
(72) Inventors; and

(74) Agents: BROOK, David, E. et al.; Hamilton, Brook, Smith & Reynolds, P.C., 530 Virginia Road, P.O. Box 9133, Concord, MA 01742-9133 (US).

(54) Title: VACUOLAR PYROPHOSPHATASES AND USES IN PLANTS

(57) Abstract: The present invention relates to a transgenic plant which is tolerant to a salt, comprising one or more plant cells transformed with exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant. The present invention also relates to a transgenic plant with increased Pi uptake, comprising one or more plant cells transformed with exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant. Also encompassed by the present invention are transgenic progeny and seeds of the transgenic plants described herein. Progeny transgenic plant grown from seed are also described. Plant cells (e.g., root cells, stem cells, leaf cells, flower cells, fruit cells and seed cells) comprising exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant cell are also the subject of the present invention. Also encompassed by the present invention are methods of making a transgenic plant described herein. Transgenic plants produced by the methods of making a transgenic plant as described herein are also a subject of the present invention. The present invention also relates to a method of bioremediating soil, a method of increasing the yield of a plant, a method of making a plant which is larger than its corresponding wild type plant, a method of producing a transgenic plant which grows in salt water, and a method of producing a transgenic plant with increased Pi uptake. The transgenic plants of the present invention can also be used to produce double transgenic plants which are tolerant to a salt, or have increased Pi uptake.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published: with international search report
VACUOLAR PYROPHOSPHATASES AND USES IN PLANTS

RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. Application No. 11/890,795, filed August 7, 2007, which is a continuation-in-part of U.S. Application No. 11/1 19,683, filed May 2, 2005, which is a continuation of U.S. Application No. 09/834,998, filed April 13, 2001, which is a continuation of U.S. Application No. 09/644,039, filed August 22, 2000, which claims the benefit of U.S. Provisional Application No. 60/164,808, filed November 10, 1999, the entire teachings of the above applications are incorporated herein by reference.

GOVERNMENT SUPPORT

The invention was supported, in whole or in part, by grants GM52414, DK54214, DK43495, DK51509, DK34854 and GM35010 from the National Institutes of Health, by grant MCB9317175 from the National Science Foundation, by grants from the National Research Initiative, U.S. Department of Agriculture, Cooperative State Research, Education, and Extension Service no. 2006-35304-17339, and by grants from Storrs Agricultural Experimental Station Hatch. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The prospects for feeding humanity as we enter the new millennium are formidable. The progressive salinization of irrigated land compromises the future of agriculture in the most productive areas of our planet (Serrano et al., 1994). Arid regions offer optimal photoperiod and temperature conditions for the growth of most crops, but suboptimal rainfall. Artificial irrigation has solved the problem in the short term. However, water supplies always contain some dissolved salt, which upon evaporation gradually accumulates on the soils. To grow in saline environments, plants must maintain a much lower ratio of Na+/K+ in their cytoplasm than that present in the soil. Thus, a need exists for crops having increased tolerance to salt.

In worldwide agricultural production, phosphorus is second only to nitrogen as the most limiting macronutrient. In soils, orthophosphate (Pi), the assimilated form of phosphorus, exists primarily as insoluble calcium salts or iron-aluminium...
oxide complexes that are inaccessible to plants (Holford, 1997). When aggressive fertilization is employed to alleviate available Pi deficiency, runoff from agricultural land represents a serious threat to aquatic and marine environments (Hammond et al., 2004). Thus, a need exists for crops having increased Pi uptake.

5 SUMMARY OF THE INVENTION

The present invention discloses transgenic plant cells and transgenic plants comprising transgenic plant cells, wherein the transgenic plant cells comprise an exogenous nucleic acid that causes overexpression of a plant vacuolar pyrophosphatase in the one or more transgenic plant cells, wherein the exogenous nucleic acid comprises a nucleic acid sequence encoding the plant vacuolar pyrophosphatase. The transgenic plants can have one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species. The present invention also discloses methods of making the transgenic plants.

According to one embodiment of the present invention, one or more transgenic plant cells comprise an exogenous nucleic acid that causes overexpression of a plant vacuolar pyrophosphatase in the one or more transgenic plant cells, wherein the exogenous nucleic acid comprises a nucleic acid sequence encoding the plant vacuolar pyrophosphatase. The transgenic plant cells can be from a plant selected from the group consisting of tomato, rice, tobacco, sorghum, cucumber, lettuce, turf grass, Arabidopsis and corn. They can be obtained from a tissue selected from the group consisting of roots, stems, leaves, flowers, fruits and seeds. The nucleic acid sequence encoding the plant vacuolar pyrophosphatase can be from a non-transgenic wild-type plant of the same species as the transgenic plant or from a non-transgenic wild-type plant of a species different from the transgenic plant. It can be obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn. It can be operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase. The plant vacuolar pyrophosphatase can be AVPI or a homolog thereof.

According to another embodiment of the present invention, a transgenic plant comprises one or more transgenic plant cells comprising an exogenous nucleic
acid that causes overexpression of a plant vacuolar pyrophosphatase in the one or more transgenic plant cells, wherein the exogenous nucleic acid comprises a nucleic acid sequence encoding the plant vacuolar pyrophosphatase. The transgenic plant can be selected from the group consisting of tomato, rice, tobacco, sorghum, cucumber, lettuce, turf grass, Arabidopsis and corn. The nucleic acid sequence encoding the plant vacuolar pyrophosphatase can be from a non-transgenic wild-type plant of the same species as the transgenic plant or from a non-transgenic wild-type plant of a species different from the transgenic plant. It can be obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn. It can be operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase. The plant vacuolar pyrophosphatase can be AVPl or a homolog thereof. Transgenic progeny of the transgenic plant can comprise the exogenous nucleic acid. Transgenic seeds produced by the transgenic plant can comprise the exogenous nucleic acid.

Transgenic progeny grown from the transgenic seeds can also comprise the exogenous nucleic acid. The transgenic plant can have one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species, and the enhanced phenotypic traits are selected from the group consisting of increased tolerance to one or more salts, increased yield, larger plant size and increased Pi uptake under Pi-sufficient growth conditions. It can also have one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species under Pi-deficient growth conditions, and the enhanced phenotypic traits are selected from the group consisting of increased root structure, increased root and shoot biomass, increased yield, increased biomass, delayed curtail of cell proliferation, increased Pi uptake, increased rhizosphere acidification, resistance to Al toxicity, increased organic acid exudates from root under Al stress, and increased root K⁺ contents with or without Al stress.

According to yet another embodiment of the present invention, a method of making a transgenic plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species comprises:
a) introducing an exogenous nucleic acid comprising a nucleic acid sequence encoding a plant vacuolar pyrophosphatase into one or more cells of a plant to generate transformed cells;
b) regenerating transgenic plants from the transformed cells;
c) selecting a transgenic plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species, thereby producing the transgenic plant.

The one or more enhanced phenotypic traits can be selected from the group consisting of increased tolerance to one or more salts, increased yield, larger plant size and increased Pi uptake under Pi-sufficient growth conditions. They can also be selected from the group under Pi-deficient growth conditions consisting of increased root structure, increased root and shoot biomass, increased yield, increased biomass, delayed curtail of cell proliferation, increased Pi uptake, increased rhizosphere acidification, resistance to Al toxicity, increased organic acid exudates from root under Al stress, and increased root K⁺ contents with or without Al stress. The transgenic plant can be selected from the group consisting of tomato, rice, tobacco, sorghum, cucumber, lettuce, turf grass, *Arabidopsis* and corn. The one or more cells of a plant can be obtained from a tissue selected from the group consisting of roots, stems, leaves, flowers, fruits and seeds. The nucleic acid sequence encoding the plant vacuolar pyrophosphatase can be from a non-transgenic wild-type plant of the same species as the transgenic plant or from a non-transgenic wild-type plant of a species different from the transgenic plant. It can be obtained from a plant selected from the group consisting of *Arabidopsis*, tobacco, tomato and corn. It can be operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase. The plant vacuolar pyrophosphatase can be AVPI or a homolog thereof. The one or more salts can be selected from the group consisting of NaCl, KCl and CaCl₂. They can have a concentration of about 0.2 M to about 0.3 M in water.

According to still another embodiment of the present invention, a transgenic rice plant comprises one or more transgenic rice plant cells comprising an exogenous nucleic acid that causes overexpression of a plant vacuolar pyrophosphatase in the one or more transgenic rice plant cells, wherein the
exogenous nucleic acid comprises a nucleic acid sequence encoding the plant vacuolar pyrophosphatase, and the transgenic rice plant has one or more enhanced phenotypic traits relative to non-transgenic wild-type rice plants, said enhanced phenotypic traits selected from the group consisting of more tillers, more panicles and increased P, Fe and Zn contents. The nucleic acid sequence encoding the plant vacuolar pyrophosphatase can be from a non-transgenic wild-type plant of the same species as the transgenic plant or from a non-transgenic wild-type plant of a species different from the transgenic plant. It can be obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn. It can be operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase. The plant vacuolar pyrophosphatase can be AVPI or a homolog thereof. Transgenic progeny of the transgenic rice plant can comprise the exogenous nucleic acid. Transgenic seeds produced by the transgenic rice plant can comprise the exogenous nucleic acid. Transgenic progeny grown from the transgenic seeds can also comprise the exogenous nucleic acid.

According to yet another embodiment of the present invention, a method of making a transgenic rice plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type rice plants comprises:

a) introducing an exogenous nucleic acid comprising a nucleic acid sequence encoding a plant vacuolar pyrophosphatase into one or more cells of a rice plant to generate transformed cells;

b) regenerating transgenic plants from the transformed cells;

c) selecting a transgenic rice plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species,

thereby producing the transgenic rice plant.

The one or more enhanced phenotypic traits can be selected from the group consisting of more tillers, more panicles and increased P, Fe and Zn contents. The one or more cells of a plant can be obtained from a tissue selected from the group consisting of roots, stems, leaves, flowers, fruits and seeds. The nucleic acid sequence encoding the plant vacuolar pyrophosphatase can be from a non-transgenic wild-type plant of the same species as the transgenic plant or from a non-transgenic wild-type plant of a species different from the transgenic plant. It can be obtained
from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn. It can be operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase. The plant vacuolar pyrophosphatase can be AVPl or a homolog thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.

FIGS. IA and IB are bar graphs showing the intracellular Na\(^+\) and K\(^+\) contents of wild-type yeast strains and of yeast strains carrying various mutations affecting sodium tolerance; values are the mean of two determinations, and bars represent the standard deviations.

FIG. 2 is alignment of the deduced amino acid sequences of NhX1 homologue from Arabidopsis AtNHX1 (SEQ ID NO: 1), human HsNHE-6 (SEQ ID NO: 2) and yeast ScNHX1 (SEQ ID NO:3); identical residues are in black boxes, and dashes indicate gaps in the sequence, * above alignment denote putative amiloride binding site from human NHE1 (\(^{163}\)DVF-FLFLLPPI \(^{173}\)) (SEQ ID NO: 4).

FIG. 3A is a schematic representation of a working model of the transporters involved in sodium sequestration at the yeast prevacuolar compartment; Nhxl (Na\(^+\)/H\(^+\) antiporter), Vmal (vacuolar membrane H\(^+\)-adenosine triphosphatase (H\(^+\)-ATPase)), Gefl (yeast CLC chloride channel), Enal (plasma membrane Na\(^+\)-ATPase).

FIG. 3B is a schematic representation of a working model of the transporters involved in sodium sequestration at the yeast prevacuolar compartment shown in FIG. 3A, which also includes AVPl (Arabidopsis thaliana vacuolar pyrophosphate-energized proton pump).

FIG. 4 depicts a nucleotide sequence of Arabidopsis thaliana cDNA encoding H\(^+\)-PPase (SEQ ID NO: 6) and the predicted amino acid sequence of polypeptide (SEQ ID NO: 7) encoded by the nucleotide sequence.
FIG. 5 is a diagram of a working model of some of the genes involved in apoplastic acidification of *Arabidopsis thaliana* during Pi deficiency.

FIG. 6A is a graph showing quantitative RTF-PCR time points of *AHAl*, *AHA2*, *AHA6*, *A VPl* and *AtPTl* from wild-type (WT) plants grown under low Pi for 0-48 h. The relative mRNA levels were normalized to *ACT2*. Values are the means ± standard deviation, n = 3.

FIG. 6B is a image showing immunoblot time points of membrane proteins isolated from WT plants grown under low Pi for 0-6 days and probed with antisera to H+–pyrophosphatase and P-ATPase.

FIG. 6C is a bar graph showing the relative densities of H+–pyrophosphatase and P-ATPase in FIG. 6B quantified with Bio-Rad Quantity One software. Values are the means ± standard deviation of three independent experiments.

FIG. 7A-C are bar graphs showing results of ionomic analysis of rice grains from wild-type and OsAVP IDOX plants. Rice was grown under phosphorus-sufficient conditions and harvested seeds were submitted for ICP-MS analysis of 20 elements by the Purdue-NSF Ionomics facility using their standard protocols. Shown are the profiles for phosphorus (P³⁺), iron (Fe⁶⁺), and zinc (Zn⁶⁺). Values are shown for grains with and without husks in parts per million.

DETAILED DESCRIPTION OF THE INVENTION

A description of example embodiments of the invention follows.

The teachings of all patents, published applications and references cited herein are incorporated by reference herein in their entirety.

Producing salt-tolerant plants using genetic engineering requires the identification of the relevant genes. Physiological studies suggest that salt exclusion in the root and/or salt sequestration in the leaf cell vacuoles are critical determinants for salt tolerance (Kirsch *et al.*, 1996). Toxic concentrations of NaCl build up first in the fully expanded leaves where NaCl is compartmentalized in the vacuoles. Only after their loading capacity is surpassed, do the cytosolic and apoplastic concentrations reach toxic levels, ultimately leading to loss of turgor, ergo plant death. It has been suggested that hyperacidification of the vacuolar lumen via the vacuolar H⁺-ATPase (V-ATPase) provides the extra protons required for a Na⁺/H⁺
exchange-activity leading to the detoxification of the cytosol (Tsiantis et al, 1996). Salt stress increases both ATP- and pyrophosphate (PPI)-dependent H+ transport in tonoplast vesicles from sunflower seedling roots. Salt treatments also induce an amiloride-sensitive Na+/H+ exchange activity (Ballesteros et al, 1997). In the halophyte *Mesembryanthemum crystallinum*, high NaCl stimulates the activities of both the vacuolar V-ATPase and a vacuolar Na+/H+ antiporter in leaf cells. As described herein, the plant components involved in the intracellular detoxification system have been identified by complementing salt-sensitive mutants of the budding yeast *Saccharomyces cerevisiae*. As also described herein, *Arabidopsis thaliana* (A. thaliana; *Arabidopsis*) has been used as a host model plant to demonstrate that overexpression of these genes results in salt tolerance in the plant.

Accordingly, the present invention is directed to transgenic plants which are tolerant to one or more salts. As used herein, the term "salt" refers to any salt, such as NaCl, KCl, and/or CaCl2. In one embodiment, the transgenic plants of the present invention comprise one or more plant cells transformed with exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant. Any suitable vacuolar pyrophosphatase, several of which have been cloned, can be used in the compositions and methods of the present invention (e.g., Sarafian et al, 1992; Lerchl et al, 1995; Kim et al, 1994). *A. thaliana* vacuolar pyrophosphatase (AVPI) cDNA sequence and its encoded protein sequence (Sarafian et al, 1992) are shown in Figure 4. As used herein, nucleic acid which "alters expression of vacuolar pyrophosphatase" includes nucleic acid which enhances (promotes) or inhibits expression of vacuolar pyrophosphatase in the transgenic plant. In a particular embodiment, the present invention relates to a transgenic plant which is tolerant to salt comprising an exogenous nucleic acid construct which is designed to overexpress AVPI or designed to downregulate endogenous vacuolar pyrophosphatase. The present invention also encompasses transgenic plants which grow in a concentration of salt that inhibits growth of a corresponding non-transgenic plant. Transgenic progeny of the transgenic plants, seeds produced by the transgenic plant and progeny transgenic plants grown from the transgenic seed are also the subject of the present invention. Also described herein are plant cells
comprising exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant cell.

