[45] 授权公告日 2009 年 7 月 22 日

[22] 申请日 2006.5.31
[21] 申请号 200610105543.5
[30] 优先权
[32] 2006.2.7
[33] KR [31] 11833/06
[73] 专利权人 三星 SDI 株式会社
地址 韩国京畿道
[72] 发明人 金之米 李承宰 朴俊泳 尹海权
李俊亨
[56] 参考文献
CN1713424A 2005.12.28
CN1551392A 2004.12.1
JP2006-19128A 2006.1.19
WO2004/093231A2 2004.10.28

[74] 专利代理机构 北京市柳沈律师事务所
代理人 张平元 赵仁临

[54] 发明名称
燃料电池的膜电极组件及其制法以及采用它的燃料电池

[57] 摘要
提供一种用于燃料电池的膜电极组件，其制备方法，及使用该用于燃料电池的膜电极组件的燃料电池。所述膜电极组件包括：阳极，其包括阳极基底、阳极扩散层和具有微孔的阳极催化涂层；阴极，其包括阴极基底、阴极扩散层和具有微孔的阴极催化涂层；以及介于阴极和阳极之间的电解质膜，其中所述阳极扩散层是亲水性的而阴极扩散层是疏水性的，并且阴极催化涂层的微孔的平均直径小于阴极催化涂层的微孔的平均直径。在所述膜电极组件中，空气可以容易地提供给阳极，水可以容易地流出阴极，从而得到膜电极组件的高性能，并且阴极催化涂层具有较小的微孔，从而提高阳极的耐久性并降低阴极催化涂层中甲醇的扩散速度，以长时间保持电池的初始性能。
1. 一种膜电极组件，包括：阳极，其包括阳极基底、阳极扩散层和具有微孔的阳极催化剂层；阴极，其包括阴极基底、阴极扩散层和具有微孔的阴极催化剂层；以及介于阳极和阴极之间的电解质膜，其中

所述阳极扩散层是亲水性的而所述阴极扩散层是疏水性的，并且阳极催化剂层的微孔的平均直径小于阴极催化剂层的微孔的平均直径。

2. 根据权利要求1的膜电极组件，其中所述阳极扩散层包含5~20%重量的聚四氟乙烯。

3. 根据权利要求1的膜电极组件，其中所述阴极扩散层包含20~50%重量的聚四氟乙烯。

4. 根据权利要求1的膜电极组件，其中所述阳极催化剂层的微孔的平均直径为3~5 nm。

5. 根据权利要求1的膜电极组件，其中所述阴极催化剂层的微孔的平均直径为10~50 nm。

6. 根据权利要求1的膜电极组件，其中所述阳极催化剂层具有15~25 m²/g的单位重量的表面积。

7. 根据权利要求1的膜电极组件，其中所述阴极催化剂层具有2~10 m²/g的单位重量的表面积。

8. 一种制备膜电极组件的方法，该方法包括：

通过在阳极基底上涂布碳粉、粘结剂和扩散介质的混合物并烧结所涂布的混合物，制备阳极扩散层单元；

通过在转移膜上涂布担载催化剂、导电材料和扩散介质的混合物，干燥所涂布的混合物，及将干燥的混合物转移到电解质膜上，制备阳极催化剂涂层的膜；

通过在阴极基底上涂布碳粉、粘结剂和扩散介质的混合物并烧结所得到的涂布混合物，制备阴极扩散层单元；

通过在该阴极扩散层单元上涂布担载催化剂、导电材料和扩散介质的混合物并干燥所涂布的混合物，制备阴极单元；以及

热压所述阳极催化剂涂布的膜和所述阴极单元，使得阳极催化剂涂布的膜与阴极单元结合在一起。
其中，在所述阳极催化剂涂布的膜的制备中，所述转移是在 100~140℃的温度下以 0.5~5 吨/cm²的压力通过热压进行 5~10 分钟。

