WO 00/54161 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION|

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 September 2000 (14.09.2000)

PCT

A 00 00O O 0 0

(10) International Publication Number

WO 00/54161 Al

GOG6F 13/14,

(51) International Patent Classification’:
13/372, 3/00, HO4N 7/10

(21) International Application Number: PCT/US00/06093

(22) International Filing Date: 9 March 2000 (09.03.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/268,512 12 March 1999 (12.03.1999) US
(71) Applicant: DIVA SYSTEMS CORPORATION
[US/US]; 800 Saginaw Drive, Redwood City, CA 94063

Us).

(72) Inventors: CHIN, Danny; 4 Strathmore Place, Princeton
Junction, NJ 08550 (US). LERMAN, Jesse, S.; 191
Finnegans Lane, Kendall Park, NJ 08824 (US). TAYLOR,
Clement, G.; 215 Hampshire Drive, Plainsboro, NJ
08536 (US). FREDERICKSON, James; 36 Vandeventer
Avenue, Princeton, NJ 08542 (US).

(74) Agents: MOSER, Raymond, R. et al.; Thomason, Moser

and Patterson LLP, Suite 100, 595 Shrewsbury Avenue,

Shrewsbury, NJ 07702 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ,

BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE,

ES, FL, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,

MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,

[Continued on next page]

(54) Title: QUEUING ARCHITECTURE WITH MULTIPLE QUEUES AND METHOD FOR STATISTICAL DISK SCHEDUL-
I

NG FOR VIDEO SERVERS

1]0 120
STATISTICAL 221 STEADY-STATE QUEUE;
DISK I~ 251, 120
SCHEDULER v
.. NEN SUBSCRBER QUELE *K\
e
252 | | DSk
OTHER REQUEST QUEUE 125¢
2231\ |
(. 2534
QUEUE
SELECTOR (rpr,. STEADVSTATE QUEUE;
\ . 251, 12202
205 NEW SUBSCRIBER QUEUE, J\‘
oz T i
2525 / 2
OTHER REQUEST QUEUE, 195
Lmz\ 253
L]
. .
[]
. .
o1, STEADY-STATE QUEUE,
~ 251, 1220n
NEW SUBSCRIBER QUEUE,
o T T
2521 / Jﬁ':s""
p2. OTHER REQUEST QUEUE 195,
N~ !
I | | I’ 253,

(57) Abstract: A queuing architecture and method for scheduling
disk drive access requests in a video server. The quening architec-
ture employs at least two access request queues (221; 222, 223) for
each disk drive (120) within a disk drive array. A first queue (221)
is for disk access requests by steady-state users currently viewing
a program. A second queue, which may include multiple queues
(222, 223), is for all other types of access requests including re-
quests by users who wish to begin viewing a program, disk main-
tenance, meta data synchronizing and the like. A queue selector
(205) gives highest priority to requests in the first queue to main-
tain time deadlines for steady state disk access requests, which are
serviced in order of ascending deadlines. Requests from the sec-
ond queue are serviced only if all of the steady-state requests in
the first queue will meet their time deadlines in the worst case.

WO 00/54161

AT DU A0 A A A

SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN,
YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, 8D, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ,BY, KG, KZ,MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI,FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

(48) Date of publication of this corrected version:
8 November 2001

(15) Information about Correction:
see PCT Gazette No. 45/2001 of 8 November 2001, Section
II

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 00/54161 -1 - PCT/US00/06093

QUEUING ARCHITECTURE WITH MULTIPLE QUEUES AND METHOD FOR STATISTICAL DI
VIDED SERvERg SK SCHEDULING FOR

The invention relates to methods of scheduling disk
access requests in a video server, and, more particularly,
5 to statistical scheduling methods that improve the

effective disk bandwidth provided by video servers.

BACKGROUND OF THE DISCLOSURE

Video-on-demand systems allow subscribers to request

10 video programs from a video library at any time for
immediate viewing in their homes. Subscribers submit
requests to a video service provider via a communication
channel (e.g., telephone lines or a back channel through
the distribution network that carries the video to the

15 subscriber’s home), and the requested video program is
routed to the subscriber’s home via telephone or coaxial
television lines. 1In order to provide such movie-on-
demand services, video service providers use a video
server to process subscriber requests, retrieve the

20 requested programs from storage, and distribute the
programs to the appropriate subscriber(s). One exemplary
system for providing video-on-demand services is described
in commonly assigned U.S. patent application serial number
08/984,710, filed December 3, 1997, which is incorporated

25 herein by reference.

In order for video servers to provide good
performance, it is crucial to schedule video storage
(disk) access requests such that disk bandwidth is
maximized. Also, once a subscriber is watching a program,

30 it is imperative to continuously deliver program content
to the subscriber without interruption. In addition to
distributing content to subscribers, disk bandwidth in a
video server is typically also required for operations
such as loading content, disk maintenance and file system

35 meta-data syncing. Disk bandwidth may also be reserved

10

15

20

25

30

WO 00/54161 - 2 - PCT/US00/06093

for reducing latency in data transfer to subscribers. The
number of subscribers that can be properly served
concurrently by a video server therefore depends on
effective disk bandwidth, which in turn depends on how
disk access requests are scheduled.

