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(57) Abstract: Methods and devices for integrating a plurality of data
types are provided. The methods include obtaining, via a processor, a plu-
rality of datasets of a given type including measurements of one or more
quantitative variables related to a phenotype comparison, and a plurality
of datasets of a different type including measurements of one or more
quantitative variables related to the same phenotype comparison; calcu-
lating, via the processor, effect sizes of the variables of the first type, ef-
fect sizes of the variables of the second type, and global p-values for the
first and second data types; and combining, via the processor, the effect
sizes and/or the global p-values to identify the variables of either type that
are relevant in the given phenotype comparison.
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ORTHOGONAL APPROACH TO INTEGRATE INDEPENDENT OMIC DATA

GOVERNMENT RIGHTS
[0001] This invention was made with U.S. Government support under NIH R01
DK089167, R42 GM087013 and NSF DBI-0965741. The Government has certain

rights in the invention.

CROSS-REFERENCE TO RELATED APPLICATIONS
[0002] This application claims the benefit of U.S. Provisional Application No.
62/333,407, filed on May 9, 2016. The entire disclosure of the above application is
incorporated herein by reference.

FIELD
[0003] The present disclosure relates to two-dimensional data integration that

combines data obtained from many independent experiments.

BACKGROUND

[0004] This section provides background information related to the present
disclosure which is not necessarily prior art.

[0005] High-throughput technologies for gene expression profiling, such as DNA
microarray or RNA-Seq, have transformed biomedical research by allowing for
comprehensive monitoring of biological processes. A typical comparative analysis of
expression data, e.g., patients (“unhealthy condition,” ie., disease) versus control
samples (“healthy condition”), generally yields a set of genes that are differentially
expressed (DE) between the conditions. These sets of DE genes contain the genes that
are likely to be involved in the biological processes responsible for the disease.
However, such sets of genes are often insufficient to reveal the underlying biological
mechanisms. In addition, due to inherent bias and baich effects present in individual
studies, independent experiments studying the same disease often yield completely
different lists of DE genes, making interpretation extremely difficult.

[0006] In order to translate these lists of DE genes into a better understanding of
biological phenomena, a variety of knowledge bases have been developed that map
genes to functional modules. Depending on the amount of information that one wishes
to include, these modules can be described as simple gene sets based on a function,
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process or component (e.g., the Molecular Signatures Database MSigDB), organized in
a hierarchical structure that contains information about the relationship between the
various modules or organized into pathways that describe in detail all known
interactions between various genes that are involved in a certain phenomenon.
Exemplary pathway databases include: the Kyoto Encyclopedia of Genes and
Genomes (KEGG), Reactome, and Biocarta.

[0007] Analysis techniques have been developed to help interpret such sets of
DE genes. The earliest approaches use Over-Representation Analysis (ORA) to identify
gene sets that have more DE genes than expected by chance. The drawbacks of this
type of approach include that: (i) it only considers the number of DE genes and
completely ignores expression changes; (ii) it assumes that genes are independent,
which they are not; and (iii) it ignores the interactions between various modules.
Functional Class Scoring (FCS) approaches, such as Gene Set Enrichment Analysis
(GSEA) and Gene Set Analysis (GSA), have been developed to address some of the
issues raised by ORA approaches. The main improvement of FCS is the observation
that small but coordinated changes in expression of functionally related genes can have
significant impacts on pathways. Both FCS and ORA approaches can be used with
gene sets, ontologies, or pathways. However, these approaches do not account for the
hierarchical structure of pathways or interactions between genes. Topology-based
approaches, which fully exploit all the knowledge about how genes interact as
described by pathways, have been developed more recently. The first such techniques
were ScorePAGE for metabolic pathways and the Impact Analysis for signaling
pathways.

[0008] Non-coding RNAs, especially microRNAs (miRNAs) have come into the
spotlight more recently. Data describing observed and predicted interactions between
miRNA and mRNA is accumulating rapidly in several databases, such as, for example,
miRTarBase, miRWalk, starBase, and TargetScan. In addition, miRNA expression
platforms, datasets and analysis tools have become more and more prevalent.

[0009] Two of the most widely used approaches to include miRNA expression
data for the purpose of pathway analysis are Micrographite and PARADIGM.
Micrographite is a topology-aware pathway analysis approach that is able to integrate
sample-matched miRNA and mRNA expression. PARADIGM uses a probabilistic
graphical model (PGM) to integrate information of different data types, which may
include mMRNA and miRNA.
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[0010] One drawback of these tools for integrating miRNA and mRNA is that they
need sample-matched data. In other words, these tools require both data types to be
available for each individual patient. This requirement reduces their practical availability
because sample-matched data is relatively rare and difficult or expensive to obtain.
Therefore, the vast amount of available expression data, both mRNA and miRNA, is not
fully utilized.

[0011] Another drawback is that these methods are unable to exploit
heterogeneous information available across independent studies. Therefore, they are
not able to address the inevitable bias inherent in individual studies. It would be
tremendously beneficial if all datasets associated with a given condition could be
analyzed together because of the increased power expected to be associated with the
much larger number of measurements in the combined dataset. Large public
repositories such as Gene Expression Omnibus, The Cancer Genome Atlas
(cancergenome.nih.gov), ArrayExpress, and Therapeutically Applicable Research to
Generate Effective Treatments (ocg.cancer.gov/programs/target) store thousands of
datasets, within which there are independent experimental series with similar patient
cohorts and experiment design. Expression data, mRNA as well as miRNA, are
particularly prevalent in public databases, such that some disease conditions are
represented by half a dozen studies or more.

[0012] The process of combining sample-matched data of different types is
referred to as “vertical” integrative analysis, while that of combining multiple unmatched
studies using the same data type is referred as “horizontal” meta-analysis. Thus, the
vertical and horizontal analyses are considered “orthogonal’ classes of data integration.
For microarray data, one of the earliest horizontal approaches for combining multiple
microarray datasets included the use of Fisher's method. Since then, other
sophisticated approaches have been proposed for the integration of multiple gene
expression datasets, on both gene and pathway levels. The majority of these meta-
analysis approaches work by combining p-values obtained from individual gene
expression datasets. However, the approaches typically do not try to account for data
heterogeneity, attributed to batch effects, patient heterogeneity, and disease
complexity, responsible for expression changes across different sources. Accordingly,
there remains a need for a framework that is able to integrate unmatched miRNA and
MRNA data obtained from many independent laboratories.
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SUMMARY

[0013] This section provides a general summary of the disclosure, and is not a
comprehensive disclosure of its full scope or all of its features.

[0014] The current technology provides a method of integrating a plurality of data
types. The method includes obtaining, via a processor, a plurality of datasets of a given
type including measurements of one or more quantitative variables related to a
phenotype comparison, and a plurality of datasets of a different type including
measurements of one or more quantitative variables related to the same phenotype
comparison; calculating, via the processor, a first standardized mean difference (SMD),
a first standard error, and a first p-value for each of the variables and for each dataset
present in the plurality of datasets of the first type; calculating, via the processor, a
second SMD, a second standard error, and a second p-value for each of the variables
and for each data set present in the plurality of datasets of the second type; combining,
via the processor, all the effect sizes in each individual dataset to calculate an effect
size for each of the variables of the first data type, from the first SMD and the first
standard error; combining, via the processor, all p-values in each individual dataset to
calculate a global p-value for this first data type; combining, via the processor, all the
effect sizes in each individual dataset to calculate an effect size for each of the
variables of the second data type, from the second SMD and the second standard
error; combining, via the processor, all p-values in each individual dataset to calculate a
global p-value for the second data type; and combining, via the processor, the effect
sizes of the variables of the first type with the effect sizes of the variables of the second
type and/or combining the p-values of the variables of the first type with the p-values of
the variables of the second type to identify the variables of either type that are relevant
in the given phenotype comparison.

[0015] In various embodiments, there are more than two data types.

[0016] The current technology also provides a method of identifying a pathway
associated with a disease. The method includes obtaining, via a processor, a plurality
of first datasets describing a first quantitative variable related to the disease and a
plurality of second datasets describing a second quantitative variable related to the
disease, the plurality of first datasets and the plurality of second datasets being
provided from independent studies, wherein each of the plurality of first datasets and
each of the plurality of second datasets includes data regarding disease samples and

healthy control samples; modifying, via the processor, known pathways related to the
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disease with information provided in both the plurality of first datasets and the plurality
of second datasets to generate augmented pathways including a plurality of first nodes
associated with the first quantitative variable and a plurality of second nodes associated
with the second quantitative variable, wherein the first nodes and second nodes are
individually interconnected; calculating, via the processor, a first standardized mean
difference (SMD), a first standard error, and a first p-value for each of the plurality of
first datasets; calculating, via the processor, a second SMD, a second standard error,
and a second p-value for each of the plurality of second datasets; estimating, via the
processor, a first effect size from the first SMD and the first standard error; combining,
via the processor, the first p-values; estimating, via the processor, a second effect size
from the second SMD and the second standard error; combining, via the processor, the
second p-values; calculating, via the processor, a probability of obtaining at least an
observed relationship between the first and second quantitative variables associated
with the disease (Pnpe) and a p-value that depends on identities of first or second
quantitative variables that are differentially related and described by the pathway
(PperT) from the augmented pathways, the estimated first effect size, the combined first
p-values, the estimated second effect size, and the combined second p-values; and
combining, via the processor, Pype and Ppepr to generate a single p-value that
represents how likely a pathway is impacted under the effect of the disease.

[0017] In various embodiments, the estimating a first effect size and the
estimating a second effect size are performed by using a Restricted Maximum
Likelihood (REML) algorithm.

[0018] In various embodiments, the combining the first p-values and the
combining the second p-values is performed by add-CLT.

[0019] In various embodiments, the first quantitative variable and the second
quantitative variable individually include one of molecular data and clinical data.

[0020] In various embodiments, the molecular data describes assay results
related to at least one of mMRNA, miRNA, protein abundance, metabolite abundance,
and methylation; and the clinical data describes patient information related to at least
one of weight, blood pressure, blood metabolite level, blood sugar, heart rate, vision
score, and hearing score.

[0021] In various embodiments, the method further includes generating a
plurality of single p-values corresponding to a plurality of pathways and generating a
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graphical representation of the pathways ranked according to their corresponding single
p-values.