在所述阳极催化剂涂布的膜与所述阴极单元的热压中，所述热压是在 100~140℃的温度下以 0.5~2 吨/cm²的压力进行 5~10 分钟。

其中用于制备阳极催化剂涂布的膜的热压机产生的压力大于结合阳极催化剂涂布的膜与阴极单元的热压机产生的压力。

9. 根据权利要求 8 的方法，其中所述阳极扩散层单元包含 5~20%重量的聚四氟乙烯。

10. 根据权利要求 8 的方法，其中所述阴极扩散层单元包含 20~50%重量的聚四氟乙烯。

11. 一种燃料电池，包括权利要求 1 至 7 中任一项的膜电极组件。
燃料电池的膜电极组件及其制法以及采用它的燃料电池

技术领域

本发明涉及一种用于燃料电池的膜电极组件、其制备方法和采用该膜电极组件的燃料电池，更具体地，本发明涉及一种膜电极组件、其制备方法和包括该膜电极组件的燃料电池，在所述膜电极组件中，空气可以容易地提供给阴极，水可以容易地流出阴极，从而得到膜电极组件的高性能；并且阳极催化剂层具有较小的微孔，从而得到阳极的高耐久性，并降低阳极催化剂层中甲醇的扩散速度，以长时间保持电池的初始性能。

背景技术

燃料电池是一种直接将包含在碳氢化合物如甲醇、乙醇和天然气中的氢和氧的化学反应能转化为电能的发电系统。燃料电池可以分为，采用诸如泵或压缩机的外部燃料供氧单元供给诸如甲醇等的燃料和空气的主动燃料电池系统；其中未采用外部压缩装置，因而燃料不能主动地供给的被动燃料电池系统；以及主动燃料电池系统和被动燃料电池系统混合而成的半被动燃料电池系统。

在燃料电池系统中，实质上发电的电池组具有由数个至数十个单元电池构成的堆叠结构，每个单元电池包括膜电极组件(MEA)和隔板或双极板。MEA 包括紧密结合在一起的阳极和阴极，以及介于阳极和阴极之间的聚合物电解质膜。

图 1 是常规膜电极组件的剖视图。现在将参考图 1 详述常规 MEA。电解质膜 50 介于阴极 20 和阳极 10 之间。阳极 10 和阴极 20 分别包括催化剂层 16 和 26，扩散层 14 和 24 以及基底 12 和 22。

发生氧化/还原反应的催化剂层 16 和 26 利用担载催化剂形成。扩散层 14 和 24 支撑常规 MEA 的阳极 10 和阴极 20，并且将反应物扩散到催化剂层 16 和 26，从而使得反应物可以容易地到达催化剂层 16 和 26。支撑体 12 和 22 可由炭布、炭纸等构成。通常，阳极 10 的支撑体 12 不包括粘结剂，而阴极 20 的支撑体 22 包括粘结剂。
电解质膜 50 允许在阳极 10 产生的质子流向阴极 20，但是不允许在阴极 20 产生的电子从阴极 20 流向阳极 10；并且当充隔板，防止未反应的氢流向阴极 20 或者防止未反应的氧化剂流向阳极 10。

然而，当常规 MEA 的阴极中氧化剂流动不充分时，阴极产生的水没有充分除去，因而支撑体的微孔堵塞，这称为“水淹 (flooding)”。必须避免燃料电池的水淹。为了排水因而防止水淹，碳质支撑体可以包括具有防水性的粘结剂。然而，在这种情况下，与不使用这种具有防水性的粘结剂时相比，电池的集电性能相对降低。

此外，在常规 MEA 的阳极的情况中，甲醇使阳极恶化，因而随着时间的推移，阳极的耐久性降低。另外，因甲醇可以流经阳极的微孔而发生甲醇渗透 (crossover)，使得难于得到与恶化之前相同的电极性能。

发明内容

本发明提供一种膜电极组件，其制备方法和包括该膜电极组件的燃料电池，所述膜电极组件中，空气可以容易地提供给阴极，水可以容易地流出阴极，从而得到膜电极组件的高性能，并且阳极催化剂层具有较小的微孔，从而得到阳极的高耐久性，并降低阳极催化剂层中甲醇的扩散速度，以长时间保持电池的初始性能。

根据本发明的一个方面，提供一种膜电极组件，包括：阳极，其包括阳极基底、阳极扩散层和具有微孔的阳极催化剂层；阴极，其包括阴极基底、阴极扩散层和具有微孔的阴极催化剂层；以及介于阴极和阳极之间的电解质膜，其中所述阳极扩散层是亲水性的而阴极扩散层是疏水性的，并且阳极催化剂层的微孔的平均直径小于阴极催化剂层的微孔的平均直径。