One of the problems facing current disk scheduling
methods is the potential variation in time required to
service disk accesses. For example, the internal transfer
rate of a Seagate Cheetah disk varies from 152 Mbps on
inner tracks to 231 Mbps on outer tracks, and the seek
time can vary from Oms to 13ms depending on how far apart
the segments of data are from one another. Given these
variations in seek and transfer times and the fact that
the server may contain sixteen or more disk drives, it is
difficult to determine the effective disk bandwidth of a
video server. As a result, current disk scheduling
methods allocate a fixed amount of time for every disk
access request, regardless of whether the access finishes
early. This results in a deterministic system in which
the available disk bandwidth is known, but since the fixed
amount of time must be large enough to accommodate a
worst-case disk access, disk bandwidth is wasted.

Therefore, there is a need in the art for a method
and apparatus for scheduling disk access requests in a
video server without allocating worst-case access times,

thus improving disk bandwidth utilization.

SUMMARY OF THE INVENTION

The disadvantages associated with the prior art are
overcome by a method of the present invention, called
Statistical Disk Scheduling (SDS), which exploits the fact
that disk access times are on average significantly less
than the worst case access time. The SDS finds use in

improving video server functionality by increasing the

10

15

20

25

30

WO 00/54161 -3 - PCT/US00/06093

bandwidth utilization of the storage medium in the
following manner: worst case performance is used for
priority operations (e.g., user read operations) but the
bandwith created by better than worst case performance is
used for non-priority operations such as loading content
onto the disk drives and disk maintenance. As a result,
bandwidth for loading content and disk maintenance, or
file system meta-data syncing does not have to be
specifically reserved, thus increasing the number of users
that can be served simultaneously by the video server.

SDS maintains at least two queues and a gueue
selector. The first queue is an access request queue for
access requests from a current user that are presently
viewing a program and the second queue is for all other
forms of access requests. The second gueue may comprise
multiple gqueues to provide a gueuing hierarchy. The
requests are ordered in each of the gqueues to optimize the
bandwidth and ensure that the data to the current users is
not interrupted such that a display anomaly occurs. The
queue selector identifies the gueue that will supply the
next access request to a disk queue. The selected
requests are sent to the disk gueues for execution. The
disk gueues are generally located on the disk drives and
are generally not accessible except to place a request in
the queue for each disk drive. The requests are then
executed on a first-in, first-out manner. In effect, the
invention defers disk use to the latest possible moment
because once the request is in the disk queue it is more
difficult to change. The inventive gueue structure
provides opportunities to alter the disk access requests
and their execution order prior to sending the requests to
the disk queue. If a disk gueue is not used, i.e., the

disk drive does not have an internal queue, then the

10

15

20

25

30

WO 00/54161 - 4 - PCT/US00/06093

access requests are sent one at a time from the SDS to the
disk drive for execution.

More specifically, the preferred embodiment of the
SDS maintains three queues for each disk based on the type
and priority of disk access requests, and a queue selector
for managing queue selection. Selected requests are
forwarded from the three queues to the disk such that
bandwidth utilization is maximized, while giving highest
priority to subscribers currently viewing a program so
that their program streams are generally not interrupted.
(Subscribers currently viewing a program are referred to
as “steady-state” subscribers.) SDS dynamically monitors
bandwidth utilization to determine when lower-priority
requests can be scheduled without affecting on-time
completion of the higher priority steady-state subscriber
requests. In order to keep the disks busy and maximize
disk bandwidth utilization, disk command queuing may be
employed to ensure that the disk can begin seeking for the
next access immediately after it finishes the data
transfer for the current disk access.

Furthermore, popular content is migrated to the
faster (outer) tracks of the disk drives to reduce the

average access time and improve performance.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily
understood by considering the following detailed
description in conjunction with the accompanying drawings,
in which:

FIG. 1 depicts a high-level block diagram of a video-
on-demand system that includes a generic video server

incorporating the present invention;

10

15

20

25

30

WO 00/54161 - 5 - PCT/US00/06093

FIG. 2 depicts the gueuing architecture of the
Statistical Disk Scheduler used to perform the method of
the present invention;

FIG. 3 depicts a flowchart specification of the SDS
Selection Procedure;

FIG. 4 depicts a flowchart specification of the
Scheduling Interval Procedure;

FIG. 5 depicts a round-robin version of the
Scheduling Interval Procedure;

FIG. 6 depicts a flowchart specification of the
Command Completion Procedure;

FIG. 7 depicts a flowchart specification of the
method of the present invention; and

FIG. 8 shows the software process architecture for a
preferred multi-threaded implementation of the method of
the present invention.

To facilitate understanding, identical reference
numerals have been used, where possible, to designate

identical elements that are common to the figures.

DETAILED DESCRIPTION

FIG. 1 depicts a video-on-demand system that utilizes
a generic video server incorporating the teachings of the
present invention. Specifically, video-on-demand system
100 contains a video server 110 that communicates with a
plurality of disks 120 via a Statistical Disk Scheduler
(SDS) 170. 1In addition to the SDS 170, wvideo server 110
contains a CPU 114 and memory element 117. SDS 170 is
coupled to disks 120 by paths 130 (e.g., fiber channel),
and memory 117 by data path 177. The video server sends
access requests along paths 130 to disks 120, and each
disk 120 has its own internal queue 125 for buffering
access requests. Data read from the disks are transmitted

back to the video server along paths 130, (where n is an

10

15

20

25

30

WO 00/54161 - 6 - PCT/US00/06093

integer greater than zero). The paths 130, are “daisy
chained” to form a data transfer loop 131, e.g., a fiber
channel loop. Although one loop is depicted, multiple
loops may be employed to interconnect subsets of the disk
drives such that the data transfer rate amongst the disk
drives and the video server is increased over that of a
single loop system. The video server contains a
Distribution Manager 180 that receives the data
transmitted along paths 130, and loop 131 and distributes
this data to subscribers 160 via a transport network 140.
Additionally, disks 120 send messages called command
completion messages (to be discussed later) to the SDS 170
along paths 130.