[0022] The current technology also provides an apparatus for identifying a
pathway associated with a disease. The apparatus includes a memory configured to
store one or more applications; a processor communicatively coupled to memory, the
processor, upon executing the one or more applications, is configured to: obtain a
plurality of first datasets describing a first quantitative variable related to the disease
and a plurality of second datasets describing a second quantitative variable related to
the disease, the plurality of first datasets and the plurality of second datasets being
provided from independent studies, wherein each of the plurality of first datasets and
each of the plurality of second datasets includes data regarding disease samples and
healthy control samples; modify known pathways related to the disease with information
provided in both the plurality of first datasets and the plurality of second datasets to
generate augmented pathways including a plurality of first nodes associated with the
first quantitative variable and a plurality of second nodes associated with the second
quantitative variable, wherein the first nodes and second nodes are individually
interconnected; calculate a first standardized mean difference (SMD), a first standard
error, and a first p-value for each of the plurality of first datasets; calculate a second
SMD, a second standard error, and a second p-value for each of the plurality of second
datasets; estimate a first effect size from the first SMD and the first standard error;
combine the first p-values; estimate a second effect size from the second SMD and the
second standard error combine the second p-values; calculate a probability of obtaining
at least an observed relationship between the first and second quantitative variables
associated with the disease (Pnpe) and a p-value that depends on identities of first or
second quantitative variables that are differentially related and described by the
pathway (Ppert) from the augmented pathways, the estimated first effect size, the
combined first p-values, the estimated second effect size, and the combined second p-
values; and combine Pnpe and Ppert to generate a single p-value that represents how
likely a pathway is impacted under the effect of the disease.

[0023] In various embodiments the processor is configured to estimate a first
effect size and estimate a second effect size using a Restricted Maximum Likelihood
(REML) algorithm.

[0024] In various embodiments the processor is configured to combine the first p-

values and to combine the second p-values by add-CLT.
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[0025] In various embodiments the first quantitative variable and the second
quantitative variable individually include one of molecular data and clinical data.

[0026] In various embodiments the molecular data describes assay results
related to at least one of mMRNA, miRNA, protein abundance, metabolite abundance,
and methylation; and the clinical data describes patient information related to at least
one of weight, blood pressure, blood metabolite level, blood sugar, heart rate, vision
score, and hearing score.

[0027] In various embodiments the processor is configured to generate a plurality
of single p-values corresponding to a plurality of pathways and generate a graphical
representation of the pathways ranked according to their corresponding single p-values.

[0028] In various embodiments, the processor is further configured to cause the
graphical representation to be displayed at a display.

[0029] Additionally, the current technology provides a distributed computing
system for identifying a pathway associated with a disease. The distributed computing
system includes a first server configured to store a plurality of first datasets; a second
server configured to store a plurality of second datasets, the second server different
from the first server; a third server communicatively coupled to the first server and the
second server via a distributed communication network, the third server including: a
memory configured to store one or more applications; processor communicatively
coupled to the memory, the processor, upon executing the one or more applications, is
configured to: obtain the plurality of first datasets describing a first quantitative variable
related to the disease and the plurality of second datasets describing a second
quantitative variable related to the disease, the plurality of first datasets and the plurality
of second datasets being provided from independent studies, wherein each of the
plurality of first datasets and each of the plurality of second datasets includes data
regarding disease samples and healthy control samples; modify known pathways
related to the disease with information provided in both the plurality of first datasets and
the plurality of second datasets to generate augmented pathways including a plurality of
first nodes associated with the first quantitative variable and a plurality of second nodes
associated with the second quantitative variable, wherein the first nodes and second
nodes are individually interconnected; calculate a first standardized mean difference
(SMD), a first standard error, and a first p-value for each of the plurality of first datasets;
calculate a second SMD, a second standard error, and a second p-value for each of the

plurality of second datasets; estimate a first effect size from the first SMD and the first
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standard error; combine the first p-values; estimate a second effect size from the
second SMD and the second standard error; combine the second p-values; calculate a
probability of obtaining at least an observed relationship between the first and second
quantitative variables associated with the disease (Pnpe) and a p-value that depends on
identities of first or second quantitative variables that are differentially related and
described by the pathway (Ppert) from the augmented pathways, the estimated first
effect size, the combined first p-values, the estimated second effect size, and the
combined second p-values; and combine Pnype and Ppert t0 generate a single p-value
that represents how likely a pathway is impacted under the effect of the disease.

[0030] In various embodiments, the processor is configured to estimate a first
effect size and estimate a second effect size using a Restricted Maximum Likelihood
(REML) algorithm.

[0031] In various embodiments, the processor is configured to combine the first
p-values and to combine the second p-values by add-CLT.

[0032] In various embodiments, the first quantitative variable and the second
quantitative variable individually include one of molecular data and clinical data.

[0033] In various embodiments, the molecular data describes assay resulis
related to at least one of mMRNA, miRNA, protein abundance, metabolite abundance,
and methylation; and the clinical data describes patient information related to at least
one of weight, blood pressure, blood metabolite level, blood sugar, heart rate, vision
score, and hearing score.

[0034] In various embodiments, the processor is configured to generate a
plurality of single p-values corresponding to a plurality of pathways and generate a
graphical representation of the pathways ranked according to their corresponding single
p-values.

[0035] In various embodiments, the distributed computing system further
includes a display, wherein the processor is further configured to cause display of the
graphical representation at the display.

[0036] Further areas of applicability will become apparent from the description
provided herein. The description and specific examples in this summary are intended
for purposes of illustration only and are not intended to limit the scope of the present

disclosure.
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DRAWINGS

[0037] The drawings described herein are for illustrative purposes only of
selected embodiments and not all possible implementations, and are not intended to
limit the scope of the present disclosure.

[0038] FIG. 1 is a simplified block diagram of an example distributed computing
system.

[0039] FIG. 2 is a functional block diagram of an example implementation of a
client device.

[0040] FIG. 3 is a functional block diagram of an example implementation of a
server.

[0041] FIG. 4 is a functional block diagram of an example database in
accordance with an example implementation of the present disclosure.

[0042] FIG. 5 shows a graphical representation of a framework according to
various aspects of the current technology. The input includes: (i) a pathway database
and a miRNA database including known targets (panel a), (i) multiple mRNA
expression datasets (panel b), and (iii) multiple miRNA expression datasets (panel c).
Each expression dataset includes two groups of samples, e.g., disease versus control.
The framework first augments the signaling pathways with miRNA molecules and their
interactions with coding mRNA genes (panel d). It then calculates the standardized
mean difference and its standard error in each expression dataset. The summary size
effect across multiple datasets for each data type are then estimated using the
REstricted Maximum Likelihood (REML) algorithm (panels e,f). Similarly, the p-value for
differential expression is calculated for each dataset and then combined using the
additive method (add-CLT). The augmented pathways, the combined p-values, and the
estimated size effects then serve as input for ImpactAnalysis, which is a topology-
aware pathway analysis method (panel g).

[0043] FIG. 6 shows a graphical representation of an augmented pathway
regarding colorectal cancer. The green rectangle nodes (light shaded rectangles) and
black arrows show the KEGG genes and their interactions while the blue nodes (dark
shaded rectangles) and bar-headed lines show the miRNAs and their interactions with
the genes, respectively. In each miRNA node added, the total number of miRNAs
(circles) that are known to target the gene, and the names of the miRNA (blue (dark
shaded) rectangles) that were actually measured in the 8 colorectal miRNA datasets,
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are shown. This is a subset of the total set of miRNAs known to target genes on this
pathway.

[0044] FIG. 7 shows a graphical representation of an augmented pathway
regarding pancreatic cancer. The green rectangle nodes (dark shaded rectanges) and
black arrows show the KEGG genes and their interactions while the blue nodes (dark
shaded rectangles) and bar-headed lines show the miRNAs and their interactions with
the genes. In each miRNA node added, the total number of miRNAs (circles) that are
known to target the gene, and the names of the miRNA (blue (dark shaded) rectangles)
that were actually measured in the 6 pancreatic miRNA datasets, are shown. This is a
subset of the total set of miRNAs known to target genes on this pathway.

[0045] FIG. 8 is a flow chart illustrating an example method for identifying a
pathway associated with a disease in accordance with an example embodiment of the
present disclosure.

[0046] Corresponding reference numerals indicate corresponding parts

throughout the several views of the drawings.

DETAILED DESCRIPTION

[0047] Example embodiments will now be described more fully with reference to
the accompanying drawings.

[0048] The current technology provides a framework that is able to integrate
unmatiched miBRNA and mRNA data obtained from many independent laboratories.
While validated in the context of pathway analysis, the framework can be modified to
adapt to other domains or applications. This framework is not meant to compete with
any existing approach, but to serve as a bridge between “horizontal” and “vertical” data
integration. Each building block or technique of the framework can be easily substituted
for by any other similar technique to suit the purpose of future analysis.

[0049] The framework is illustrated using 15 mMRNA and 14 miRNA datasets
related to two human diseases (also referred to as “conditions”), colorectal cancer and
pancreatic cancer. The datasets were generated by independent labs, for different sets
of patients. For both conditions, the framework is able to identify pathways relevant to
the phenotypes. Accuracy is obtained only by integrating the data in both directions
(horizontal and vertical). However, it is understood that the framework can be applied to

other diseases, conditions, or characteristics as well.
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[0050] The framework provides an orthogonal meta-analysis. Orthogonal classes
of integrative techniques can be further combined to unravel underlying mechanisms of
complex diseases. With vast databases of various data types being made available,
this framework is widely applicable because of its relaxed restrictions on the data being
integrated.

[0051] Below are simplistic examples of a distributed computing environment in
which the systems and methods of the present disclosure can be implemented.
Throughout the description, references to terms such as servers, client devices,
applications and so on are for illustrative purposes only. The terms server and client
device are to be understood broadly as representing computing devices with one or
more processors and memory configured to execute machine readable instructions.
The terms application and computer program are to be understood broadly as
representing machine readable instructions executable by the computing devices.

[0052] FIG. 1 shows a simplified example of an example computing system 100.
The computing system 100 includes a distributed communications system 110, one or
more client devices 120-1, 120-2, ..., and 120-M (collectively, client devices 120), and
one or more servers 130-1, 130-2, ..., and 130-M (collectively, servers 130). N and M
are integers greater than or equal to one. The distributed communications system 110
may include a local area network (LAN), a wide area network (WAN) such as the
Internet, or other type of network. For example, the servers 130 may be located at
different geographical locations. The client devices 120 and the servers 130
communicate with each other via the distributed communications system 110. The
client devices 120 and the servers 130 connect to the distributed communications
system 110 using wireless and/or wired connections.

[0053] The client devices 120 may include smartphones, personal digital
assistants (PDAs), laptop computers, personal computers (PCs), etc. The servers 130
may provide multiple services to the client devices 120. For example, the servers 130
may execute software applications developed by one or more vendors. The server 130
may host multiple databases that are relied on by the software applications in providing
services to users of the client devices 120.

[0054] FIG. 2 shows a simplified example of the client device 120-1. The client
device 120-1 may typically include a central processing unit (CPU) or processor 150,
one or more input devices 152 (e.g., a keypad, touchpad, mouse, touchscreen, etc.), a

11
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display subsystem 154 including a display 156, a network interface 158, memory 160,
and bulk storage 162.