根据本发明的另一方面，提供一种制备膜电极组件的方法，该方法包括：通过在阳极基底上涂布碳粉、粘结剂和扩散介质的混合物并烧结所涂布的混合物，制得阳极扩散层单元；通过在转移膜上涂布担载催化剂、导电材料和扩散介质的混合物，干燥所涂布的混合物，及将干燥的混合物转移到电解质膜上，制得阳极催化剂层单元；通过在阴极基底上涂布碳粉、粘结剂和扩散介质的混合物并烧结所涂布的混合物，制得阴极扩散层单元；通过在阴极扩散层单元上涂布担载催化剂、导电材料和扩散介质的混合物并干燥所涂布的混合物，制得阴极单元；以及热压阳极催化剂涂布的膜和阴极单元，使得
阳极催化剂涂布的膜与阴极单元结合在一起。

根据本发明的又一方面，提供一种包括所述膜电极组件的燃料电池。

附图说明
通过参考附图详述其示例性实施方案，本发明的上述及其他特征和优点将变得更加显而易见，其中：
图 1 是常规膜电极组件的剖视图；
图 2 是根据本发明实施方案的膜电极组件的剖视图；
图 3 是根据本发明实施方案的制备膜电极组件的方法的流程图；
图 4 是根据对比例 1 的膜电极组件的剖视图；
图 5 是根据对比例 2 的膜电极组件的剖视图；
图 6 是使用根据实施例 1 及对比例 1 和 2 制备的膜电极组件的单元电池的功率密度与时间的关系图；以及
图 7 是使用根据实施例 1 及对比例 1 和 2 制备的膜电极组件的单元电池的电流密度与时间的关系图。

具体实施方式
现在将参考图示了本发明示例性实施方案的附图更全面地描述本发明。然而，本发明可以以很多不同形式实施，并不应该解释为受到本文中阐明的实施方案的限制；相反，提供这些实施方案，使得这种公开将会彻底而完整，并将向本领域的技术人员完全传达本发明的构思。

根据本发明实施方案的膜电极组件，包括：阳极，其包括阳极基底、阳极扩散层和具有微孔的阳极催化剂层；阴极，其包括阴极基底、阴极扩散层和具有微孔的阴极催化剂层；以及介于阴极和阳极之间的电解质膜。阳极扩散层是亲水性的而阴极扩散层是疏水性的，并且阳极催化剂层的微孔的平均直径小于阴极催化剂层的微孔的平均直径。

根据本发明的实施方案，如上所述，阳极扩散层是亲水性的而阴极扩散层是疏水性的。因此，空气可以容易地提供给阴极，水可以容易地流出阴极。另外，由于阳极催化剂层的微孔的平均直径小于阴极催化剂层的微孔的平均直径，可以容易地将空气提供给阴极且容易地将水从阴极排出，阳极的耐久性提高，并且阳极中甲醇的扩散速度降低。
图 2 是根据本发明实施方案的膜电极组件的剖视图。参考图 2，阳极扩散层 14 比阴极扩散层 24 更亲水，并且阳极催化剂层 16 的微孔的平均直径小于阴极催化剂层 26 的微孔的平均直径。

为了得到上述特性，阳极扩散层 14 可以包含 5-20 wt% 的聚四氟乙烯，而阴极扩散层 24 可以包含 20-50 wt% 的聚四氟乙烯。

阳极催化剂层 16 的微孔的平均直径可以为 3-5 nm，阴极催化剂层 26 的微孔的平均直径可以为 10-50 nm。

阳极催化剂层 16 的每单位质量的表面积可以为 15-25 m²/g，阴极催化剂层 26 的每单位质量的表面积可以为 2-10 m²/g。

膜电极组件可以使用如下方法制造，该方法包括：通过在阳极基底上涂布碳粉、粘结剂和散射介质的混合物并烧结所涂布的混合物，制备阳极扩散层单元；通过在转移膜上涂布担载催化剂、导电材料和散射介质的混合物，干燥所涂布的混合物，及将干燥的混合物转移到电解质膜上，制备阳极催化剂涂布的膜；通过在阴极基底上涂布碳粉、粘结剂和散射介质的混合物并烧结所涂布的混合物，制备阴极扩散层单元；通过在阴极扩散层单元上涂布担载催化剂、导电材料和散射介质的混合物并干燥所涂布的混合物，制备阴极单元；以及热压阳极催化剂涂布的膜和阴极单元，使得阳极催化剂涂布的膜与阴极单元结合在一起。