The transport network 140 is typically, but not
exclusively, a conventional bi-directional hybrid fiber-
coaxial cable network. Subscribers 160 are coupled to the
transport network 140 by paths 150 (e.g., coaxial cable).
Additionally, transport network 140 forwards subscriber
access requests along path 175 to the SDS 170, and
receives video data from Distribution Manager 180 via path
185.

Commonly assigned U.S. patent application serial
number 08/984,710, filed December 3, 1997, which is
incorporated herein by reference, describes an information
distribution system, known as the OnSet™ system, that uses
a video server that may benefit from the present
invention. Additionally, the video server of the OnSet
system is described in U.S. patents 5,671,377 and
5,581,778 which are both herein incorporated by reference.

The SDS 170 performs the method of the present
invention. A logical representation of the SDS data
architecture is shown in FIG. 2. In a physical
representation, the outputs of each gueue are connected to

the data loop (131 of FIG. 1). In the depicted

10

15

20

25

30

WO 00/54161 -7 - PCT/US00/06093

embodiment, the SDS gueuing architecture contains three
gueues for each disk 120 and a gueue selector 205 for
managing queue selection, i.e., the gueue selector
determines which queue is to transfer the next access
request to a disk drive. For simplicity, the logical
representation is more easily understandable. Although
FIG. 2 depicts three queues for each disk drive, a greater
or lesser number of queues may be used to fulfill the
invention, i.e., at least two queues should be used; one
for the “steady-state” requests and one for all other
requests.

In the three queue embodiment of the SDS 170, a
steady-state subscriber queue (55Q) 221 is used for
“steady-state” subscriber disk reads for active streams
(i.e., continuous content retrieval for distribution to
subscribers currently watching a program.) Disk access
requests in SSQ 221 are assigned the highest priority. A
new subscriber queue (NSQ) 222 is for subscriber requests
to begin viewing a program or perform other program
related commands, i.e., non-steady state commands such as
fast forward or rewind thaﬁ in essence are a request for a
new data stream. Disk access requests in NSQ 222 are
assigned medium priority. The other request gueue (ORQ)
223 is for all non-subscriber operations, such as loading
content, disk maintenance, and file system meta-data
syncing. Disk access requests in ORQ 223 are assigned the
lowest priority.

Queues 221, 222, and 223, are collectively called the
SDS qgueues 200,, where n is an integer greater than zero
that represents a disk drive 120, in an array of disk
drives 120. For each disk 120,, the gueue selector 205
selects regquests from the three SDS gqueues 221,, 222, and
223, and forwards the requests to the corresponding disk

queue 125,. Each reguest has an associated worst-case

10

15

20

25

30

WO 00/54161 - 8 - PCT/US00/06093

access time based on the type of regquest and data transfer
size. The worst-case access time can be fixed, or
dynamically computed based on prior access time
statistics. Additionally, each steady-state subscriber
request has a time deadline for when the request must
complete in order to guarantee continuous video for that
subscriber. Disk requests in the NSQ and ORQ generally do
not have time deadlines.

Requests in the SSQ 221, are ordered by time deadline
so that the request at the front of the queue has the
earliest deadline. Consecutive SSQ requests with the same
time deadline are ordered by logical disk block address
according to an elevator algorithm. The elevator
algorithm is a disk scheduling algorithm well-known in the
art in which the disk head travels in one direction over
the disk cylinders until there are no more requests that
can be serviced by continuing in that direction. At this
point, the disk head changes direction and repeats the
process, thus traveling back and forth over the disk
cylinders as it services requests. Since reqguests in the
NSQ and ORQ do not generally have deadlines, they may be
ordered on a first come first serve basis, or according to
some other desired priority scheme.

In order to keep the disks 120 busy and maximize disk
bandwidth utilization, disk command gueuing may be
employed to ensure that the disk can begin the seek for
the next access immediately after it finishes the data
transfer for the current disk access. When a steady-state
request needs to access a sequence of multiple disks, the
request is initially added to the SSQ 221, of the first
disk 120,. After this request is selected for servicing by
the first disk 120,, the request is added to the second
disk’s SSQ 221, as soon the video server begins sending the

data that was recalled from the first disk 120, to the

10

15

20

25

30

WO 00/54161 - 9 - PCT/US00/06093

subscriber. Steady-state requests are similarly added to
the SSQ 221, of each successive disk 120,.

The queue selector 205 employs an SDS Selection
Procedure to select requests from the three SDS queues 200,
and forward the requests to an associated disk gqueue 125,
located within each of the disk drives 120,. The SDS
Selection Procedure uses worst-case access times, request
priorities, and time deadlines in determining which
request to forward to the disk queue. The general
strategy of the SDS Selection Procedure is to select a
non-SSQ request only when such a selection will not cause
any of the SSQ 221, requests to miss their time deadlines,
even if the non-SSQ request and all requests in the SSQ
221, were to take their worst-case access times. If such a
guarantee cannot be made, then the first request in the
SSQ is always selected. As an optional step, once a
request 1s selected, the SDS Selection Procedure checks
whether the data for the selected read request is already
in cache (if caching is used). If this is the case, the
disk access can be discarded and the Selection Procedure
is repeated. Otherwise, the selected request is removed
from the SDS queue 221, and forwarded to an associated disk
queue 125,.

