein said peripheral is

a hard disk drive.

29. An apparatus of Claim 27, wherein said first means
incorporates said operational status into a data block of
predetermined size and transmits said data block to said
processor for storage in said storage means, and wherein
said processor returns said data block to said peripheral
following said second command and said second means
extracts said operational status from said data block.

30. An apparatus of Claim 29, wherein said data block

has a size of 512 bytes.

31. An apparatus of Claim 25, including power control
means responsive to said processor for respectively
providing and interrupting electrical power to said
peripheral, said processor including means for causing said
power control means to terminate the supply of power to
said peripheral following storage of said operational
status in said storage means and for thereafter restoring

@

WO 92/21081 PCT/US92/04169

-107-

the supply of power to said peripheral prior to
transmission to said peripheral of said second command.

32. An apparatus of Claim 25, wherein said first command
includes a first portion which causes said first means to
collect said operational status of said peripheral, and
includes a second portion which is sent subsequent to said
first portion and which causes said first means to
facilitate storage of said operational status in said
storage means.

33. A method of operating a system which includes a
processor, a storage device, and a peripheral, comprising
the steps of: transmitting a first command from said
processor to said peripheral, collecting in response to
said first command a complete operational status of said
peripheral and storing said operational status in said
storage device; thereafter transmitting a second command
from said processor to said peripheral; and retrieving from
said storage device in response to said second command said
complete operational status and restoring to said

peripheral said operational status.

34. A method of Claim 33, wherein said peripheral is a
disk drive having a magnetic disk which is said storage
device, said storing step including the step of saving said
complete operational state on a predetermined portion of

said disk.

35. A method of Claim 33, wherein said storage device is
physically separate from said peripheral, and wherein said
step of storing said operational status includes the steps
of sending said operational status from said peripheral to
said processor and then causing said processor to store
said operational status in said storage device, and wherein
said step of retrieving said operational status includes
the steps of causing said processor to retrieve said

WO 92/21081 PCT/US92/04169

-108-

operational status from said storage device and to send

said operational status to said peripheral.

36. A method of Claim 33, including subsequent to said
step of storing said operational status in said storage
device and prior to said step of transmitting said second
command, the steps of terminating a supply of power to said
peripheral and subsequently restoring the supply of power

to said peripheral.

37. A method of Claim 33, wherein said step of
transmitting said first command includes the steps of
transmitting a first portion of said first command, said
collecting step being carried out in response to receipt of
said first portion of said command, and the step of
subsequently transmitting a second portion of said first
command, said storing step being carried out in response to
receipt of said second portion of said first command.

38. An apparatus comprising: a processor having an
interrupt input; a disk drive having means for outputting a
light element control line which can have first and second
states and selectively actuable means for coupling said
light element control line of said disk drive to said
interrupt input of said processor, said processor including
means for selectively actuating and deactuating said

selectively actuable means.

39. An apparatus of Claim 38, wherein said processor has
a selectively actuable output; and wherein said selectively
actuable means includes an AND gate having one input
coupled to said output of said processor and a second input
coupled to said light element control line from said disk
drive, and means coupling said output of said AND gate to

said interrupt input of said processor.

40. A method of operating a system which includes a
processor having an interrupt input and includes a disk

WO 92/21081 PCT/US92/04169
-109-

drive outputting a light element control signal which can
have first and second logical states, including the step
of: interrupting said processor when said light element
control line changes from said first logical state to said
second logical state during a predetermined operational

condition.

41. A method of Claim 40, wherein said processor has an
output line, and including the steps of causing said
processor to selectively set said output line to one of
first and second logical states, said predetermined
operational condition existing when said output line has

said first logical state.

42.An apparatus comprising: a computer system which
includes a housing, a lid supported on said housing for
movement between open and closed positions, a processor
provided in said housing and having a first operational
mode in which said processor executes instructions and a
second operational mode in which said processor is halted
in a reduced power state from which said processor can
automatically exit in response to a predetermined
condition, and means responsive to movement of said 1lid to
said closed position when said processor is in said first
operational mode for switching said processor to said

second operational mode.

43.An apparatus of Claim 42, including means responsive
to movement of said 1id away from said closed position for
switching said processor from said second operational mode
to said first operational mode, said processor thereafter
continuing in said first operational mode from the point at
which said first operational mode was discontinued for said

switch to said second operational mode.

44.An apparatus of Claim 43, wherein said means for
switching said processor from said second operational mode

to said first operational mode includes switch means for

WO 92/21081

PCT/US92/04169
-110-

producing a signal having first and second states
respectively indicating that said 1id is in said open and
closed positions, said signal being applied to one input of
an exclusive OR gate, and delay means for applying to a
second input of said exclusive OR gate an inverted and
delayed version of said signal, said exclusive OR gate
having an output connected to a trigger input of a
monostable multivibrator, and said monostable multivibrator
having an output which is coupled to an input of said
processor, said processor being responsive to an output
signal from said monostable multivibrator for effecting

said switching from said second operational mode to said

first operational mode.

45.An apparatus of Claim 44, wherein said switch means
includes a switch coupled to said 1lid and having an output,
a first resistor connected between said output of said
switch and a source of power, a first capacitor coupled
between said output of said switch and ground, and a first
inverter having an input coupled to said output of said
switch and having an output, said output of said first
inverter being said signal having said first and second
states, and wherein said delay means includes a second
resistor having first and second ends respectively
connected to said output of said first inverter and an
input of a second inverter, a third resistor having first
and second ends respectively connected to said output of
said second inverter and said second input of said
exclusive OR gate, and a second capacitor connected between
said second input of said exclusive OR gate and ground.

46.An apparatus of Claim 45, including a flip-flop
having a clock input and arranged to alternate between
first and second states in response to the application of
successive clock pulses thereto, and having an output
coupled to a reset input of said monostable multivibrator,
and including means for permitting said processor to
selectively apply clock pulses to said clock input of said

o

WO 92/21081 PCT/US92/04169
-111-

flip~flop in order to selectively enable and disable said
monostable multivibrator.

47.An apparatus of Claim 43, including means responsive
to a condition other than the position of said 1id for
initiating a switch from said second operational mode to
said first operational mode, and further means responsive
to said 1id being in said closed position for terminating a
switch from said second operational mode to said first
operational mode and for returning said processor to said

second operational mode.

48.An apparatus of Claim 43, wherein said computer
system includes a plurality of peripherals operationally
coupled to said processor, and means for permitting said
processor to selectively switch each said peripheral
between a normal operational state and a reduced power
state, wherein as said processor is switched from said
first operational mode to said second operational mode said
processor saves an internal state of each said peripheral
and switches each said peripheral from said normal
operational state to said reduced power state, and wherein
when said processor is switched from said second
operational mode to said first operational mode said
processor switches each said peripheral from said reduced
power state to said normal operational state and restores
to said peripherals said saved internal states thereof.

49.An apparatus of Claim 43, wherein said first
operational mode includes an unprotected mode in which said
processor has a predetermined set of operational
capabilities and a protected operational mode in which said
processor can perform a first subset of said operational
capabilities and is inhibited from performing a second
subset of said operational capabilities different from said
first subset, means responsive to closing of said 1lid for
forcing said processor to said unprotected mode and for
causing said processor to execute a predetermined program

WO 92/21081 PCT/US92/04169
-112-

which effects said switching of said processor to said
second operational mode, and including means responsive to
opening of said 1id for shifting said processor from said
second operational mode to said unprotected mode and for
causing said processor to then execute a program which
concludes by instructing said processor to operate in one
of said protected mode and said unprotected mode in which
said processor was operating at the time the 1lid was

closed.