[0055] The network interface 158 connects the client device 120-1 to the
distributed computing system 100 via the distributed communications system 110. For
example, the network interface 158 may include a wired interface (for example, an
Ethernet interface) and/or a wireless interface (for example, a Wi-Fi, Bluetooth, near
field communication (NFC), or other wireless interface). The memory 160 may include
volatile or nonvolatile memory, cache, or other type of memory. The bulk storage 162
may include flash memory, a magnetic hard disk drive (HDD), and other bulk storage
devices.

[0056] The processor 150 of the client device 120-1 executes an operating
system (OS) 164 and one or more client applications 166. The client applications 166
include an application that accesses the servers 130 via the distributed communications
system 110.

[0057] FIG. 3 shows a simplified example of the server 130-1. The server 130-1
typically includes one or more CPUs or processors 170, a network interface 178,
memory 180, and bulk storage 182. In some implementations, the server 130-1 may be
a general-purpose server and include one or more input devices 172 (e.g., a keypad,
touchpad, mouse, and so on) and a display subsystem 174 including a display 176.

[0058] The network interface 178 connects the server 130-1 to the distributed
communications system 110. For example, the network interface 178 may include a
wired interface (e.g., an Ethernet interface) and/or a wireless interface (e.g., a Wi-Fi,
Bluetooth, near field communication (NFC), or other wireless interface). The memory
180 may include volatile or nonvolatile memory, cache, or other type of memory. The
bulk storage 182 may include flash memory, one or more magnetic hard disk drives
(HDDs), or other bulk storage devices.

[0059] The processor 170 of the server 130-1 executes an operating system
(OS) 184 and one or more server applications 186, which may be housed in a virtual
machine hypervisor or containerized architecture. The bulk storage 182 may store one
or more databases 188 that store data structures used by the server applications 186 to
perform respective functions.

[0060] As shown in FIG. 4, the databases 188 store various data structures for
storing multiple datasets. For example, a first database 202 may store a first dataset

that describes a first quantitative variable related to the disease. A second database
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204 may store a second dataset that describes a second quantitative variable related to
the disease. While FIG. 4 illustrates a first database 202 and a second database 204,
the distributed computing system 100 can include any number of databases without
departing from the spirit of the disclosure. The databases 202, 204 store quantitative
variables that can include molecular data and/or clinical data. For example, the
molecular data can include assay results related to at least one of mMRNA, miRNA,
protein abundance, metabolite abundance, and methylation. The clinical data can
include patient information related to at least one of weight, blood pressure, blood
metabolite level, blood sugar, heart rate, vision score, and hearing scores. It is
understood that the databases 202, 204 includes a plurality of datasets of a given type
that include measurements of one or more quantitative variables related to a phenotype
comparison. Additionally, the databases 202, 204 include a plurality of datasets of a
different type that measurements of one or more quantitative variables related to the
same phenotype comparison. The datasets can represent data pertaining to financial,
health, business, social, geography, geology, and the like.

[0061] The server 130-1 receives and stores data to the corresponding data
structures. The data can be received from the client devices 120-1 through 120-M
and/or servers 130-2 through 130-N. The data can be provided by or obtained from
disparate entities. In an example embodiment, the computing system 100 employs an
edge computing architecture, a fog computing architecture, a centralized computing
architecture, and the like. Thus, due to the quantity of data within the respective
datasets 202, 204, data can be stored in databases 188 proximate to the server 130-1
allowing for resource pooling, latency reduction, and increased processing power.

[0062] As described herein, the processor 170 executes the one or more server
applications 186 to perform the functionality described herein. For example, in one or
more embodiments, the processor 170 accesses data within the various data structures
to perform the functionality described herein.

Summary

[0063] MicroRNAs (miRNAs) are small non-coding RNA molecules whose
primary function is to regulate the expression of gene products via hybridization to
mRNA transcripts, resulting in suppression of translation or mRNA degradation.
Although miRNAs have been implicated in complex diseases, including cancer, their
impact on distinct biological pathways and phenotypes is largely unknown. Current

integration approaches require sample-matched miRNA/mRNA datasets, resulting in
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limited applicability in practice. Because these approaches cannot integrate
heterogeneous information available across independent experiments, they neither
account for bias inherent in individual studies, nor do they benefit from increased
sample size. The current technology provides a novel framework able to integrate
miRNA and mRNA data (vertical data integration) available in independent studies
(horizontal meta-analysis) allowing for a comprehensive analysis of the given
phenotypes. To demonstrate the utility of the framework, a meta-analysis of pancreatic
and colorectal cancer, using 1,471 samples from 15 mRNA and 14 miRNA expression
datasets, is conducted. The current two-dimensional data integration approach greatly
increases the power of statistical analysis relative to conventional approaches and
correctly identifies pathways known to be implicated in the phenotypes. The framework
is general and can be used to integrate other types of data obtained from high-
throughput assays.
Methods

[0064] The classical pathway analysis begins by considering a comparison
between two conditions, e.g., disease versus healthy. Evidence for differential gene
expression can be provided by any technique such as fold change, t-statistic,
Kolmogorov-Smirnov statistic, or perturbation factor. These statistics are then
compared against a null distribution to determine how unlikely it is for the observed
differences between the two conditions to occur by chance, thereby producing a ranked
list of DE genes. After this hypothesis testing is done at the gene level, the next step is
hypothesis testing at the pathway level producing a ranked list of impacted pathways. In
summary, the input of a classical pathway analysis method includes: (i) a pathway
database, and (ii) a gene expression dataset. The output is a list of pathways ranked
according to their p-values.

[0065] Similarly, the input of the new approach includes: (i} a pathway database,
(i) a database of miRNA-mRNA interactions, (ii) multiple gene expression datasets,
and (iv) multiple miRNA expression datasets. Each dataset is obtained from an
independent study of the same disease. A framework that transforms the new problem
into the classical pathway analysis problem is now provided.

[0066] Fig. 5 illustrates a pipeline of the framework for the case of colorectal
cancer. Panel (a) represents biological knowledge obtained from databases: pathway
information (i.e., database 204) and miRNA targets (i.e., database 202). Panel (b)

shows a set of gene expression datasets obtained from independent studies coming
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from different laboratories. Seven datasets (GSE4107, GSE9348, GSE15781,
GSE21510, GSE23878, GSE41657, and GSE62322), related to the same disease,
colorectal cancer, are used for this example. Each dataset has two groups of samples:
disease (group D) and control/healthy (group C). Panel (c) represents a set of miRNA
expression datasets (GSE33125, GSE35834, GSE39814, GSE39833, GSE41655,
GSE49246, GSE54632, and GSE73487), also from colorectal cancer. Similar to gene
expression datasets, each miRNA dataset consists of disease and control samples.
The data provided in panels (a,b,c) serve as input for the framework.

[0067] Pathways in databases are typically described as graphs, where nodes
are genes and edges are interactions between genes. In a first step, existing pathways
are extended with additional interactions between miRNAs and mRNAs. Panel (d)
shows a part of the pathway Colorectal cancer, where blue (circular) nodes are genes
and red nodes (beginning with “mi”) are miRNAs. Arrow-headed lines represent
activation while bar-headed lines represent inhibition. For example, hsa-miR-483-5p is
known to suppress the expression of MAPKS and therefore an inhibition relationship is
added between the two nodes in the pathway. All pathways are extended to include the
known miRNA-mRNA interactions. Estimating expression changes of each node (gene,
miRNA) under the effects of the disease is then performed.

[0068] Panel (e) shows expression changes and p-values for one gene in the
MRNA data, across several datasets. Here, the MAPKS3 gene is used as an example. In
the forest plot shown in this panel, each horizontal line represents the expression
change in each study. The small black box in each line shows a standardized mean
difference (SMD) and the segment shows the confidence interval of SMD. Standardized
mean difference is used instead of raw difference because the independent studies
measure the expression in a variety of ways (different platforms, sample preparation,
etc.). The number on the right side of each line is the p-value of the test for differential
expression, using the modified t-test provided in the limma package.

[0069] As shown in Fig. 5, the SMD and p-value of a gene vary from study to
study. REstricted Maximum Likelihood (REML) algorithm is used to estimate the central
tendency of SMD. The add-CLT method is used to combine the independent p-values.
Likewise, estimated SMDs and p-values for miRNA datasets (panel f) are computed.

[0070] The augmented pathways, the combined p-value, together with the
estimated size effect then serve as input for classical pathway analysis. Here, Impact
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Analysis, which is a topology-aware pathway analysis method, is used to calculate a p-
value for each augmented pathway (panel g).

[0071] Standardized mean difference for each gene

[0072] As an example, a study composed of two independent groups is
considered, and it is desired to compare their means for a given gene. Here, x; and
x, represent the sample means for that gene in the two groups, n, and n, the number of
samples in each group, and S,...s the pooled standard deviation of the two groups. The
pooled standard deviation and the standardized mean difference (SMD) can be

estimated as follows.

(ny — 1)S7 + (n, — 1S3
ooled —

Sp ny+n, —2 (1)
XX
d= 1742 (2)
Spooled

[0073] The estimation of the standardized mean difference described in Equation
(2) may be called Cohen’s d. The variance of Cohen’s dis given as follows.

v, M +n, d?
¢ nn; 2(ny +ny)

(3)

[0074] In the above equation, the first term reflects uncertainty in the estimate of
the mean difference, and the second term reflects uncertainty in the estimate of Sjooes-
The standard error of dis the square root of V. Cohen’s @, which is based on sample
averages, tends to overestimate the population effect size for small samples.
nrepresents the degrees of freedom used to estimate S,pes, 1€, N=n,+n,—2. The

corrected effect size, or Hedges’ g, is computed as follows:

r(3)
- n./m-—1 S
7T ()
g=J]-d (5)

where I is a gamma function. Here, Hedge' g is used as the standardized mean
difference (SMD) between disease and control groups for each gene/miRNA.

[0075] Random-effects model and REML

[0076] A collection of mstudies is considered, where the effect size

estimates, yi,. . ., ¥» have been derived from a set of studies, each of them modeled as
in Equation (5). A fixed-effects model would assume that there is one true effect size

which underlies all of the studies in the analysis, such that all differences in observed
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effects are due to sampling error. However, this assumption is implausible because it
cannot account for heterogeneity between studies.

[0077] In contrast, the random-effects model allows for variability of the true
effect. For example, the effect size might be higher (or lower) in studies where the
participants are older, or have a healthier lifestyle compared to others. The random-
effects model assumes that each effect size estimate can be decomposed into two
variance components by a two-stage hierarchical process. The first variance represents
variability of the effect size across studies, and the second variance represents

sampling error within each study. The random-effects model may be:
yi =u+N(0,0%)+N(0,62) (6),
where p is the central tendency of the effect size, N(0,0°) represents the error term by
which the effect size in the i study differs from the central tendency y, and N(O,agzi )
represents the sampling error.
[0078] The derivation and formulation of the REstricted Maximum Likelihood

(REML) algorithm is known in the art. The log-likelihood function for Equation (6) is
given by Equation (7).

m m m 5
1 1 1 1 _
l(wo%y) = _Ez In(o? +02) — Elnz AN OGimw 7
i=1

0% +o0f 24u0°+0Z
11 i=1 i

i=1
[0079] The REML estimators of fand 82 are then computed by iteratively
maximizing the log-likelihood. In the current framework, i is calculated for each node
(mRNA and miRNA) of the extended pathways. The estimated overall effect size i and
the combined p-value of individual genes and miRNAs serve as input for Impact
Analysis.
[0080] Combining independent p-values

[0081] Here is a summary of some classical methods for combining independent
p-values. The additive method that is used to combine p-values for each mRNA and
miRNA molecule in the current framework is then described.