Producing plants with increased Pi uptake using genetic engineering also requires the identification of the relevant genes. In response to limiting Pi availability, plant metabolic and developmental processes are altered to enhance Pi uptake. For example, in Arabidopsis, the coordinated induction of more than 600 genes is seen under conditions of Pi deprivation (Misson et al., 2005). Perhaps the most obvious consequence of altered gene expression in Pi-deprived plants is the expansion of their root architecture and resultant increases in absorptive surface area (Lopez-Bucio et al., 2002; Gahoonia and Nielsen, 2004). Pi-deprived roots exhibit transition of the primary root to determinate growth, greater frequency of lateral root formation and increased recruitment of trichoblasts to form root hairs (Abel et al., 2002; Poirier and Bucher, 2002; Sanchez-Calderon et al., 2006). In some species, Pi-deprived roots form specialized structures to enhance nutrient uptake, as is seen in white lupin (Lupinmis albus), which forms clusters of short, hairy lateral roots (proteoid roots) that are specialized for Pi uptake (Yan et al., 2002). Another adaptation to low soil Pi is rhizosphere acidification, resulting from enhanced plasma membrane H+-ATPase activity in roots (Yan et al., 2002; Zhu et al., 2005; Shen et al., 2006). Increased H+ extrusion results in increased displacement of Pi from insoluble soil complexes (Vance et al., 2003). The advantage of these adaptations to low-Pi conditions is evident in the apparent universality of such responses in plants that prosper in low-Pi soils. As described herein, the plant components involved in the adaptations to low-Pi conditions have been identified by quantitative real-time fluorescence-polymerase chain reaction (RTF-PCR) and western blot analysis. As also described herein, A. thaliana, tomato and rice have been used as host model plants to demonstrate that overexpression of these genes results in increased Pi uptake in the plant.

Accordingly, the present invention is also directed to transgenic plants which have increased Pi uptake. As used herein, the term "Pi uptake" refers to total Pi content per plant, irrespective of the growth conditions. In one embodiment, the transgenic plants of the present invention comprise one or more plant cells transformed with exogenous nucleic acid which alters expression of vacuolar
pyrophosphatase in the plant. Any suitable vacuolar pyrophosphatase, several of which have been cloned, can be used in the compositions and methods of the present invention (e.g., Sarafian et al., 1992; Lerchl et al., 1995; Kim et al., 1994). *A. thaliana* vacuolar pyrophosphatase (AVPl) cDNA sequence and its encoded protein sequence (Sarafian et al., 1992) are shown in Figure 4. As used herein, nucleic acid which "alters expression of vacuolar pyrophosphatase" includes nucleic acid which enhances (promotes) or inhibits expression of vacuolar pyrophosphatase in the transgenic plant. In a particular embodiment, the present invention relates to a transgenic plant which has increased Pi uptake comprising an exogenous nucleic acid construct which is designed to overexpress AVPl or designed to downregulate endogenous vacuolar pyrophosphatase. The present invention also encompasses transgenic plants which grow in a deficiency of Pi that inhibits growth of a corresponding non-transgenic plant. Transgenic progeny of the transgenic plants, seeds produced by the transgenic plant and progeny transgenic plants grown from the transgenic seed are also the subject of the present invention. Also described herein are plant cells comprising exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant cell.

Any suitable nucleic acid molecule which alters expression of vacuolar pyrophosphatase in the plant can be used to transform the transgenic plants in accordance with the present invention. Exogenous nucleic acid is a nucleic acid from a source other than the plant cell into which it is introduced or into a plant or plant part from which the transgenic part was produced. The exogenous nucleic acid used for transformation can be RNA or DNA (e.g., cDNA and genomic DNA). In addition, the exogenous nucleic acid can be circular or linear, double-stranded or single-stranded molecules. Single-stranded nucleic acid can be the sense strand or the anti-sense strand.

The exogenous nucleic acid can comprise nucleic acid that encodes a vacuolar pyrophosphatase protein (an exogenous vacuolar pyrophosphatase), such as AVPl, a functional portion thereof (peptide, polypeptide), or a homolog thereof, and/or nucleic acid that alters (enhances or inhibits) expression of the endogenous vacuolar pyrophosphatase of the plant into which the exogenous nucleic acid is introduced. As used herein a "functional portion" of a nucleic acid that encodes a
vacuolar pyrophosphatase protein is a portion of the nucleic acid that encodes a protein or polypeptide which retains a function characteristic of a vacuolar pyrophosphatase protein. In a particular embodiment, the nucleic acid encodes AVPl, a functional portion or a homolog thereof. As used herein "a homolog" of AVPl refers to a homologous protein of AVPl wherein the homologous protein performs the same function as AVPl does in Arabidopsis but is from a different plant species, i.e. a homolog of AVPl is a vacuolar pyrophosphatase of a plant species other than Arabidopsis. There is a high degree of identity at the amino acid level between vacuolar pyrophosphatases across the plant kingdom (Maeshima, 2000; Drozdowicz and Rea, 2001), suggesting that vacuolar pyrophosphatase from one species would be functional in another species. As described herein, this is indeed the case.

Nucleic acid that alters (enhances or inhibits) expression of the endogenous vacuolar pyrophosphatase of the plant into which the exogenous nucleic acid is introduced includes regulatory sequences (e.g., inducible or constitutive) which function in plants and antisense nucleic acid. Examples of regulatory sequences include promoters, enhancers and/or suppressors of vacuolar pyrophosphatase. The nucleic acid can also include, for example, polyadenylation site, reporter gene and/or intron sequences and the like whose presence may not be necessary for function or expression of the nucleic acid but can provide improved expression and/or function of the nucleic acid by affecting, for example, transcription and/or stability (e.g., of mRNA). Such elements can be included in the nucleic acid molecule to obtain optimal performance of the nucleic acid.

The nucleic acid for use in the present invention can be obtained from a variety sources using known methods. For example, the nucleic acid encoding a vacuolar pyrophosphatase (e.g., AVPl) for use in the present invention can be derived from a natural source, such as tobacco, bacteria, tomato or corn. In one embodiment, the nucleic acid encodes a vacuolar pyrophosphatase that corresponds to a wild type of the transgenic plant. In another embodiment, the nucleic acid encodes a vacuolar pyrophosphatase that does not correspond to a wild type of the transgenic plant. Nucleic acid that alters (enhances or inhibits) expression of the endogenous vacuolar pyrophosphatase of the plant into which the exogenous nucleic
acid is introduced (e.g., regulatory sequences) can also be chemically synthesized, recombinantly produced and/or obtained from commercial sources.

A variety of methods for introducing the nucleic acid of the present invention into plants are known to those of skill in the art. For example, Agrobacterium-mediated plant transformation, particle bombardment, microparticle bombardment (e.g., U.S. Pat. No. 4,945,050; U.S. Pat. No. 5,100,792) protoplast transformation, gene transfer into pollen, injection into reproductive organs and injection into immature embryos can be used. The exogenous nucleic acid can be introduced into any suitable cell(s) of the plant, such as a root cell(s), stem cell(s), leaf cell(s), flower cell(s), fruit cell(s) and/or seed cell(s) of the plant.

In one embodiment, a construct comprising a vacuolar pyrophosphatase gene operably linked to a promoter designed to overexpress the vacuolar pyrophosphatase (e.g., an expression cassette) or a construct designed to downregulate endogenous pyrophosphatase is used to produce the transgenic plants of the present invention.

As used herein the term "overexpression" refers to greater expression/activity than occurs in the absence of the construct. In a particular embodiment, a construct comprising an AVPI gene operably linked to a chimeric promoter designed to overexpress the AVPI or designed to downregulate endogenous pyrophosphatase is used to produce the transgenic plants of the present invention. More particularly, the present invention relates to a construct wherein the AVPI gene is operably linked to a double tandem enhancer of a 35S promoter.

Any suitable plant can be used to produce the transgenic plants of the present invention. For example, tomato, corn, tobacco, rice, sorghum, cucumber, lettuce, turf grass, ornamental (e.g., larger flowers, larger leaves) and legume plants can be transformed as described herein to produce the transgenic plants of the present invention. In addition, the transgenic plants of the present invention can be grown in any medium which supports plant growth such as soil or water (hydroponically).

The present invention also encompasses methods of making a transgenic plant which is tolerant to salt. In one embodiment, the method comprises introducing into one or more cells of a plant exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant to yield transformed cells in the plant, thereby producing a transgenic plant which is tolerant to salt. In another embodiment, the
method comprises introducing into one or more cells of a plant a nucleic acid construct which is designed to overexpress AVPI to yield transformed cells, thereby producing a transgenic plant which is tolerant to salt. The methods of making a transgenic plant can further comprise regenerating plants from the transformed cells to yield transgenic plants and selecting a transgenic plant which is tolerant to salt. The transgenic plants produced by these methods are also encompassed by the present invention.

The present invention also encompasses methods of making a transgenic plant with increased Pi uptake. In one embodiment, the method comprises introducing into one or more cells of a plant exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant to yield transformed cells in the plant, thereby producing a transgenic plant with increased Pi uptake. In another embodiment, the method comprises introducing into one or more cells of a plant a nucleic acid construct which is designed to overexpress AVPI to yield transformed cells, thereby producing a transgenic plant with increased Pi uptake. The methods of making a transgenic plant can further comprise regenerating plants from the transformed cells to yield transgenic plants and selecting a transgenic plant which with increased Pi uptake. The transgenic plants produced by these methods are also encompassed by the present invention.

The transgenic plants of the present invention are useful for a variety of purposes. As described herein, the plant components involved in an intracellular cation detoxification system have been identified by complementing salt-sensitive mutants of the budding yeast *Saccharomyces cerevisiae*. As also described herein, the plant components involved in the adaptations to low Pi conditions have been identified by quantitative RTF-PCR and western blot analysis. The present invention relates to a method of bioremediating soil comprising growing one or more transgenic plants and/or progeny thereof in the soil, wherein the transgenic plants and/or progeny thereof comprise exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant. In another embodiment, the present invention relates to a method of removing cations (e.g., monovalent and/or divalent cations) from a medium which can support plant growth (e.g., soil, water) comprising growing one or more transgenic plants and/or progeny thereof in the medium,
wherein the transgenic plants and/or progeny thereof comprise exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant. For example, the method can be used to remove sodium (Na), lead (Pb), manganese (Mn) and/or calcium (Ca) ions from a medium which supports plant growth. In another embodiment, the present invention relates to a method of scavenging Pi from a medium which can support plant growth (e.g., soil, water) comprising growing one or more transgenic plants and/or progeny thereof in the medium, wherein the transgenic plants and/or progeny thereof comprise exogenous nucleic acid which alters expression of vacuolar pyrophosphatase in the plant. For example, the method can be used to prevent Pi runoff from agricultural land.

Furthermore, it has been shown herein that the transgenic plants of the present invention are larger than the corresponding wild type plants (Example 3). Thus, the present invention provides for a method of increasing the yield of a plant comprising introducing into one or more cells of a plant nucleic acid which alters expression of vacuolar pyrophosphatase in the plant to yield transformed cells, thereby increasing the yield of the plant. The present invention also relates to a method of making a plant which is larger than its corresponding wild type plant comprising introducing into one or more cells of a plant nucleic acid which alters expression of vacuolar pyrophosphatase in the plant to yield transformed cells, thereby producing a transgenic plant which is larger than its corresponding wild type plant. The method can further comprise regenerating plants from the transformed cells to yield transgenic plants and selecting a transgenic plant which is larger than its corresponding wild type plant, thereby producing a transgenic plant which is larger than its corresponding wild type plant. Also encompassed by the present invention is a method of making a transgenic plant (e.g., an ornamental plant) having increased flower size compared to its corresponding wild type plant comprising introducing into one or more cells of a plant nucleic acid which alters expression of vacuolar pyrophosphatase in the plant to yield transformed cells, thereby producing a transgenic plant having increased flower size compared to its corresponding wild type plant.

The present invention also provides for a method of producing a transgenic plant which grows in salt water comprising introducing into one or more cells of a
plant nucleic acid which alters expression of vacuolar pyrophosphatase in the plant to yield transformed cells, thereby producing a transgenic plant which grows in salt water. As used herein, "salt water" includes water characterized by the presence of salt, and preferably wherein the concentration of salt in the water is from about 0.2M to about 0.4M. In one embodiment, salt water refers to sea water.

The present invention also provide for a method of producing a transgenic plant which grows better than wild-type in Pi deficiency comprising introducing into one or more cells of a plant nucleic acid which alters expression of vacuolar pyrophosphatase in the plant to yield transformed cells, thereby producing a transgenic plant which grows better than wild-type in Pi deficiency. As used herein, "Pi deficiency" refers to a growth medium, either natural or artificial, containing lower Pi than what is required to support full growth of a wild-type plant, i.e. under Pi deficiency, growth of a wild-type plant is limited. Because different plants require different levels of Pi to fully grow, Pi deficiency, as used herein, is a plant-specific term.

The transgenic plants of the present invention can also be used to produce double transgenic plants which are tolerant to salt wherein a plant is transformed with exogenous nucleic acid which alters expression of a vacuolar phosphatase and exogenous nucleic acid which alters expression of another protein involved in sequestration of cations and/or detoxification in plants. In one embodiment, the present invention relates to a double transgenic plant which is tolerant to salt comprising one or more plant cells transformed with exogenous nucleic acid which alters expression of a vacuolar pyrophosphatase and an Na+/H+ antiporter in the plant. In one embodiment, the vacuolar pyrophosphatase is AVPI or a homologue thereof and the Na+/H+ antiporter is AtNHX1 or a homologue thereof. The present invention further relates to a transgenic progeny of the double transgenic plant, as well as seeds produced by the transgenic plant and a progeny transgenic plant grown from the seed.

The transgenic plants of the present invention can also be used to produce double transgenic plants with increased Pi uptake wherein a plant is transformed with exogenous nucleic acid which alters expression of a vacuolar phosphatase and exogenous nucleic acid which alters expression of another protein involved in the
adaptations to low-Pi conditions. In one embodiment, the present invention relates to a double transgenic plant with increased Pi uptake comprising one or more plant cells transformed with exogenous nucleic acid which alters expression of a vacuolar pyrophosphatase and a plasma membrane \(\text{H}^+\)-ATPase in the plant. In one embodiment, the vacuolar pyrophosphatase is AVPI or a homologue thereof and the plasma membrane \(\text{H}^+\)-ATPase is AHA2 or AHA6 or a homologue thereof. The present invention further relates to a transgenic progeny of the double transgenic plant, as well as seeds produced by the transgenic plant and a progeny transgenic plant grown from the seed.

Investigation of the role of intracellular organelles in cation homeostasis via the identification and manipulation of key transporters is described herein. Most of these intracellular organelles, including clathrin-coated vesicles, endosomes, Golgi membranes and vacuoles have acidic interiors (Xie et al., 1989). This acidification is mediated by a proton-translocating electrogenic ATPase and in plant vacuoles also via a pyrophosphate-driven proton pump V-PPase (Davies et al., 1997; Zhen et al., 1997). There exists a requirement of anion transport to maintain net electroneutrality (al-Awqati, 1995). The yeast member of the CLC voltage-gated chloride channel superfamily, Gefl, is required for copper loading in late-Golgi vesicles and for cation sequestration in the prevacuolar compartment in yeast (Gaxiola et al., 1998; Gaxiola et al., 1999; Example 1). Furthermore, it has been shown that the defects of gefl mutants can be suppressed by the introduction of the prototype member of the CLC superfamily, the Torpedo marmorata CLC-O or by the introduction of Arabidopsis thaliana CLC-c and CLC-d chloride channel genes (Hechenberger et al., 1996; Gaxiola et al., 1998). While not wishing to be bound by theory, two observations led to the proposal of a model for \(\text{Na}^+\) sequestration in yeast described herein (FIGS. 3A and 3B). First, gefl mutants are sensitive to high NaCl concentrations. Second, the \(\text{Na}^+/\text{H}^+\) exchanger Nhxl localized to the prevacuolar compartment (Nass and Rao, 1998). This model posits that \(\text{Na}^+\) sequestration by Nhxl depends on the vacuolar \(\text{H}^+\)-ATPase and Gefl, the chloride channel. Gefl-mediated anion influx allows the establishment by the vacuolar \(\text{H}^+\)-ATPase of a proton gradient sufficient in magnitude to drive the uphill accumulation of \(\text{Na}^+\) via \(\text{Na}^+/\text{H}^+\) exchange.
This model is entirely consistent with the physiological data on the role of the vacuole in cation detoxification in higher plants. As described in Example 1, to test this sequestration model, mutant yeast strains (enal) lacking the plasma membrane sodium efflux pump, which therefore must rely on the internal detoxification system in order to grow on high salt, were constructed. In theory, increasing the influx of protons into the postulated endosomal compartment should improve Na\(^+\) sequestration via the Nhxl exchanger. In order to increase the H\(^+\) availability the A. thaliana gain-of-function mutant gene AVP1-D that codes for the vacuolar pyrophosphate-energized proton pump was expressed (FIG. 3B) (Zhen, Kim and Rea, 1997). This plant pump expressed in yeast restored the Na\(^+\) resistance of the test strain, but only if the strain had functional NHX1 and GEFL genes. Furthermore, Geflp and Nhxlp colocalize within a common organelle, the prevacuolar compartment (Gaxiola et al., 1999). These results strongly support the model in FIGS. 3A and 3B and indicate that the yeast prevacuolar compartment can be used to identify the elusive plant transporters involved intracellular sodium detoxification.