50.An apparatus of Claim 42, including a further
processor which is responsive to the position of said 1lid
and which notifies said first-mentioned processor when said

1id is moved to a closed position.

51.An apparatus of Claim 42, wherein said computer
system includes a keyboard supported on said housing and a
display supported on said 1id, said keyboard and display
being exposed when said lid is in said open position and
being covered when said 1lid is in said closed position.

52.An apparatus comprising: a computer system which
includes a housing, a 1lid supported on said housing for
movement between open and closed positions, a processor
having a first operational mode in which said processor
executes instructions and a second operational mode in
which said processor is halted in a reduced power state
from which said processor can automatically exit in
response to a predetermined condition, means for permitting
an operator to select one of first and second events to
occur when said 1lid is moved to said closed position, said
first event being switching of said processor from said
first operational mode to said second operational mode.

53.An apparatus of Claim 52, wherein said computer
system includes a display which is exposed and hidden when

said 1id is respectively open and closed, and including a

WO 92/21081 PCT/US92/04169
-113:

backlight for illuminating said display, said second event

being turning off of said back light.

54.An apparatus of Claim 52, wherein said computer
system includes means for generating an audible sound, said

second event being generation of said audible sound.

55.A computer system, comprising: a processor operable
in a normal operational mode and in a reduced power mode,
and means responsive to the absence of a predetermined
event during a predetermined time interval for
automatically switching said processor from said normal
operational mode to said reduced power mode, said processor
carrying out program execution in each of said normal
operational mode and said reduced power mode.

56.A system of Claim 55, wherein said processor has a
clock speed which can be varied, and wherein in said
reduced power mode said clock speed is set to a very low

speed.

57.A system of Claim 55, including a cache memory
coupled to said processor, wherein said processor disables

said cache memory upon entry to said reduced power mode.

58.A system of Claim 55, including means responsive to
the occurrence of a predetermined event when said processor
is in said reduced power mode for switching said processor
from said reduced power mode to said normal operational

mode.

59.A system of Claim 55, wherein said system can be
operated on DC power or AC power, and wherein said means
for automatically switching prevents switching of said
processor to said reduced power mode when said system is

operating on AC power.

WO 92/21081 PCT/US92/04169
-114-

60.A system of Claim 55, wherein said means for
automatically switching includes first timer means for
timing said predetermined time interval, said first timer
means being restarted by the occurrence of said
predetermined event, and includes means responsive to
expiration of said first timer means for effecting said
automatic switching from said normal operational mode to

said reduced power mode.

61.A system of Claim 60, including second timer means
for timing a further time interval which is longer than
said predetermined time interval, said system restarting
said first and second timer means in response to each
expiration of said first timer means, and including means
responsive to expiration of said second timer means in the
absence of expiration of said first timer means for
switching said processor from said reduced power mode to

said normal operational mode.

62.A system of Claim 60, including means for counting
successive expirations said first timer means, and means
responsive to said count reaching a predetermined value for
automatically switching said system to a standby mode in
which operation of said processor is halted.

63.A system of Claim 55, including a video display
apparatus coupled to said processor, and means responsive
to accesses to said video display apparatus for generating

a signal which is said predetermined event.

64.A system of Claim 55, including a further processor,
said further processor being responsive to input from one
of a keyboard and mouse for generating a signal which is

said predetermined event.

65.A system of Claim 55, wherein entry to and exit from

said reduced power mode is imperceptible to a person using

the computer system.

PCT/US92/04169

WO 92/21081

| 945 13S3Y — m WYYV o
SNLV1S JNNSIH« v M m
m o
(498 _ |nd 3uvMI-0S Le8 HOLIMS
N GNTISNS NLEHS TVNNVYIN
11SaaH
olnvy //
I1avN3 99¢ HIWIL g1e
INd pop—1ONIdSNS v THE
g9e M | — /[
856—|aNadsns ASVIA
CSe~ —HIWIT il 13s vl 216
3 MO010 wao® — AT - waisas |k ¥ ool
-~ NdO 266— @ H , _.|
» va01o 2ve MOHOOI
ALlHvVd
03UNSNdD ISE~ —gamIT
NOILLVHINIO
| 9ve
M0 sioo1o | 45€ >mouw% 1vo01 [|
.=, L Juu_mumm. INana_ S
. gge— VOOl Mvade |Gk
JOUINOD | gge £9g 2 ||I||I"ﬂ. HOSS3IDOHd
a3ads Pn_lﬂm_l._.ﬂ_l DIB0T \\ NIVIN
Sﬂ dVvdl O[S ” ‘ _v_w<s_
dVHLYSVIN | 9 n_ . o
TOHINOD 70HLNOD
¢9€—| dwdl O/I| anv ssadaav Lle
.]
>
INdLX3 .
MO1LLVE vv GH .%N nw
IHNaW

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

N | |6 N 18] 1%
& & & |8
QL 811 4 “ P el
° e
£ s = 21 |8
N &) Z
N 3 18
L)] v 11saaH AV
3AMa vt Ol > tsoadonf cop
1 | MsIa ER
W3aow = auvH 318VN3 T
A 3 ~g2¢ gcr 0 kooomes ' el]34
— b L]
......................... — | [[HINOW Fan je——
TTOHLNOD H3IMOd NIWanw L
. - q .
MSQrT
- N ' gie
3 eer NO ||] 4 -.......mw_."._..“--
NG | R S— HALMS Q11] gMdaoT | A tWOHd33 §
N ey A k- 4HRIOVE VA VAV — 6Ep tmsacsam <
|__“JOHANQO HamMOd i WYH_[—8rr N3QIA O3HNSNdO
(@0 {SO3d I—orv * GovLo < Snoax
AV1dsia —— —>
“V1SAUD HITIOHLNOD O3AIA 6 Ol ¢t oui
ainon gle— - (45S) —p> | DHI
— ‘ 12322 | uamouino 3§ dossaooud | .
ice 4 4 4 mnlmllmn. it .- bot A 4 K 104HLINOD hmm
TSASM § . WZILSAS _
e 4 218/ 17— QUVOBADI LIt
fﬂ Jzb IVNHILNI > A - eer
Hovr HOLOINNOO L HOLO3NNOO ’ _I&
muunuunu HEERE s | aNaH INd1X3
3N ggy 9zt — | 140 m 1zr |.mm:025m<om>mv_ : MOTLLYS
INOHJITAL _IVNHALGE o YNHILXE | T

SHIRSTITUTE SHEET

PCT/US92/04169

WO 92/21081

966 QQM/ ..O-Q.. .
Tiven J wa/ ~=joL}

L6¢ ".“. 1oy i
Ad3LLVE ¢/ “m..
318vaOHYHO3Y | =</
HOLOINNOD
ov/oa 1INoHID
1OHINOD -
Wy wamod 0T "1
HSV1d OL OONSAS T .>mmt<m. E:om_o ‘
\. dnMiova § \. 31vIS [
\ Y W
626 0%
3 OOAWd o |k
< O 10
o 86— > m
= 10
< o
LIE »
N\ U
| 0HLNOD
Mwmwac"_ HS3H43Y
see viva
- TOHLNOD | p_p e \Em
S
JOHINOD snd 228 £s6 aInnsaH AN /
O JOHLNOD Msvin| LLWYH{ M0010
/ wmmmmmm Ny ST1OAD o__»./" anv awns3y ANIL| 0 owl
260 sSsS3ayvaav ege 266 Iv3d
B ' 2 2

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

oLc

.