[0082] Fisher's method is the most widely used method for combining
independent p-values. Considering a set of mindependent significance tests, the
resulting p-values Py, P, . . ., P,are independent and uniformly distributed on the
interval [0, 1] under the null hypothesis. The random variables X;=-2InP,; (ie {1, 2, . .
., my) follow a chi-squared distribution with two degrees of freedom (x3,,).

Consequently, the log product of mindependent p-values follows a chi-squared
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distribution with 2m degrees of freedom. If one of the individual p-values approaches
zero, which is often the case for empirical p-values, then the combined p-value
approaches zero as well, regardless of other individual p-values. For example,
if P, — 0, then X— « and therefore, Pr(X) — O regardless of P,, Ps, ..., P,

[0083] Stouffer's method is another classical method that is closely related to
Fisher's. The test statistic of Stouffer's method is the sum of p-values transformed into
standard normal variables, divided by the square root of m. Denoting ¢ as the standard
normal cumulative distribution function, and p; (/€ [1..m]) the individual p-values that are
independently and uniformly distributed under the null, the z-scores are calculated
as z=¢" (1 - p). By definition, these z-scores follow the standard normal distribution.
Yizq1 Zi
“m )

distribution under the null hypothesis. Similar to Fisher's method, the combined p-

The summary statistic of Stouffer's method ( also follows the standard normal

values approach zero when one of the individual p-values approaches zero.

[0084] The additive method uses the sum of the p-values as the test statistic,
instead of the log product. Consider the p-values resulting from mindependent
significance tests, Pi, P2, ..., Py Let the sum of these p-values, X = X, P; (X €
[0,m]), be the new random variable. X follows the Irwin-Hall distribution with the

following probability density function (pdf):

lx]
f@ =+ 2 D (D) a0 @®
i=0

when mis large, some addends will be too small or too large to be stored in the
memory. This leads to a totally inaccurate calculation when mpasses a certain
threshold, depending on the number of bits used to store numbers on the computer. For
this reason, a modified version of the additive method, named add-CLT, was proposed.

[0085] Let Yrepresent the average of p-values: Y = ZiziFi (Y € [0,1]).

m

Since Y = % the probability density function (pdf) and the corresponding cumulative

distribution function (cdf) of Ycan be derived using a linear transformation of X as

follows:

60 = g+ L GO () emey -t
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[m-y|

6=t > DT omoy - ©
=0

The variable Yis the mean of mindependent and identically distributed (i.i.d.) random

variables (the p-values from each individual experiment), that follow a uniform

distribution with a mean of % and a variance of % From the Central Limit Theorem, the
average of such mi.i.d. variables follows a normal distribution with mean p = %and

. 1 . 1 1 . .
variance o2 = o e YNN(E'E) for sufficiently large values of m. The transition

from the additive method to the Central Limit Theorem takes place at the m=20
threshold

[0086] Here, the add-CLT method described above is used to combine the p-
values calculated from the modified t-test (limma package).

[0087] Graphical representation of augmented pathways

[0088] A formal description of the pathway augmentation process is provided.
Let P=(V, E) be the graphical representation of the pathway to be extended with
miRNA-mRNA interactions. Vis the set of vertices (genes) while the directed edges
in E represent the interactions between genes in the pathway. Each interaction includes
an ordered pair of vertices and the type of interaction between the pair,
ie., E={(x, y), r} wherex, yeG(gene set) andris the type of relation
between x;and y, such as activation, repression, phosphorylation, etc. Topology-based
pathway analysis methods, such as Impact Analysis, use interaction types to weigh the
edges or to set the strength of signal propagation along the paths in a pathway.

[0089] From the miRNA database, a set of miRNAs and their targets is provided.
Denote Z as the set of known miRNAs, { € Zis one miRNA, and #({) is the set of known
targets for the miRNA Z. The augmented pathway of P=(V, E) is denoted
as P*=(V*, E*) and is constructed as follows.

Vi=VU{CeZ:t(ONV %@}
E* =EU{({ grepression):CeZ get(Q) nV} (10)

[0090] In other words, if a miRNA { targets a gene g that belongs to the pathway,
{is added to the pathway and {is then connected with its targets in the pathway. By
default, the interaction type of new edges is repression, which represents the
translation blockage of miRNAs to mRNA. The interaction type can be changed to suit
the interaction between the miRNA molecule and its targets. All pathways in the

pathway database are extended using the formulation described in Equation (10). The
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R package mirlntegrator for pathway augmentation is available on Bioconductor
website (world wide web. bioconductor.org).

[0091] Impact analysis of augmented pathways

[0092] The Impact Analysis method combines two types of evidence: (i) the over-
representation of DE genes in a given pathway, and (i) the perturbation of that
pathway, caused by disease, as measured by propagating expression changes through
the pathway topology. These two aspects are captured, respectively, by the
independent probability values, Pype and Peerr. Impact  Analysis  formulation  is
summarized.

[0093] The first p-value, Pnpg, is obtained using the hypergeometric model, which
is the probability of obtaining at least the observed number of differentially expressed
genes. The second p-value, Pperr, depends on the identity of the specific genes that
are differentially expressed as well as on the interactions described by the pathway. It is
calculated based on the perturbation factor in each pathway. The perturbation factor of
a gene, PF(g), is calculated as follows.

PF(u)
PF(9) = AR@®+ ) fug 3 (11)

peus, N ds (u)

The first term represents the signed normalized expression change of the gene g, i.e.,
log standardized mean difference as shown in panels (e,f) of Fig. 5. The second term is
the sum of perturbation factors of upstream genes, normalized by the number of
downstream genes of each such upstream gene. The value of 8,, quantifies the
strength of interaction betweenvandg. Here, B,=1 for activationand B,,=-1
for repression.

[0094] The above equation essentially describes the perturbation factor PF for a
gene as a linear function of the perturbation factors of all genes in a given pathway. In
the stable state of the system, all relationships must hold, so the set of all equations
defining the impact factors for all genes form a system of simultaneous equations
whose solution will provide the values for the gene perturbation factors PF, The net
perturbation accumulation at the level of each gene, Acc(g), is calculated by subtracting
the observed expression change from the perturbation factor.

Acc(g) = PF(g) — AE(g) (12)
[0095] The total accumulated perturbation in the pathway is then computed as

follows.
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Acc(P;) = 2 Acc(g) (13)

geP;

[0096] The null distribution of Acc(P) is built by permutation of expression
change. The p-value, P, is then calculated by the probability of having values more
extreme than the actually observed Acc(P).

[0097] To compute Puoe and Peerr, the following input is required: the graphical
representation of the pathway, the combined p-value of each node of the graph, and
the estimated overall standardized mean difference. In short, the graphical
representation of the augmented pathways is provided in Equation (10), the p-value for
each node of the augmented pathways is computed using Equation (9), and the
expression change, AE(g), is estimated by iteratively maximizing the log-likelihood
function in Equation (7). These two p-values, Py and Ppeer, are then combined to get a
single p-value that represents how likely the pathway is impacted under the effect of the
disease. In one or more embodiments, the processor 170 causes the display 176 to
generate a graphical representation of the single p-value. Additionally, the processor
170 causes the display 176 to generate a graphical representation of the impact
analysis representing the disease and/or the augmented pathways (see panel (g) of
FIG. 5).

Experimental Results

[0098] A total of 1,471 samples from 29 public datasets for two human diseases,
colorectal and pancreatic cancer, were analyzed. The datasets were generated in
independent laboratories, from different individual tissue samples, and were run on
different high-throughput platforms. The diseases were selected based on two criteria:
(i) there are many publicly available miRNA and mRNA datasets, and (ii) there is a
pathway specific to the disease (target pathway). The colorectal data consists of 7
MmRNA and 8 miRNA datasets while the pancreatic data consists of 8 mMRNA and 6
miRNA datasets. The processed data sets were downloaded directly from the Gene
Expression Omnibus using the GEOquery package. The data were rescaled using a log
transformation if they were not already in log scale (base 2). The details of each
dataset, such as the number of samples, tissues, and platforms, are reported in Table
1.
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Table 1. Description of miRNA and mRNA expression datasets used in the
experimental studies. All of the data were downloaded from Gene Expression
Omnibus.

Cancer |Data |AccessionID |Control |Disease |Tissue Platform

GSE4107 10 12 [Colonic mucosa Affymetrix HGUI133 Plus 2.0
GSFE9348 12 70 Colonic mucosa Affymetrix HGU133 Plus 2.0
GSE15781 10 13 [Colon ABIHG Survey 2

mRNA |GSE21510 25 123 |Colon Affymetrix HGUI133 Plus 2.0
GSE23878 24 35  |Colon Affymetrix HGU133 Plus 2.0
GSEA41657 12 25  |Colonic mucosa, epithelial neoplasm  [Agilent-014850 HG 4x44K G4112F
GSE62322 18 20 [Colon Affymetrix HG U133A

Colorectal GSE33125 9 9 Colon Tlumina Human v2 MicroRNA

GSE35834 23 55 |Colon & rectum Affymetrix miRNA 1.0
GSE39814 9 10 |FHC, HCT116, & SW480 cells Agilent-021827 Human miRNA
GSE39833 11 88  |Peripheral blood serum Agilent-021827 Human miRNA

miRNA 15 33 |Colonic mucosa, & epithelial neoplasm|A gilent-021827 Human miRNA
GSEA1655
GSEA9246 40 40 |Colon Sun Yat-Sen Human microRNA
GSE54632 5 5 Colonic and rectal mucosa Affymetrix miRNA 1.0
GSET73487 23 90 [Colon Affymetrix miRNA 1.0
GSE15471 39 39 Pancreas Affymetrix HGUI133 Plus 2.0
GSE19279 3 4 Pancreas, pancreatic duct Affymetrixt HGUI33A
GSE27890 4 4 Pancreas, ductal epithelia Affymetrix HGUI133 Plus 2.0
GSE32676 7 25 Pancreas Affymetrix HGUI133 Plus 2.0

WRNA GSE36076 10 3 Peripheral blood mononuclear cells Affymetrix HGUI33 Plus 2.0
GSE43288 3 4 Pancreas Affymetrix HGUI133A
GSEA45757 9 132 |Pancreatic epithelial & cancer cells Affymetrix HGUI33A