Yeast and plant cells share pathways and signals for the trafficking of vesicles from the Golgi network to the vacuole (Neuhaus et al., 1998; Paris et al., 1997; Sato et al., 1997; Vitale et al., 1999). As shown herein, intracellular Na\(^+\) detoxification in yeast requires functional Na\(^+\)/H\(^+\) exchanger (Nhxl) and chloride channel (Gefl), and they colocalize to a prevacuolar compartment (Gaxiola et al., 1999). As described in Example 1, to further test the utility of this system, an Arabidopsis thaliana homologue of the yeast NHX1 gene (AtNHX1) was cloned and its function in the nhxl 1 yeast mutant was tested. The AtNHX1 gene was able to suppress partially the cation sensitivity phenotypes of nhxl 1 mutants. Further support for the role of the Arabidopsis AtNHX1 gene in salt homeostasis came from the observation that its expression is induced in salt-stressed plants (Gaxiola et al., 1999). A recent report shows that the overexpression of AtNHX1 gene in transgenic Arabidopsis thaliana promotes sustained growth in soil watered with 200 mM NaCl plus 1/8 M.S. salts under short-day cycle conditions (Apse et al., 1999). It is worth noting that every addition of 1/8 M.S. salts provides 2.5 mM potassium reducing the stringency of the NaCl stress, and that a short-day cycle reduces oxidative stress. As
described in Example 2, transgenic plants that overexpress the AtNHX1 were
generated (35SAtNHX1 transgenics).

In plants, most of the transport processes are energized by the primary
translocation of protons. H⁺-translocating pumps located at the plasma membrane
and tonoplast translocated H⁺ from the cytosol to extracellular and vacuolar
compartments, respectively (Rea et al., 1990). The plant tonoplast contains two H⁺-
translocating pumps; the V-ATPase and the inorganic pyrophosphatase or V-PPase.
Their action results in luminial acidification and the establishment of a H⁺
electrochemical potential gradient across the tonoplast (Davies et al., 1997). The
vacuolar membrane is implicated in a broad spectrum of physiological processes
that include cytosolic pH stasis, compartmentation of regulatory Ca²⁺, sequestration
of toxic ions such as Na⁺, turgor regulation, and nutrient storage and retrieval. The
vacuole constitute 40 to 99% of the total intracellular volume of a mature plant cell.
The vacuolar proton pumping pyrophosphatase is a universal and abundant
component of plant tonoplast capable of generating a steady-state transtonoplast H⁺
electrochemical potential similar or greater than the one generated by the V-ATPase
(Rea et al., 1990). PPi is a by-product in the activation or polymerization steps of a
wide range of biosynthetic pathways and in plants serves as an alternative energy
donor to ATP for sucrose mobilization via sucrose synthase, for glycolysis via PPi:
fructose-6-phosphate phosphotransferase and for tonoplast energisation via the
vacuolar proton pumping pyrophosphatase (Stitt, 1998).

As described in Example 1, the overexpression of the A. Thaliana gain-of-
function mutant gene A VPl-D increases the intracellular detoxification capability in
yeast (Gaxiola et al., 1999). The rationale behind this approach is that an increased
influx of H⁺ into the vacuolar compartment should improve Na⁺ sequestration via
the Nhxl exhanger. As described in Example 3, in order to test this hypothesis in
plants, a transgenic Arabidopsis thaliana plant was engineered to overexpress the
AVPl wild-type gene using the double tandem enhancer of the 35S promoter
(Topfer et al., 1987). AVPl encodes the pyrophosphate-energized vacuolar
membrane proton pump from Arabidopsis (Sarafian et al., 1992). Previous
investigations suggest that the AVPl gene is present in a single copy in the genome
of Arabidopsis (Kim et al., 1994), however, a sequence homologous, but not
identical, to AVPl on chromosome one has been tentatively designated as ORF F9K20.2 on BAC F9K20 by the Arabidopsis Genome Initiative (AGI).

Five different lines of 35SAVP1 plants showed an enhanced salt tolerance as compared to wild-type plants in the T2 stage. However, the most dramatic phenotype was apparent in the homozygous T3 plants. These transgenic plants are larger than wild-type plants. Furthermore, homozygous 35SAVP1 plants show sustained growth in the presence of 250 mM NaCl plus 1/8 M.S. salts when grown in a 24 hours light regimen. Interestingly, when 35SAVP1 plants were grown under short-day cycle conditions sustained growth in the presence of 300 mM NaCl plus 1/8 M.S. salts was observed.

Hydroponic culture increases plant growth and provides stress-free root and shoot material (Gibeaut et al., 1997). Another important advantage of hydroponic culture is that we can alter the ionic composition in a more accurate manner than in soil. These advantages could be important for the physiological studies of salt stress.

As described in Example 4, wild type and 35SAVP1 transgenic plants were grown hydroponically. Under such conditions the size differences in root, leaves and stems among wild type and 35SAVP1 transgenic plants are dramatic. To learn about the salt tolerance of these plants under hydroponic conditions, NaCl concentration were increased stepwise by 50 mM every 4 days (Apse et al., 1999). 35SAVP1 transgenic plants appear healthy in the presence of 200 mM NaCl while wild type controls show severe deleterious effects in their leaves and stems.

Investigation of the plant components involved in the adaptations to low-Pi conditions via quantitative RTF-PCR and western blot analysis is described herein. Previous genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips identified a number of genes related to phosphate deprivation (Misson et al., 2005). However, the baseline on the gene chips could prevent the detection of relatively minor changes, resulting in false negatives. As described in Example 5, low Pi can increase transcript and protein abundance of AVPI and H+-ATPases in A. thaliana, whose induction has never been previously observed in A. thaliana following phosphate deprivation. While not wishing to be bound by theory, two observations led to the proposal of a model for apoplastic acidification in A. thaliana in Pi deficiency described herein (FIG. 5). First, microsomal fractions from
AVPl transgenic Arabidopsis plants (AtAVPlOX) exhibited increased plasma membrane (PM) P-type H^+-ATPase (P-ATPase) protein abundance and activity (Li et al., 2005). Second, the apoplastic pH was significantly more acidic in AtA VPOX than in wild-type plants (Li et al., 2005). This model posits that apoplastic acidification during Pi deficiency, which is the result of increased PM P-ATPase activity, at least partially depends on increased expression of AVPl during Pi deficiency. Increased AVPl expression can lead to increased PM P-ATPase expression and activity, suggesting a mechanism that can be manipulated to produce plants that exhibit increased resilience to Pi deficiency.

This model is entirely consistent with the experimental data on the role of AVPl in rhizosphere acidification in Arabidopsis under Pi deficiency. As described in Example 7, increased rhizosphere acidification in AtA VPOXl under Pi deficiency was completely inhibited by ImM vanadate, an inhibitor of PM H^+-ATPase activity, as was rhizosphere acidification in wild-type plants. This result strongly supports the model in FIG. 5 and indicate that the previously observed increased apoplastic acidification in AtAVPlOX plants was to a large part, if not entirely, via increased PM H^+-ATPase activity.

Under nutrient-sufficient conditions, AVPl transgenic plants exhibit certain enhanced phenotypic traits such as increased root structure, increased root and shoot biomass, increased yield, increased biomass and increased seed production (U.S. Patent Application Publication No. 2003-0213015 Al; U.S. Patent Application Publication No. US 2005-0278808 Al; Example 3). These enhanced phenotypic traits are also observed in AtAVPlOX as described herein. As described in Example 7, AtA VPOX plants also exhibited enhanced growth and Pi uptake when grown in either Pi-sufficient or Pi-deficient conditions. The rationale behind this is that increased H^+ extrusion results in increased displacement of Pi from insoluble soil complexes, resulting in more efficient Pi scavenging.

Other AVPl transgenic species, including AVPl transgenic tomato (LeA VPOX) and AVPl transgenic rice (OsAVPlOX), also exhibited the aforementioned enhanced phenotypic traits under nutrient-sufficient conditions and enhanced growth and Pi uptake when grown in either Pi-sufficient or Pi-deficient conditions. Other phenotypic traits observed for AVPl transgenic plants under Pi
deficiency included, but were not limited to, increased root structure, increased root and shoot biomass, increased yield, increased biomass, delayed curtail of cell proliferation, faster and total Pi depletion, resistance to aluminum (Al) toxicity, increased organic acid exudates from root under Al stress, and increased root K+ contents with or without Al stress. Mobilized Al is known as being toxic to plants. Pi deficiency is often a problem in tropical soils in which marginal Al toxicity limits agricultural production (Kochian et al., 2004).

Importantly, AVP1 transgenic rice was found to exhibit increased biomass and seed yields when grown under nutrient-sufficient conditions. Other enhanced phenotypic traits observed for AVP1 transgenic rice include, but are not limited to, more tillers, more panicles and increased phosphorus (P), iron (Fe) and zinc (Zn) contents.

Genetic engineering promises to transform modern agriculture. Salinization of soil due to irrigation has rendered much land unusable for crop production. Low level of P in tropical/subtropical soils result in agricultural losses. Fertilizer application results in P runoff pollution of aquatic and marine environments. Described herein is a strategy using genetic and molecular biological approaches to improve the intracellular Na+ detoxification and the Pi uptake capabilities of crops. The fact that genetically engineered Arabidopsis thaliana plants that overexpress either AVP1 (the pyrophosphate-energized vacuolar membrane proton pump, this work) or AtNHX1 (the Na+/H+ antiporter (Apse et al., 1999, and this work) are capable of growing in the presence of 200 mM NaCl strongly supports the strategy described herein. The fact that genetically engineered Arabidopsis, tomato and rice plants have increased Pi uptake and enhanced growth in both Pi-sufficient and Pi-deficient conditions also strongly supports the strategy described herein. It is likely that a double transgenic plant will show a further enhanced salt-tolerant phenotype or an increased Pi uptake phenotype or both phenotypes. Moreover, the discovery that Arabidopsis and tomato plants over-expressing AVP1 are resistant to water deficit stress (Gaxiola et al., 2001, 2007; Park et al., 2005) further enhances the potential value of this approach, as low-Pi soils are common in developing nations where water deficits are not easily ameliorated by irrigation. Furthermore, it is shown herein that the Arabidopsis thaliana transporter AVP1 is able to perform
similar function in important agricultural crops, such as tomato and rice. It is expected that AVPl homologs from other species will be able to perform similar functions when transformed into plants. The increased size of AVPl transgenic plants also contribute to future food security, namely potential yield increases in genetically engineered crops.

Exemplification

EXAMPLE 1

The Arabidopsis Thaliana Proton Transporters, AtNhxl and AVPl, can Function in Cation Detoxification in Yeast

Materials and Methods

Yeast strains and Plasmids. All strains used are isogenic to W303 (ura3-1,canl-100 leu2-3, 112trp1-1 his3-l 1, (Gaxiola et al, 1992). Plasmids pRG52 (Δgefl::HIS3) (Gaxiola et al, 1998) and pRG197 (Δnhxl::HIS3) were used to construct the deletions of GEFl and NHXl genes, yielding strains RGY85 and RGY296, respectively. The enal ::HIS3 mutant was obtained from Fink Lab collection (L5709). Transformation was performed by using the lithium acetate method (Gietz et al, 1992). Double mutants RGY324 (gefl::HIS3 enal::HIS3), RGY326 (nhxl::HIS3 enal::HIS3), and RGY343 (gefl::HIS3 nhxl::HIS3) were obtained by crossing the single-mutant strains. Double mutants were identified among the meiotic progeny by scoring for the phenotypes associated with each of the single mutants. Sporulation, tetrad dissection, and mating types were scored as described (Guthrie and Fink, 1991). Cells were grown in YPD (1% yeast/2% peptone/2% dextrose; Difco), YPGAL (1% yeast/2% peptone/2% galactose; Difco), SD (Difco; Synthetic medium with 2% Dextrose), or APG (APG is a synthetic minimal medium containing 10 mM arginine, 8 mM phosphoric acid, 2% glucose, 2 mM MgSO₄, 1 mM KCl, 0.2 mM CaCl₂, and trace minerals and vitamins) (Rodriguez-Navarro and Ramos, 1984). MnCl₂ (Sigma), tetramethylammonium chloride (Sigma), NaCl (Sigma), or hygromycin-B (Sigma) were added as indicated.

Wild type, L5709 (enal::HIS3), RGY324 (gefl::HIS3 enal::HIS3), and RGY326 (nhxl::HIS3 enal::HIS3) strains were transformed with pYES2 vector (Invitrogen) and plasmid pYES2-AVPl-E229D described in ref. Zhen, Kim and Rea, 1997. The strain RGY343 (gefl::HIS3 nhxl::HIS3), used for histochemical
analysis, was transformed with pRG151 (GEFl-GFP) (Gaxiola et al., 1998) and with pRIN73 [NHXI-(HA)₃] (Nass and Rao, 1998).

Wild-type and RGY296 (nhxl::HIS3) strains were transformed with vector pAD4 (Ballester et al., 1989). RGY296 (nhxl::HIS3) was transformed with pRG308 (ADH1::AtNHXI) (see Cloning of AtNHXI).

Determination of Intracellular Sodium and Potassium content. Cells were grown overnight in SD-ura medium (Difco; synthetic medium with 2% dextrose without uracil). YPGAL (1% yeast extract/2% peptone/2% galactose; Difco) media was inoculated with the overnight stocks and grow to an A₆₀₀ of 0.6. At this optical density (OD), NaCl was added to a final concentration of 0.7 M. The cells incubated for 6 h, harvested by centrifugation, washed two times with 1.1 M sorbitol and 20 mM MgCl₂, and entracted with water for 30 min at 95°C. The amount of Na⁺ and K⁺ in cells was determined at the University of Georgia Chemical Analysis Laboratory by an Inductively Coupled Plasina-MS. Intracellular cation concentrations were estimated as described (Gaxiola et al., 1992) by using the intracellular water value calculated for cells grown in IM NaCl.

Immunofluorescence. The strain RGY343 (gefl::HIS3 nhxl::HIS3) was grown in SD-ura, -leu medium (Difco; synthetic medium with 2% dextrose without uracil and leucin) to mid-logarithmic phase, 0.1 mg/ml hygromycin B was added, and the culture was incubated for 1 h at 30°C. Cells were fixed with 3.7% formaldehyde (Sigma) for 45 min at room temperature without agitation. Spheroplast formation, permeablisation, washing, and antibody incubation was performed as described (Pringle et al., 1991). MAB HAI 1 used as first antibody was from Babco (Richmond, Calif.). Cy3-conjugated goat antimouse IgG was from Jackson Immunoresearch. 4',6-Diamidino-2-phenylindole (Sigma) was added to mounting medium to stain mitochondrial and nuclear DNA.

Subcellular Fractionation and Western Analysis. The strain RGY343 (gefl::HIS3 nhxl::HIS3) was grown in APG medium (pH 7.0), and lysates fractioned on a 10-step sucrose density gradient as described (Nass and Rao, 1998).

Aliquots of individual fractions (100 µg) were subjected to SDS/PAGE and transferred to nitrocellulose as described (Nass and Rao, 1998). Western blots were probed with monoclonal anti-GFP (green fluorescent protein) antibody (1:10,000
dilution; CLONTECH), anti-hemagglutinin antibody (1:10,000 dilution: Boehringer Mannheim), and peroxidase-coupled goat anti-mouse antibody (1:5,000;) and developed by using the ECL enhanced chemiluminescence system (Amersham Pharmacia).

Plant Strains, Growth conditions and RNA Preparation. A. thaliana plants (ecotype Columbia) were grown aseptically on unsupplemented plant nutrient agar without sucrose (Haughn and Somerville, 1986) for 15 days at 19°C and under continuous illumination. NaCl or KCl was added to a final concentration of 250 mM, and the plants were incubated for 6 h. Total RNA from tissue of salt-treated and untreated plants was isolated (Niyogi and Fink, 1992). Hybond-N (Amersham) membranes were hybridized with a 32P-Labeled DNA probe from plasmid pRG308. Hybridization was performed at 65°C overnight. Washes were performed at 65°C with 0.2% standard saline citrate (SSC)/0.1% SDS. 18S probe was used as loading control. MACBAS 2.4 program was used to quantify the relative amount of RNA.