pL 31

RBATT I

WVHNd ~ /
I
gze 228 Q
<
— — 3
<] 9ze P
NS Leg 3AIHG NG 5577
N L/ o (Wwvda)
>_2nn.y WvH i AddO1d
00 HSV14 Gv./. >mo_ﬁwn -
...... o) m"._.----.m
\J(NA N ANAN A /. ANANAN
11saa4d
9 DUl
(N J Ny Y
\
), py SNy A
¢ 4 v.iva J_, \ece
¢]
), SId
¢ TOHLNOD \gge
\
f sna N
ss3uaav 4g€

QIIRSTITUTE SHEET

WO 92/21081 PCT/US92/04169

5/64
406
-
OFF SYSVCC = OFF |
PMVCC = OFF
413
409 |SRBTN —
p—
4 407
|~
ON SYSVCC = ON KILL VCC
(NORMAL/STANDBY) PMVCC = ON >

A

SYSPWROFF ISYSPWROFF
- 412
|
y 408
S

PARTIAL SYSVCC = OFF
(SUSPEND) PMVCC = ON

411

Fig. 2

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

9ze
L/
¢ .% 14 I T _ gs¥
[NQV \

.................. (vilva anv|

Ov1d 440 SNOLLONULSND |, . 1A |— 84¢
3AAIHA AddOTd H31ANVH INd
ovida | 0000 fmmmmmmmmmmmmessessemsemmeoo /
MO010 1SVd /
OV1d L o] A —————
AGANV1S SAVSFIVISONv] ..

3 ‘SHILSIDIY 4310313S OIOVLS NV | £2¢

N TN P P A B Viva ‘SNOILONYLSNI)

o QiSAddaad - _sovu| ¥/ 133HS AvIUdS

| ST S —

OV14 arvA suaLsinan moavks aad] %%/

ALVA/aNIL ooy OIOV.LS aNv
ovidaama 0§ 3L137vd LNIHHND 7 V1va ‘SNOLLONYLSND |— 92¢

AddOd NIMSIa . HOSS3IO0Hd GHOM
eor A AVE Wiluva 48] / e2v —f5ai T CHIVARENIL]- 22v

cst HV IAVS 3LVIS 30IA3a) / OI19V1S ANV
I Vi 5V14 Vivd ‘SNOLLONYLSNI) |— LL¥

ker VUV IAVS ILVLS NdO |/ JONVHO W3LSAS DNILVHIDO

WVHWd MsIa AHOWIW NIVIW

SUBRSTITUTE SHEET

WO 92/21081

501

YES

PCT/US92/04169

i 7/64

HANDLER

/503

BRANCH TO

NO [506

SET UP STACK
IN PMRAM
UNLOCK INTERNAL
CONFIGURATION
REGISTERS
FORCE FAST CPU
CLOCK SPEED

WAS LAST

RESUME HANDLER
(FIG. 14)

Fig. 4a

/508

DECREMENT IP

IMAGE IN RAM

®

YES
INSTRUCTION
HALT
NO
511
/O TRAP YES
?
NO

512

LOCAL
STANDBY
TIMEOUT
?

YES

X

SUBSTITUTE SHEET

541

CALL
I/O TRAP
HANDLER
(FIG. 6)

[559

CALL
LOCAL STANDBY
HANDLER
(FIG.7)

WO 92/21081

PCT/US92/04169
8/64
636
[
CALL
GLOBAL YES GLOBAL STANDBY
STANDBY HANDLER
TIMEOUT (FIG. 10)
?
NO 568
514 [
CALL
EXTERNAL YES EXT PMI
BMI HANDLER
? (FIG. 8)
NO
515
526 |
SOFTWARE YES [>
PMI
?
NO [517
CALL
YES HARDWARE PMI
HAR:'\\"“I’ARE HANDLER
(FIG. 5)
NO
521
NO SERVICED

ALL PMI'S

Fig. 4b

SUBSTITUTE SHEET

WO 92/21081 : PCT/US92/04169

9/64

522

RESTORE CPU
CLOCK SPEED
RESTORE CONFIGURATION
REGISTER PROTECTION
ENABLE PMI AND
CLEAR RESET INHIBIT

RESTORE
STATE

Fig. 4c

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

HARDWARE 10/64
(START)PMl HANDLER

INSTRUCT SCP TO 508 F .
19. 9

SEND POWER/SUSPEND
[531

MODE SETUP

CALL
SUSPEND OR 3::;5:2
POWER OFF FIG. 12

?

POWER-OFF

WARN USER OF
POWER-DOWN AND | 5%2
REQUEST
CONFIRMATION

/ 536
FI’:OOV:viR YES ACTUATE
KILL VCC

CONFIRMED
?

NO

537
(RETURN ’

SUBSTITUTE SHEET

WO 92/21081

I/O TRAP
HANDLER

NO

PCT/US92/04169

11/64

MASK TRAP

POWERED
DOWN
?

POWER UP FDD.
ENABLE IRQ6.
LOAD FDD REGS
FROM SHADOW REGS.
ENABLE LOCAL
STANDBY TIMER.
CLEAR FO FLAG.

552

WRITE TO
FDD
?

WRITE FDD DATA
TO SHADOW REG

556

— 557

UPDATE SYSTEM AND
BREAK EVENT MASKS
TO REFLECT CHANGE
TO IRQ MASK

RESTART /O
ACCESS

(RETURN r 547

* Fig. 6

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

STANDBY
HANDLER
FDD — 561
MOTOR YES
ENABLED
?
DISABLE IRQ6 RESTART LOCAL .
POWER DOWN FDD. 566 STANDBY
DISABLE LOCAL TIMER
STANDBY TIMER
SET FO FLAG

(RETURN ’

Fig.7

SUBSTITUTE SHEET

WO 92/21081

START

ASK SCP FOR
SOURCE OF PMI

HDD
LED SIGNAL

ENTER
SUSPEND OR
STANDBY

HANDLER

571

NO —581

SPIN DOWN HARD
DISK MOTOR

SUSPEND

577
576

\ A

ENTER
STANDBY
(FIG. 11)

CALL
SUSPEND
HANDLER
(FIG. 12)

INSTRUCT SCP
TO SEND
APPROPRIATE
VALUES.
IMPLEMENT

VALUES.

Fig. 8a

PCT/US92/04169

PRESSED

ES
586
YES e
NO
587
YES e
NO

POPUP/SETUP
KEY

GLOBAL
STANDBY

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

14/64

—~ 596

BEEP ONCE.
CLEAR FC FLAG

597

-
BEEP TWICE.
SET FC FLAG

598
[

CALL
POPUP/SETUP

HANDLER
(FIG. 9)

[INSTRUCT SCP TO
ENABLE HDD LED

SIGNAL.
SET ST FLAG.

HARD
DISK BUSY
- ?

CALL
ENTER

STANDBY
(FIG. 11)

606

SHIFT VIDEO
CONTROLLER DOWN

ONE PALETTE.
UPDATE PMRAM.

Fig. 8b

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

15/04

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

16/64

/607

SHIFT VIDEO
CONTROLLER UP
ONE PALETTE.

UPDATE PMRAM.

Y

610—]INSTRUCT SCP TO
POWER DOWN LCD,
THEN SELECT CRT.
CONFIGURE VIDEO

CONTROLLER

FOR CRT.

INSTRUCT SCP
TO IDENTIFY

ACTIVE VIDEO
UNIT

CONFIGURE VIDEO
CONTROLLER

FOR LCD.