图 3 是根据本发明实施方案的制备膜电极组件的方法的流程图。现在将参考图 3 详述根据本发明实施方案的制备膜电极组件的方法。

制备阳极扩散层单元

通过在阳极基底上涂布碳粉、粘结剂和散射介质的混合物并烧结所涂布的混合物，形成阳极扩散层单元。

阳极基底可以由炭纸形成。该阳极扩散层可以利用能够在阳极基底上提供具有均匀厚度的扩散层的任何方法形成。例如，可以制备碳浆料并通过流程成为型 (tape casting)、喷涂或丝网印刷将其涂布在阳极基底上。然而，形成阳极扩散层的方法不限于此。

碳浆料是碳粉、粘结剂和散射介质的混合物。碳粉可以是炭黑粉末、乙炔黑粉末、碳纳米管粉末、碳纳米线粉末、碳纳米角粉末或碳纳米纤维粉末。

粘结剂可以是聚四氟乙烯 (PTFE)、聚偏氟乙烯 (PVdF) 或氟化乙烯丙烯
(FEP), 但是不限于此。根据本发明实施方案的阳极扩散层单元包含 5~20 wt% 的聚四氟乙烯，以得到亲水性。

扩散介质可以是水、乙醇、甲醇、异丙醇、n-丙醇或丁醇，但不限于此。扩散介质优选为水、乙醇、甲醇或异丙醇。

可以将上述材料形成材料以适当混合比例在声波水浴(sonic bath)中混合 30 分钟～2 小时，制备碳碳桨。

如上所述制备的扩散层在 150~350℃的温度下烧结 30 分钟～2 小时。进行烧结层的烧结来除去扩散介质，并适当地分散粘结剂，从而得到防水性并防止碳损失。当烧结温度低于 150℃时，粘结剂分布得不充分，因此粘结性会降低，因而防水性也会降低。另一方面，当烧结温度高于 350℃时，过高

的温度会使扩散层单元变形。当烧结时间短于 30 分钟时，粘结剂分布得不充分，因此粘结性会降低，因而防水性也会降低。另一方面，如果烧结时间长于 2 小时，则制备阳极扩散层单元的步骤不经济，并且粘结剂可能分散得过于均匀，这会导致低的电导率。

烧结温度可以取决于所使用的粘结剂的种类。具体地，烧结温度可以接近所使用的粘结剂的熔点。

阳极催化剂涂布的膜的制备

通过在转移膜上涂布担载催化剂、导电材料和扩散介质的混合物，干燥所涂布的混合物，然后将干燥的薄膜转移到电解质膜上，形成阳极催化剂涂布的膜。

转移膜可以是聚四氟乙烯膜、聚对苯二甲酸乙二酯(PET)膜、kapton 膜、tedra 膜、铝箔或聚酯薄膜。导电材料可以是导子传导树脂，如具有防水性的氟树脂。导电材料优选是熔点为 400℃或更低的氟树脂，如 Nafion、聚四氟乙烯或四氟乙烯-全氟代烷基乙烯基醚共聚物。所使用的粘结剂的量按 100 重量份的催化剂计为 10~40 重量份。

催化剂可以是，但不限于 Pt、Ru、Pd、Rh、Ir、Os、Pt、其混合物、其合金或者其金属由炭黑、乙炔黑、活性炭或石炭担载的担载催化剂。担载催化剂中的一种可以是 Pt Ru/C。

扩散介质可以是水、1-丙醇、乙二醇或 2-丙醇。使用的扩散介质的量按 100 重量份的催化剂计可以为 5~250 重量份。例如，当扩散介质是水时，使
用的水的量可以为 5~10 重量份；当扩散介质是 1-丙醇时，使用的 1-丙醇的量可以为 150~250 重量份；当扩散介质是乙二醇时，使用的乙二醇的量可以为 100~200 重量份；而当扩散介质是 2-丙醇时，使用的 2-丙醇的量可以为 150~250 重量份。

涂布担载催化剂、导电材料和扩散介质的混合物的方法不作限制，可以是能够用于在转移膜上形成厚度均匀的催化剂层的任何方法。例如，可以制备催化剂浆料并通过流延成型、喷涂或丝网印刷将其涂布在转移膜上。然而，涂布方法不优于此。