FIG. 3 depicts a flow diagram of the SDS Selection
Procedure 300. First, the Selection Procedure checks
whether the first entry in the NSQ can be selected while
guaranteeing that all SSQ reguests will meet their time
deadlines in the worst case (step 320), where worst case
is defined by the system. Generally, the worst case value
is the access value having a per user error rate that is
acceptable.

Each queue maintains “a sum of the worst case values”
selector that performs a worst case analysis and selects

the gueue that will be used (i.e., steps 320 and 330) to

10

15

20

25

30

35

40

45

WO 00/54161 - 10 - PCT/US00/06093

send the next command to the disk drive. The following

pseudocode represents the operation of such a selector.

1) perform worst case analysis
returns remaining time (the amount of time left
on the 880 if all commands take worst case time
to execute, if the SSQ is empty, the remaining
time is infinity)

2) if NSQ is 'empty && NSQ.head.worstcase < remaining
time
take request off NRQ
else if NSQ is empty && ORQ is !empty &&
ORQ.head.worstcase < remaining time
take request off ORQ
else if SSQ is !empty
take request off SSQ
if request.deadline - request.worstcase >
current time
request missed deadline, terminate request,
try selector again
else
no requests pending

Preference is given to the NRQ over the ORQ, only take
things off the ORQ if the NSQ is empty.

The ORQ.head.worstcase and NSQ.head.worstcase are the
respective worstcase access times to fulfill the next
request in the ORQ and NSQ. The “remaining time” value is
computed as follows:

remaining time = disk Q Remaining Time (SSQ,) - disk Q

worst case (PQ,)

disk Q Remaining Time (Q, now) {
sum = 0
min = MAX
for each entry in Q {
sum + = entry — worstcase
left = entry — deadline + sum - now;
if (left < =0 |[entry — deadline > now) { /*
out of time */
min = 0;
break;
}
if (min > left)
min = left; /* there is now less time remaining
*/

10

15

20

25

30

35

WO 00/54161 - 11 - PCT/US00/06093

}

return min;

The worst case time value may be dynamically computed
or empirically measured to be a cut off time that defines
a period in which accesses have an acceptable error rate.
If the first entry fulfills the requirement, then this
first entry is selected (step 340); otherwise, the
Selection Procedure checks whether the first entry in the
ORQ can be selected while guaranteeing that all SSQ
requests will meet their time deadlines in the worst case
(step 330). 1If so, then this first entry is selected
(step 350); otherwise, the procedure proceeds to step 315,
wherein the procedure queries whether the first entry in
the SSQ can be executed within its time deadline assuming
the worst case access. If the request cannot be executed
in time, the request is discarded at step 325 and the
procedure returns to step 320.

If, however, the request can be executed in the
allotted time, the first entry of the SSQ is selected at
step 360. The selected request is then removed from its
queue (step 370). Alternatively, if caching is used, the
Selection Procedure checks whether data for the selected
request is already in cache (step 380) (the caching step
380 is shown in phantom to represent that it is an
optional step). If the request is cached, the selected
reguest is discarded and the Selection Procedure is
repeated. Otherwise, the selected reqguest is forwarded to
the associated disk gqueue (step 390).

The SDS executes the Selection Procedure during two
scheduling events, called the scheduling interval and the
command completion event. The scheduling interval is a
fixed, periodic interval, while a command completion event

occurs every time one of the disks completes a command.

10

15

20

25

30

WO 00/54161 - 12 - PCT/US00/06093

(Note that it is possible, although highly unlikely, that
multiple disks complete a command simultaneously at a
command completion event.) At each scheduling interval, a
procedure called the Scheduling Interval Procedure 1is
executed, and at each command completion event, a
procedure called the Command Completion Procedure is
executed. In the case that a scheduling interval and a
command completion coincide, the Command Completion
Procedure is executed first (i.e., the Command Completion
Procedure is given priority over the scheduling Interval
Procedure). Alternatively, if the disk queue has a depth
that is greater than one, then the execution priority of
these routines is reversed. Such reversal leaves more
time available to do other operations.

In the Scheduling Interval Procedure, steady-state
requests are added to the next SSQ, if possible. (Recall
that a steady-state request can be added to the next SSQ
as soon as the data is output from the video server to the
subscriber), and all SSQs are reordered to maintain
correct time deadline order. The first entries in each of
the SSQ0s are then sorted based on time deadlines, which
determines the order with which the disks are serviced.
For each disk, the Selection Procedure 300 is repeatedly
executed as long as the associated disk gueue is not full,
at least one of the three SDS qgueues (SSQ, NSQ, ORQ) is
not empty, and there is a request in one of the three SDS
queues that satisfies the Selection Procedure criteria.
For example, if in a three-Disk system when the disk
queues are not full the first entry in Disk 1’s SSQ has a
time deadline of 35, the first entry in Disk 2’'s SSQ has a
time deadline of 28, and the first entry in Disk 3’s SS8Q
has a time deadline of 39, then the disks would be
serviced in the following order: Disk 2, Disk 1, Disk 3.

Once the disk order has been established, then the SDS

10

15

20

25

30

WO 00/54161 - 13 - PCT/US00/06093

Selection Procedure is performed for each disk in that
order.