Cloning of AtNHX 1. AtNHX 1 was cloned from a phage cDNA library of A. thaliana (Kieber et al., 1993) (obtained from the Arabidopsis Biological Resource Center) by probing with an expressed sequence tag (Arabidopsis Biological Resources Center, DNA Stock Center) containing a partial clone. A full-length clone (2.1 kilobase; kb) was ligated into vector pSK2 (Stratagene) at the NotI site, generating plasmid pRG293. The AtNHX1 open reading frame (ORF) was amplified via PCR by using pRG293 as template and GGCCCGGGATGGATTCTCTAGTGTCGAAACTGCCTTCG (SEQ ID NO: 5) and T7 oligonucleotides. The PCR product was then digested with XbaI and SalI and ligated into pAD4 vector generating plasmid pRG308. The AtNHX1 ORF was sequenced to verify the fidelity of the PCR product. The full-length sequence is longer than the ORF reported by the Arabidopsis Genome Initiative (A. thaliana TAIR021B04.4), and has been deposited in GenBank (accession no. AF106324).

Results

The Arabidopsis Vacuolar H+-Pyrophosphatase (AVPI) Confers Salt Tolerance to Yeast enal Mutants. To determine the components of the intracellular system required for sodium detoxification, an enal mutant that lacks the plasma membrane sodium efflux pump and therefore must rely on the internal detoxification
system to overcome sodium toxicity was used. Growth of the enal strain is sensitive to low concentrations of sodium (200 mM), concentrations that do not inhibit the growth of wild-type strains. The sequestration model (Nass and Rao, 1998; Gaxiola et al., 1998) predicts that the enal strain would become salt tolerant if one could enhance the availability of protons in the postulated endosomal compartment. With increased influx of protons, cytoplasmic Na\(^+\) would be sequestered via the Nhxl exchanger. The yeast vacuolar ATPase is a multisubunit protein, so it is difficult to increase its activity by overexpressing any one of its subunits. However, it is possible to increase the influx of protons by expressing the *A. thaliana* AVP1 gene in yeast. This gene encodes a single polypeptide that, when expressed in yeast, is capable of pumping protons into the lumen of the vacuole (Kim et al., 1994). To ensure maximum activity of this proton pump, the E229D gain-of-function mutant of the AVP1 gene (AVP1-D) that has enhanced H\(^+\) pumping capability was expressed (Zhen, Kim and Rea., 1997).

Overexpression of AVP1-D restored salt tolerance to salt-sensitive enal mutants. The restoration of salt tolerance to an enal strain by AVP1-D requires functional NHX1 and GEFL genes: enalnhxl AVP1-D and enal gefl AVP1-D strains are salt sensitive.

Expression of *Arabidopsis* vacuolar pyrophosphatase AVP1 in enal mutants:

Vector pYES2 (Invitrogen) was introduced into wild-type, enal, enal nhxl, and enal gefl mutants. Plasmid pYes2-AVP1-D (Zhen, Kim and Rea, 1997) was introduced into enal, enal nhxl, and enal gefl mutants. Five-fold serial dilutions (starting at 10\(^5\) cells) of each strain were plated on YPGAL (1% yeast extract/2% peptone/2% galactose) with or without 0.5 M NaCl and incubated at 30 °C for 2 days. FIGS. IA and IB show intracellular concentrations of Na\(^+\) and K\(^+\).

Exponentially growing cells (wild-type and enal transformed with pYES2 vector and enal, enal nhxl, and enal gefl mutants carrying pYes2-AVP1-D) were exposed to 0.7 M NaCl for 6 hours. Total cell extracts were prepared (see Materials and Methods), and Na\(^+\) and K\(^+\) concentrations were determined. There is a consistent reduction in total cell Na\(^+\) in the enal AVP-D strain. The reason for this reduction is unknown.
The intracellular Na\(^+\) and K\(^+\) contents of wild-type strains and of strains carrying various mutations affecting sodium tolerance were determined after 6 h of exposure to media supplemented with 0.7 M NaCl (FIGS. IA and IB). The intracellular Na\(^+\) content in the enal mutant is 8-fold higher than in the wild-type strain. The enal AVPI-D strain is salt-resistant, even though its intracellular Na\(^+\) content is 4-fold higher than that of the wild type. In enal AVPI-D strains lacking either gefl or nhxl (i.e., enal gefl or enal nhxl), the Na\(^+\) content is not reduced to the extent that it is in GEFl NHXI strain. Taken together, the genetic and physiological data are consistent with the model that Nhxl, Gefl and Avpl cooperate to sequester sodium internally.

The intracellular K\(^+\) content correlates with salt tolerance and is inversely correlated with the Na\(^+\) content of our strains (FIG. IB). The wild-type K\(^+\) concentration is -100 mM but is reduced to 20 mM in the enal mutant. Interestingly, in an enal strain that overexpresses the AVPI-D gene, the intracellular concentration of K\(^+\) is restored almost to wild-type levels (FIG. IB). However, AVPI-D overexpression fails to restore wild-type levels of intracellular potassium unless both NHXI and GEFl are functional (see the double mutants enal nhxl or enal gefl in FIG. IB).

The NHXI and GEFl genes, which have been identified as important in sodium detoxification, are also required for the detoxification of other cations. Growth of gefl and nhxl mutants in the presence of toxic cations: Five-fold serial dilutions (starting at \(10^5\) cells) of the indicated strains were grown at 30°C for 2 days on YPD (1% yeast extract/2% peptone/2% dextrose) with the addition of either 3 mM MnCl\(_2\), 0.45 M tetramethylammonium (TMA), or 0.05 mg/ml hygromycin B (HYG) as indicated.

For example, gefl mutants are sensitive to 3 mM MnCl\(_2\), 0.45 M tetramethylammonium chloride and to 0.05 µg/ml hygromycin-B. The nhxl mutant is also sensitive to tetramethylammonium chloride and hygromycin. The extreme sensitivity of the nhxl mutant to hygromycin provides an important tool for assaying nhxl function.

Gefl p and Nhxlp Colocalize. The sequestration model postulates not only a functional connection between the anion channel Gefl and sodium exchanger Nhxl
but also predicts that these two proteins colocalize within a common compartment. Because previous studies indicated that Nhxl localizes to a prevacuolar compartment (Nass and Rao, 1998), two types of experiments were performed to determine whether Gefl and Nhxl proteins colocalize to this compartment.

Distribution of fluorescence and immunodetection of subcellular fractions in gefl nhxl cells transformed with two constructs: a GEFl-GFP fusion and a NHXI-(HA)3-tagged fusion were determined. The strain RGY419 (gefl nhxl) was transformed with plasmids pRG151; GEFl-GFP and pRIN73; NHXI-(HA)3. Transformants were grown in SD (Difco; synthetic medium with 2% dextrose).

When the cells reached OD600=0.5, hygromycin B (Sigma) was added to a final concentration of 0.1 mg/ml and the cells were incubated for 40 min at 30°C. Cells were fixed and stained with antibodies to HA epitope and 4',6-diamidino-2-phenylindole (DAPI). Cells were viewed by charge-coupled device microscopy and optically sectioned by using a deconvolution algorithm (Scanalytics, Billerica, Mass.) (Kennedy et al., 1997); (Bar=1 µm).

It was found that hemagglutinin (HA)-tagged Nhxl and Gefl-GFP fusion protein colocalize as shown via epifluorescence deconvolution microscopy (FIG. 3A). Persistence of signal coincidence on 90° rotation of the image further supports colocalization of the two transporter proteins in these cells.

The colocalization of Nhxl (HA)3 and GEFl-GFP is also supported by the comigration of the two proteins in sucrose density gradients of membrane preparations obtained from cells expressing the tagged proteins. The strain RGY419 (gefl nhxl) transformed with plasmids pRG151; GEFl-GFP and pRIN73; NHXI-(HA)3 was grown in APG medium (Rodriguez-Navarro and Rea, 1984), converted to spheroplasts, lysed, and fractionated on a 10-step sucrose gradient (18-54%) as described (Sorin et al., 1997; Antebi and Fink, 1992). Western blots showed the distribution of Gefl-GFP and Nhxl-HA (see Example 1, Materials and Methods).

The sedimentation behavior of the membrane fraction containing both proteins is consistent with that of a prevacuolar compartment (Nass and Rao, 1998). Gefl-GFP (but not Nhxl) is also present in Golgi fractions, consistent with previous studies (Gaxiola et al., 1998; Schwappach et al., 1998).
An *A. thaliana* Homologue of NHX1 Functions in Yeast. The yeast strain described herein provides an important tool for identifying genes that mediate salt tolerance in other organisms. To test the utility of this system, a sequence from *Arabidopsis* (See Materials and Methods) with very high homology to the *S. cerevisiae* NHX1 ORF was identified and used an expressed sequence tag (see Materials and Methods) to obtain a full-length clone of this *Arabidopsis* gene. An alignment of the amino acid sequences of Nhxl homologues from *Arabidopsis* (AtNhxl), human (HsNhe1), and yeast (ScNhxl) reveals segments of amino acid identity and similarity within predicted transmembrane domains (FIG. 2). However, it is important to note that despite these relationships, neither the N-terminal nor the C-terminal regions of AtNhxl and ScNhxl show a high degree of homology (FIG. 2). A characteristic of mammalian NaVH+ antiporters is their inhibition by amiloride. A putative amiloride binding site (\(163^{\text{DVFFLLPPPI}}\)) has been defined via point mutants in the human NHE1 antiporter gene (Counillon *et ah*, 1993). AtNhxl, HsNhe-6 and ScNhxl have an almost identical sequence (FIG. 2). However, our attempts to inhibit the activity of either Nhxl or AtNhxl in yeast cultures with amiloride were unsuccessful.

The extreme sensitivity of yeast nhxl mutants to hygromycin permitted the testing of whether the cloned *Arabidopsis* AtNHX1 ORF could provide Na+/H+ exchange function in yeast. Vector pAD4 (Ballester *et ah*, 1989) was introduced into wild-type and nhxl strains. Plasmid pRG308; ADH; AtNHX1 was introduced into nhxl mutants as indicated. Five-fold serial dilutions (starting at \(10^5\) cells) of the indicated strains were grown at 30°C for 2 days on YPD (-) or on YPD supplemented with 0.05 mg/ml hygromycin (+). Serial dilutions of the same strains were grown on APG medium (see Materials and Methods) (-) or on APG supplemented with 0.4 M NaCl (Rodriguez-Navarro and Ramos, 1984).

The At NHXI gene is capable of suppressing the hygromycin sensitivity of the nhxl mutant. The AtNHXI gene also suppressed the NaCl sensitivity of nhxl mutant but only under conditions in which the K+ availability was reduced. However, AtAHXI was not capable of rescuing the Na+- sensitive growth phenotype of the double mutant enal nhxl overexpressing the AVPL-D gene.
Further support for the role of the *Arabidopsis* AtNHX1 gene in salt homeostasis came from an analysis of its expression in salt-stressed plants. Plants were grown for 15 days under standard conditions and then exposed for 6 h to either 250 mM NaCl or KCl. The NaCl stress increased AtNHX1 mRNA levels 4.2-fold, whereas KCl promoted only a 2.8-fold increase. This increase in mRNA level produced by sodium resembles that described for the yeast NHXI gene (Nass and Rao, 1998). RNA tissue blot hybridized with AtNHX1. Ten micrograms of total RNA from 15-day old plants exposed to 250 mM NaCl or KCl for 6 h and a control grown without salt was subjected to electrophoresis on a denaturing formaldehyde gel. The blot was hybridized with a probe internal to AtNHX1 ORF. An 18S ribosomal probe was used as a loading control.

Discussion

The studies described herein provide evidence for the importance of the prevacuolar pH for intracellular Na\(^+\) sequestration in yeast. Overexpression of the plant H\(^+\)-pyrophosphatase (AVPI) confers salt tolerance to yeast only in those strains containing a functional chloride channel (Gef1) and the Na\(^+\)/H\(^+\) exchanger (Nhx1).

These data support a model in which the Nhxl Na\(^+\)/H\(^+\) exchanger acts in concert with the vacuolar ATPase and the Gef1 anion channel to sequester cations in a prevacuolar compartment. Several studies suggest that the prevacuolar compartment may be derived both from the plasma membrane and the late Golgi. These vesicles are likely involved in the assembly of the vacuole or delivery of cargo to this organelle. It is reasonable to expect that these prevacuolar vesicles detoxify cations by sequestration, thereby lowering their concentrations in the cytoplasm and in other organelles.

The yeast system described herein permits the functional assessment of diverse heterologous proteins in salt tolerance: chloride channels, H\(^+\) pumps, and Na\(^+\)/H\(^+\) exchangers and other cation/H\(^+\) exchangers or cation/bicarbonate symporters. The system is robust and flexible. The function of the *Arabidopsis* chloride channels (Gaxiola *et al.*, 1998; Hechenberger *et al.*, 1996), H\(^+\) pump, and Na\(^+\)/H\(^+\) exchanger can be assayed in the corresponding yeast mutant. Despite the inability of At NHX1 to suppress all the phenotypes of the yeast nhxl mutant, the
fact that it suppresses some phenotypes, coupled with the DNA homology between AtNHX1 and yeast NHX1, indicates that the plant gene carries out a similar function to that of the yeast homologue. The observation that the AtNHX1 gene suppresses the sensitivity of the nhxl mutant to hygromycin but provides only a weak Na+ detoxification phenotype could be a consequence either of differential regulation of the transporters in the two organisms or of distinct cation transport selectivities.

The regulation of AtNHX1 by salt and the ability of the plant gene to suppress the yeast nhxl mutant suggest that the mechanism by which cations are detoxified in yeast and plants may be similar. Indeed, previous work suggested that vacuolar sodium accumulation in salt-tolerant plants may be mediated by a tonoplast Na+/H+ antiporter that utilizes the proton-motive force generated by the vacuolar H+-ATPase (V-ATPase) and/or H+-translocating pyrophosphatase (V-PPase; refs. Barkla et al., 1994; Zhen, et al., 1997; Kirsch et al., 1996).

The finding described herein that both gefl and nhxl mutants are hypersensitive to hygromycin indicate that the level of resistance to hygromycin depends on the function of the vacuolar and prevacuolar organelles. Yeast mutants impaired in K+ uptake (trkl) are hypersensitive to hygromycin (Madrid et al., 1998); reduced K+ uptake hyperpolarizes the plasma membrane potential and drives the uptake of alkali cations such as hygromycin. Mutations that reduce the H+ pumping activity of the plasma membrane H+-ATPase, Pmal, depolarize the plasma membrane potential and confer resistance to hygromycin (McCusker et al., 1987). Thus, mutants such as gefl or nhxl that affect the pH or membrane potential of the vacuolar and prevacuolar compartments may be expected to affect hygromycin compartmentation.

EXAMPLE 2

Transgenic Plants that Overexpress the AtNHX1

Transgenic plants that overexpress the AtNHX1 were generated using Agrobacterium-mediated plant transformation. The transgenic AtNHX1 was expressed using a double tandem enhancer of the 35S promoter of CaMV (Topfer et al., 1987). T3 transgenic plants are less affected than wild type controls when watered with 300 mM NaCl.
15 wild-type plants and 15 35SAAtNHX1 transgenic were grown on a 12 hours-day cycle for 20 days. During this period plants were watered every 5 days with a diluted nutrient solution (1/8 M.S. salts). 200 mM NaCl was added to the watering solution at day 21 and at day 33 plants were watered with a nutrient solution containing 300 mM NaCl. Plants were photographed 10 days after the last NaCl treatment.

EXAMPLE 3
Salt-Stressed Wild Type Plants and 35SAVP1 Transgenics

Transgenic plants that overexpress AVPl were generated using Agrobacterium-mediated plant transformation. The transgenic AVPl was expressed using a double tandem enhancer of the 35S promoter of CaMV (Topfer et al., 1987). 15 wild-type plants and 15 35SAVP1 transgenics were grown on a 24 hours-day cycle for 16 days. During this period plants were watered every 4 days with a diluted nutrient solution (1/8 M.S. salts). 200 mM NaCl was added to the watering solution at day 17 and at day 27 plants were watered with nutrient solution containing 250 mM NaCl. Plants were photographed 10 days after the last NaCl treatment. Identical conditions and treatment as described in Example 2 were used.