可以通过将催化剂浆料形成材料以适当混合比例在声波水浴中混合 1~3 小时，制备催化剂浆料。

如上所述制备的催化剂层在 60~120℃下干燥 1~4 小时，以除去所使用的扩散介质。当干燥温度低于 60℃时，扩散介质没有充分除去，因而催化剂层干燥得不充分。另一方面，当干燥温度高于 120℃时，催化剂可能会损坏。当干燥时间短于 1 小时时，扩散介质没有充分除去，因而催化剂层干燥得不充分。另一方面，当干燥时间长于 4 小时时，则该制备过程不经济。

干燥催化剂层的结果是完成了阳极单元的形成。接着，将阳极单元转移到电解质膜上，形成阳极催化剂涂布的膜。阳极单元的转移可以利用现有技术已知的任何方法进行。例如，本实施方案的转移方法是热压法，但不限于此。

热压可以在 100~140℃下以 0.5~5 吨/cm² 的压力进行 5~10 分钟。当热压温度低于 100℃时，阳极单元与电解质膜结合得不充分，因此阳极单元和电解质膜之间的界面电阻会较高。另一方面，当热压温度高于 140℃时，由于脱水，所以电解质膜会损坏。

在本发明的实施方案中，通过在这些范围内调整热压的温度和压力，可以形成比阴极催化剂层的微孔的平均直径小的阳极催化剂层的微孔的平均直径。

在进行热压步骤之后，可以除去附着于阳极单元上的转移膜。

阴极扩散层单元

可以按照与阳极扩散层单元类似的方法制备阴极扩散层单元。即，在阴极基底上涂布碳粉、粘结剂和扩散介质的混合物然后烧结，并使用 20~50 wt%
的聚四氟乙烯，以得到疏水性。

阴极单元的制备

按照与包括在阳极催化剂涂布的膜制备过程中的阳极单元相同的方法制备阴极单元，所不同的是，将担载催化剂、导电材料和扩散介质的混合物直接涂布在阴极扩散层单元上，而不是涂布在转移膜上，然后干燥。

阴极催化剂涂布的膜和阴极单元的结合

将所制备的阳极催化剂涂布的膜和阴极单元通过热压结合在一起，从而形成根据本发明实施方案的膜电极组件。

热压可以在 100~140℃下以 0.5~2 吨/cm² 的压力进行 5~10 分钟。当热压温度低于 100℃时，结合得不充分，使得催化剂层单元和扩散层单元可以轻易地分开。当热压温度高于 140℃时，催化剂会损坏。

具体地，通过在这些范围内调整热压的温度和压力，可以形成比阳极催化剂层的微孔的平均直径大的阴极催化剂层的微孔的平均直径。另外，为了转移和结合，阳极经受两次热压过程，而阴极仅经受一次热压过程。因此，阳极的微孔的平均直径小于阴极的微孔的平均直径。

在本发明的实施方案中，利用转移膜调整阳极催化剂层的微孔的平均直径。在压缩过程中，压力可以有效地转移到阳极催化剂层，因为转移膜受到压力的变形比用于形成阴极的炭纸小，因此可以得到所需的微孔尺寸。另外，通过细微地调整热压的压力，可以控制孔径。另一方面，在使用炭纸作为催化剂涂层的阴极催化剂层的情况下，炭纸在热压过程中吸收压力，使得高压不能施加于催化剂层，因而形成了微孔比阳极大的阴极。因此，用于制备阳极催化剂涂布的膜的热压机产生的压力大于用于结合阳极催化剂涂布的膜和阴极单元的热压机产生的压力。由于阳极催化剂涂布的膜在这种高压下制备的，因此当经受第二次热压过程时，在高压下形成的阳极催化剂层的微孔可以保持。

所制备的阳极催化剂层的微孔的平均直径可以为 3~5 nm，而阴极催化剂层的微孔的平均直径可以为 10~50 nm。

阳极催化剂层的单位重量的表面积可以为 15~25 m²/g，而阴极催化剂层的单位重量的表面积可以为 2~10 m²/g。当阳极催化剂层的单位重量的表面积高于 25 m²/g 时，催化剂层的机械强度不足，而当催化剂层的单位重量的
表面积低于 2 m²/g 时，反应物的扩散将会受到严重影响。

根据本发明实施方案的包括膜电极组件的燃料电池具有多个单元电池的堆叠结构，其中每一个都包括膜电极组件(MEA)和隔板。为了形成燃料电池系统，还可以使用燃料处理器(FP)、燃料罐和燃料泵。