INSTRUCT SCP TO
SELECT LCD, AND
THEN POWER UP LCD

614 —

612
4 613
INSTRUCT SCP ASK FOR AND
TO SEND ACCEPT PASSWORD PASSWORD
PASSWORD FROM USER CORRECT

Fig. 8d

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

popup/seTUP 17/64
oLz

INSTRUCT SCP TO DO
PARTIAL STATE SAVE,
AND ACCEPT AND

STORE 2 BYTES.

INSTRUCT SCP TO

SEND PASSWORD.

i Fig. 9

REQUEST AND
ACCEPT
PASSWORD
FROM USER

PASSWORD
ACTIVE
?

PASSWORD
CORRECT
?

ASK USER TO SELECT
PARAMETER AND 627

ENTER NEW VALUE
626

ACCEPT AND SAVE
NEW VALUE 628

INSTRUCT SCP TO DO
PARTIAL RESTORE, 632
AND RETURN 2 BYTES

SUBSTITUTE SHEET

WO 92/21081

638

FDD
MOTOR
RUNNING

YES

HDD YES

CONTROLER
BUSY

GLOBAL NO

PCT/US92/04169

GLOBAL 18/64
STANDBY
HANDLER

641
y

RESTART GLOBAL
STANDBY TIMER

STANDBY
ENABLED

CALL
ENTER STANDBY
(FIG. 11)

647
/

CALL
SUSPEND
HANDLER
(FIG. 12)

(RETURN ’f 642

Fig. 10

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

19/64

START ENTER
STANDBY

INSTRUCT SCP TO:
-POWER DOWN LCD.]
-POWER DOWN VIDEO P 1 g . 1 1 a

CONTROLLER. 651
-POWER OFF BACKLIGHT.
-POWER OFF MODEM.

POWER DOWN FDD.

SET OR CLEAR TV FLAG.

SPIN DOWN HDD MOTOR.

ADVISE SCP STANDBY
STATE IS BEING ENTERED.

STOP CPU CLOCK.

STANDBY MODE
(UNTIL BREAK EVENT).

RESTART CPU CLOCK.
ACCEPT AND EXAMINE -
CODE FROM SCP.

652

CALL
SUSPEND SUSPEND

TIMER HANDLER
TIMEOUT

(FIG. 12)
?

[658

UPDATE TIME/DATE
IN OPERATING SYSTEM

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

20/64

(662
FDD 661 POWER UP FDD
MODE= RESTORE STATE FROM
FULL ?AUTO SHADOW REGISTERS.

INSTRUCT SCP TO:
-POWER UP MODEM.
-POWER UP VIDEO

CONTROLLER.

INSTRUCT SCP TO IDENTIFY

ACTIVE VIDEO UNIT.

[667

LCD INSTRUCT SCP TO SELECT
THE ACTIVE LCD, AND TO TURN ON
VIDEO UNIT LCD AND BACKLIGHT.

INSTRUCT SCP TO
SELECT CRT

(RETURN rssg

Fig. 11b

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

suspen Z21/64
HANDLER

672

INSTRUCT SCP TO
YES _[ENABLE HDD LED
SIGNAL.
CLEAR ST FLAG.

OBTAIN AND 676
SAVE HDD STATE.

POWER DOWN HDD.

682
[

BEEP.
WARN USER
FLOPPY IS ACTIVE

SAVE POINTER FOR
RESUME RETURN

SUSPEND
FROM
STANDBY

SET OR CLEAR
TVFLAG

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

27/64

SAVE PMRAM IMAGE
OF CPU STATE AND
SELECTED REGISTERS.

CHECK FOR DISK IN
FLOPPY DRIVE AND
SET OR CLEAR DF FLAG.

REQUEST AND SAVE 3
BYTES FROM MOUSE
(IF PRESENT).

LOAD RESUME MASK.

COMPRESS AND SAVE
VIDEO RAM,

INSTRUCT SCP TO:
-POWER DOWN LCD,
-POWER DOWN VIDEO

CONTROLLER,
-POWER OFF BACKLIGHT,
-POWER OFF MODEM.

INSTRUCT SCP TO SEND
SAVE STATE.

ACCEPT AND STORE RAM
AND REGISTERS.

START SLOW
REFRESH RATE.

TURN OFF SYSVCC.

SUSPEND. '

Fig. 12b

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

AESET RESET < 3/64
HANDLER
TURN ON SYSVCC J— 697

Fig. 13a

INSTRUCT SCP TO SEND
CURRENT SETUP
INFORMATION

696

CURRENT
SETUP OK
?

WARN USER.
ASKTO USE
BOOT SETUP.

701

703

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

WARN USER.
ASK TO USE
FACTORY SETUP.

707

USE
FACTORY
SETUP

711

/713

FACTORY
SETUP OK
?

WARN USER.

FACTORY SETUP TO
BOOT SETUP

716

BOOT SETUP TO
CURRENT SETUP

706

CONFIGURE MAIN PROCESSOR
AND SCP TO CURRENT SETUP

Fig. 13b

START OPERATING 708 SOFTWARE PMI 711
SYSTEM

'
:
]
[}
]
]
)
[}
v

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

e 25/64

RESTORE SELECTED CPU
REGISTERS.

RESTORE CPU STATE TO
PMRAM IMAGE.

INSTRUCT SCP TO CARRY
OUT RESTORE, AND SEND
RAM AND REGISTER
CONTENTS.

INSTRUCT SCP TO TURN ON
VIDEO CONTROLLER.

RESTORE VIDEO REGISTERS

UNCOMPRESS AND
RESTORE VIDEO RAM.

INSTRUCT SCP TO IDENTIFY

ACTIVE VIDEO UNIT.

Fig. 14a

713

[717

THELA%%VE INSTRUCT SCP TO TURN ON
VIDEO UNIT LCD AND BACKLIGHT.

INSTRUCT SCP TO
SELECT CRT.

718

721

INSTRUCT SCP TO
POWER UP MODEM.

[723

FDD POWER UP FDD.
- MODE= RESTORE STATE FROM
FULL AUTO SHADOW REGISTERS.

SUBSTITUTE SHEET

WO 92/21081

26/064

FORCE INDICATION OF
FLOPPY DISK CHANGE.
POWER UP HARD DISK AND 796
RESTORE STATE.
INSTRUCT SCP TO DO
PARTIAL STATE SAVE AND
- ACCEPT AND STORE 2 BYTES.
INSTRUCT SCP TO SEND
PASSWORD.

727

PCT/US92/04169

Fig. 14b

PASSWORD
ACTIVE
?

YES| REQUESTAND
ACCEPT PASSWORD
FROM USER.

729
PASSWORD YES
CORRECT

?

NO
NO
731 ' 733
YES| ASKUSERTO YES
VERIFY FLOPPY DISK
IS IN FLOPPY DRIVE.
NO
NO
INSTRUCT SCP TO DO PARTIAL
RESTORE AND RETURN 736
2 BYTES.
RESTORE 3 BYTES TO MOUSE
IF PRESENT).

738

[

¥

UPDATE TIME/DATE IN
OPERATING SYSTEM.

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

G 27/64

INSTRUCT SCP TO SEND TIMER
VALUES, AND LOAD AND 741
START TIMERS.

SET UP RETURN TO ROUTINE
WHICH CALLED SUSPEND
HANDLER.