Pancreatic GSE60601 3 9 CD14++ & CD16- cells Affymetrix HGU133 Plus 2.0

GSE24279 22 136 |Pancreas Febit human miRBase v11
GSE25820 4 5 Pancreatic duct Agilent-019118 Human miRNA
GSE32678 7 25 Pancreas miRCURY LNA microRNA, v.11.0

miRNA |GSE34052 [ 6 Pancreas Agilent-029297 Human miRNA

5 26 |Pancreas Agilent-031181 Human miRNA V16
GSEA3796
GSE60978 6 51  |Pancreatic duct Agilent-031181 Human miRNA V16
[0099] The databases used in this analysis are KEGG for pathways, and

miRTarBase for miRNAs. 182 signaling pathways are downloaded from KEGG version
76 (Dec-04-2015) by means of the R package ROntoTools. These pathways are
augmented with known miRNAs and their target interactions, downloaded from
miRTarBase. For each mRNA/miRNA, the modified t-test, available in the limma
package, is used to test for differential expression of mMRNA/mMiRNAs. adad-CLTis used
as the method to combine independent p-values. The combined p-values are then
adjusted for multiple comparisons using False Discovery Rate (FDR). For expression
change, Hedges’ g is used as effect size, and the REML methodis used to estimate the
central tendency of effect sizes. Following convention, only mRNA/miRNAs having
FDR-corrected combined p-values less than 5% are taken into consideration. Among

these significant genes, mRNA/miRNAs are chosen that have the highest estimated
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SMD as differentially expressed, up to 10% of total measured mRNA/mMiRNAs. All the R
scripts used for data processing, pathway augmentation, and analysis are available.

[0100] For both diseases, the orthogonal approach (ImpactAnalysis_l) is
compared with 5 other approaches: pathway-level meta-analysis (ImpactAnalysis_P),
gene-level meta-analysis (ImpactAnalysis_G), plus the 3 meta-analysis approaches
available in MetaPath package. Because the input data sets include multiple studies,
none of which are sample-matched, pathway analysis using approaches that integrate
matched mRNA and miRNA expression cannot be performed.

[0101] For pathway-level meta-analysis (ImpactAnalysis_P), Impact Analysis is
performed on each mRNA expression dataset and then the independent p-values for
each pathway are combined. For example, if there are 7 mRNA datasets, there are 7
nominal p-values per pathway—one for each study. These 7 p-values are independent
and thus can be combined using the add-CLT method to get one combined p-value.
The final result is a list of 182 p-values for 182 signaling pathways. The combined p-
values for multiple comparisons are then adjusted using FDR.

[0102] For gene-level meta-analysis (ImpactAnalysis_G), the modified t-test for
each mRNA dataset were performed and then the p-values were combined. With 7
mRNA datasets, for example, each gene will have 7 independent p-values, which will
be combined into one p-value. We also calculate the SMD and standard error of each
gene in each study, then use the REML algorithm to calculate the overall effect size
across the 7 studies. Finally, pathway analysis is performed on 182 KEGG pathways
using the combined p-values and the estimated effect sizes, resulting in a graphical
representation, i.e., a list, of pathways ranked according to their p-values. The p-values
of pathways for multiple comparisons are adjusted using FDR.

[0103] The integrative approach (ImpactAnalysis_I) is similar to
ImpactAnalysis_G, with the exception that ImpactAnalysis_| uses both mRNA and
mMiRNA data. The meta-analysis is done on the mRNA/miRNA level and then the
combined p-values and estimated effect sizes of mMRNA/MiRNAs serve as the input to
the ImpactAnalysis.

[0104] MetaPathis a dedicated approach that performs meta-analysis at both
gene (MetaPath_G) and pathway levels (MetaPath_P) with a GSEA-like approach, and
then combines the results (MetaPath_I) to give the final p-value and ranking of
pathways. MetaPath first calculates the t-statistic for each gene in each study. In

MetaPath_G, these statistics are combined for each gene using maxP. The combined
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statistics are then used to calculate enrichment scores for each pathway using a
Kolmogorov-Smirnov test. In MetaPath_P, the pathway enrichment analysis is done
first before meta-analysis. In MetaPath_|, the p-values of MetaPath_G and MetaPath_P
are combined using minP.

[0105] For each of the two diseases, there is a target KEGG pathway, which is
the pathway created to describe the main phenomena involved in the respective
disease. The augmented pathway for Colorectal canceris displayed in Fig. 6. The
green rectangle nodes (light shaded rectangles) show the KEGG genes and the black
arrows show the interactions between the genes. The blue nodes (dark shaded
rectanges) and the bar-headed lines show the miRNA molecules and their interactions
with the genes, where the bar-headed lines represents the “repression” activity. In each
augmented node, two types of information are displayed: i) the total number of miRNAs
that are known to target the corresponding gene, and ii) the miRNAs that were actually
measured in the 8 miRNA colorectal datasets. The former is displayed in circles while
the latter is listed in blue rectangles (dark shaded rectangles). For example, the gene
TGFg (in the far left of the figure) has 9 miRNAs that are known to target the gene but
only two miRNAs (hsa:miR-375 and hsa:miR-633) were included in the miRNA data.
Similarly, the augmented pathway for Pancreatic canceris displayed in Fig. 7. The
graphs show that both target pathways are heavily regulated by miRNA molecules.

[0106] In this experimental study, it is expected that a good pathway analysis
approach would be able to identify the very pathway that describes the disease
phenomena as the most significant in each particular disease. Hence, the various
methods based on this criterion are compared.

[0107] Colorectal cancer

[0108] 8 miRNA (GSE33125, GSE35834, GSE39814, GSE39833, GSE41655,
GSE49246, GSE54632, and GSE73487) and 7 mRNA (GSE4107, GSE9348,
GSE15781, GSE21510, GSE23878, GSE41657, and GSE62322datasets are obtained

from the Gene Expression Omnibus (GEO), as shown in Table 1.

[0109] Table 2 shows the results of the 6 approaches. The horizontal line across
each list marks the cutoff FDR=0.01. The pathway highlighted in green is the target
pathway Colorectal cancer. MetaPath_P (pathway-level meta-analysis) identifies no
significant pathway at the 1% cutoff, and ranks the target pathway at position 16"
Similarly, MetaPath_G (gene-level meta-analysis) and MetaPath_| (combination of
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gene- and pathway-level) identify no significant pathways. They rank the target pathway
at positions 9" and 15", respectively.

Table 2. The 16 top ranked pathways and FDR-corrected p-values obtained by
combining colorectal data using 6 approaches: MetaPath_P, MetaPath_G, MetaPath_|,
ImpactAnalysis_P, ImpactAnalysis_G, and ImpactAnalysis_|. The horizontal lines show
the 1% significance threshold. The target pathway is colorectal cancer. All other
approaches, MetaPath_P, MetaPath_G, MetaPath_|, ImpactAnalysis_P,
ImpactAnalysis_G fail to identify the target pathway as significant, and rank it at the
positions 16th, 9th, 15th, 61st, and 10th, respectively. On the contrary, the integrative
approach, ImpactAnalysis_|, identifies the target pathway as significant and ranks it on
top.
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[0110] The ImpactAnalysis_P approach identifies 12 pathways, among which
there are many pathways that are related to cancer. However, the target
pathway Colorectal canceris not significant and is ranked 61° with adjusted p=0.99.
The gene-level meta-analysis (ImpactAnalysis_G) offers some improvement over
ImpactAnalysis_P by improving the ranking (10”) and adjusted p-value (p=0.1) of the
target pathway Colorectal cancer. However, the target pathway is still not significant
with the given threshold. The orthogonal meta-analysis, ImpactAnalysis_I, is able to
further boost the power of the gene-level meta-analysis. It identifies 5 significant
pathways, with the target pathway Colorectal cancer ranked at the very top. This is very
likely due to the additional information provided by miRNA expression and prior
knowledge accumulated in miRTarBase.

[0111] Three of the other 4 pathways that are identified by ImpactAnalysis_|
appear to be true positives. The Cell Cycle and Ribosome Biogenesis pathways are
implicated in the proliferation aspect of cancer tissue. PPAR signaling has a role in
colorectal cancer, although it is not fully understood. Progesterone-mediated oocyte
maturation is clearly a false positive which may have appeared due to the presence of
several cell cycle genes in that pathway.

[0112] Pancreatic cancer

[0113] 8 mRNA (GSE15471, GSE19279, GSE27890, GSE32676, GSE36076,
GSE43288, GSE45757, and GSE60601) and 6 miRNA datasets (GSE24279,
GSE25820, GSE32678, GSE34052, GSE43796, and GSE60978) are obtained from
Gene Expression Omnibus (GEO), as shown in Table 1. Again, the current approach

(ImpactAnalysis_l) is compared with 5 other approaches: pathway-level meta-analysis,
gene-level meta-analysis using only mRNA data, plus 3 meta-analysis approaches
available in the MetaPath package as shown in Table 3.

Table 3. The 10 top ranked pathways and FDR-corrected p-values obtained by
combining colorectal data using 6 approaches: MetaPath_P, MetaPath_G, MetaPath_|,
ImpactAnalysis_P, ImpactAnalysis_G, and ImpactAnalysis_|. The horizontal lines show
the 1% significance threshold. The target pathway is pancreatic cancer. All other
approaches, MetaPath_P, MetaPath_G, MetaPath_|, ImpactAnalysis_P,
ImpactAnalysis_G fail to identify the target pathway as significant, and rank it at the
positions 17", 91% 91% 32" and 8" respectively. On the contrary, the integrative
approach, ImpactAnalysis_|, identifies the target pathway as significant and ranks it on
top.
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MetaPath_P (mRNA, pathway-level) MetaPath_G (mRNA, gene-level) MetaPath_| (mRNA, both-level)
:Pathway :Pathway
:Autoimmune thyroid disease Type | diabetes mellitus

VVVVVVV %Pathway
1:Graft-versus-host-disease

3:SNARE interactions in vesicular
AANSPOTL
GABAergic synapse
:Asthma

‘Morphine addiction

: 6§MicroRNAsincancer
7:Phagosome

‘Asthma :0.0073;
‘Morphine addiction :
ECM-receptor interaction

10§Dorso-ventral axis formation %0.79413

:Renin-angiotensin system :Renin-angiotensin system

flmpactAnaIysis_P(mRNA, pathway-level)imf ImpactAnalysis_G (mRNA, gene-level) ImpactAnalysis_I| (mRNA + miRNA)
: . Pathway p.fdr | Pathway pfdr

: Pathway
: 1 PI3K-Akt signaling pathway
ZiMicroRNASin cancer
- :Small cell lung cancer
4 athways in cancer

%Small cell lung cancer '0.0217. Pancreatic cancer

Small cell lung cancer

:Pathways in cancer

AGE-RANGE signaling pathway in :
abetic complications :

ronic myeloid leukemia
ncreatic cancer

10%Tce|| receptor signaling pathway %0.3200% :Pathogenic Escherichia coli

%0.0639% :ECM-receptor interaction
‘infection E -

[0114] MetaPath_P identifies no significant pathway and Graft-versus-host
disease is ranked on top with adjusted p-value 0.4782. The target pathway Pancreatic
canceris ranked 17" with adjusted p=0.89. MetaPath_G identifies 7 significant
pathways. The target pathway is not significant (adjusted p=0.22) and is ranked 91%. In
consequence, the combination of these two methods, MetaPath_I, also fails to identify
the target pathway as significant (adjusted p = 0.34 with ranking 91%).