通过参考下面实施例，将更详细地说明本发明。这些实施例只是为了说明性目的，而不是限制本发明的范围。

实施例 1

炭黑粉末、聚四氟乙烯和异丙醇以 100:5:500 的重量比，在声波水浴中混合 2 小时，从而制备阳极扩散层浆料。将所制备的阳极扩散层浆料涂布在 400 nm 厚的炭纸(GDL 10 系列，西格里碳素集团(SGL Carbon Group))上，并在 170℃下烧结 1 小时，从而制备阳极扩散层单元。

用作阳极催化剂的 PtRu 黑与按 100 重量份的催化剂计的重量比为 10:15:200 的水、Nafion 和异丙醇，在声波水浴中混合 2 小时，从而制备阳极催化剂改善浆料。通过丝网印刷，将所制备的阳极催化剂层浆料涂布在 PET 膜上，然后在 70℃下干燥 2 小时，从而制备转移到电解质膜(Dufont 公司生产的 Nafion 115 膜)上的阳极单元。通过在 130℃下以 5 吨/cm² 的压力热压 6 分钟，将阳极单元转移到电解质膜上，从而制备阳极催化剂涂布的膜。

同时，炭黑粉末、聚四氟乙烯和异丙醇以 100:20:500 的重量比，在声波水浴中混合 2 小时，从而制备阴极扩散层浆料。将所制备的阴极扩散层浆料涂布在 400 nm 厚的炭纸(GDL 10 系列，西格里碳素集团)上，并在 350℃下烧结 1 小时，从而制备阴极扩散层单元。

用作阴极催化剂的 Pt 黑与按 100 重量份的催化剂计的重量比为 10:15:200 的水、Nafion 和异丙醇，在声波水浴中混合 2 小时，从而制备阴极催化剂层浆料。将所制备的浆料涂布在阴极扩散层单元上，然后干燥，从而制备阴极单元。

阴极催化剂涂布的膜和阴极单元在 130℃下以 2 吨/cm² 的压力热压 5 分钟，从而制备膜电极组件。

在实施例 1 制备的膜电极组件中，阳极催化剂层的微孔的平均直径为 3 nm，而阴极催化剂层的微孔的平均直径为 30 nm。
对比例 1

炭黑粉末、聚四氟乙烯和异丙醇以 100:20:500 的重量比，在声波水浴中混合 2 小时，从而制备阳极扩散层浆料。将所制备的阳极扩散层浆料涂布在 400 nm 厚的炭纸 (GDL 10 系列，西格里碳素集团) 上，并在 350°C 下烧结 1 小时，从而制备阳极扩散层单元。

用作阳极催化剂的 Pt 黑与按 100 重量份的催化剂计的重量比为 10:15:200 的水、Nafion 和异丙醇，在声波水浴中混合两小时，从而制备阳极催化剂浆料。通过丝网印刷，将所制备的阳极催化剂浆料涂布在 PET 膜上，随后在 70°C 下干燥 2 小时，从而制备转移到电解质膜 (Dufont 公司生产的 Nafion 115 膜) 上的阴极单元。通过在 130°C 下以 5 吨/cm² 的压力热压 6 分钟，将阴极单元转移到电解质膜上，从而制备阳极催化剂涂布的膜。

同时，炭黑粉末、聚四氟乙烯和异丙醇以 100:5:500 的重量比，在声波水浴中混合 2 小时，从而制备阳极扩散层浆料。将所制备的阳极扩散层浆料涂布在 400 nm 厚的炭纸 (GDL 10 系列，西格里碳素集团) 上，并在 170°C 下烧结 1 小时，从而制备阳极扩散层单元。

用作阳极催化剂的 PtRu 黑与按 100 重量份的阳极催化剂计的重量比为 10:15:200 的水、Nafion 和异丙醇，在声波水浴中混合 2 小时，从而制备阳极催化剂浆料。将所制备的浆料涂布在阳极扩散层单元上，然后干燥，从而制备阳极单元。

在 130°C 下以 2 吨/cm² 的压力，将阴极催化剂涂布的膜和阳极单元热压 5 分钟，从而制备膜电极组件。

在对比例 1 制备的膜电极组件中，阳极催化剂层的微孔的平均直径是 30 nm，阴极催化剂层的微孔的平均直径是 3 nm。根据对比例 1 制备的膜电极组件的剖视图示于图 4 中。