Fig. 14c

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

SCPEEPROM | — 430 28/64

751 —| CURRENT SETUP
752 — [OCAL PRESET(AC]
753 —| LOCAL PRESET (DC)
756 —| GLOBAL PRESET (AC) .
757 —| GLOBAL BRESET (06) 7 Fig. 15
758 —| SUSPEND PRESET (AC) _
759 —| SUSPEND PRESET (DC)
761 —| BACKLIGHT PRESET (AC)
762 — ‘BACKLIGHT PRESET (DC)
763 —| PASSWORD LCD/CRT FLAG
766 —| BOARD REVISION ID _ |
| 1LC SP'
|
SUSPEND/POWER OFF FLAG
HARD DISK LED SIGNAL
CHANGE TO AC
440 CHANGE TO DC
SCP RAM V/’ HOTKEY
771 —| BACKLIGHT PRESET =~
773 —| BACKLIGHT TIMER HDIACIDCHK: CODE
772 —| SUSPEND PRESET
774 — SUSPEND TIMER
776 — PMI BYTE KEYBOARD ENABLE
778 — MODE BYTE 1 l
779 T MODE BYTE 2 ““““““ ‘M
781 —| FLAGS
783 —] LED STATES
STANDBY
™ ésal
786 —
787 __ F Zg. 1 6

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

801 POWER-UF 29/64
SCP CONFIGURED |- 802 Fzg -

TO DEFAULT SETUP.

[807
IRESTART BACKLIGHT
INTERNAL TIMER.
KEYBOARD DISABLE SUSPEND
KEYPRESS TIMER.
CLEAR SB FLAG.

YES

.f 812
UPDATE PMI BYTE.

UNUSED CODE TO QUEUE. CODE TO QUEUE
GENERATE PMI.
<
817 [818
NO CODE FROM QUEUE

CPUSUREQ

ENABLED TO OUTPUT REGISTER.

GENERATE IRQ1.

\ 819

SUBSTITUTE SHEET

WO 92/21081

PCT/US92/04169

30/64 EXTERNAL

KEYBOARD/MOUSE
INPUT HANDLER
821
NO
ACCEPT INPUT 823
EXT NO
KEYBOARD
?
YES 827 (828
CODE TO QUEUE CODE TO OUTPUT
RESTART BACKLIGHT REGISTER.
TIMER. GENERATE IRQ12.
DISABLE SUSPEND RESTART BACKLIGHT
TIMER. TIMER.
CLEAR SB FLAG. DISABLE SUSPEND
TIMER.
CLEAR SB FLAG.

(RETURN ' 822

Fig. 18

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

cLock J1/64
INTERUPT

DECREMENT SUSPEND | 831 Pzg 19a

AND BACKLIGHT
[836

TIMERS IF >0

CLEAR SB FLAG.
CLEAR QUEUE.
UNIQUE CODE TO
QUEUE.

SUSPEND
TIMER JUST -
EXPIRE

[641

DISABLE SUSPEND
TIMER.

CLEAR SB FLAG.

CLEAR QUEUE.

UNIQUE CODE TO

QUEUE.

SEQUENTIALLY LIGHT
KEYBOARD LEDS

s
y (846

MONITOR RBATT, AND
HANDLE BATTLOW OUTPUT

AC/DC

SIGNAL
JUST CHANGE
?

YES |SET PMIBYTETO
REFLECT CHANGE.
GENERATE EXTPMI.

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

32/64

852
NO NO

YES

LCD=
ACTIVE
DISPLAY
?

NO

BACKLIGHT
TIMER
EXPIRED
?

vNO 856 . - 857 v 853

BEEP
DEACTIVATE BLON

ACTIVATE BLON DEACTIVATE BLON

O
Fig. 190

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

i

[EXAMINE COMMAND 866 .
FROM MAIN Flg ZOa
PROCESSOR :
867
ves | SETCRTACDTO 868
SELECT LCD. >
UPDATE LC FLAG.
NO
871
vEs | SETCRTACDTO 872
SELECT CRT. >
UPDATE LC FLAG.
NO
873
YES SET SB FLAG. 876
e yivies START SUSPEND >
2 TIMER.
NO
877
ENABLE YES ACTUATE 878
HDD LED ENABLE >
sm;w. OUTPUT. SET HD BIT IN PMI
BYTE. 883
‘o DEACTIVATE
ENABLE.
881
YE PMI BYTE TO
MAIN PROCESSOR
\ 886
NO

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

34/64
O Fig. 20b

ACTUATE 868 >
LCDPWR
891
o e [oo | .
? LCDPWR
NO
893
POWER UP YES ACTUATE 896 >
BACKLIGHT BLON
?
NO
897
YES 898
POWER DOWN DEACTUATE >
BACKLIGHT BLON
?
NO
901
POWER \YES ACTUATE 902 R
UP VIDEO VIDEN
?

NO

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

e 35/64 @

POWER YES DEAGTUATE 906 N
DOWN VIDEO VIDEN
?
NO
907
POWER YES ACTUATE 912 .
UP MODEM MOMEN
2
NO
911
POWER YES 913
DOWN MODEM DEH:\%TE >

?

SEND PROCESSOR 917

2 MODE BYTES. >
RECONFIGURE MODE
918
RESTORE _YEs | ACCEPT2MODE 921
PARTIAL BYTES FROM >
MAIN PROCESSOR

STATE
?

NO

O Fig. 20c

SUBSTITUTE SHEET

WO 92/21081

NO

FULL
STATE

?

RESTORE

NO

SEND

- PASSWORD

?

NO

T
L]
3
1
1]
)
]
1

ACCEPT
PASSWORD

937

PCT/US92/04169

36/64 @
926
922
YEs | SENDPROCESSOR 923
BYTES SCP RAM
SELECTED REGISTERS
927
YES | ACCEPT FROM MAIN 928
PROCESSOR AND >
RESTORE SCP RAM
SELECTED REGISTERS
931
YES | SEND PROCESSOR 932
CURRENT >
PASSWORD
933
ACCEPT FROM 934
PROCESSOR AND >
STORE NEW
PASSWORD

Fig. 20d

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

37/64 @

942

CURRENT YES |ACCEPT BACKLIGHT

BACKLIGHT PRESET AND STORE >
PRESET IN SCP RAM

CURRENT ACCEPT SUSPEND 946

SUSPEND PRESET AND STORE >

PRESET IN SCP RAM

- - - - - -~ --

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

'y 1
g6L(LIVH 2611 | AS8HvITO
A
M0019 31Ad 440 aa
2611| z1s LInSNVEL 1611 — %
NQNJ 1s3anoayd » V6L S - : e 1
30019 WOY4 GNVWNINOD oua "Hvao oda HY31D oHa vv31o
1s3ano3d
SN1v1lS 3H4O01S3d HO4 LIVM A 681" A A
el a a Asau3s | | Asaias Asd 138
I €64 X 8811 X X
MD01d 31A9 m i /8L m
D078 31A8 1S NI Lnd ANV . . .
21S 14300V SNLVYLS 1931109 OHA L3S -NO aani OHAa 13S -:NO aan DHA 13S -NO a3
AdN3dSNS A v8i A 981l
mmohmmma 6LLE~ €811 |
hmhh\\\ 28l
VM

[Z 01

ANVINWOD HOH LI
8/11 _ A

911

A

—L4LLL

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

3964

A

\,Fww bz 1vH 2611 | AS8HVITO
S3lAg Qwh A
Z1S auvosIa s3l1Ag
aNV 1d399V 1S LINSNVHL 1611 440 a3
5 rL2l r & 1
6121~ po-omemmosoemcooe- 4 : R 1
M_%h@ .”_mmwnoﬂw oHAa Y31 OHA HYI1D OHA HY31D
SNLVLS 3HOLS3H
1S3n03d 4 3 681t 4 4
g1zl GANVHNINOD AsSq 13S ~ AS813s Asg 13S
] ¥4 ~ 1s3no3d I 8\ " "
HOJ LIVM m H {811 m
)SIa GHVH WoHd rzizi " - -
snLvis 3Agiuiadl [Snivis 1oaTioo] |oHalasiNoaal| |oHalasiNOaI1| |oOHA L3S NO QI
o
anadsns ? LLZL voLl | WYY
mmohmmma 6241 ~ €811
S:\ ~~zgll
AGNVWIWNOD HOd LIVM |—2ZLL .

