

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2978459 A1 2016/09/09

(21) **2 978 459**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2016/03/03
(87) Date publication PCT/PCT Publication Date: 2016/09/09
(85) Entrée phase nationale/National Entry: 2017/08/31
(86) N° demande PCT/PCT Application No.: US 2016/020779
(87) N° publication PCT/PCT Publication No.: 2016/141244
(30) Priorité/Priority: 2015/03/04 (US62/128,133)

(51) CI.Int./Int.CI. *C07K 16/22*(2006.01),
C07K 16/00(2006.01), *C12N 15/13*(2006.01),
C12N 5/10(2006.01), *C12P 21/08*(2006.01)

(71) Demandeur/Applicant:
GENZYME CORPORATION, US

(72) Inventeurs/Inventors:
QIU, HUAWEI, US;
PAN, CLARK, US;
BIRD, JULIE, US

(74) Agent: ROBIC

(54) Titre : DIMERES SCFV-FC QUI SE LIENT AU FACTEUR DE CROISSANCE TRANSFORMANT β 1 AVEC UNE
AFFINITE, UNE AVIDITE ET UNE SPECIFICITE ELEVEES
(54) Title: SCFV-FC DIMERS THAT BIND TRANSFORMING GROWTH FACTOR- β 1 WITH HIGH AFFINITY, AVIDITY
AND SPECIFICITY

(57) Abrégé/Abstract:

An scFv-Fc dimer binds and neutralizes TGF β 1 selectively and with high affinity and avidity. The scFv region may comprise the same VH and VL domains or CDR regions as metelimumab. The unique combination of their smaller size, high selectivity, potency against TGF β 1, and long *in vivo* half-life makes the scFv-Fc dimers ideal candidates for therapeutic applications.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 September 2016 (09.09.2016)

(10) International Publication Number
WO 2016/141244 A8

(51) International Patent Classification:
C07K 16/00 (2006.01) *C07K 16/22* (2006.01)

PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2016/020779

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:

3 March 2016 (03.03.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/128,133 4 March 2015 (04.03.2015) US

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(48) Date of publication of this corrected version:

20 October 2016

(15) Information about Correction:

see Notice of 20 October 2016

WO 2016/141244 A8

(54) Title: scFv-Fc DIMERS THAT BIND TRANSFORMING GROWTH FACTOR- β 1 WITH HIGH AFFINITY, AVIDITY AND SPECIFICITY

(57) Abstract: An scFv-Fc dimer binds and neutralizes TGF β 1 selectively and with high affinity and avidity. The scFv region may comprise the same VH and VL domains or CDR regions as metelimumab. The unique combination of their smaller size, high selectivity, potency against TGF β 1, and long *in vivo* half-life makes the scFv-Fc dimers ideal candidates for therapeutic applications.

TITLE OF THE INVENTION

**scFv-Fc DIMERS THAT BIND TRANSFORMING GROWTH
FACTOR- β 1 WITH HIGH AFFINITY, AVIDITY AND
SPECIFICITY**

5

RELATED APPLICATIONS

This patent application claims the benefit of U.S. Provisional Patent Application 62/128,133, filed March 4, 2015, which is incorporated herein by reference in its entirety.

10 BACKGROUND OF THE INVENTION

Technical Field

An antigen-binding dimer having two polypeptide monomers, each comprising a single-chain fragment variable molecule (scFv), a hinge, and an Fc molecule, exhibits high affinity and avidity to Transforming Growth Factor- β 1 (TGF β 1) but not to TGF β 2 or to TGF β 3. Compositions comprising the antigen-binding dimer and methods of using the same for treatment of diseases involving TGF β 1 activity are provided.

Background

Many severe diseases are linked to malfunctions of the TGF β -induced signaling pathway. For instance, an increased tissue level of TGF β is believed to be a factor in the development of idiopathic pulmonary fibrosis and myocardial fibrosis. Furthermore, high local tissue levels of TGF β may allow the maintenance and progression of some types of cancer cells. Down-regulation of TGF β signaling therefore may reduce the viability of such tumor cells.

TGF β isoforms are ~25 kDa homodimeric molecules with a similar structural framework in which two monomers are covalently linked via a disulfide bridge. The mammalian isoforms share a sequence identity of 70–82%, but have non-overlapping activities in vascular development and the regulation of immune cell function. Three TGF β isoforms have been reported in humans: TGF β 1, TGF β 2, and TGF β 3 (Swiss

Prot accession numbers P01137, P08112, and P10600, respectively). TGF β 1 and TGF β 3 trigger a cellular signaling cascade upon binding to the extracellular domains of two transmembrane receptors, known as TGF β receptor types I and II. TGF β 2 may bind to TGF β receptor types I and II, as well as TGF β receptor type III.

5 Antibodies that can bind human TGF β 1, TGF β 2, and TGF β 3 have been tested for clinical use. For instance, Grütter et al. disclosed GC1008, a human IgG4 monoclonal antibody (Mab; i.e., GC1008) in clinical development for treating malignancy and fibrotic diseases. *Proc. Nat'l Acad. Sci. USA* 105(51): 20251-56 (2008). GC1008 is a “pan-specific” TGF β neutralizing antibody, because it can neutralize all three human TGF β isoforms. Antibodies that selectively neutralize TGF β 1 are disclosed, for example, in U.S. Patent No. 6,492,497 and U.S. Patent No. 7,151,169, which are incorporated by reference into this disclosure. Metelimumab, also known as CAT192 (IgG4), is a human IgG4 monoclonal antibody that selectively neutralizes TGF- β 1. See e.g., U.S. Patent No. 6,492,497. Metelimumab was tested 10 for the treatment of diffuse cutaneous systemic sclerosis, also known as scleroderma, but demonstrated insufficient efficacy.