对比例 2

炭黑粉末、聚四氟乙烯和异丙醇以 100:5:500 的重量比，在声波水浴中混合 2 小时，从而制备阳极扩散层浆料。将所制备的阳极扩散层浆料涂布在 400 nm 厚的炭纸 (GDL 10 系列，西格里碳素集团) 上，并在 350°C 下烧结 1 小时，从而制备阳极扩散层单元。

用作阳极催化剂的 PtRu 黑与按 100 重量份的阳极催化剂计的重量比为
10:15:200 的水、Nafion 和异丙醇，在声波水浴中混合 2 小时，从而制备阳极催化剂层浆料。通过丝网印刷，将所制备的阳极催化剂层浆料涂布在 PET 膜上，然后在 70℃下干燥 2 小时，从而制备转移到电解质膜上的阳极单元。

同时，炭黑粉末、聚四氟乙烯和异丙醇以 100:20:500 的重量比在声波水浴中混合 2 小时，从而制备阴极扩散层浆料。将所制备的阴极扩散层浆料涂布在 400 nm 厚的炭纸(GDL 10 系列，西格里碳素集团)上，并在 350℃下烧结 1 小时，从而制备阴极扩散层单元。

用作阴极催化剂的 Pt 黑与按 100 重量份的催化剂计的重量比为 10:15:200 的水、Nafion 和异丙醇，在声波水浴中混合 2 小时，从而制备阴极催化剂层浆料。通过丝网印刷，将所制备的浆料涂布在 PET 膜上，然后在 70℃下干燥 2 小时，从而制备转移到电解质膜上的阴极单元。

将作为电解质膜的 Dufont 公司生产的 Nafion 115 膜插入阳极单元和阴极单元之间，并在 130℃下以 5 吨/cm² 的压力将所得到的结构热压 6 分钟，使得阳极和阴极转移到电解质膜的相对的两侧，从而制备催化剂涂布的膜。

将该催化剂涂布的膜插入阳极扩散层单元和阴极扩散层单元之间，并在 130℃下以 2 吨/cm² 的压力将所得到的结构热压 5 分钟，从而制备膜电极组件。

在对比例 2 制备的膜电极组件中，阳极催化剂层的微孔的平均直径是 3 nm，阴极催化剂层的微孔的平均直径也是 3 nm。根据对比例 2 制备的膜电极组件的剖视图示于图 5 中。

性能比较

使用本领域已知的常规方法，制备包括根据实施例 1、对比例 1 和对比例 2 制备的膜电极组件的单元电池。对每个膜电极组件，都制备共三个单元电池。测量所制备的单元电池的功率密度和电流密度相对于时间的关系。测量结果(三个样品的平均值)示于图 6 和图 7 中。

图 6 是利用根据实施例 1 以及对比例 1 和 2 制备的膜电极组件的单元电池的功率密度相对于时间的曲线图。参考图 6，根据实施例 1 制备的三个单元电池的平均功率密度是 55 mW/cm²，该值远大于根据对比例 1 和对比例 2 制备的三个单元电池的平均功率密度，其分别是 28 mW/cm² 和 42 mW/cm²。

图 7 是利用根据实施例 1 以及对比例 1 和 2 制备的膜电极组件的单元电
池的电流密度相对于时间的曲线。参考图7，包括根据实施例1制备的膜电极组件的单元电池的性能经过单位时间降低5%，而包括根据对比例1和对比例2制备的膜电极组件的单元电池的性能经过相同的单位时间分别降低50%或更多及降低15%。也就是说，与包括根据对比例1和对比例2制备的膜电极组件的单元电池相比，包括根据实施例1制备的膜电极组件的单元电池表现出良好的耐久性。

根据本发明，提供一种膜电极组件，其中空气可以容易地提供给阴极，水可以容易地流出阴极，从而得到燃料电池的高性能；阳极催化剂层具有较小的微孔，从而得到阳极的高耐久性并降低阳极催化剂层中的甲醇的扩散速度，以长时间保持电池的初始性能。另外，提供了制备所述膜电极组件的方法和包括该膜电极组件的燃料电池。

尽管已经参考其示例性实施方案具体地说明和描述了本发明，但是本领域的普通技术人员将会理解其中可以进行各种形式和细节的改变，而不脱离由所附的权利要求书所限定的本发明的精神和范围。
图 1
图 2