8/11 _ 1

7T 81

911

1

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

40/64

.

A

@

H _ evzl—

861 11VH 2611 | Asauva1d
A
MOO01d 31AD
2611|215 LinSNVHL peip | 09
R
» \ svcl R i bemmemomomooocmecsees 1
SANVAWOD T1V OHa HvI1D YA VIO OHA HYI1O
DNILdIOIV
awnsay A 6sri— 4 A
As8 13s AS8 13S Asd 13S
il) &ﬂ ! A)
0014 31IAd P ——4811
ZIS NI LNd ANV -) .
SNLVLS 19371100 |oHAl13siNoaa1| |odalas‘NoaIl| |oOHA L3S NO a3
N
1sanozy t ¥8LL X 9811
641~ g8l ‘
18— i ~— 2oLl
ANVIWNOD HOH LIV 214

ve 81

\n—
811

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

41/64

A /Y
2021
30078 WOk
SNLV1S IHOLSIY
1SINDIH TLLNN q ,toet
aNV 1d30X3 _
/| sanvawoo 0018 31A9
»p2l | ONILJIDOV dOLS ¢1S .1d303vV
aN3dsns mmo.rmmma

18l1— @

Qe 31

grel”’ @

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

42/64

O3”yNSNdO

.Qm.o}

-«

=

\km.cw
INd €¢—— HOLVHINIY |g
iINd | ———
QMQL
A
INd 8e0c
JHVYMLA0S
NOILVHINID|
HOOT1O +€02
TOHLINOD |- zeoz
a33ds
L10c
HOSS3IO0Hd
NIVIN

INd1X3

HOLIMS
TVNANVIN

//QFQN

v S1d

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

QT 514 -
£v02
! mwmm ol
AAHA Pp1 000 beeecmceee- /hmbw
Msia adl
W3AOW QuvH 319VN3
€202 2202
......................... < IHNAW
TOHLNOD H3IMOd N 9202 NIWAaWn
- 1
msan AN 2102
$sozo || NOTa | 6202 === -
N | R — HRALIAS QI . gMdanD]
<+ | LHDIDIOVE <
4902711 [I0HINGD HaMOd . DIHNSNO
HITIOHLNOD
><,Mm__m_.m O3alA r902—
TVLSAHO — A
ainon 6102—) (4oS)
- ayvOgAIM k HOSS3D0Hd
gind TVNHILNI £90z 7OHLNOD %om
: W3LSAS . m_eN
.~
6902 g10 £202
\ w 5902 @N T S02
LA Movr HOLOANNOO | |~ HOLOANNOD
Gezzzzcdi—— meeennen xS ; aNan INdIX3
AN g0z ggpz 1H0 : 2902 lem:os_Bm,qomEv_. 8c02
INOHJ313L ' IVNHIALXE ' TYNHILXT |

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

0% 51

Msan
gL02— cc0z
1502 ~Jodi .
clo. /=30 m
esoz ¢ iyl
{ SaALLVE 4 w
OOASAS < HOLO3ANNOD
1INDHID
TOHINOD
H3MOod | e
< 00ANd <
O o o
3
502 ° d
0z
“1041NOD
Evoec~ HS3H-3Y
IHNAW —
£eoz
2002 \VEN
TOHINOD OV troc
sng JNNS3Y
(viva ﬁ
“JOYINOD 13S3d < TOHINOD
‘SS3HAAY) Noro0z annsay INNSIY
sng

lotc

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

45/64

o s - - w0 o= o >

9c0c
J

820c]

3IAIHA
ASIa
AddO1d

msan
gL02—
.................. T ,/
oroz
»202
\
|
(NVHQ)
AHOW3IN -
hcw NIVIA N
93y

> MVQN/

,C IHWaW

(v.va "TO"LNOD ‘SS3dHaav) sng

roe”

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

46/64

SCP
MAIN LOOP

Y

LD
CLOSE =
SUSPEND
?

LID

SET SUSPEND REQUEST
BIT IN PMI BYTE B
GENERATE EXTERNAL
PMI
2125
BACKLIGHT TURN OFF BACKLIGHT j
FLAG SET CLEAR BACKLIGHT
FLAG
TURNON] 2113
BACKLIGHT |-/
» y y \ 4
; g

SUBSTITUTE SHEET

WO 92/21081

START

. commanp 47/64

PCT/US92/04169

HANDLER
EXAMINE COMMAND | — 2132 §
FROM MAIN g
PROCESSOR :
2136 |
§ SET BIT IN PMI // g
i BYTE. '

’ > DEACTUATE

ENABLE.
2134 v
EI)I()TFENI-:{TI:IZYL ;ﬁgﬁg PMIBYTETO |
o SIGNALS IMAIN PROCESSOR
? \ 2137
ENABLE ACTUATE | — 2140

HDD LED ENABLE >
SIGNAL OUTPUT. ;
N | s
5 y

SUBSTITUTE SHEET

Fig. 26

WO 92/21081 PCT/US92/04169

SAVE PMI 48/64
2146 STATE HANDLER

1
2147 F148
YES BRANCH TO
F':‘_iSGUSM; » RESUME HANDLER
(FIG. 31)
(2149
SET UP STACK
UNLOCK
CONFIGURATION
REGISTERS
FORCE FAST CPU
CLOCK SPEED
' 2152
2151 T
YES EXT PMI
HANDLER
(F1G.28)
'NO
] 153
v £
RESTORE CPU
CLOCK SPEED
RESTORE CONFIGURATION

REGISTER PROTECTION
ENABLE PMI AND
CLEAR RESET INHIBIT

RESTORE ¢ ' F Z * 2‘7
C STATE) g

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

S anoLen . 4/

215\6(START D
y

ASK SCP FOR
SOURCE OF PMI

7

LID

CLOSE NO

2157

Fig. 28

SUSPEND

YES

CALL
SUSPEND
HANDLER

(FIG. 29)

INSTRUCT SCP TO
ENABLE HDD LED
SIGNAL

Y

HDD

NO

LED SIGNAL
?

ENTER

SUSPEND

SUSPEND OR
STANDBY
?