Generally, in a video server application, the extents
for the data are very long (e.g., hundreds of kilobytes)
such that the disk queues have a depth of one. 1In other
applications using shorter data extents, the disk queues
may have various depths, e.g., five reqguests could be
stored and executed in a first-in, first-out (FIFO)
manner. The extent size is inversely proportioned to disk
queue depth where data delivery latency is the driving
force that dictates the use of a large extent size for
video server applications. For other applications where
the extent size is relatively small, the disk queue depth
is dictated by the desire to reduce disk drive idle time.

FIG. 4 shows a formal specification of the Scheduling
Interval Procedure 400 in flowchart form. First, the
Scheduling Interval Procedure adds steady-state requests
to the appropriate SSQs, if possible (step 420), and
reorders all the SSQs by time deadlines (step 430). The
disk that has the earliest deadline for the first entry in
its S8SQ is then selected (step 450). The Selection
Procedure is performed for the selected disk (step 300),
and then the Scheduling Interval Procedure checks whether
a request satisfying the Selection Procedure criteria was
selected (step 460). 1If not, the disk with the next
earliest deadline for the first entry in its SSQ is
selected (steps 475, 480, 450) and the Selection Procedure
is repeated for this disk (step 300). Otherwise, the
Scheduling Interval Procedure checks whether the selected
disk’s queue is full, or if all three SDS gueues for the
selected disk are empty. If either of these conditions
are true, then the disk with the next earliest deadline
for the first entry in its SSQ is selected (steps 475,
480, 450) and the Selection Procedure is repeated for this

10

15

20

25

30

WO 00/54161 - 14 - PCT/US00/06093

disk (step 300). 1If, however, both conditions are false,
the Selection Procedure is repeated for the same selected
disk. Thus, the disks are processed sequentially, ordered
by the corresponding SSQ’'s first deadline, where
“processing” means that the Selection Procedure is invoked
repeatedly until the disk queue is full or there are no
more requests for that disk.

As disclosed in FIG. 4, the Scheduling Interval
Procedure fills each of the disk queues one at a time,
which is most efficient for small disk queues. In the
preferred embodiment, a small disk queue is used, as it
facilitates the latency reduction. In particular, as soon
as the servicing of a request extends past its worst-case
access time, the request is aborted by the SDS, i.e., the
SDS “times-out” waiting for the request to be serviced and
then moves on the next procedural step. To assist in
error handling when using a disk gueue with a depth that
is greater than one such that the server may determine
which request was not fulfilled within a predefined time
period, the server maintains a disk mimic queue that
mimics the content of the disk queue of each of the disk
drives. As such, the server can poll the mimic gueue to
determine the nature of the errant request and send an
“abort” command to the disk drive for that request. The
disk drive will then process the next request in the disk
queue and the server updates the mimic queue.

In the case of large disk queues, however, f£illing
the disk queues in a round-robin fashion may be more
efficient. A round-robin version of the Scheduling
Interval Procedure for large disk queues is shown in FIG.
5. As in the previous embodiment of the Scheduling
Interval Procedure, steady-state requests are first added
to the appropriate SSQs (step 520), and disks are ordered
by the deadlines of the first entry in each disk’s SSQ

10

15

20

25

30

WO 00/54161 - 15 - PCT/US00/06093

(step 530). In this round-robin version, however, the
Selection Procedure is executed only once for a disk, and
then the next disk is selected. Once all disks have been
selected, the round-robin Scheduling Interval Procedure
goes through each of the disks once again in the same
order, executing the Selection Procedure once per disk.
This process is continued until no more requests can be
added to any of the disk queues.

Specifically, a vector D is defined as an ordered
list of all the disks, where the order is based on the
time deadlines of the first entry in each disk’s SSQ (step
530). A Boolean variable SELECT is initialized to false,
and an integer variable 1 is initialized to 1 (step 540).
The following condition is then tested: if i = n+l1 and
SELECT = false (step 550). As will be seen shortly, this
condition will only be true when all of the disks have
been selected and no requests could be added to any of the
disk’s queues. Next (555), 1if i = n+l1 (i.e., the last
disk had been selected in the previous iteration), then i
is set to 1 (start again with the first disk). If disk
D,’s disk queue is full (step 560), or all three of D;,’s
SDS queues are empty (step 570), then the next disk is
selected (step 585). The Selection Procedure is performed
for D, (step 300), and if a request satisfying the
Selection Procedure criteria was found, SELECT is set to
true (step 580), and the next disk is selected (step 585).
Thus the SELECT variable indicates whether a request was
added to one of the disk queues during a pass over the
vector of disks.

The Command Completion Procedure is executed, on a
first-in, first-out basis, every time a disk completes a
command. Thus, for each completed command, the Command
Completion Procedure executes in the order in which the

commands are completed, 1.e., using the FIFO command

10

15

20

25

30

WO 00/54161 - 16 - PCT/US00/06093

handling step 605. As such, the Command Handling
Procedure begins at step 610, proceeds to step 605 and
ends at step 690.

Alternatively, the procedure can be adapted to handle
simultaneous command events. In this procedure, it is
first determined if multiple disks have completed a
command simultaneously at the command completion event.
(Most likely only one disk will have completed a command
at the command completion event, but the multiple-disk
situation is possible.) If more than one disk has
completed a command, then the first entries in the $SQs of
these disks are sorted based on time deadlines,
determining the order in which the disks are serviced.
Once the disk order has been established, the SDS
Selection Procedure is performed for each disk in order in
the same manner as the Scheduling Interval Procedure.