[0115] The pathway-level meta-analysis (ImpactAnalysis_P) identifies the PI3K-
Akt signaling pathway and MicroRNAs in canceras significant. The significance
of MicroRNAs in cancer may indicate the importance of miRNA in pancreatic cancer,
and PI3K-Akt signaling alteration is known to be involved in many cancers. However,
the target pathway is not significant (adjusted p=0.95 with ranking 32™). The gene-
level meta-analysis (ImpactAnalysis_G) improves the ranking of the target pathway (8")
but the p-value of the target pathway is still not significant. The orthogonal approach,
ImpactAnalysis_|, identifies 7 pathways as significant. The target pathway Pancreatic
cancer is ranked on top with FDR-corrected p-value 0.0017.

[0116] Of the 6 significant non-target pathways found by ImpactAnalysis_|I, three
are cancer-related by name (Small cell lung cancer, Pathways in cancer, Proteoglycans
in cancer). The breakdown of cell matrix adhesions, such as Focal Adhesionis an
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important property of metastasis - most pancreatic cancers are discovered when they
are already high grade.

[0117] In contrast to the 3 variations of the existing method, MetaPath, the
proposed method ImpactAnalysis_| was able to effectively combine both independent
datasets, as well as the two different types of data (mMRNA and miRNA), and correctly
report the target pathway as the most significantly impacted pathway in both meta-
analysis studies. The results demonstrate that the correct pathways are identified only
when the data are integrated both horizontally (combining multiple studies using the
same data type) and vertically (combining miRNA with mRNA expression). This
orthogonal meta-analysis uses three different kinds of data integration: integration of
MRNA and miRNA, combining p-values and combining SMDs for genes and miRNA
molecules.

[0118] Time complexity

[0119] The data analysis was done on a personal MacBook Pro that has 8 GB
1600 MHz DDR3 RAM, 2.9 GHz Intel Core i7. Because MetaPath cannot exploit
multiple processors, all the analysis were run using a single core. The time needed to
run MetaPath was 39 minutes for Colorectal cancer and 47 minutes for Pancreatic
cancer.

[0120] For ImpactAnalysis_|I, the p-value for each gene/miRNA in each dataset is
first calculated using the limma package. The p-values are then combined to get one
combined p-value per gene/miRNA. Next, the standardized mean difference (SMD) is
calculated for each dataset and then the REML algorithm is applied to estimate to
overall SMD, using the metafor package. The estimated SMDs and the combined p-
values are processed by ROntoTools to produce the p-value for each pathway.
ImpactAnalysis_| performes the analysis using the pathways augmented with the
relevant miRNAs. The running time for ImpactAnalysis_| is 4 minutes for each of
Colorectal and Pancreatic. The running time of each approach is reported in Table 4.

Table 4. Running time of each pathway analysis in minutes (m).

Method Input Colorectal | Pancreatic
ImpactAnalysis_| | mRNA & miRNA 4m 4m
MetaPath mRNA 39m 47 m
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Discussion

[0121] One straightforward horizontal integration is to combine individual p-
values provided by each study. In this way, any pathway analysis approach (such as
GSEA or GSA) can be applied to the collected mMRNA datasets in order to calculate a p-
value for each pathway in each study, and then combine these independent p-values.
An advantage of this approach is its flexibility. MetaPath combines p-values in this way,
but with the slight difference that the p-values are combined on both gene and pathway
levels. The drawback is that each of these methods is designed to work with one single
matrix of expression values, i.e., one data type. This matrix can be forcefully extended
to include other data types as well, but in order to do this, the data must be sample-
matched. In other words, all types of assays must be performed on every single
sample. In addition, because different data types are assayed on different platforms,
the data need to be normalized together, for these approaches to function properly.
However, the correct way to do such a cross-platform normalization is still an open
problem. The same limitations apply to analysis tools dedicated to miRNA and mRNA
integration. For meta-analysis, these approaches would require multiple sets of sample-
matched data. Performing different assays on one set of samples is already expensive;
asking for many sets of matched samples for the same disease is even more
impractical.

[0122] Although primarily designed to overcome the matched-sample bottleneck
discussed above, the current framework also aims to address a well-known limitation of
p-value-based meta-analyses. Classical approaches often rely on hypothesis testing to
identify differential expression. This results in critical information loss. While the p-value
is partly a function of effect size, it is also partly a function of sample size. For example,
with large sample size, a statistical test will tend to find differences as significant, unless
the effect size is exactly zero. In reality, any individual study will include some degree of
batch effects, such as sampling/study bias, noise, and measurement errors. Simply
combining individual p-values would not correct such problems. On the contrary, meta-
analysis of effect sizes across all studies would definitely compensate for and eliminate
such random effects. This point is illustrated in the results included herein, in particular
in the difference between ImpactAnalysis_P and ImpactAnalysis_G for both colorectal
and pancreatic cancer (Tables 2 and 3). The former simply combines the p-values,
while the latter takes into consideration both p-values and effect sizes across different
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studies. ImpactAnalysis_G offers a great improvement over ImpactAnalysis_P using the
same sets of mMRNA data.

[0123] The current framework contemplates the computational complexity at both
gene and pathway levels. For individual genes and miRNA molecules, the framework
not only calculates p-values, but also iteratively estimates the effect sizes and
variances. In principle, the iterative algorithm requires more computation than meta-
analyses that use closed-form expressions. At pathway-level, Impact Analysis is a non-
parametric approach that constructs an empirical distribution of all measured values for
each pathway. This requires more computation and storage than parametric
approaches, such as the hypergeometric test or Fisher’s exact test. However, this is
mitigated by the power of modern computers which are able to perform all needed
computations in less than 10 minutes, even for datasets with more than 1,000 samples
( Table 4). In addition, the current framework allows for parallel computing at the gene-
level to reduce the time complexity. However, the time values described here (see, for
example, Table 4) do not take advantage of the ability to parallelize the computation in
order to be comparable with the results obtained with MetaPath. All values reported in
this table are obtained on a single core for both approaches.

[0124] The biological results presented here could be further validated by
investigating the other pathways reported as significant, and identifying the putative
mechanisms that could explain all measured changes. A tool such as iPathway-Guide,
could be used to provide more in depth functional analysis, including identification of
drugs that are known to act on the observed signaling cascades. Follow-up
experiments in which tumor cell lines, or samples from xenografts, are treated with
those drugs would validate (or not) both the putative mechanisms investigated, as well
as the other significant pathways. If many or all significant pathways were
mechanistically implicated in the respective conditions, the proposed orthogonal meta-
analysis approach would be further validated.

[0125] Another direct application of the orthogonal framework is to infer
condition-specific miRNA activity. The proposed gene-level meta-analysis basically
identifies genes and miRNAs that are differentially expressed (DE) under the studied
condition. This list of DE genes/miRNAs is obtained from a large number of studies and
therefore it is expected to be more reliable than any individual study taken alone. From
the list of DE genes/miRNAs and the computed statistics (effect sizes and variances),
new putative targets of miRNAs can be identified using casual inference techniques.
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The predicted interactions between miRNA and mRNA can be further verified by
established gene-specific experimental validation, such as gRT-PCR, luciferase
reporter assays, and western blot.

Summary

[0126] A two-dimensional data integration that is able to combine mRNA and
mMiRNA expression data obtained from many independent experiments is provided
herein. The framework first augments pathway knowledge available in pathway
databases with miRNA-mRNA interactions from miRNA knowledge bases. It then
computes the statistics that are essential for pathway analysis, i.e., the standardized
mean difference (SMD) and p-value for differential expression. For each entity, these p-
values and the SMDs are computed by combining multiple studies using robust
horizontal meta-analysis techniques. Finally, the framework performs a topology-based
pathway analysis to identify pathways that are likely to be impacted under the given
condition.

[0127] To evaluate the framework, 1,471 samples from 15 mRNA and 14 miRNA
expression datasets related to two human cancers were examined using 6 different
meta-analysis approaches (3 MetaPath approaches and 3 meta-analysis approaches
that utilize Impact Analysis). It was demonstrated that the correct pathways are
identified only when the data are integrated both horizontally (combining multiple
studies using the same data type) and vertically (combining miRNA with mRNA
expression).

[0128] This technology serves as a bridge between the two orthogonal types of
data integration. The result is to unblock the sample-matched data bottleneck, by
successfully integrating mRNA and miRNA datasets measured from independent
laboratories for different sets of patients. Furthermore, it increases the power of
statistical approaches because it allows many studies to be analyzed together. With
vast databases of various data types being made available, this framework is widely
applicable because of its relaxed restrictions on the data being integrated. The
framework is flexible enough to integrate data types other than mRNA and miRNA,
which was described herein as an example. It can also be modified to suit other
purposes besides pathway analysis.

[0129] FIG. 8 illustrates an example method 800 for identifying a pathway associated
with a disease in accordance with an example embodiment of the present disclosure.
Method 800 begins at 802. At 804, multiple data structures, such as databases 202,
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204 that provide a first dataset describing a first quantitative variable related to the
disease and a second dataset describing a second quantitative variable related to the
disease is provided.

[0130] At 806, known pathways are modified that are related to the disease with
information provided in both the first datasets and the second datasets to generate
augmented pathways including a plurality of first nodes associated with the first
quantitative variable and a plurality of second nodes associated with the second
guantitative variable. At 808, a first standardized mean difference (SMD), a first

standard error, and a first p-value for each of the first datasets is calculated.

[0131] At 810, a second standardized mean difference (SMD), a second standard
error, and a second p-value for each of the second datasets is calculated. At 812, a
first effect size from the first SMD and the first standard error is estimated. At 814, the
first p-values are combined. At 816, a second effect size from the second SMD and the
second standard error is estimated. At 818, the second p-values are combined.

[0132] At 820, a probability of obtaining an observed relationship between the first and
second quantitative variables associated with the disease (Pnpe) and a p-value that
depends on identities of first or second quantitative variables that are differentially
related and described by the pathway (Pperr) from the augmented pathways, the
estimated first effect size, the combined first p-values, the estimated second effect size,
and the combined second p-values. At 822, the Pype and the Ppert are combined to
generate a single p-value that represents how likely a pathway is impacted under the
effect of the disease. At 824, the method 800 ends.