These transgenic plants are larger than wild-type plants. Furthermore, homozygous 35SAVP1 plants show sustained growth in the presence of 250 mM NaCl plus 1/8 M.S. salts when grown in a 24 hours light regimen. Interestingly, when 35SAVP1 plants were grown under short-day cycle conditions (12 hour day/light cycle) sustained growth in the presence of 300 mM NaCl plus 1/8 M.S. salts was observed.

EXAMPLE 4

Hydroponically Grown Wild Type and 35SAVP1 Transgenic Plants

Hydroponically grown wild type and 35SAVP1 transgenic plants were generated. 65 days old wild type and 35SAVP1 transgenic plants grown in solution culture on a 12 hour light cycle.

Wild type and 35SAVP1 transgenic plants were also grown in solution culture on a 12 hours light cycle for 20 days. Starting at day 21, NaCl concentration was increased in a stepwise fashion by 50 mM increments every 4 days. Plants were photographed after 4 days in the presence of 200 mM NaCl.
EXAMPLE 5

Low Pi increases transcript and protein abundance of AVPl and P-ATPase in Arabidopsis

Materials and Methods

Quantitative RTF-PCR. Arabidopsis thaliana plants were germinated in half-strength MS medium for 2 weeks, and then transferred to 10 µM Pi plates for 0-48 h. Total RNA was isolated from seedlings (10-15 seedlings per sample) with TRI-reagent (Molecular Research Center, Cincinnati, OH, USA), according to the manufacturer's manual. After being treated with DNase I (DNA-free Kit, Ambion, Austin, TX, USA), 1 µg of each RNA sample was used to synthesize cDNA with an iSCRIPT cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA) in a total volume of 20 µL at 42 °C for 1 h.

RTF-PCR was performed in a LightCycler 2.0 (Roche Applied Science, Mannheim, Germany), in a total volume of 25 µL containing 0.1 µL RT reaction (diluted into 5 µL) as template, using a LightCycler FastStart DNA MasterPLUS SYBR Green I Kit, according to the manufacturer's manual (Roche Applied Science). The transcription levels of AtPTl, AVPl and AHAs genes were normalized to ACT2. The following are the specific primer pairs for the different genes designed with LightCycler Probe Design2 software (Roche Applied Science): ACT2, 5’CCCGCTATGTATGTCGCS’ (SEQ ID NO: 8) and 5’TCCAGCAAGGTCAAGACGS’ (SEQ ID NO: 9); AtPTl, 5’CCTCCTCAAGTTGACTACATTS’ (SEQ ID NO: 10) and 5’CTCGATATCTGTTTGTAAGACCTS’ (SEQ ID NO: 11); AVPl, 5’GTTTCGTCACTGAGTACTACCS’ (SEQ ID NO: 12) and 5’TCTGATATCTGTTTGTAAGACCTS’ (SEQ ID NO: 13); AHAl, 5’TCCATCCCCCTGGGACGAGTS’ (SEQ ID NO: 14) and 5’ATATCTGCTTTTCTCAAAGCGCS’ (SEQ ID NO: 15); AHA2, 5’ATTGACCGGAGTGGTTAACS’ (SEQ ID NO: 16) and 5’CGAGCAACACGCCAAGCGAS’ (SEQ ID NO: 17); AHA6, 5’GATGAGATAATGGACAAGATGGG’ (SEQ ID NO: 18) and 5’TCTGCACTGTCATGTCTTGGAS’ (SEQ ID NO: 19). Their specificity was
confirmed by BLASTN in the National Center for Biotechnology Information (NCBI).

Western blot analysis. Seeds of *A. thaliana* plants were germinated in half-strength MS medium for 2 weeks, and then transferred to 10 µM Pi plates. Samples of seedlings (1-3 g) were taken at different time points (0, 2, 4 and 6 days), and membrane protein was extracted as described elsewhere (Schumaker and Sze, 1985). The protein concentration was determined using the bicinchoninic acid (BCA) protein assay reagent (Pierce, Rockford, IL, USA); 15 mg per sample was electrophoretically resolved in 12% Tris-HCl-sodium dodecylsulphate (SDS) gel (Bio-Rad Laboratories) and transferred to Immobilon-P transfer membrane (Millipore, Bedford, MA, USA). Membranes were incubated for 1.5 h with an antiserum raised against a synthetic peptide corresponding to the putative hydrophilic loop IV of the AVPl protein (Rea et al., 1992) or with a polyclonal antiserum raised against *Arabidopsis* P-ATPase (Bouche-Pillon et al., 1994). After 1.5 h of incubation with a secondary antibody conjugated with alkaline phosphatase, the membranes were treated with a nitroblue tetrazolium—5-bromo-4-chloroindol-3-yl phosphate (NBT/BCIP) substrate solution (Roche, Indianapolis, IN, USA) for staining.

PAVPL GUS construct. DNA from Bac (F7H2) containing the *AVPl* promoter region was employed to amplify a 1.7-kb fragment upstream to the ATG codon using the following primers: sense, 5'GCTCTAGACGTTTACCACACCAGTCACCACS' (SEQ ID NO: 20) with an XbaI restriction site at the 5' end; antisense, 5'CGGGATCCCTTCTCCTCCGTATAAGAGAS' (SEQ ID NO: 21) with a BamHI restriction site at the 5' end. The amplified ~1.7-kb AVPl promoter was ligated to the pGEM-T vector (Promega, Madison, WI, USA), sequenced, and then subcloned into the XbaI/BamH7 site of the pBC308 vector in front of the GUS open reading frame (Xiang et al., 1999). The vector pBC308 contains the *Bar* gene (phosphinothricin acetyltransferase) for selection with the herbicide phosphinothricin (BASTA).

Transformation and selection. The construct was transformed into *Agrobacterium tumefaciens* strain GV3101, and then introduced into *A. thaliana*...
Col-O ecotype via the floral dip method (Clough and Bent, 1998). Plants transformed with the pAVPl::GUS cassette were seeded in soil and selected by spraying with BASTA (T1). Seeds obtained from self-pollinated transformants (T2) were scored again for herbicide resistance on soil. Complete BASTA resistance identified homozygous pAVPl::GUS plants of the T3 progeny.

Results and Discussion

The transcription and translation of AVPl and P-ATPases (also known as "Autoinhibited H+-ATPases," or AHAs), normally expressed in roots (Arango et al., 2003; Gaxiola et al., 2007) under limiting Pi conditions, were monitored. AVPl and representative AHA mRNA abundance was assessed in wild-type Arabidopsis plants transferred to limiting Pi conditions by quantitative RT-PCR. AVPl mRNA induction peaked 12 h after the transfer of the seedlings to limiting Pi, AHA/ showed no change, and both AHA2 and AHA6 expression peaked 12 h after AVPl (FIG. 6A). Transcription of the phosphate transporter AtPTl, which is induced under low-phosphate conditions (Muchhal et al., 1996), was up-regulated within 3 h of limiting Pi conditions (FIG. 6A). The induction of AVPl expression by limiting Pi was confirmed with an AVPl promoter-β-glucuronidase (AVPl::GUS) reporter transformant. This behavior is consistent with the presence of potential cis regulatory Pi response elements in the 1.7-kb promoter region used to generate the AVPl::GUS reporter (i.e. one PRHI element at position -540; two TC elements at positions -79 and -103). These elements are present in genes whose expression has been shown to be up-regulated under limiting Pi conditions (reviewed in Hammond et al., 2004). Western blots of microsomal fractions probed with polyclonal antibodies raised against AVPl and H+-ATPase (FIG. 6B), and the relative densities of each confirmed expression (FIG. 6C), showed that the abundance of both H+ pumps was increased fourfold and twofold, respectively, by Pi starvation. These results suggest that increased AVPl expression precedes an increase in the abundance of AHA2 and AHA6 H+-ATPases.

EXAMPLE 6

ATA VP 10X root systems respond more vigorously than controls when exposed to limiting Pi conditions

Materials and methods
Arabidopsis growing conditions. The control Arabidopsis plants and
A VPlOX plants (Gaxiola et al., 2001) used in this work were of the Col-O ecotype.
Seeds were surface sterilized and imbibed overnight at 4 °C before being sown on
agar medium, or soil, or rock wool for hydroponic growth. For plants grown on agar,
half-strength Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) and
Pi-free medium (Estelle and Somerville, 1987; Hartel et al., 2000) were used with
1% sucrose and 0.8% or 1% agar (Micropropagation/Plant Tissue Culture Grade,
PhytoTechnology Laboratories, Shawnee Mission, KS, USA). Pi-free medium
contains 20 mM 2-(N-morpholino) ethanesulphonic acid (MES) (pH 5.8), 5.0 mM
KNO₃, 2.0 mM MgSO₄, 2.0 mM Ca(NO₃)₂, 50 μM iron ethylenediaminetetraacetate
(Fe-EDTA), 70 μM H₃BO₃, 14 μM MnCl₂, 0.5 μM CuSO₄, 1.0 μM ZnSO₄, 0.2 μM
NaMoO₄, 10 μM NaCl and 0.01 μM CoCl₂. The Pi concentration was adjusted with
KH₂PO₄. All experiments were performed with agar (PhytoTechnology
Laboratories) that had no detectable trace Pi contamination, as determined by the
method of Murphy and Riley (1962).

Lateral root, root length and root hair measurements. Root lengths were
measured directly with a ruler. The lateral root number and the root hair number
were counted under an Olympus SZ40 stereomicroscope (Tokyo, Japan). Root hair
photographs were taken and printed, and the root hair lengths on the photographs
were measured with a ruler. The final values were converted to the actual size of the
root hair.

Results and Discussion

To examine whether the root systems of AtA VPlOX plants were capable of
responding to low Pi, control and AtA VPlOX seeds were germinated under Pi-
deficient (10 μM) conditions and their root development was analyzed. AtA VPlOX
seedlings developed more robust root systems than wildtype controls under Pi
limitation. At 20 days, AtA VPlOX roots were longer and had developed an average
of seven more lateral roots than controls (P < 0.01). Root hairs were also 2.5-fold
larger and 1.5-fold denser than those of controls under Pi-deficient conditions (P <
0.01), increasing the absorptive area of the roots. Primary root apical cell
proliferation was monitored in control and AtA VPlOX plants germinated under Pi-
deficient and Pi-sufficient conditions using a CycBl::CDBGUS reporter associated
with meristem activity/indeterminacy (Li et al., 2005). Cell proliferation, a result of meristem activity, in both AtA VPOX and wild-type plants was curtailed in Pi-deficient conditions, but the switch to determinate growth, indicated by a loss of *CycBl::CDBGUS* activity, was delayed for 3–4 days in AtA VPOX plants.

EXAMPLE 7

AtA VPOX plants exhibit enhanced Pi uptake and enhanced rhizosphere acidification under Pi deficiency

Materials and Methods

Arabidopsis growing conditions. Arabidopsis was grown as described in Example 6. For hydroponically grown plants, the conditions described by Gibeaut *et al.* (1997) were followed.

Root acidification. Plants were germinated in half-strength MS medium for 7 days, transferred to low-Pi medium as described above with 1 mM MES, pH 6.8 and 0.04 g/L bromocresol purple, and incubated for 10 days. The pH change was visualized via changes in medium color. Comparisons were made with a color bar generated by documenting the color change of bromocresol purple in the same medium at specific pH values.

Pi uptake determination. Pi uptake experiments were performed in 125-mL flasks wrapped with aluminium foil. Plants grown hydroponically were used 2 weeks after bolting. After 2 days of incubation in distilled water, the plants were transferred to the flasks filled with 120 mL of medium supplemented with 50 μM Pi. The solution volume was maintained by adding distilled water every 4 h. The Pi concentrations in the medium were determined at 8-h increments for 96 h using the method of Murphy and Riley (1962). This method can determine Pi concentrations as low as 1 μM in seawater, and the salt error is less than 1%.

Pi determination. Plant samples were placed in glass scintillation vials and dried at 70 °C for 72 h. The fresh and dry weights were determined on an analytical balance. The samples were ashed at 500 °C for 6 h. The ash samples were dissolved in 1 N HCl, and the Pi contents were determined using a colorimetric method (Murphy and Riley, 1962).

Results and Discussion
The more robust root systems developed by AtAVPlOX plants would be expected to increase the acidification of Pi-deficient medium, resulting in more efficient scavenging of Pi. To test this hypothesis, wild-type and AtAVPlOX plants were transferred from Pi-sufficient to Pi-deficient medium. A visual examination of the plates showed that AtAVPlOX plants had a greater capacity than wild-type controls to acidify the medium, as indicated by the intense yellow color of the pH indicator dye. Rhizosphere acidification was completely inhibited in wild-type and AtAVPlOX plants by 1 mM vanadate, consistent with the inhibition of plasma membrane H⁺-ATPase activity (Yan et al., 2002). Enhanced Pi uptake, measured as Pi depletion from defined hydroponic medium, was visible in both AtAVPl-I and AtAVP 1-2 over-expression transformants within 8 h of incubation, with AtAVP-I exhausting the available Pi almost 30 h earlier than AtAVP 1-2. Total depletion of Pi by control plants was not observed at any time point.

AtAVPlOX plants also exhibited enhanced growth and Pi uptake when grown on solid Pi-deficient medium (Table I). AtAVPlOX seedlings germinated and grown in Pi-deficient medium for 20 days exhibited 1.6-fold more root and 1.3-fold more shoot biomass than controls (P < 0.01). The Pi content (per plant) was 1.4-fold higher in AtAVPlOX plants than in controls (P < 0.01), suggesting that AtAVPlOX plants acquire more Pi and grow accordingly (Gilooly et al., 2005; Hermans et al., 2006). Consistent with the Pi limitation of organismal growth, the Pi content (mmol/g dry weight) of AtAVPlOX plants grown either at normal or restrictive Pi conditions was no different from controls (Table I).

EXAMPLE 8

AtAVPlOX plants develop larger shoots when grown in low-Pi soil

Materials and Methods

Arabidopsis growing conditions. Arabidopsis was grown as described in Example 6. The composition and pH of the natural low-Pi soil used were analyzed by the Soil Nutrient Analysis Laboratory of the University of Connecticut (pH 6.1; P, 0.5 p.p.m.; K, 123 p.p.m.; Ca, 467 p.p.m.; Mg, 74 p.p.m.; soil texture classification, sandy loam). Pi-free medium with different KH₂PO₄ concentrations was used to water plants grown in low-Pi soil. Plants were grown in growth chambers with a 16-h light/8-h dark cycle at 21 °C. For rock phosphate experiments,
Plants were grown in sand with a 1:1000 w/w P_2O_5/sand ratio as the only source of Pi, and flooded regularly with Pi-free medium.

Leaf area. The rosette leaves were carefully excised with a scalpel blade, and the leaf areas were measured with a Li-Cor 4100 area meter (Lincoln, NE, USA).

Results and Discussion

To determine whether the enhanced root systems seen in A VPlOX plants confer

TABLE I

Effect of Pi availability on growth and Pi content of AtVVPlOX transgenic and CoI-O plants

<table>
<thead>
<tr>
<th>Genotype & conditions</th>
<th>Root FW (mg)</th>
<th>Shoot FW (mg)</th>
<th>Root: shoot</th>
<th>Total P content (µg/plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Col-O</td>
<td>0.79±0.27</td>
<td>3.77±0.72</td>
<td>0.21±0.043</td>
<td>3.75±0.41</td>
</tr>
<tr>
<td>AVPl-I</td>
<td>1.25±0.46**</td>
<td>4.38±0.92*</td>
<td>0.28±0.066**</td>
<td>4.60±0.12**</td>
</tr>
<tr>
<td>AVP 1-2</td>
<td>1.33±0.58**</td>
<td>4.46±1.15*</td>
<td>0.29±0.076**</td>
<td>5.26±0.10**</td>
</tr>
<tr>
<td>10 µM P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Col-O</td>
<td>0.83±0.20</td>
<td>2.42±0.59</td>
<td>0.33±0.072</td>
<td>0.30±0.04</td>
</tr>
<tr>
<td>AVPl-I</td>
<td>1.30±0.33**</td>
<td>2.81±0.25*</td>
<td>0.47±0.131**</td>
<td>0.37±0.05**</td>
</tr>
<tr>
<td>AVP 1-2</td>
<td>1.39±0.40**</td>
<td>3.63±0.45**</td>
<td>0.42±0.111*</td>
<td>0.44±0.04**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype & conditions</th>
<th>Total P content (mmol/g DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM P</td>
<td></td>
</tr>
<tr>
<td>Col-O</td>
<td>0.071±0.013</td>
</tr>
<tr>
<td>AVPl-I</td>
<td>0.065±0.004</td>
</tr>
<tr>
<td>AVP 1-2</td>
<td>0.076±0.001</td>
</tr>
<tr>
<td>10 µM P</td>
<td></td>
</tr>
<tr>
<td>Col-O</td>
<td>0.008±0.004</td>
</tr>
<tr>
<td>AVPl-I</td>
<td>0.007±0.003</td>
</tr>
<tr>
<td>AVP 1-2</td>
<td>0.008±0.002</td>
</tr>
</tbody>
</table>

*a Plants were grown on vertical agar plates containing nutrient medium with either normal Pi (1mM) or low Pi (10 µM) for 20 days. Root and shoot fresh weight (FW) were determined. Values shown represent the mean of 16 seedlings ± sd. 20 days old plants were harvested to determine dry weights and Pi contents. Values shown represent the mean ± sd of three independent experiments with 50 plants per line per experiment. * indicates PO. 05, ** indicates PO. 01.
an advantage to plants grown in natural soils, control and AtA VPlOX lines were germinated and grown in natural low-Pi (~15 μM) soil. The growth of all plants was delayed compared with normal conditions (data not shown). However, as shown previously under Pi-sufficient conditions (Li et al., 2005), AtA VPlOX plants developed more leaves with greater surface areas than their wild-type counterparts at all stages of growth and, when scored at 50 days post-germination, AtAVPl-I and AtAVP1-2 had six- and twofold greater leaf areas than controls, respectively (P < 0.01). This suggests that the over-expression of AVPl results in enhanced Pi scavenging from natural low-Pi soils. Similarly, AtAVPlOX plants outperformed controls in a sandy medium supplemented with insoluble rock phosphate (P₂O₅) as the only source of Pi, and developed an average of 2.3-fold more shoot biomass (P = 0.01).