That is, for each disk, the Selection Procedure is
repeatedly executed as long as the associated disk queue
is not full, at least one of the three SDS gueues (SSQ,
NSQ, ORQ) is not empty, and there is a request in one of
the three SDS queues that satisfies the Selection
Procedure criteria.

A formal specification of both forms of the Command
Completion Procedure is shown in flowchart form in FIG. 6.
Step 605 represents the standard FIFO command handling
procedure, while the dashed box 615 represents an
alternative procedure capable of handling simultaneous
command occurrences. In this alternative version, the
Command Completion Procedure determines which disks have
just completed a command, and the disk that has the
earliest deadline for the first entry in its SSQ is then
selected (step 650). Just as in the Scheduling Interval
Procedure, the Selection Procedure is performed for the

selected disk (step 300), and then the Command Completion

10

15

20

25

30

WO 00/54161 - 17 - PCT/US00/06093

Procedure checks whether a request satisfying the
Selection Procedure criteria was selected (step 660). If
not, the disk with the next earliest deadline for the
first entry in its SSQ is selected (steps 675, 680, 650)
and the Selection Procedure is repeated for this disk
(step 300). Otherwise, the Command Completion Procedure
checks whether the selected disk’s queue is full, or if
all three SDS queues for the selected disk are empty. If
either of these conditions are true, then the disk with
the next earliest deadline for the first entry in its SSQ
is selected (steps 675, 680, 650) and the Selection
Procedure is repeated for this disk (step 300). If,
however, both conditions are false, the Selection
Procedure is repeated for the same selected disk.

As disclosed in FIG. 6, the Command Completion
Procedure fills each of the disk gueues one at a time,
i.e., the disk with a complete event is refilled. Note
that since it is highly unlikely that more than one disk
is serviced on a command completion event, the choice of
whether to employ round-robin or sequential filling of the
disk queues in the Command Completion Procedure has
essentially no impact on performance.

In both the Scheduling Interval and Command
Completion Procedures, the ordering of requests within the
disk gqueues are managed by the video server CPU, and not
the disks themselves. (Any reordering operations normally
performed by the disk must be disabled.) While reordering
by the disks would improve the average seek time, managing
the disk queues by the CPU is required to preserve the
time deadlines of the user requests.

A formal specification of the method of the present
invention is shown in flowchart form in FIG. 7. Whenever
a command completion event occurs (720), the Command

Completion Procedure is invoked (600), and whenever a

10

15

20

25

30

WO 00/54161 - 18 - PCT/US00/06093

scheduling interval occurs (730), the Scheduling Interval
Procedure is invoked (400). As shown in the figure, if
both a scheduling interval and a command completion event
occur simultaneously, the command completion is given
priority and the Command Completion Procedure is executed
first. Alternatively, as discussed above, when a disk
gueue having a depth that is greater than one is used, the
execution priority for these procedures is reversed.

In a preferred embodiment, the method of the present
invention is implemented as a multi-threaded process.
FIG. 8 shows the software process architecture 800 for the
preferred embodiment. The media control thread 810
receives new-subscriber request messages from the
transport network 140 and path 175, and forwards these
requests through message queues 815 to the T, thread 820.
The T, thread 820 is a top level scheduler responsible for
two primary functions: first, it maintains all state
information necessary to communicate with the disk
interfaces 835 and video server memory 840; second, it
performs the Scheduling Interval Procedure using a period
of, for example, 100 ms. The T, Loop thread allocates the
commands to the SDS queues 875, where each disk drive is
associated with a set of queues (e.g., ssa, NSQ and other
queues) generally shown as queues 825,, 825,, .. 825;. At
the startup condition, when the disks are idle, the
initial commands (startup commands) from the T, loop thread
820 are sent from the SDS queues 825 directly to the disk
interfaces 835. Under steady-state operation, a response
thread 830 communicates the commands from the SDS queues
825 to the disk drive interfaces 835. Each interface 835
communicates to individual disk drives through a fiber
channel loop. Response thread 330 also receives command
completion messages from the disk interfaces 835. Upon

receiving these messages the response thread performs the

10

WO 00/54161 - 19 - PCT/US00/06093

Command Completion Procedure. Media control thread 810, T,
loop thread 820, and response thread 830 are all executed
by video server CPU 114 of FIG. 1.

While this invention has been particularly shown and
described with references to a preferred embodiment
thereof, it will be understood by those skilled in the art
that various changes in form and details may be made
therein without departing from the spirit and scope of the

invention as defined by the appended claims.

10

15

20

25

30

WO 00/54161 - 20 - PCT/US00/06093

What is claimed is:

1. A gueuing architecture for scheduling disk drive
access requests in an information server, comprising, for
each disk drive in said information server:

a first queue (221) for disk access requests from
users currently receiving information provided by the
information server;

a second queue (222; 223) for all other disk access
reguests; and

a queue selector (205) for selecting requests from
said first and second queues and forwarding said requests

to said disk drive.

2. The queuing architecture of claim 1, where requests in
said first and second queues are assigned worst-case

access times.

3. The queuing architecture of claim 1, where regquests in

said first queue each have an associated time deadline.

4. The queuing architecture of claim 1, where requests in
said first queue are ordered from front to back by

ascending time deadlines.

5. The queuing architecture of claim 1, where said queue
selector gives highest priority to requests in said first

queue and lower priority to requests in said second queue.

6. The gueuing architecture of claim 1, wherein said
information server is a video server (110) and said

information is a video program.