CALL
STANDBY 2164 SUSPEND

SPIN DOWN HARD DISK HANDLER
MOTOR. ENTER STANDBY (FIG.29)

l /2166

— 2167
C RETURN)/

SUBSTITUTE SHEET

WO 92/21081

PCT/US92/04169

50/64

2168 SUSPEND
HANDLER F Z g. 2 9

& REGISTERS

SUSPEND

SAVE STATES OF AND POWER
DOWN PERIPHERALS

INSTRUCT SCP TO SEND STATE.
ACCEPT & STORE RAM

2169

START SLOW REFRESH RATE /

TURN OFF SYSVCC

ENABLE RESUME ON LID
SWITCH CHANGE

RESET HANDLER

DISABLE RESUME ON
LID SWITCH CHANGE

TURN ON SYSVCC

CONFIGURE MAIN
PROCESSOR & SCP
BASED ON SETUP
DATA

Fig. 30
- g

RESUME

FLAG SET

SYSTEM

B el

START OPERATING §74 2176

SOFTWAREPMI | ~

SUBSTITUTE SHEET

WO 92/21081

PCT/US92/04169

51/64 RESUME
Z;BTC START) HANDLER
Y
INSTRUCT SCP TO CARRY
OUT RESTORE, AND SEND .
RAM AND REGISTER 2162 Pl g , 3 1
CONTENTS.
ASK SCP FOR LID SWITCH
STATUS.
83
LID YES
CLOSED
?
2186
SUPPLY POWER TO AND INSTRUCT SCP TO
RESTORE STATES OF SEND STATE.
PERIPHERALS ACCEPT & STORE
RAM & REGISTERS
START SLOW
/ REFRESH RATE
2184 TURN OFF SYSVCC
v ENABLE RESUME ON
2187 LID SWITCH CHANGE
(RETURN >/ SUSPEND

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

52/64

HIaNIL

g

A snivis |
850€

31dl
a0

13S3dd
314l
/&m

H3anIL

INd <
mme(
»eloe

I

AN

190¢

wole

NOILVHINID
MO0

TOHLNOD

a33ds

/ 3AIY3A0 N
zsoe

13s34d
3aIHY3IA0

[l

ZE0E

Odi

IN3AT
WALSAS gehe

™
1S0¢g

AN3IA3
Av3add

<

SELECT

ecte.

[ASVW |~

eroe 6£0¢€
M JOHLINOD
21907 aNv

dvdl F

ol

.

TOHLNOD

6v0€

ss3adaav

HOSS3O0Hd
NIVIN

SELECTE
)

INN

INd 1X3

IHNAN

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

. / N N/ 1208
IAIHA H m@.m._m_.mu._. /
Msia .
W3Iaow auvH
- 920¢
IHNAWN > ¢ na/ov
{ VA 210
< k -
% L 8208
0N HITIOHLNOD
(ao
IVLSAHD
ainon 1208 — (dos)
zeoe — AUVOSAIMN i 3 Hossaooud |—» z1 0wl
TVYNHILNI 920¢e TJOHLNOD
W3LSAS L —p | DuI
980 ze0e gLog— Qﬁ
/ﬂ HOLO3INNOD EK HOLD3INNOD
Iovr i} it
mnnunnnu.“r// i cemmmmes peccccseaas N INd 1 X3
aNMN sgpe 1808 i 140 : ¥20€ Il.meOE\Dm_<Om>m¥. [HNaN
INOHJI 3L ' TYNHALXT ! IYNYILXT |

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

0208~ gxeyi
9106 /i0L}
Eej 6908 i 1oviT
i s3¥3LIve w
oa/ov d e caaaaan
HOLO3ANNOD
LINDHID
(XdN) TOHINOD
AHOWIN HOSS3O0HJ0D H3IMOd
IHOVD
L1 DYl OIH3aNnNN
r4o m./Em. zLoe
/ .
< 290€
O J
HOSS3IOOHd
NIVIN
TOHLINOD -
sng mucm 1 bog
+90¢ (Vlva
“JOHLNOD .
‘ss3Haay) | vWa . -990¢
sng [t '

SUBSTITUTE SHEET

PCT/US92/04169

WO 92/21081

55/64

pee s1d oroe
/

mNGm
]//J ’///

NOYH
JAINQA
WvH MSIAa
HSV 14 AddOd

@ j
ceoe

- - s 0 - - - o = o of

Zeoe

(Wvda)
AHOWIIN
NIV

oa/ov

250¢

1940

(VLva “1041NOD ‘sSs3a"aav) snd

Y

11T

r90g”’

SUBSTITUTE SHEET

WO 92/21081

SAVE
STATE

sror(_stare)

SET UP STACK
UNLOCK INTERNAL
CONFIGURATION
REGISTERS
FORCE FAST CPU
CLOCK SPEED

OVERRIDE
TIMER
TIMEOUT
?

IDLE
TIMER
TIMEOUT
?

EXTERNAL
PMI
?

]
1
1
1)
1)

«

PCT/US92/04169

pmi D6/64

HANDLER

Fig.

3104

CALL

OVERRIDE

HANDLER
(FIG. 35)

3107

[
CALL
IDLE / STANDBY
HANDLER
(FIG. 34)

3109

CALL
EXT PMI
HANDLER
(FIG. 36)

v

RESTORE CPU
CLOCK SPEED
RESTORE CONFIGURATION
REGISTER PROTECTION
ENABLE PMI
CLEAR RESET INHIBIT

. 3112

RESTORE
STATE

:
C

SUBSTITUTE SHEET

WO 92/21081

31&(START)

IDLE \ sTANDBY D7//64
HANDLER

Fig.

PCT/US92/04169

34qa

YES

3126

YES

COUNT <
STANDBY /8
?

NO 3[13 1 3/1 27

3118
Yy [

[COUNT = COUNT + 1

COUNT =0 RESTART IDLE TIMER

[COUNT = COUNT + 1
RESTART IDLE TIMER

3132

YES YES
AC POWER

?

AC POWER
?

YES

AC POWER
?

3129 31 21\
DISABL']'E] I\ﬁ)é/FEFlRIDE RESTART ENABL'E] SEIRERRIDE
OVERRIDE
ADVISE SCP IDLE IS TIMER ADVISE SCP IDLE IS
BEING EXITED BEING ENTERED
Y v
RESTORE CLOCK - SAVE CLOCK
SPEEDS IN SAVED SPEEDS FROM
STATE (CPU, DMA, SAVED STATE
NPX) 3122 | (CPU, DMA, NPX)
ENABLE CACHE i SET CLOCKS TO
; 7 SLOWEST SPEED
3134 ¢ IN SAVED STATE
(CPU, DMA, NPX)
DISABLE CACHE

®

SUBSTITUTE SHEET

&)

WO 92/21081 PCT/US92/04169

58/64
®
FDD
MOTOR YES >
RUNNING
?
3137
HDD YES
CONTROLER >

BUSY

?
139 138
No 7 Y i
RESTART IDLE
ENTER STANDBY TIMER
| BREAK
{ EVENT
i 141
v 7
EXIT STANDBY
RESTART IDLE TIMER
4 v

S~
Gaw)

Fig. 34b

SUBSTITUTE SHEET

WO 92/21081 PCT/US92/04169

59/64

31@(START) Pzg 35

OVERRIDE
TIMER
EXPIRE

3148,

COUNT =0
DISABLE OVERRIDE
TIMER
ADVISE SCP IDLE
IS BEING EXITED

RESTORE CLOCK
SPEEDS IN SAVED
STATE
[(CPU, DMA, NPX)
3149| ENABLE CACHE
RESTART IDLE
TIMER

ST

W
hrg

(e)

SUBSTITUTE SHEET

WO 92/21081

Fig. 360 ()

60/64

PCT/US92/04169

EXT PMI
HANDLER

ASK SCP FOR
SOURCE OF PMI

— 3152

COUNT =0
DISABLE OVERRIDE
TIMER
ADVISE SCP IDLE IS
BEING EXITED

L — 3154

y

RESTORE CLOCK
SPEEDS IN SAVED
STATE (CPU, DMA, NPX)
ENABLE CACHE
RESTART IDLE TIMER

3156

¢

®

SUBSTITUTE SHEET

WO 92/21081

Fig. 36D

NO

PCT/US92/04169

IN IDLE

NO

MODE
?