EXAMPLE 9

Double Transgenic Plant with 35S AVPl and 35S AtNHXI

Overexpression of the pyrophosphate-energized vacuolar membrane proton pump AVPl likely increases the availability of H⁺ in the lumen of the vacuole, and the AtNHXI Na⁺/H⁺ antiporter uses these H⁺ to sequester Na⁺ cations into the vacuole. Therefore, higher expression of these transporters likely maximizes the sequestration capability of the vacuole. To generate transgenic *Arabidopsis* plants that overexpress both genes AVPl and AtNHXI, T3 35S AVPl plants are used as females and T3 35S AtNHXI plants are used as males. Female plants are hand-emasculated and anthers from freshly opened flowers of donor plants are harvested. With these anthers the emasculated plants are pollinated by touching the anthers onto the stigmas. The pollinated flowers are labeled and any remaining opened or unopened flowers from the same female plant are removed to avoid any confusion at harvest. The harvested seeds are sterilized using a 50% sodium hypochloride solution and mixed vigorously for 5 minutes and rinsed with water thoroughly. The sterilized seeds are stored in soft agar over night at 4 °C. Then they are sprinkled onto solidified kanamycin-hygromycin selective medium. The 35S AVPl construct has the neomycin phosphotransferase II gene that confers kanamycin tolerance in plants while the 35S AtNHXI construct has a modified hygromycin B phosphotransferase that confers hygromycin tolerance in plants. The resistant
seedlings are transplanted into soil and to the hydroponic media to be tested for their salt-tolerant phenotype. A transgenic *Arabidopsis thaliana* plant to overexpress the *A. thaliana* gain-of-function mutant gene AVPl-D (Zhen, Kim and Rea, 1997) is engineered using the same double tandem enhancer of the 35S promoter described above (Topfer *et al.*, 1987). Plants overexpressing the gain of function mutant gene will likely show an enhanced phenotype. These plants are characterized in parallel with the 35SAVP1, 35S AtNHX singles and doubles transgenics. The *A. thaliana* gain-of-function mutant gene AVPl-D is subcloned into plasmid pRT103 carrying the 35S promoter and the polyadenylation signal of CaMV (Topfer *et al.*, 1987). A HindIII fragment containing the chimeric 35SAVP-D gene is subcloned into pBIBhyg (Becker, 1990). The resulting T-DNA vector is transformed into *Agrobacterium tumefaciens* strain GV3101 via electroporation, and used for subsequent vacuum infiltration of *Arabidopsis thaliana* ecotype Columbia (Bechtold *et al.*, 1993). Integration is confirmed on Southern blots of T3 plants and expression monitored on Northern blots of positive T3 plants.

EXAMPLE 10

Comparative Transport Study with Vacuoles from the Roots of Wild-Type and 35S AVPl Transgenic Plants

The purpose of this study is to determine if the vacuoles of 35S AVPl transgenic plants show a higher proton transport activity dependent on pyrophosphate. These determinations are done with root and shoot tissues separately from plants grown hydroponically. The transgene could show a tissue-specific regulation despite the 35S promoter.

In order to compare the PPI-dependent H+ translocation activities of wild-type and 35S AVPl transgenic plants sealed tonoplast-enriched vesicles from roots and leaves of the above plants are prepared. The homogenization and differential centrifugation procedure described by Rea and Turner (Rea *et al.*, 1990) is followed. H+ translocation is assayed fluorimetrically using acridine orange (2.5 µM) as transmembrane pH difference indicator in assay media containing vacuole membrane-enriched vesicles as described by Rea and coworkers (Zhen, Kim and Rea, 1997). The assay media contains 300 µM Tris-PPI, 50 mM KCl, 2.5 µM acridine orange, 5 mM Tris-Mes (pH 8.0). Intravesicular acidification is triggered...
with the addition of 1.3 mM MgSO₄ and terminated with the addition of the protonophore FCCP at 2.5 µM. Fluorescence is measured at excitation emission wavelengths of 495 and 540 nM, respectively, at a slit width of 5 nM (Zhen et al, 1994). A further test to support that the H⁺ translocation is AVPI-driven is the addition of the specific inhibitor aminomethyledediphosphonate (Zhen et al, 1994).

EXAMPLE 11

Determination of the Na⁺/K⁺ Ratios in Leaves and Stems of the Transgenic Plants

These measurements indicate to whether or not the transgenic plants described herein have an increased vacuolar capacity to sequester Na⁺ in their leaves or elsewhere. Toxic concentrations of NaCl build up first in the fully expanded leaves where NaCl is compartmentalized in the vacuoles. Exposure to NaCl can disrupt or reduce K⁺ uptake leading to K⁺ deficiency and growth inhibition (Wu et al, 1996). A cytosolic consequence of reduced K⁺ content and high Na⁺ is the inhibition of important enzymes. An example of such enzymes is the 3(2'), 5'-bisphosphate nucleotidase of yeast whose activity is more sensitive to Na⁺ when K⁺ content is low (Murguia et al., 1995). To determine the Na⁺/K⁺ ratios in leaves and stems wild-type and 35S AVP1/35S AtNHX1 double and single transgenics in hydroponic conditions (Gibeaut et al., 1997) are grown. NaCl is added to the growth media in a stepwise fashion starting with 50 mM up to 250 mM. At every point the rosette and the stems of the treated plants are collected and their weight is determined. The samples are dried out in an oven at 80 °C and their dry weight is determined. The dry samples are boiled in a determined volume of water and their Na⁺ and K⁺ contents determined via atomic absorption spectrophotometry (Apse et al, 1999; Gaxiola et al, 1992).

EXAMPLE 12

Determination of Whether 35S AVPI Transgenic Plants are Larger Because their Cells are Larger or Because they have More Cells, or Both

The shoot meristems labeling index is compared with one of the wild-type plants. Morphological and anatomical observations measuring and counting cells of leaves, roots and stems are performed. To determine if 35S AVPI transgenic plants are larger because they have more cells, their shoot meristems labeling index is compared with the one of wild-type plants. To measure the DNA synthesis or cell
proliferation 5-Bromo-2'-deoxy-uridine (BrdU) that can be incorporated into DNA in place of thymidine is used. Cells that have incorporated BrdU into DNA are detected using a monoclonal antibody against BrdU monoclonal antibody and an anti-mouse Ig-alkaline phosphatase as a second antibody. The bound anti-BrdU monoclonal antibody is visualized by light microscopy and the ratio between DAPI stained and BrdU positives established. The protocol is a modification of the one published by Chiatante and coworkers (Levi et al., 1987) and the BrdU labeling and detection kit II from Boehringer Mannheim. The plants are exposed for different times to the BrdU labeling medium and then fixation, paraffin embedding and sectioning is performed as described by Meyerowitz and coworkers (Drews et al., 1988). For observation of leaf tissue, fresh tissues are embedded in 5% agarose and slice them with a microslicer. For primary root observation, seedlings are fixed for 4 hr in 50% ethanol, 5% acetic acid, and 3.7% formaldehyde at room temperature, dehydrate them in graded ethanol series, permeate them with xylene, and infiltrate them with paraffin. Eight-micrometer sections are stained with 0.05% toluidine blue and cells are counted under a microscope. As an alternative for the visualization and determination of cell size the method described by Greenberg and coworkers (Rate et al., 1999) is followed.

EXAMPLE 13

Isolation of Mutants in the Transporters

Genetic approaches are very powerful in analyzing complex biological traits (Serrano, 1994) Reverse genetics is a very important new tool for plant biologists. The generation of a good collection of tagged knockouts by Sussman and coworkers (Krysan et al., 1996) has opened a very important avenue for the analysis of gene disruptions in Arabidopsis. The Arabidopsis Knock-out Facility of the University of Wisconsin Madison is used to search among the 60,480 Arabidopsis (ecotype WS) lines that have been transformed with the T-DNA vector pD991 for the presence of T-DNA inserts within A/CLC-c, AtCLC-d, AVPI, ANHX1 and their homologues. The phenotypes of the above knock-outs will shed light towards the understanding of the physiological roles of these transporters in normal and stress conditions. An initial characterization of the knockout plants includes testing for their salt tolerance and their Na+/K+ ratios. The generation of double knock-outs via crosses help to
further understand the interaction among the transporters as well as the crosses with the 35SAVP1 and the 35SAtNHX1 transgenic plants.

To search for Arabidopsis knock-out PCR primers are designed following the guidelines detailed in the University of Wisconsin web site. Tested primers are sent to UW-Madison, where 62 PCR reactions that are sent to us for Southern blot analysis are performed. Positive PCR products are sequenced. If the sequence reveals that there is a T-DNA inserted within the gene the gene specific primers are sent for another set of PCR reactions in order to determine which of the 9 possible pools of 225 contains the knockout. After identifying the pool of interest, 25 tubes of seeds are screened for the individual plant carrying the T-DNA knock-out.

EXAMPLE 14

Cation Detoxification in Plant Cells

The studies described herein together with other evidence strongly indicate that yeast and plants share pathways and signals for the trafficking of vesicles from Golgi network to the vacuole (Gaxiola et al., 1999; Marty, 1997; Bassham et al., 1998). Without wishing to be bound by theory, it is likely that in both systems a prevacuolar compartment is a dynamic entity that detoxifies the cytoplasm from toxic cations and delivers its cargo either to the vacuole, or directly to the cell exterior. Both the Gefl chloride channel and Nhxl Na+/H+ exchanger have been localized to the yeast prevacuolar compartment (Gaxiola et al., 1999). The behavior of the Gefl-GFP chimera in yeast cells in vivo have been monitored indicating that its localization varies depending the environmental conditions. Furthermore, it has been shown that two of the four A. thaliana CLC chloride channel genes CLC-c and -d are capable of suppressing gefl mutant phenotypes implying a similar localization (Gaxiola et al., 1998). In order to understand how and where this cation detoxification takes place in plant cells the intracellular localization of GFP chimeras of AVPI, AtNHXI and AtCLC-c and -d (Hong et al., 1999) is monitored in vivo. Confocal microscopy is also used to address colocalization of the different transporters. For this purpose HA-tagged versions or antibodies of the transporters under study are required (Guiltinan et al., 1995; Jauh et al., 1999; Mullen et al., 1997).
For the constructions of the GFP-chimeras the soluble versions of GFP with improved fluorescence in *A. thaliana* reported by Davis and Viestra (Davies, S.J. and Viestra, R. D., "Soluble derivatives of green fluorescent protein (GFP) for use in *Arabidopsis thaliana* (1998)) are used. Two types of GFP-chimeras are made, namely a set under the regulation of the native promoter and another set under the regulation of the 35S promoter. The resulting T-DNA vectors containing the GFP-chimeras are transformed into *Agrobacterium tumefaciens* strain GV3101 via electroporation, and used for subsequent vacuum infiltration of *Arabidopsis thaliana* ecotype Columbia (Bechtold et al., 1993). For the hemagglutinin (HA) epitope tagging a PCR strategy designed for yeast but modified to tag plant genes expressed in yeast vectors is used. Futcher and coworkers designed vectors containing the URA3 yeast gene flanked by direct repeats of epitope tags (HA) (Schneider et al., 1995). Via PCR the tag-URA3-tag cassette is amplified such that the resulting PCR fragment possess homology at each end to the gene of interest. In *vivo* recombination in yeast is then used to direct the integration of the PCR-chimera to the plasmid carrying the plant ORF of interest, transformants are selected by the URA+ phenotype. The URA3 gene is "popped out" when positive transformants are grown in the presence of 5-fluoro-orotic acid. The vector carrying the plant gene has a selection marker different than the URA3 gene.

EXAMPLE 15

Further Applications of the Yeast Model

Gain of function mutants of the AtNHX that enhance salt tolerance of transgenic plants are generated using the yeast system. This is accomplished by mutagenizing the cloned gene to make a mutant library. This library is used to transform the salt sensitive yeast mutant enal and clones with an enhanced salt tolerant phenotype will be identified and retested. The other genes that show similarity to the AtNHX1 gene reported by the *Arabidopsis* Genome Initiative (AGI) are expressed in yeast. It is likely that some of these AtNHX1 homologues are plasma membrane transporters, so their function in yeast should be pH dependent.

Thus the precise composition and pH of the medium used for screening is crucial for success. Identification of plasma membrane transporters helps to engineer plants with an enhanced salt tolerance due to a reduced sodium uptake. In addition, plant
cDNA expression libraries in yeast are used to identify other families of transporters involved in NaCl detoxification.

To generate gain of function mutants of the AtNHX a method for introducing random mutations developed by Stratgene (Epicurian Coli XL1-Red competent Cells Cat#200129) is used. The method involves the propagation of a cloned gene into a strain deficient in the three primary DNA repair pathways. The random mutation rate in this strain is about 5000-fold higher than that of wild-type. A library of the mutated AtNHX gene is transformed into the enal yeast mutant and screened for salt tolerance. Yeast transformation is performed as described by Schiestl and coworkers (Gietz et al., 1992). An alternative to the XL1-Red random mutagenesis strategy is a PCR approach described by Fink and coworkers (Madhani et al., 1997).

To test ATNHXI homologs the same strains and conditions used for AtNHXI (Gaxiola et al., 1999) are used initially. However, if these screening strains and/or conditions do not work new ones are worked out. It is likely that when dealing with plasma-membrane AtNHXI homologues pH conditions of the assay media are crucial.

EXAMPLE 16

Hydroponic Culture of Transgenic Plants

The reduced availability of fresh water for standard agriculture may force the use of alternative agricultural arts. It is conceivable that with salt tolerant crops the use of hydroponics with seawater will create a new era in crop production. As described herein, conditions for hydroponics culture of Arabidopsis plants have been established and their performance in increasing concentrations of NaCl in their media have been tested. Transgenic plants are challenged with a commercial seawater formula that contains the complete ionic composition present in the oceans.