10

15

20

25

30

WO 00/54161 - 21 - PCT/US00/06093

7. The gueuing architecture of claim 1, where requests in
said first queue are ordered from front to back by

ascending time deadlines.

8. The queuing architecture of claim 1 wherein said queue
selector establishes priority in response to the location

of the data upon a disk in said disk drive.

9. The queuing architecture of claim 1 wherein data is

stored in said disk drives based upon queuing priority.

10. A method of scheduling access requests for a disk
drive in an information server, said method comprising the
steps of:

(a) providing at least two queues, where a first
queue contains steady state access requests from users
being supplied information from the information server and
a second queue for all other types of access requests;

(b) selecting an access request from said second
queue, if such selection does not cause a steady-state
request to miss a time deadline within which the steady-
state request must be completed to ensure that the
information being viewed is not interrupted;

(c) otherwise, selecting a steady-state; and

(d) forwarding the selected request to said disk

drive.

11. The method of claim 10 further comprising the step of
repeating steps (b), (c), and (d) performed repeatedly
while an internal queue within the disk drive is not full,
and there are outstanding access requests for said disk

drive.

10

15

20

25

30

WO 00/54161 - 22 - PCT/US00/06093

12. The method of claim 10 further comprising the steps
of checking, before forwarding said selected request to
said disk drive, if data for said selected request is in a
cache, and discarding said selected request if said data

is in said cache.

13. A method of scheduling access requests for a
plurality of disk drives in a video server, said method
comprising the steps of:

providing, for each of the disk drives in said
plurality of disk drives, three gueues, where a first
queue contains steady state access requests from users
being supplied a program from the video server, a second
queue contains new programming access requests and a third
queue for all other types of access requests;

determining which of said disk drives has completed a
command ;

ordering said disk drives that have completed a
command by earliest time deadline of steady-state access
requests for said disk drives; and

for each said disk that has completed a command,

selecting the next new programming request, if such
selection does not cause any steady-state request to miss
an associated time deadline within which the steady-state
request must be completed to ensure that the program being
viewed is not interrupted;
otherwise, selecting the next other-request, if such
selection does not cause any steady-state request to miss
said associated time deadline within which the steady-
state request must be completed to ensure that the program
being viewed is not interrupted;

otherwise, selecting the steady-state regquest with
the earliest time deadline; and

forwarding the selected request to said disk drive.

WO 00/54161 - 23 - PCT/US00/06093

14. The method of claim 13, where said method is

performed every time one of said disk drives has completed

a command.

15. The method of claim 13, where said method is

performed within a scheduling interval.

WO 00/54161 PCT/US00/06093

1/8

120
100 [1204
110 131 1304
) ~.
" VIDEO SERVER N =3)EDISK1
170
) 130 11251 120\2
114 -
) 177 | STATISTICAL | '**2\HmiDISK,
CPU | | DisKk [N C
"| SCHEDULER | 1300 <125,
147 . ;
2 " ° 120
MEMORY | | 18 [pisTRIBUTION 80,)
MANAGER \,C.
185 /1
! 125,
TRANSPORT
NETWORK
8
o, 10] g
—~ 160

SUBSCRIBER1| |SUBSCRIBER2 e o o |SUBSCRIBERR

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 00/54161

2/8

PCT/US00/06093

1]0 12\(')
STAIT)IISSTKICAL /2 STEADY-STATE QUEUE;
1
SCHEDULER e \2f11 7
NEW SUBSCRIBER QUEUE; [~
2001 2221, =T Toisk
2521 ‘
OTHER REQUEST QUEUE 1254
231 !
o 2531
QUEUE
SELECTOR| ~ oTEADY.STATE QUEUE,
\ Ea 2515 12202
205 | 1y, NEWSUBSCRBER QUELE; \K
2002 2\ "
-—'55527 / DISK;
- OTHER REQUEST QU% 125,
2
_ ~ 2532 o
® []
®
® [)
/221 STEADY-STATE QUEUE,
"~ ~_ 251 1220n
NEW SUBSCRIBER QUEUE, \K
2003 222n\):513:1
7527 ‘ DISK,
- \9THER REQUEST QUEUE / 15,
g 253
FIG. 2
SUBSTITUTE SHEET (RULE 26)

WO 00/54161

3/8

PCT/US00/06093

300
\ 395 End

Forward reguest Sto
associated disk queue

£N° 3}90

Start 310 -7 datafor "~
=_request S already >
ag! N incache, ~ |
< N s
N7 380
320\~ Canthe 3410 }
first entry in NSQ be :
selected while guaranteeing ~\Yes | Let S =first | | Remove request S
that all SSQ requests wil entry in NSQ| ~|from its SDS queue
meet their deadlines T 3
?
‘ 370
Discard No
request 325 330
350
Can the \
first entry in ORQ be :
selected while guaranteeing ~\, Yes | Let S = first
that all SSQ requests wil entry in ORQ
meet their deadlines .
? 315
No Meet Yes 3?0
|'
deg?me Let S = first
No entry in SSQ
FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/54161

(Stat —410 / 450—~: Letd

SSQ’s first entry has the

Y

4/8

400

PCT/US00/06093

Add steady-state requests

ED be the disk whose

earliest deadline

to appropriate SSQ’s
Y 420 Perform SDS selection
Reorder all SSQ'’s by the procedure for Disk d
time deadline /
< 300
V430