Conclusion

[0133] Spatial and functional relationships between elements (for example, between

modules) are described using various terms, including “connected,” “engaged,”
“‘interfaced,” and “coupled.” Unless explicitly described as being “direct,” when a
relationship between first and second elements is described in the above disclosure,
that relationship encompasses a direct relationship where no other intervening
elements are present between the first and second elements, and also an indirect
relationship where one or more intervening elements are present (either spatially or
functionally) between the first and second elements. As used herein, the phrase at least

one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-
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exclusive logical OR, and should not be construed to mean “at least one of A, at least
one of B, and at least one of C.”

[0134] In the figures, the direction of an arrow, as indicated by the arrowhead,
generally demonstrates the flow of information (such as data or instructions) that is of
interest to the illustration. For example, when element A and element B exchange a
variety of information but information transmitted from element A to element B is
relevant to the illustration, the arrow may point from element A to element B. This
unidirectional arrow does not imply that no other information is transmitted from
element B to element A. Further, for information sent from element A to element B,
element B may send requests for, or receipt acknowledgements of, the information to

element A.

[0135] In this application, including the definitions below, the term ‘module’ or the term
‘controller’ may be replaced with the term ‘circuit.” The term ‘module’ may refer to, be
part of, or include processor hardware (shared, dedicated, or group) that executes code
and memory hardware (shared, dedicated, or group) that stores code executed by the
processor hardware.

[0136] The module may include one or more interface circuits. In some examples, the
interface circuits may include wired or wireless interfaces that are connected to a local
area network (LAN), the Internet, a wide area network (WAN), or combinations thereof.
The functionality of any given module of the present disclosure may be distributed
among multiple modules that are connected via interface circuits. For example, multiple
modules may allow load balancing. In a further example, a server (also known as
remote, or cloud) module may accomplish some functionality on behalf of a client

module.

[0137] The term code, as used above, may include software, firmware, and/or
microcode, and may refer to programs, routines, functions, classes, data structures,
and/or objects. Shared processor hardware encompasses a single microprocessor that
executes some or all code from multiple modules. Group processor hardware
encompasses a microprocessor that, in combination with additional microprocessors,
executes some or all code from one or more modules. References to multiple
microprocessors encompass multiple microprocessors on discrete dies, multiple
microprocessors on a single die, multiple cores of a single microprocessor, multiple

threads of a single microprocessor, or a combination of the above.
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[0138] Shared memory hardware encompasses a single memory device that stores
some or all code from multiple modules. Group memory hardware encompasses a
memory device that, in combination with other memory devices, stores some or all code

from one or more modules.

[0139] The term memory hardware is a subset of the term computer-readable
medium. The term computer-readable medium, as used herein, does not encompass
transitory electrical or electromagnetic signals propagating through a medium (such as
on a carrier wave); the term computer-readable medium is therefore considered
tangible and non-transitory. Non-limiting examples of a non-transitory computer-
readable medium are nonvolatile memory devices (such as a flash memory device, an
erasable programmable read-only memory device, or a mask read-only memory
device), volatile memory devices (such as a static random access memory device or a
dynamic random access memory device), magnetic storage media (such as an analog
or digital magnetic tape or a hard disk drive), and optical storage media (such as a CD,

a DVD, or a Blu-ray Disc).

[0140] The apparatuses and methods described in this application may be partially or
fully implemented by a special purpose computer created by configuring a general
purpose computer to execute one or more particular functions embodied in computer
programs. The functional blocks and flowchart elements described above serve as
software specifications, which can be translated into the computer programs by the

routine work of a skilled technician or programmer.

[0141] The computer programs include processor-executable instructions that are
stored on at least one non-transitory computer-readable medium. The computer
programs may also include or rely on stored data. The computer programs may
encompass a basic input/output system (BIOS) that interacts with hardware of the
special purpose computer, device drivers that interact with particular devices of the
special purpose computer, one or more operating systems, user applications,
background services, background applications, etc.

[0142] The computer programs may include: (i) descriptive text to be parsed, such as
HTML (hypertext markup language), XML (extensible markup language), or JSON
(JavaScript Object Notation) (ii) assembly code, (iii) object code generated from source
code by a compiler, (iv) source code for execution by an interpreter, (v) source code for

compilation and execution by a just-in-time compiler, etc. As examples only, source
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code may be written using syntax from languages including C, C++, C#, Objective-C,
Swift, Haskell, Go, SQL, R, Lisp, Java®, Fortran, Perl, Pascal, Curl, OCaml,
Javascript®, HTML5 (Hypertext Markup Language 5th revision), Ada, ASP (Active
Server Pages), PHP (PHP: Hypertext Preprocessor), Scala, Eiffel, Smalltalk, Erlang,
Ruby, Flash®, Visual Basic®, Lua, MATLAB, SIMULINK, and Python®.

[0143] None of the elements recited in the claims are intended to be a means-plus-
function element within the meaning of 35 U.S.C. §112(f) unless an element is
expressly recited using the phrase “means for” or, in the case of a method claim, using

the phrases “operation for” or “step for.”
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CLAIMS

What is claimed is:

1. A method of integrating a plurality of data types, the method comprising:

obtaining, via a processor, a plurality of datasets of a given type comprising
measurements of one or more quantitative variables related to a phenotype
comparison, and a plurality of datasets of a different type comprising measurements of
one or more quantitative variables related to the same phenotype comparison;

calculating, via the processor, a first standardized mean difference (SMD), a first
standard error, and a first p-value for each of the variables and for each dataset present
in the plurality of datasets of the first type;

calculating, via the processor, a second SMD, a second standard error, and a
second p-value for each of the variables and for each data set present in the plurality
of datasets of the second type;

combining, via the processor, all the effect sizes in each individual dataset to
calculate an effect size for each of the variables of the first data type, from the first SMD
and the first standard error;

combining, via the processor, all p-values in each individual dataset to calculate
a global p-value for this first data type;

combining, via the processor, all the effect sizes in each individual dataset to
calculate an effect size for each of the variables of the second data type, from the
second SMD and the second standard error;

combining, via the processor, all p-values in each individual dataset to calculate
a global p-value for the second data type; and

combining, via the processor, the effect sizes of the variables of the first type
with the effect sizes of the variables of the second type and/or combining the p-values
of the variables of the first type with the p-values of the variables of the second type to

identify the variables of either type that are relevant in the given phenotype comparison.

2. The method according to Claim 1, wherein there are more than two data
types.
3. A method of identifying a pathway associated with a disease, the method
comprising:
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obtaining, via a processor, a plurality of first datasets describing a first
quantitative variable related to the disease and a plurality of second datasets describing
a second quantitative variable related to the disease, the plurality of first datasets and
the plurality of second datasets being provided from independent studies, wherein each
of the plurality of first datasets and each of the plurality of second datasets comprises
data regarding disease samples and healthy control samples;

modifying, via the processor, known pathways related to the disease with
information provided in both the plurality of first datasets and the plurality of second
datasets to generate augmented pathways comprising a plurality of first nodes
associated with the first quantitative variable and a plurality of second nodes associated
with the second quantitative variable, wherein the first nodes and second nodes are
individually interconnected;

calculating, via the processor, a first standardized mean difference (SMD), a first
standard error, and a first p-value for each of the plurality of first datasets;

calculating, via the processor, a second SMD, a second standard error, and a
second p-value for each of the plurality of second datasets;

estimating, via the processor, a first effect size from the first SMD and the first
standard error;

combining, via the processor, the first p-values;

estimating, via the processor, a second effect size from the second SMD and the
second standard error;

combining, via the processor, the second p-values;

calculating, via the processor, a probability of obtaining at least an observed
relationship between the first and second quantitative variables associated with the
disease (Pnpe) and a p-value that depends on identities of first or second quantitative
variables that are differentially related and described by the pathway (Ppert) from the
augmented pathways, the estimated first effect size, the combined first p-values, the
estimated second effect size, and the combined second p-values; and

combining, via the processor, Pnpe and Ppert tO0 generate a single p-value that
represents how likely a pathway is impacted under the effect of the disease.

4. The method according to Claim 3, wherein the estimating a first effect size
and the estimating a second effect size are performed by using a Restricted Maximum
Likelihood (REML) algorithm.
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5. The method according to Claim 3, wherein the combining the first p-

values and the combining the second p-values is performed by add-CLT.

6. The method according to Claim 3, wherein the first quantitative variable
and the second quantitative variable individually comprise one of molecular data and
clinical data.

7. The method according to Claim 6, wherein:

the molecular data describes assay results related to at least one of mRNA,
miRNA, protein abundance, metabolite abundance, and methylation; and

the clinical data describes patient information related to at least one of weight,
blood pressure, blood metabolite level, blood sugar, heart rate, vision score, and

hearing score.

8. The method according to Claim 3, further comprising:

generating a plurality of single p-values corresponding to a plurality of pathways
and generating a graphical representation of the pathways ranked according to their
corresponding single p-values.

9. An apparatus for identifying a pathway associated with a disease, the
apparatus comprising:
a memory configured to store one or more applications;
a processor communicatively coupled to memory, the processor, upon executing
the one or more applications, is configured to:
obtain a plurality of first datasets describing a first quantitative variable
related to the disease and a plurality of second datasets describing a second
quantitative variable related to the disease, the plurality of first datasets and the
plurality of second datasets being provided from independent studies, wherein
each of the plurality of first datasets and each of the plurality of second datasets
comprises data regarding disease samples and healthy control samples;
modify known pathways related to the disease with information provided
in both the plurality of first datasets and the plurality of second datasets to
generate augmented pathways comprising a plurality of first nodes associated
with the first quantitative variable and a plurality of second nodes associated with
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the second quantitative variable, wherein the first nodes and second nodes are
individually interconnected;

calculate a first standardized mean difference (SMD), a first standard
error, and a first p-value for each of the plurality of first datasets;

calculate a second SMD, a second standard error, and a second p-value
for each of the plurality of second datasets;

estimate a first effect size from the first SMD and the first standard error;

combine the first p-values;

estimate a second effect size from the second SMD and the second
standard error;

combine the second p-values;

calculate a probability of obtaining at least an observed relationship
between the first and second quantitative variables associated with the disease
(Pnpe) and a p-value that depends on identities of first or second quantitative
variables that are differentially related and described by the pathway (PperT)
from the augmented pathways, the estimated first effect size, the combined first
p-values, the estimated second effect size, and the combined second p-values;
and

combine Pnpe and Ppert t0 generate a single p-value that represents how
likely a pathway is impacted under the effect of the disease.

10.  The apparatus according to Claim 9, wherein the processor is configured
to estimate a first effect size and estimate a second effect size using a Restricted
Maximum Likelihood (REML) algorithm.

11.  The apparatus according to Claim 9, wherein the processor is configured

to combine the first p-values and to combine the second p-values by add-CLT.