35SAVP1, 35SATNHXI single and double transgenics are grown together with wildtype Arabidopsis thaliana plants under hydroponic conditions for four weeks in a short day illumination cycle (Gibeaut et al., 1997). Then every four days an equivalent to 50 mM NaCl of Tropic Marin sea salt is added. This artificial sea water mix includes all of the other major and trace elements present in real sea water. Growth is monitored and physiological parameters, such as sodium content and distribution is determined as described in previous sections.
EXAMPLE 17

Tomato plants over-expressing the *Arabidopsis* type I H\(^+\)-pyrophosphatase outperform controls under Pi-limiting conditions

Materials and Methods

5 Tomato transformation. The tomato homologues of AVPl and AtNHXI are isolated and the corresponding chimeras to overexpress them are constructed (Bidone *et al.*, 1998; Burbidge *et al.*, 1997). The genes are introduced via Agrobacterium-mediated infection of calli. Tissue culture methods are used to regenerate transformed plants. The plants are assayed for salt tolerance as well as physiological parameters, such as sodium content and distribution. Increasing the salt-tolerance of tomato and rice plants will likely have important economic repercussions. A positive result indicates that the sequestration model described herein is also applicable to an important crop. Tomato transformation with 35S AVPl and with 35S AtNHXI constructs is performed as described by McCormick (McCormick, 1991). T0 and T1 transgenics are analyzed by polymerase chain reaction and DNA gel blotting for the presence and copy number of AVPl and AtNHXI transgenes. Heterozygous and homozygous plants are identified after segregation analysis of each transcends within T1 seeds. Homozygous plants are assayed for salt tolerance and as well as physiological parameters, such as sodium content and distribution. Degenerated oligos based on conserved sequences present in AVPl and AtNHXI homologues are designed. These degenerated primers are used in RT-PCR reactions with cDNAs made from poly(A) RNA from tomato. The resulting PCR fragments are used as probes to isolate the full length cDNA clones from commercial libraries (i.e. Stratagene Cat#936004). A similar strategy was described by Caboche and coworkers (Quesada *et al.*, 1997). Detailed method to transform AVPID (the E229D gain-of-function mutant of the AVPl gene that has a coordinated increase of both PPI hydrolytic activity and PPI-dependent H\(^+\)-translocation; Zhen, Kim and Rea, 1997) into tomato plant was described in Park *et al.*, 2005, and incorporated herein by reference.

25 Tomato growing conditions. Tomato (*Lycopersicon esculentum* Mill. cultivar Money Maker) control and AVPID over-expressing plants have been described elsewhere (Park *et al.*, 2005). Seeds were surface sterilized and imbibed overnight at
4 °C before being sown on half-strength MS medium. Ten-day-old seedlings were
transferred to pots containing 1 kg of natural low-Pi soil (see above) mixed with 44,
100 or 400 mg NaH₂PO₄. Tomato pots were kept in plastic bags to prevent loss of
Pi. Plants were randomly placed in the glasshouse. Pi-free medium, described above,
was used to water the plants every 2 weeks.

Results and Discussion

The effects of the overexpression of Arabidopsis thaliana proton transporters
(VP1D and AtNHX1) in more agriculturally important plants such as tomato are
examined. There is a high degree of identity at the amino acid level between the type
I^'-pyrophosphatases across the plant kingdom (Maeshima, 2000; Drozdowicz and
Rea, 2001), suggesting that VP1D from one species would be functional in another
species. Transgenic tomatoes over-expressing the E229D gain-of-function mutant
(VPID) of the Arabidopsis H^'-pyrophosphatase (LeA VPIDOX) develop more
robust root systems and are resistant to imposed soil water deficits (Park et al.,
2005). As was seen with AtA VPJOX, both LeA VPID-I and LeA VPID-2 over-
expression lines developed larger shoots, root systems and fruits than controls when
grown under Pi-deficient conditions. Although, at 44 p.p.m. NaH₂PO₄, neither
controls nor LeA VPIDOX lines developed fruits, at 100 p.p.m. NaH₂PO₄, both
LeA VPID-I and LeA VPID-2 lines developed a larger quantity of bigger fruits than
controls. The root and shoot dry weights of plants grown in the presence of 100
p.p.m. NaH₂PO₄ were, on average, 13% and 16% higher (P < 0.01), respectively, in
LeAVPIDOX plants than in controls. Furthermore, under the same low-Pi
conditions, fruit dry weight data and Pi content per plant were 82% and -30% higher
(P < 0.01), respectively, than in controls (Table II). Here again, there was no
statistically significant difference in the normalized Pi content (mmol/g dry weight)
of control and LeA VPIDOX roots or shoots grown under three limiting Pi conditions
(Table II).

Table II

<table>
<thead>
<tr>
<th>Effect of Pi availability on growth and Pi content of LeAVPIDOX and control plants</th>
<th>8</th>
</tr>
</thead>
</table>

Dry weights and Pi contents of plants (shoots and roots) grown in natural low-Pi (-0.5 ppm P, -15 µM P) soil amended to 400, 100 and 44 ppm NaH$_2$PO$_4$ were evaluated after 120 days of growth under greenhouse conditions. Values are means ± s.d., n=8 plants per line per experiment. — plants did not set fruit. * PO.05, ** P<0.01.

EXAMPLE 18

Over-expression of Arabidopsis AVPID results in enhanced Pi nutrition in rice

Materials and Methods

Rice growing conditions. Rice control Oryza sativa vai.japonica 'Taipei 309' and AVPID overexpressing plants (see 'Rice transformation') were grown in sand under normal and low-Pi conditions. Rice seeds were surface sterilized and germinated in agar plates containing medium supplemented with either 1 mM or 10 µM Pi, as described above (Estelle and Somerville, 1987; Hartel et al., 2000). Ten-day-old seedlings were then transferred to pots with sand. These pots were placed in a plastic tray filled with 2 L of rice Pi-free liquid medium (modified from Yoshida et
supplemented with either 1 mM or 10 µM Pi. Rice Pi-free liquid medium contains 1.43 mM NH₄NO₃, 0.51 mM K₂SO₄, 1 mM CaCl₂, 1.64 mM MgSO₄·7H₂O, 9.5 µM MnCl₂·4H₂O, 0.048 µM (NH₄)₆Mo₇O₂₄·4H₂O, 19 µM H₃BO₃, 0.15 µM ZnSO₄·7H₂O, 0.155 µM CuSO₄·5H₂O, 35.6 µM FeCl₃·0H₂O, 71 µM citric acid monohydrate and 1.1 mM sulphuric acid, pH 5.0. The Pi concentration was adjusted with KH₂PO₄. Plants grown under Pi-sufficient conditions were watered with 1 mM Pi medium, and plants grown under Pi-deficient conditions were watered with rice Pi-free medium, every 2 weeks. Plants were incubated in growth chambers with a 16-h light/8-h dark cycle at 25 °C.

Hydroponic conditions. Rice plants were germinated and grown on agar plates supplemented with half-strength MS medium for 10 days, transferred into pots with sand and watered with one-eighth-strength MS medium. After 15 days of growth in sand, plants were transferred to the hydroponic system (General Hydroponics, Sebastopol, CA, USA). The nutrients added were from General Hydroponics following their directions for 'general purpose' growth conditions. The medium was supplemented once with 10 mL of Iron Max Ac 6% (15-0-0) (Growth Products, White Plains NY, USA) per 120 L of hydroponic medium solution.

Rice transformation. To generate AVPIDOX rice plants, seeds from O. sativa var. japonica 'Taipei 309' were surface sterilized and germinated on LS 2.5 medium [MS medium supplemented with 2.5 mg/L 2,4- dichlorophenoxyacetic acid (2,4-D), 2 g/L casein hydrolysate and 3% sucrose, solidified with 7 g/L agar] (Abdullah et al., 1986) to initiate calli. After 2 weeks of incubation in the dark at 25 °C, scutella were isolated from the starchy endosperm, transferred to fresh LS 2.5 medium and returned to the dark. Calli that formed yellowish, globular clusters were proliferated on the same medium to be used for microprojectile bombardment experiments on a Particle Delivery System (Model PDS-1000/He Biolistic, Bio-Rad Laboratories).

DNA of the following plasmids [pDM302 (Cao et al., 1992) + pRG389 = pRT103 (Topfer et al., 1987) with AVPID cDNA (Zhen, Kim and Rea, 1997)] was precipitated onto 1-µm gold particles, as described previously (Kausch et al., 1995). The DNA-coated particles were pelleted by centrifugation at 500 rpm for 5 min, washed with 100% ethanol and resuspended in a final volume of 55 µL of 100%
ethanol (anhydrous). The suspension was sonicated for 10 s immediately before dispensing. Ten microlitres of the DNA suspension were aliquoted onto each macrocarrier and allowed to air dry. The bombardment parameters were as follows: 7584-kPa rupture discs (Bio-Rad); rupture disc to macrocarrier gap distance, 5 mm; macrocarrier fly distance, 10 mm; stopping screen to target distance, 5 cm; partial vacuum, 94.82 kPa.

Three-week-old rice scutella bombarded with pDM302 + pRG389, or pDM302, were transferred to LS 2.5 medium supplemented with 3 mg/L glufosinate at 3 days post-bombardment, and incubated in the dark at 25 °C. Calli were subcultured to fresh LS 2.5 medium supplemented with 3 mg/L glufosinate at 4-week intervals and incubation was continued as described. Glufosinate-resistant calli were transferred to rice shoot regeneration medium (4.4 g/L MS salts, 2.0 mg/L 6-benzylaminopurine, 30 g/L sucrose, 7 g/L TC agar), and regenerated shoots were transferred to full-strength MS medium with 2% sucrose and 0.7% agar. Positive candidates were confirmed by Southern blot analysis.

Western blot analysis. Western blot analysis was done as described in Example 5. For rice plants, seeds of control and T2 OsAVP IDOX plants were germinated in half-strength MS medium. Microsomal fractions were isolated from 10-day-old seedlings, as described elsewhere (Schumaker and Sze, 1985).

Membranes were incubated for 1.5 h with the 2E7 monoclonal antibody against V-ATPase (Ward et al., 1992).

Results and Discussion

Rice (Oryza sativa) is the principal staple crop for more than one-half of the world's population. It has been estimated that the world's annual rice production must increase from 618 million tons in 2005 to 771 million tons by 2030 in order to keep pace with population growth. To determine whether increased H+-pyrophosphatase activity improves plant performance under Pi-deficient conditions in monocots, rice (O. sativa vai japonica 'Taipei 309') was engineered with a 3SS::AVP1D cassette. AVPI over-expression was confirmed by Western blot and relative density; vacuolar-type ATPase (V-ATPase) was not altered. The OsAVPIDOX line exhibited sustained shoot growth under Pi-deficient (10 µM) conditions, whereas the controls grew poorly. The OsAVPIDOX line tested
developed more robust root systems than controls in both Pi-sufficient and Pi-deficient conditions. The dry plant biomass data confirmed that the OsAVP iDOX line grown under limiting Pi conditions developed larger roots (90%, \(P < 0.01 \)) and shoots (50%, \(P = 0.01 \)) than controls (Table III). Therefore, AVPl over-expression in monocots and dicots results in enhanced root systems under low-Pi conditions. However, in contrast with the results of over-expression of AVPl in Arabidopsis and tomato, OsAVP iDOX rice seedlings grown under Pi-sufficient conditions accumulated 18% higher Pi content (mmol/g dry weight) than controls (Table III), suggesting a different mechanism between monocots and eudicots under Pi sufficiency.

EXAMPLE 19

Roots from AtAVPlOX, LeAVP iDOX and OsAVP IDOX lines have higher K+ contents and exude greater amounts of organic acids than controls

Materials and Methods

Aluminum treatments. For Arabidopsis plants, Arabidopsis plants were germinated in half-strength MS medium for 5 days, and then transferred to plates containing 40 \(\mu \text{M} \) AlPO3 as the only source of Pi; the medium pH was buffered to PH

TABLE III

Effect of Pi availability on growth and Pi content of OsAVP iDOX and control plants.
Seeds were germinated in plates with either 1 mM or 10 !M Pi for 10 days. Plants were transferred to sand with either 1 mM or 10 !M Pi for 25 days. Dry weights and Pi contents were evaluated. Values are means ± s.d., n=12 plants per line per experiment. * P< 0.05 and ** P< 0.01.

4.5 with 1 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES).

For tomato plants, tomato plants were germinated in half-strength MS medium for 10 days, and then transferred to sand supplemented with 20 µM AlPO₃ as the only source of Pi; the pH was buffered to pH 5.0 with 1 mM HEPES. For rice plants, rice plants were germinated in half-strength MS medium for 10 days, transferred to pots with sand and flooded with Pi-free medium + 10 µM AlPO₃ as the only source of Pi. The pH of the medium was buffered to pH 5.0 with 1 mM HEPES.

Quantification of organic acids. The determination of organic acids was performed as described previously (Murphy et al., 1999). Plants were grown axenically in one-fifth Hoaglands medium, pH 4.85 with a 16-h day (140 µE/m/s light). Rice and tomato plants were grown at 23 °C and Arabidopsis seedlings were grown at 20 °C. For assays of tomato and rice plants, 20-day-old seedlings were used. Seedlings were transferred to treatment medium (control, 10 µM Pi and 10 µM Pi + 20 µM Al) for 12 h. Roots were washed once in a sterile hood for 5 min with distilled water, followed by washing with the medium to which they were to be transferred. Twenty seedlings were measured for each experiment. The experiments

<table>
<thead>
<tr>
<th>Genotype & conditions</th>
<th>Root DW (g)</th>
<th>Shoot DW (g)</th>
<th>Root:shoot</th>
<th>Total P content (mg/plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM P Control</td>
<td>0.059±0.008</td>
<td>0.162±0.017</td>
<td>0.366±0.042</td>
<td>0.72±0.09</td>
</tr>
<tr>
<td>OsAVP1D-2 10 µM P Control</td>
<td>0.033±0.009 0.063±0.012</td>
<td>0.083±0.021 0.124±0.017</td>
<td>0.389±0.023 0.509±0.079</td>
<td>0.051±0.009 0.089±0.019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype & conditions</th>
<th>Total P content (mmol/g DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM P Control</td>
<td>0.105±0.01</td>
</tr>
<tr>
<td>OsAVP1D-2 10 µM P Control</td>
<td>0.128±0.01</td>
</tr>
<tr>
<td></td>
<td>0.014±0.002</td>
</tr>
<tr>
<td></td>
<td>0.015±0.003</td>
</tr>
</tbody>
</table>
were repeated three times. The organic acid content was normalized to the fresh weight, and then expressed as a percentage of control levels with the percentage sum standard deviations.

K⁺ content determination. Plants were treated in the same way as in the organic acid exudation experiment. Root K⁺ contents were quantified using flame atomic absorption spectroscopy, as described by Murphy et al. (1999), and confirmed by inductively coupled plasma mass spectroscopy.

Results and Discussion

Pi deficiency is often a problem in tropical soils in which marginal aluminium toxicity limits agricultural production (Kochian et al., 2004). In such soils, although AVPI-dependent rhizosphere acidification can enhance Pi efficiency, it may also be expected to enhance aluminium mobilization and toxicity. Surprisingly, this is not the case. The growth of AtAVPIOX, LeAVPIDOX and OsAVPIDOX was assayed in medium in which AlPO₄ functioned as the only source of Pi. AVPI over-expression did not result in increased sensitivity to AlPO₄. Only AtAVPI-I exhibited aluminium sensitivity similar to controls. LeAVPIDOX, OsAVPIDOX and, to a lesser extent, AtAVP1-2 exhibited greater tolerance to aluminium compared with controls.

Enhanced AVPI-dependent H⁺ extrusion appears to be charge balanced, as demonstrated by enhanced K⁺ retention and organic acid extrusion from roots, similar to that seen in copper-challenged Arabidopsis roots (Murphy et al., 1999). Under all conditions tested, root K⁺ contents were significantly higher (P < 0.05), and approximately twice those of controls, in all AVPIOX crops. Furthermore, quantification of root organic acid exudates (citrate and malate) in AVPIOX plants grown under AlPO₄ stress showed higher levels of organic acid exudation in LeAVPIDOX and OsAVPIDOX than in controls. Organic acid extrusion has been correlated with enhanced resistance to aluminium toxicity (reviewed in Kochian et al., 2004), suggesting that the enhanced rhizosphere acidification triggered by AVPI over-expression would not result in increased aluminium toxicity in marginal tropical soils.
Biomass and seed yields are enhanced in both *Arabidopsis* and rice plants when grown under nutrient-sufficient conditions.

The over-expression of *AVPl* in *Arabidopsis* results in plants with significantly larger root and shoot biomasses when grown under nutrient-sufficient conditions (Li *et al.*, 2005). Hydroponically grown *OsAVPIdox* plants also developed twofold larger shoots and roots, and twofold more tillers and panicles (inflorescences), than control plants (Table IV). Furthermore, *AVPl* over-expression in rice resulted in a 50% increased seed yield (Table IV). We did not observe similar increases in fruit production in *LeAVPlDox* plants grown under nutrient-sufficient conditions (Table II). The differences in crop performance could be a result of the different shoot branching patterns displayed by tomato and rice (reviewed in McSteen and Leyser, 2005). It should be noted that ionic analysis of rice grains of plants grown under nutrient sufficiency showed that phosphorus, iron and zinc contents were enhanced in *OsAVPIdox* plants (FIG. 7A-C).