Let P = set of all disks

o

r

FIG. 4

SUBSTITUTE SHEET (RULE 26)

equest satisfying the
selection procedure

WO 00/54161 PCT/US00/06093

5/8

500

Start 510
¥ >0 - Does
Add steady-state |=n+1and
requeststo 520 SELEC;I)' = false
appropriate SSQ’s !
| 5}30 555+ 4O
Let D = vector of all disks Ifi=n+1Leti=1
ordered by the time
deadline of the first
' isk’ 560 585
entry in each disk's SSQ > 1s disk]
‘ Dy’s Disk queue Leti=i+1
' ? 7
Lot SELECT = false full s
Leti=1 | 540

570

Are all

3 of Disk Dy's SDS

queues empty
7

300
|f there was a request [
satisfying the Selection | _ Perform Search
Procedure criteria, set 530 Procedure for Disk D;
SELECT = true

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/54161 PCT/US00/06093

6/8

Start 610 f

I 2 I Y

Let D = set of | FIFO Command
disks that have [_g40 , Handling
just completed |]

a command t~-615 605

Y

Let dED be the 650 i
disk where SSQ’s |
first entry has the |
earliest deadline

\

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: Perform SDS 300
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Selection Procedure <
for Disk d

 Same as 475

A

SUBSTITUTE SHEET (RULE 26)

WO 00/54161 PCT/US00/06093

7/8

700

(START ~710

X 720 430
| Command Completion
Procedure

scheduling interval

occured
n

Scheduling Interval|
Procedure 600

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US00/06093

WO 00/54161

8/8

dooT jpuuey” Jaqi4

doo [suueyn Jaqi4

8 'OId

Wwoi4/0} woi4/0L
0. "9E8 spuewwon b
R weN ges
IN soepel! oacepau” | Aowspy
| 8g_ g [| mea [0
—-GE8
SPUBLILIOY
SPUBLILIOY c
palejdwon 028 \F 8
% mmEm._. |0JU0)
A 1%L eIpS|\
50 .
1BUI0
u
528" OGN / SpUBWILIOY wmv%o
2 0SS NXSIQ] meN abessapy
SO . .
BYo | | . . sananp
OSN | (LYSIg| TTsas
lgzg— | 0SS SO 0 %sid
< 1BUI0 \
OSN
0Ogzg— | 0SS

oyl

N

008

\/

YHOMIBN

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/06093

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : GO6F 13/14, 13/372, 3/00; HOIN 7/10

US CL : 711/112, 114, 158: 710/39, 40, 54; 348/7
According to International Patent Classification (IPC) or to both

national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbois)

U.S.

7117112, 113, 114, 151, 158, 167; 710/39, 40, 44, 52, 54, 57; 709/103; 348/7

Documentation searched other than minimum documentation to the extent that such documents are included in the tields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,787,482 A (CHEN ET AL) 28 July 1998, column 1, line 54 to 1-15
column 2, line 6; column 5, lines 19-33; column 7, lines 10-15;
column 9, lines 57-64; and column 10, lines 28-33.
Y. P | US 5,926,649 A (MA ET AL) 20 July 1999, column 3, line 63 to 1-15
column 4, line 33.
Y US 5,721,956 A (MARTIN ET AL) 24 February 1998, column 1, 12
lines 22-50; column 3, lines 45-55; Figure 1.
A US 5,802,394 A (BAIRD ET AL) 01 September 1998, column 28, 1-15
lines 21-47; Figure 20.
Further documents are listed in the continuation of Box C. D See patent family annex.
- Special categories of cited documents: "T" later docuinent published after the international filing date or prionty
) date and not m conflict with the application but cited to understand
A" document defining the general state of the art which is not considered the principle or theory underlying the 1nvention
to be of particular relevance
B cnordocumen publihed o o e he ol Ging dws ¥ St of s el e e vnion o b
“L" document which may throw doubts on priority claim(s) or which is when the document 1s taken alone

cited to establish the publication date of another citation or other

special reason (as speaified)

"o" document referring to an oral disclosure, use, exhibition or other
means

P document published prior to the international filing date but later than

the prionty date claimed

"y" document of particular relevance; the clauned invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 JUNE 2000

Date of mailing of the international search report

05JuL 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

/7

DF '
GLENN GOSSAGE

Telephone No. (703) 305-3

|

Form PCT/ISA/210 (second sheet) (July 1998) x

INTERNATIONAL SEARCH REPORT International application No.

PCT/US00/06093
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,561,456 A (YU) 01 October 1996, column 2, lines 42-56; 1-15
column 3, lines 3-6; column 4, lines 15-60; column 6, line 33 to
column 7, line 13.
A, P |US 6,023,720 A (AREF ET AL) 08 February 2000, column 2, line 1-15
46 to column 5, line 25; column 5, line 55 to column 6, line 15.
A, P [US 5928327 A (WANG ET AL) 27 July 1999, see entire 1-15
document.
A US 5,687,390 A (MCMILLAN, JR)) 11 November 1997, see entire 1-15
document.
A US 5,644,786 A (GALLAGHER ET AL) 01 July 1997, see entire 1-15
document.
A US 5,220,653 A (MIRO) 15 June 1993, see entire document. 1-15

Form PCT/ISA/210 (continuation of second sheet) (July 1998) x

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/06093

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

USPTO EAST search system (USPAT. JPO, EPO databases)

search terms: queue, buffer. disk, schedule, order, priority, time, deadline, broadcast, video, demand, server

Form PCT/ISA/210 (extra sheet) (July 1998) x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