12.  The apparatus according to Claim 9, wherein the first quantitative variable
and the second quantitative variable individually comprise one of molecular data and

clinical data.
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13.  The apparatus according to Claim 12, wherein:

the molecular data describes assay results related to at least one of mRNA,
miRNA, protein abundance, metabolite abundance, and methylation; and

the clinical data describes patient information related to at least one of weight,
blood pressure, blood metabolite level, blood sugar, heart rate, vision score, and
hearing score

14.  The apparatus according to Claim 9, wherein the processor is configured
to generate a plurality of single p-values corresponding to a plurality of pathways and
generate a graphical representation of the pathways ranked according to their

corresponding single p-values.

15.  The apparatus according to Claim 14, wherein the processor is further

configured to cause the graphical representation to be displayed at a display.

16. A distributed computing system for identifying a pathway associated with
a disease, the distributed computing system comprising:
a first server configured to store a plurality of first datasets;
a second server configured to store a plurality of second datasets, the second
server different from the first server;
a third server communicatively coupled to the first server and the second server
via a distributed communication network, the third server comprising:
a memory configured to store one or more applications;
a processor communicatively coupled to the memory, the processor, upon
executing the one or more applications, is configured to:
obtain the plurality of first datasets describing a first quantitative variable
related to the disease and the plurality of second datasets describing a second
quantitative variable related to the disease, the plurality of first datasets and the
plurality of second datasets being provided from independent studies, wherein
each of the plurality of first datasets and each of the plurality of second datasets
comprises data regarding disease samples and healthy control samples;
modify known pathways related to the disease with information provided
in both the plurality of first datasets and the plurality of second datasets to

generate augmented pathways comprising a plurality of first nodes associated
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with the first quantitative variable and a plurality of second nodes associated with
the second quantitative variable, wherein the first nodes and second nodes are
individually interconnected;

calculate a first standardized mean difference (SMD), a first standard
error, and a first p-value for each of the plurality of first datasets;

calculate a second SMD, a second standard error, and a second p-value
for each of the plurality of second datasets;

estimate a first effect size from the first SMD and the first standard error;

combine the first p-values;

estimate a second effect size from the second SMD and the second
standard error;

combine the second p-values;

calculate a probability of obtaining at least an observed relationship
between the first and second quantitative variables associated with the disease
(Pnpe) and a p-value that depends on identities of first or second quantitative
variables that are differentially related and described by the pathway (PperT)
from the augmented pathways, the estimated first effect size, the combined first
p-values, the estimated second effect size, and the combined second p-values;
and
combine Pnpe and Ppert to generate a single p-value that represents how likely a
pathway is impacted under the effect of the disease.

17.  The distributed computing system according to Claim 16, wherein the
processor is configured to estimate a first effect size and estimate a second effect size
using a Restricted Maximum Likelihood (REML) algorithm.

18.  The distributed computing system according to Claim 16, wherein the
processor is configured to combine the first p-values and to combine the second p-
values by add-CLT.

19.  The distributed computing system according to Claim 16, wherein the first
quantitative variable and the second quantitative variable individually comprise one of
molecular data and clinical data.
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20.  The distributed computing system according to Claim 19, wherein:

the molecular data describes assay results related to at least one of mRNA,
miRNA, protein abundance, metabolite abundance, and methylation; and

the clinical data describes patient information related to at least one of weight,
blood pressure, blood metabolite level, blood sugar, heart rate, vision score, and
hearing score.

21.  The distributed computing system according to Claim 16, wherein the
processor is configured to generate a plurality of single p-values corresponding to a
plurality of pathways and generate a graphical representation of the pathways ranked

according to their corresponding single p-values.

22. The distributed computing system according to Claim 21, further
comprising a display, wherein the processor is further configured to cause display of the

graphical representation at the display.

43
SUBSTITUTE SHEET (RULE 26)



¢ 9Old I E

PCT/US2017/031799

1/6

WO 2017/196872

d@\m b
N —L—1
9k ~ obeio)g Wng e “ Aeidsiq I
| WweisAsgng _,/ N-ogL - 1OMES
| Aeydsicy | =~ Gl

r——————— —_—— == z-0c) —| ‘enes 801AS(]
991 L[ suopeayddy " 0 20N woz

I usl

_ LD _ Y

l——»] ossaooid

91 ,“l <0 | > ~ 05}

| I

| Aowepn .“ LWBISAG SUOIIEDUNWILIOY) PBINGUISI]

———————

/
091 801A8(]
| usi) N
soeyalu} ¢-0ct
(s)anineg | HIOMISN ~ g5}
141 e nduj 7 aoinaq
et ] senles weln
1-0€1 ™ 1ozy
8010 JUSHD
L-0ZL
WiBIsAg
SUOIEIIUNWILIOD
peInqLIsiy /
004




PCT/US2017/031799

WO 2017/196872

2/6

a8l

¥ 'Old

¥0Z

(s)oseqeleq

D

202

(s)eseqeieq

3

(s)eseqeieq

€ 'Old

8381
\
N
R 9.1
{s)eseqgeieq ) y;
. === Aejdsigy
wayshsang |
2be1018 M¥ing oo -
A
981 ~}-| suoneoyddy
18Aleg |
« »  JDSSBO0I]
Kiouwspy
08t
aoep8}
(syeoineq || WOMIBN [~ gy}
Zll nduj 7
B8

L-0E1

WwslsAg
SUOHEOIUNWILLIOYD

panquisia




WO 2017/196872

3/6

PCT/US2017/031799

{a} Biological knowledge

N

NN S8
SN LU LSRR

IR N

croszeznznngy

AN

BN

mikNA database

S

Pathway database

N SRS

e

~

3

H
H
H
H
H
H
H
H
H
H

{o} miRNA expre

i3

{d) Aupmented Intoractions

{g

o nive

Y mRNA effe

X2 T 1L -
R Meen T

{3 miRNA effect

—

sssF~483:

NS ARG
RO AR N

g o

nading pabudy

N
3
3
3

PN £

YRR

SR AR

Topology-awar

pathway analy

N

Ry
s

&

™
ST
i

i

i1

i

pRs

i3

id
id
% e CaeEe
X R SR

SUBSTITUTE SHEET (RULE 26)




4/6 PCT/US2017/031799

WO 2017/196872

R e R

Lih %

AR

&

A

(OISO,

7 o . STV TUS IO STITIIYS i

o : 3 :
Z oy 7% H £ < s d
L™ s B L A L meey

D000000000000000000000008"

SASSLS L0 48

i

S
pRosseso

siares v
L SR 3

2 yopy
ARREPEG IR E 55

.*xiim £

3
7
3
3

i

SR,

GHIBSIR
21, ey

RO

B

eiresreid et e

s

Tt e SR ool L

oS, penns
222t
3%

Sr

sche.

%

[
3

&

oo FTTT, el

Clliiivivid

s

{1
4
1

.
vy
[ o]

i AR A A A A .«\*,

I
2o

erssoesssonsasssnssssruss
osteagad gt
=33 51

i
H

Nwann

%

%,
oo SRR

Sop
¢4

s’

Ay T (R

L nogs B PIVRD Qs 13 U DI A
Funog kg s e} nsoning 3

SUBSTITUTE SHEET (RULE 26)



5/6 PCT/US2017/031799

WO 2017/196872

-~

7

447

SRR

FHORTEHLE] e o

. &v».nw& )
DHER GG
OOECEECEELEOLEOLECioril

%

%

IR PN

gegreiecn,
7

iy

i W
\\\\*\\\\\ g
x

g

o

e P

2,
crieigeriiit

7
b
b3

i

iy 7

e

A ARRARATARAIARS MRS ARATARS,

K0 SRR, tlorosvom ok

%

cooichiooecy TR

AT

ey ol

oo,
Sty :
G e

1t

B AR AR o AR AR S AR A
G
v 2

s

25

3}

VT ee
e

PR

e
IRANTRIRNY

it

e
o
i

oo s

o

ety

st

s vr
v 0ol
Sirriiseseess

s, SR
7

453,70
KX peeveend

cerrnte

rropstienns

¥z

it

v
rorrassco

A

—

b

74

4
L,

Srsgpirnis
VERATesh

!

4
5%

50

%;

R 0,
5

S

goaieaisaissy

;
A Benogpit Sospgettin
o S

L3032

ISINS VRIS

4

N

beoX sl

s

Y

LR RS

\

o

A

N
R

%

At

s
TogpBagyn

irorirororiroririrerist

7

23

R
5

SSE
RS

TERERS

X

Rl
2

A

7

R 5 04v%
LN L1521

SUBSTITUTE SHEET (RULE 26)



WO 2017/196872 PCT/US2017/031799

6/6
/800
802
i Start ’
804 812 |
\ 3 Estimate A First Effect
Provide Data Structures Size From The First
including Datasets SMD And The First
Describing Quantitative Error
Variables
814
806 AN ——
L ! Compbine First P-
Modify Known Values
Pathways
818
\ !
808 Estimate A Second
\ ¥ Effect Size From The
Second SMD And The
Calculate A First SMD, Second Error
A First Standard Error,
And A First P-Value 818 \
For Each First Dataset —
Combine Second P-
Values
810 820\ ]
Calcuiate Pnpe And
Calculate A Second Prert
SMD, A Second
Standard Error, And A 822
Second P-Value For \ 4
Each Second Dataset Combine Pnpg And
Prert To Generate P-
Value Representing
The Disease
824 X
End

FIG. 8



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/031799

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F19/18
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Alexander Kaever ET AL:
and Dependent Omics Data Sets",

58 February 2014 (2014-02-28),
XP055389972,
Retrieved from the Internet:

[retrieved on 2017-07-11]

3rd paragraph

[US]) 18 April 2013 (2013-04-18)
page 115 - page 116

"Meta-Analysis of
Pathway Enrichment: Combining Independent

URL:http://journals.plos.org/plosone/artic
1e?1d=10.1371/journal.pone.0089297

abstract; page 1 penultimate paragraph;
page 2 2nd, 3rd and penultimate paragraph;
page 3 2nd paragraph; page 4 last
paragraph - page 5 1st paragraph; page 9

A CA 2 851 280 Al (BRIGHAM & WOMENS HOSPITAL

1-22

1-22

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 July 2017

Date of mailing of the international search report

25/07/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bankwitz, Robert

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/031799
Patent document Publication Patent family Publication
cited in search report date member(s) date
CA 2851280 Al 18-04-2013 AU 2012322788 Al 24-04-2014
BR 112014008925 A2 13-06-2017
CA 2851280 Al 18-04-2013
CN 104011210 A 27-08-2014
EP 2766482 Al 20-08-2014
EP 3170899 Al 24-05-2017
HK 1201294 Al 28-08-2015
JP 2014534810 A 25-12-2014
KR 20140074997 A 18-06-2014
NZ 623459 A 27-05-2016
US 2014235697 Al 21-08-2014
WO 2013055865 Al 18-04-2013

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - wo-search-report
	Page 52 - wo-search-report