Table IV

<table>
<thead>
<tr>
<th>Line</th>
<th>Dry weight</th>
<th>Numbers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total seeds</td>
<td>Shoots</td>
<td>Roots</td>
</tr>
<tr>
<td>WT</td>
<td>38.5 ± 8.2</td>
<td>117 ± 22</td>
<td>34.2 ± 9.0</td>
</tr>
<tr>
<td>OsAVPIdox-1</td>
<td>61.1 ± 6.4*</td>
<td>213 ± 27**</td>
<td>70.6 ± 9.6**</td>
</tr>
</tbody>
</table>

* Plants were germinated and grown in agar plates supplemented with 1/8 strength MS medium for 10 days, then transferred into pots with sand and watered with 1/8 strength MS medium. After 15 days of growth in sand, plants were transferred to the flood and drain system (General Hydroponics, Sebastopol, CA). After 180 days of growth seed, shoot and root dry weights were determined. Tiller numbers were counted. Values are means ± s.d., n=6, for seed dry weight: n=3. * P< 0.05, ** P< 0.01.

While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
LIST OF NON-PATENT REFERENCES CITED

Li, J., Yang, H., Peer, W.A., Richter, G., Blakeslee, J.J., Bandyopadhyay, A.,

Lopez-Bucio, J., Hernandez-Abreu, E., Sanchez-Calderon, L., Nieto- Jacobo, M.F.,

Shen, H., Chen, J., Wang, Z., Yang, C , Sasaki, T., Yamamoto, Y., Matsumoto, H.
and Yan, X. (2006) Root plasma membrane H+-ATPase is involved in the adaptation
of plant expression vectors for transcriptional and translational fusions. Nucleic
Acids Res. 15, 5890.
critical adaptations by plants for securing a nonrenewable resource. New Phytologist,
157, 423-447.
Xiang, C., Han, P., Lutziger, I., Wang, K. and Oliver, D.J. (1999) A mini binary
pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin
for Physiological Studies of Rice, 3rd edn. Manila: The International Rice Research
Institute.
Zhen, R. G., et al, "The Molecular and Biochemical Basis of Pyrophosphate-
Energized Proton Translocation at the Vacuolar Membrane," Academic Press

CLAIMS

What is claimed is:

1. A transgenic plant, comprising one or more transgenic plant cells comprising an exogenous nucleic acid that causes overexpression of a plant vacuolar pyrophosphatase in the one or more transgenic plant cells, wherein the exogenous nucleic acid comprises a nucleic acid sequence encoding the plant vacuolar pyrophosphatase, and the transgenic plant has one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species, said enhanced phenotypic traits selected from the group consisting of increased tolerance to one or more salts, increased yield, larger plant size and increased Pi uptake under Pi-sufficient growth conditions.

2. The transgenic plant of Claim 1, wherein the transgenic plant is selected from the group consisting of tomato, rice, tobacco, sorghum, cucumber, lettuce, turf grass, Arabidopsis and corn.

3. The transgenic plant of Claim 1, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of the same species as the transgenic plant.

4. The transgenic plant of Claim 1, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of a species different from the transgenic plant.

5. The transgenic plant of Claim 1, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn.

6. The transgenic plant of Claim 1, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase.
7. The transgenic plant of Claim 6, wherein the regulatory element is selected from the group consisting of tissue-specific promoters, constitutive promoters, inducible promoters and promoters that are both tissue-specific and inducible.

8. The transgenic plant of Claim 7, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is operably linked to a double tandem enhancer of a 35S CaMV promoter.

9. The transgenic plant of Claim 1, wherein the plant vacuolar pyrophosphatase is AVPI or a homolog thereof.

10. Transgenic progeny of the transgenic plant of Claim 1, wherein the transgenic progeny comprises the exogenous nucleic acid of Claim 1.

11. Transgenic seeds produced by the transgenic plant of Claim 1, wherein the transgenic seeds comprise the exogenous nucleic acid of Claim 1.

12. Transgenic progeny grown from the transgenic seeds of Claim 11.

13. The transgenic plant of Claim 1, wherein the one or more salts are selected from the group consisting of NaCl, KCl and CaCl₂.

14. The transgenic plant of Claim 1, wherein the one or more salts have a concentration of about 0.2M to about 0.3M in water.

15. A transgenic plant, comprising one or more transgenic plant cells comprising an exogenous nucleic acid that causes overexpression of a plant vacuolar pyrophosphatase in the one or more transgenic plant cells, wherein the exogenous nucleic acid comprises a nucleic acid sequence encoding the plant vacuolar pyrophosphatase, and the transgenic plant has one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species under Pi-deficient growth conditions, said enhanced phenotypic traits selected from the group consisting of increased root structure, increased root and shoot biomass, increased yield, increased biomass,
delayed curtail of cell proliferation, increased Pi uptake, increased rhizosphere acidification, resistance to Al toxicity, increased organic acid exudates from root under Al stress, and increased root K⁺ contents with or without Al stress.

16. The transgenic plant of Claim 15, wherein the transgenic plant is selected from the group consisting of tomato, rice, tobacco, sorghum, cucumber, lettuce, turf grass, Arabidopsis and corn.

17. The transgenic plant of Claim 15, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of the same species as the transgenic plant.

18. The transgenic plant of Claim 15, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of a species different from the transgenic plant.

19. The transgenic plant of Claim 15, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn.

20. The transgenic plant of Claim 15, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase.

21. The transgenic plant of Claim 20, wherein the regulatory element is selected from the group consisting of tissue-specific promoters, constitutive promoters, inducible promoters and promoters that are both tissue-specific and inducible.

22. The transgenic plant of Claim 21, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is operably linked to a double tandem enhancer of a 35S CaMV promoter.
23. The transgenic plant of Claim 15, wherein the plant vacuolar pyrophosphatase is AVPl or a homolog thereof.

24. Transgenic progeny of the transgenic plant of Claim 15, wherein the transgenic progeny comprises the exogenous nucleic acid of Claim 15.

25. Transgenic seeds produced by the transgenic plant of Claim 15, wherein the transgenic seeds comprise the exogenous nucleic acid of Claim 15.

26. Transgenic progeny grown from the transgenic seeds of Claim 25.

27. A method of making a transgenic plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species, wherein the enhanced phenotypic traits are selected from the group consisting of increased tolerance to one or more salts, increased yield, larger plant size and increased Pi uptake under Pi-sufficient growth conditions, said method comprising:

 a) introducing an exogenous nucleic acid comprising a nucleic acid sequence encoding a plant vacuolar pyrophosphatase into one or more cells of a plant to generate transformed cells;

 b) regenerating transgenic plants from the transformed cells;

 c) selecting a transgenic plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species, wherein the enhanced phenotypic traits are selected from the group consisting of increased tolerance to one or more salts, increased yield, larger plant size and increased Pi uptake under Pi-sufficient growth conditions, thereby producing the transgenic plant.

28. The method of Claim 27, wherein the transgenic plant is selected from the group consisting of tomato, rice, tobacco, sorghum, cucumber, lettuce, turf grass, *Arabidopsis* and corn.
29. The method of Claim 27, wherein the one or more cells of a plant are obtained from a tissue selected from the group consisting of roots, stems, leaves, flowers, fruits and seeds.

30. The method of Claim 27, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of the same species as the transgenic plant.

31. The method of Claim 27, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of a species different from the transgenic plant.

32. The method of Claim 27, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn.

33. The method of Claim 27, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase.

34. The method of Claim 33, wherein the regulatory element is selected from the group consisting of tissue-specific promoters, constitutive promoters, inducible promoters and promoters that are both tissue-specific and inducible.

35. The method of Claim 34, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is operably linked to a double tandem enhancer of a 35S CaMV promoter.

36. The method of Claim 27, wherein the plant vacuolar pyrophosphatase is AVPI or a homolog thereof.

37. The method of Claim 27, wherein the one or more salts are selected from the group consisting of NaCl, KCl and CaCl₂.
38. The method of Claim 27, wherein the one or more salts have a concentration of about 0.2M to about 0.3M in water.

39. A method of making a transgenic plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species under Pi-deficient growth conditions, and the enhanced phenotypic traits are selected from the group consisting of increased root structure, increased root and shoot biomass, increased yield, increased biomass, delayed curtail of cell proliferation, increased Pi uptake, increased rhizosphere acidification, resistance to Al toxicity, increased organic acid exudates from root under Al stress, and increased root K+ contents with or without Al stress, said method comprising:

a) introducing an exogenous nucleic acid comprising a nucleic acid sequence encoding a plant vacuolar pyrophosphatase into one or more cells of a plant to generate transformed cells;

b) regenerating transgenic plants from the transformed cells;

c) selecting a transgenic plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species under Pi-deficient growth conditions, and the enhanced phenotypic traits are selected from the group consisting of increased root structure, increased root and shoot biomass, increased yield, increased biomass, delayed curtail of cell proliferation, increased Pi uptake, increased rhizosphere acidification, resistance to Al toxicity, increased organic acid exudates from root under Al stress, and increased root K+ contents with or without Al stress, thereby producing the transgenic plant.

40. The method of Claim 39, wherein the transgenic plant is selected from the group consisting of tomato, rice, tobacco, sorghum, cucumber, lettuce, turf grass, *Arabidopsis* and corn.
41. The method of Claim 39, wherein the one or more cells of a plant are obtained from a tissue selected from the group consisting of roots, stems, leaves, flowers, fruits and seeds.

42. The method of Claim 39, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of the same species as the transgenic plant.

43. The method of Claim 39, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of a species different from the transgenic plant.

44. The method of Claim 39, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn.

45. The method of Claim 39, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase.

46. The method of Claim 45, wherein the regulatory element is selected from the group consisting of tissue-specific promoters, constitutive promoters, inducible promoters and promoters that are both tissue-specific and inducible.

47. The method of Claim 46, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is operably linked to a double tandem enhancer of a 35S CaMV promoter.

48. The method of Claim 39, wherein the plant vacuolar pyrophosphatase is AVPl or a homolog thereof.

49. A transgenic rice plant, comprising one or more transgenic rice plant cells comprising an exogenous nucleic acid that causes overexpression of a plant vacuolar pyrophosphatase in the one or more transgenic rice plant cells,
wherein the exogenous nucleic acid comprises a nucleic acid sequence encoding the plant vacuolar pyrophosphatase, and the transgenic rice plant has one or more enhanced phenotypic traits relative to non-transgenic wild-type rice plants, said enhanced phenotypic traits selected from the group consisting of more tillers, more panicles and increased P, Fe and Zn contents.

50. The transgenic rice plant of Claim 49, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of the same species as the transgenic plant.

51. The transgenic rice plant of Claim 49, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of a species different from the transgenic plant.

52. The transgenic rice plant of Claim 49, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is obtained from a plant selected from the group consisting of Arabidopsis, tobacco, tomato and corn.

53. The transgenic rice plant of Claim 49, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase.

54. The transgenic rice plant of Claim 53, wherein the regulatory element is selected from the group consisting of tissue-specific promoters, constitutive promoters, inducible promoters and promoters that are both tissue-specific and inducible.

55. The transgenic rice plant of Claim 54, wherein the nucleic acid sequence encoding the plant vacuolar pyrophosphatase is operably linked to a double tandem enhancer of a 35S CaMV promoter.

56. The transgenic rice plant of Claim 49, wherein the plant vacuolar pyrophosphatase is AVPl or a homolog thereof.
57. Transgenic progeny of the transgenic rice plant of Claim 49, wherein the transgenic progeny comprises the exogenous nucleic acid of Claim 49.

58. Transgenic seeds produced by the transgenic rice plant of Claim 49, wherein the transgenic seeds comprise the exogenous nucleic acid of Claim 49.

59. Transgenic progeny grown from the transgenic seeds of Claim 58.

60. A method of making a transgenic rice plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type rice plants, wherein the enhanced phenotypic traits are selected from the group consisting of more tillers, more panicles and increased P, Fe and Zn contents, said method comprising:

 a) introducing an exogenous nucleic acid comprising a nucleic acid sequence encoding a plant vacuolar pyrophosphatase into one or more cells of a rice plant to generate transformed cells;

 b) regenerating transgenic plants from the transformed cells;

 c) selecting a transgenic rice plant with one or more enhanced phenotypic traits relative to non-transgenic wild-type plants of the same species, wherein the enhanced phenotypic traits are selected from the group consisting of more tillers, more panicles and increased P, Fe and Zn contents, thereby producing the transgenic rice plant.

61. The method of Claim 60, wherein the one or more cells of a rice plant are obtained from a tissue selected from the group consisting of roots, stems, leaves, flowers, fruits and seeds.

62. The method of Claim 60, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of the same species as the transgenic plant.
63. The method of Claim 60, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is from a non-transgenic wild-type plant of a species different from the transgenic plant.

64. The method of Claim 60, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is obtained from a plant selected from the group consisting of *Arabidopsis*, tobacco, tomato and corn.

65. The method of Claim 60, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is operably linked to at least one regulatory element that results in overexpression of the plant vacuolar pyrophosphatase.

66. The method of Claim 65, wherein the regulatory element is selected from the group consisting of tissue-specific promoters, constitutive promoters, inducible promoters and promoters that are both tissue-specific and inducible.

67. The method of Claim 66, wherein the nucleic acid sequence encoding a plant vacuolar pyrophosphatase is operably linked to a double tandem enhancer of a 35S CaMV promoter.

68. The method of Claim 60, wherein the plant vacuolar pyrophosphatase is AVPl or a homolog thereof.
FIGURE 3A

FIGURE 3B
Pi deficiency

Increased H^+-ATPase expression

Increased AVP1 expression

Increased H^+-ATPase activity

Apoplastic acidification

FIGURE 5
FIGURE 6
FIGURE 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C12Nl 5/82

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELOS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, FSTA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Claims 11, 35-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Page 6 lines 18-21</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>47, 55, 67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. **X** See patent family annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

13 October 2008

Date of mailing of the international search report

30/10/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HN Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Obel, Nicolai

Abstract

Page 11444 col 2 lines 8-11
Page 11448 col 1 lines 20-23

URL: [http://abstracts.aspbo.org/pb2007/publi c/P09/P09019.html](http://abstracts.aspbo.org/pb2007/public/P09/P09019.html) [retrieved on 2008-10-07] the whole document

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate of the relevant passages</td>
<td>Relevant to claim No</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>A</td>
<td>BRINI F ET AL: "Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump" PLANT PHYSIOLOGY AND BIOCHEMISTRY, GAUTHIER-VILLARS, PARIS, FR, vol. 43, no. 4, 1 April 2005 (2005-04-01), pages 347-354, XP004903758 ISSN: 0981-9428 AVP1 NHX1 the whole document -----</td>
<td>1-68</td>
</tr>
<tr>
<td>A</td>
<td>GAXIOLA R A ET AL: "The Arabidopsis thaliana proton transporters, AtNhxl and Avp1, can function in cation detoxification in yeast" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, DC; US, vol. 96, no. 4, 16 February 1999 (1999-02-16), pages 1480-1485, XP002117185 ISSN: 0027-8424 the whole document -----</td>
<td>1-68</td>
</tr>
</tbody>
</table>
1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed invention, the international search was carried out on the basis of:
 a. type of material
 - [X] a sequence listing
 - [] table(s) related to the sequence listing
 b. format of material
 - [X] on paper
 - [X] in electronic form
 c. time of filing/furnishing
 - [X] contained in the international application as filed
 - [X] filed together with the international application in electronic form
 - [] furnished subsequently to this Authority for the purpose of search

2. In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo 02072849 A</td>
<td>19-09-2002</td>
<td>AT 408018 T</td>
<td>15-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002252984 AI</td>
<td>24-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1364036 A2</td>
<td>26-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03006065 A</td>
<td>10-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004093645 AI</td>
<td>13-05-2004</td>
</tr>
<tr>
<td>wo 2007049275 A</td>
<td>03-05-2007</td>
<td>AU 2006307457 AI</td>
<td>03-05-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2626592 AI</td>
<td>03-05-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1940217 A2</td>
<td>09-07-2008</td>
</tr>
<tr>
<td>wo 2007053974 A</td>
<td>18-05-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 324780 T</td>
<td>15-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2734001 A</td>
<td>03-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2734101 A</td>
<td>03-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2912301 A</td>
<td>03-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2913601 A</td>
<td>03-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60027772 T2</td>
<td>02-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60034069 T2</td>
<td>06-12-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1251731 A2</td>
<td>30-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1280397 A2</td>
<td>05-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1280398 A2</td>
<td>05-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1244349 A2</td>
<td>02-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2279777 T3</td>
<td>01-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2258489 T3</td>
<td>01-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 0145492 A2</td>
<td>28-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 0145493 A2</td>
<td>28-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 0145495 A2</td>
<td>28-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004111768 AI</td>
<td>10-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004055032 AI</td>
<td>18-03-2004</td>
</tr>
</tbody>
</table>