COUNT =0
 DISABLE OVERRIDE
TIMER
ADVISE SCP IDLE IS

BEING EXITED

— 3159

v

RESTORE CLOCK
SPEEDS IN SAVED
STATE
(CPU, DMA, NPX)
ENABLE CACHE
RESTART IDLE TIMER

— 3161

*""""""""T‘

SUBSTITUTE SHEET

3162

(o)

WO 92/21081 PCT/US92/04169

: 62/64
; SCP MAIN
; LOOP .
H P 1 g . 3 7
3166
ACCEPT INPUT FROM
INTERNAL KEYBOARD
5167 3168
vEs | UPDATE PMI BYTE TO
SPECIFY EXIT FROM
IDLE MODE
GENERATE EXT PMI
NO
v

y

ACCEPT INPUT FROM |— 3171
MOUSE OR EXTERNAL
KEYBOARD

START) SCP MOUSE / EXTERNAL -
(,) KEYBOARD HANDLER Flg . 38

3172

UPDATE PMIBYTETO | 3173
SPECIFY EXIT FROM)
IDLE MODE —

GENERATE EXT PMI

YES

NO

(e)

SUBSTITUTE SHEET

-~~~

WO 92/21081

63/64

PCT/US92/04169

Fig. 39

[(START) CLOCK INTERUPT

v

AC/DC
SIGNAL JUST
CHANGE

YES

UPDATE PMI BYTE TO
IDENTIFY CHANGE
GENERATE EXT PMI

3178

|/

Yy

=

SUBSTITUTE SHEET

WO 92/21081 ' PCT/US92/04169

64-/64
C T) W Fig. 40

ACCEPT COMMAND |— 3181

FROM MAIN §
PROCESSOR i
3183
SET IDLE FLAG
ENTER LOWPOWER [
MODE
3186

CLEAR IDLE FLAG
EXITLOWPOWER [
MODE

—3188

SEND PMI BYTE TO
MAIN PROCESSOR

IDENTIFY
EXT PMi
- ?

NO

3189, v

(o)

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT International application No.
PCT/US92/04169

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :GO6F 1/08, 1/26, 1/32, 5/00, 12/16
US CL :364/707,708; 395/650,725,750
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 364/707,708; 395/650,725,750

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consuited during the international search (name of data base and, where practicable, search terms used)
Please Sec Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US,A, 4,523,295 (Zato) 11 June 1985 See Abstract. 1
Y 10
X US,A, 4,317,180 (Lies) 23 February 1982 See Cols. 4 and 7 o -~ 2
Y e 4
X US,A, 4,868,832 (Marrington et al.) 19 September 1989 See Abstract and Col. 5. 3
Y 4
X US,A, 4,381,552 (Nocilini et al.) 26 April 1983 See Abstract, Col. 1. 5
Y 11,60-62
X Microprocessor Systems Design, PWS-Kent Publishing Company, 1987, Alan Clements, | 8,18
Y pages 246-247,117,353. 24-37,40,41
YT US,A, 5,129,091 (Yorimoto ct al.) 07 July 1992 See Col. 3. 9-11,13,42-44,47-48,50-
54
X US,A, 4,870,570 (Satoh et al.) 26 September 1989 See Abstract. 12
Y 9
Further documents are listed in the continuation of Box C. D See patent family annex.
. Special categories of cited d T later document published after the international filing date or priority
. L. N date and not in conflict with the application but cited to understand the
"A° document defining the general state of the art which is not considered principie or theory underlying the invention
to be part of particuiar relevance
‘B earlier document published on or after the internationsl filing date X documeat of particular "‘;‘;‘:ﬁiﬁmﬂﬁﬁﬂ“ﬂ;&ﬁg
L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other oy documeat of particular rel . the claimed i ot be
special (as specified) considered to involve an inventive step when the document is
‘0" dacument referring to an oral disclosure, use, exhibition or other combined with one or more other such d such bi
means being obvious to a person skilled in the art
°P* document published prior to the international filing date but later than =g+ document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
f 26007 1992
Name and mailing address of the ISA/ Authorized officer
ggmmissioner of Patents and Trademarks
x PCT
Washington, D.C. 20231 KAKALI CHAKI
Facsimile No. NOT APPLICABLE Telephone No. (703) 308-1662

Form PCT/ISA/210 (second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT International applicatidn No.
PCT/US92/04169

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

{
Category* Citation of document, with indication, where appropriate, of the i’clcvant passages

R;lcvant to claim No.

Y,P US,A, 5,068,652 (Kobayashi) 26 November 1991 See Col. 1, lines 7-15. 4,13,19
X JP,A, 53-22345 (Nakagiri) 01 March 1978 See Abstract. 16
Y.P US,A, 5,077,551 (Saitou) 31 December 1991 See Cols. 1 and 2. 19,42-44,47-48,50-54
Y US,A, 4,458,307 (McAnlis et al.) 03 July 1984 See Col. 1. 20,23 h
Y US,A, 4,506,323 (Pusic ct al.) 19 March 1985 See Abstract. 24-28,31-37 <
Y US,A, 4,564,751 (Alley et al.) 14 January 1986 See Figs. 1,2 Abstmct. 21
Y US,A, 4,689,761 (Yurchenco) 25 August 1987 See Abstract, Col. 3- Col. 4. 21
Y US,A, 4,823,292 (Hillion) 18 April 1989 See Col. 1, lines 27-401. 22
Y US,A, 4,933,785 (Morchousc et al.) 12 June 1990 Sce Cols. 5 and 16. 23, %5-65
Y US,A, 4,694,393 (Hirano et al.) 15 September 1987 See Col. 1, ;llines 4363, Col. 2, |31-37, 48
lines 6-20.
Y US,A, 4,945,335 (Kimura ct al.) 05 February 1991 See Abstract} Col. 1, line 64- 3839
Col. 2, line 16. 55-65

hTN

Form PCT/ISA/210 (continuation of second sheet)July 1992)%

A%

INTERNATIONAL SEARCH REPORT International application No.
PCT/US92/04169

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

APS: Processor, computer, power reduction, disk drive, laptop, housing, lid. (See Attachment)

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

Group I, Claim 1, drawn to saving and recovery of image information during a power reduction and upon restoration
thereof, respectively, classified in Class 371, Subclass 10.1.

Group II, Claims 2,4 and 55-65, drawn to an apparatus for controlling power to a processor, classified in Class 395,
Subclass 750.

Group III, Claim 3, drawn to a power supply for a processor having AC and DC sources, classified in Class 365,
Subclass 229.)

Group IV, Claims 5,6,9-12,14,15,20,22 and 23, drawn to an apparatus for controlling operations during operational
mode switching of a processor, classified in Class 395, Subclass 650.

Group V, Claim 7, drawn to an apparatus for controlling the acessing of information from one of two memories,
Classified in Class 395, Subclass 425,

Group VI, Claim 8, drawn to an apparatus for interrupt handling in a processor, classified in Class 395, Subclass 725.

Group VII, Claim 13, drawn to an apparatus for controlling operations when a processor is halted during instruction
processing, classified in Class 395, Subclass 375.

Group VII, Claim 16, drawn to keyboard functions in a computer system, classified in Class 364, Subclass 189.

Group IX, Claims 17, and 24-37, drawn to an apparatus and method for controlling operations of a peripheral/disk
drive, classified in Class 395, Subclass 275.

Group X, Claims 18 and 38-41, drawn to an apparatus for communication between a processor and other means,
classified in Class 395, Subclass 325.

Group XI, Claims 19 and 42-54, drawn to a special housing for a computer system, classified in class 364, Subclass
927.83.

Group XII, Claim 21, drawn to a keyboard connector (interface) in a computer system, classified in Class 364, Subclass
927.99.

Form PCT/ISA/210 (extra sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