15

BRIEF SUMMARY OF THE INVENTION

The present disclosure provides TGF β 1-binding scFv-Fc dimers that are capable of selectively neutralizing human TGF β 1. In one embodiment, the scFv-Fc 20 dimers are formatted as scFv-Fc fusion proteins comprised of two polypeptide monomers, each monomer comprising a single-chain Fv region (scFv), a hinge, and an Fc region. The VH and VL domains of the scFv-Fc dimer exhibit a higher affinity and avidity to TGF β 1 and more effectively neutralize TGF β 1 than when used in the IgG1 or IgG4 format.

25 In one embodiment, the scFv component may be composed of the same VH and VL domains as the VH and VL domains of metelimumab. The variable domains in the scFv component may be linked together by a linker, e.g., a [G₄S]₃-type linker. Each of the scFv components of the scFv-Fc dimers may be fused via a hinge region, e.g., a human IgG1 or IgG4 hinge region, to an Fc region. The monomers of the 30 dimer may be covalently linked by a disulfide bond between cysteine residues in the hinge region. In another embodiment, the scFv-Fc dimers may have structural dissimilarities to metelimumab, most notably the absence of CH₁ and CL domains and the presence of a linker between the VH and VL domains. Advantageously, the scFv-

Fc dimers display an apparent affinity toward TGF β 1 nearly two orders of magnitude greater than that of an scFv comprising the same VH and VL domains (CAT191(scFv), shown in SEQ ID NO: 12) in an A549 cell potency bioassay.

Further, the scFv-Fc dimers display an apparent affinity toward TGF β 1 over three 5 orders of magnitude greater than that of an IgG-formatted antibody comprising the same VH and VL domains (e.g., CAT192) in the A549 cell bioassay. The scFv-Fc dimers also display desirable stability and pharmacokinetic properties. Because of their relatively small size and extended half-life in serum, the scFv-Fc dimers are particularly useful for therapeutic applications.

10 Accordingly, the present invention is directed to an isolated binding protein comprising a variable domain that is capable of binding TGF β 1, wherein the binding protein exhibits a Kd for human TGF β 1 at least about 50% lower than the Kd of the same binding protein for human TGF β 2, as measured by surface plasmon resonance.

15 In another embodiment, the present invention is directed to an isolated binding protein comprising a variable domain that is capable of binding TGF β 1, wherein the binding protein exhibits a Kd for human TGF β 1 at least about 50% lower than the Kd of the same binding protein for human TGF β 3, as measured by surface plasmon resonance.

20 In a further embodiment, the present invention is directed to an isolated binding protein comprising a variable domain that is capable of binding TGF β 1, wherein the binding protein exhibits a Kd for human TGF β 1 at least about 50% lower than the Kd of the same binding protein for human TGF β 2, and at least about 50% lower than the Kd of the same binding protein for human TGF β 3, as measured by surface plasmon resonance.

25 In a further embodiment, the present invention is directed to an isolated binding protein that binds TGF β 1, wherein the binding protein comprises a first polypeptide chain and a second polypeptide chain, the first and the second polypeptide chains each having the formula of:

(VD₁)-(linker1)_n-(VD₂)-(linker2)_m-(hinge)_p-(Fc region),

30 wherein VD₁ comprises a first variable domain selected from the group consisting of a VL domain isolated from an antibody capable of binding TGF β 1, and a VH domain isolated from an antibody capable of binding TGF β 1, and VD₂

comprises a second variable domain selected from the group consisting of a VL domain isolated from an antibody capable of binding TGF β 1, and a VH domain isolated from an antibody capable of binding TGF β 1; and wherein, n is 0 or 1, m is 0 or 1, and p is 0 or 1.

5 In one embodiment, the present invention is directed to an isolated TGF β 1-binding scFv-Fc dimer that selectively binds TGF β 1. The scFv-Fc dimer may comprise two polypeptide monomers, each having the following formula, from N-terminal to C-terminal: (VH domain)-(linker)-(VL domain)-(hinge)-(Fc region). In another embodiment, an isolated binding protein that binds TGF β 1 is disclosed, which 10 comprises a first polypeptide chain and a second polypeptide chain. The first and the second polypeptide chains may both have the formula of, from N-terminal to C-terminal: (VH domain)-(linker₁)_n-(VL domain)-(linker₂)_m-(hinge)_p-(Fc region). p may be 0 or 1, n may be 0 or 1, and m may be 0 or 1. In one aspect, the first and second polypeptide chains may be identical and may form a dimer.

15 In another embodiment, the disclosed TGF β 1 binding protein may comprise a polypeptide chain having the formula of, from N-terminal to C-terminal: (VH domain)-(linker₁)_n-(VL domain)-(linker₂)_m-(hinge)_p-(Fc region), wherein p may be 0 or 1, n may be 0 or 1, and m may be 0 or 1.

20 The VH domain of the disclosed binding protein may comprise a variable heavy complementarity determining region 1 (HCDR1), a variable heavy complementarity determining region 2 (HCDR2), and a variable heavy complementarity determining region 3 (HCDR3). In one aspect, the HCDR1 may have the amino acid sequence of SEQ ID NO: 22, The HCDR2 may have the amino acid sequence of SEQ ID NO: 23, and the HCDR3 may have the amino acid sequence 25 of SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 30.

The framework regions of the VH domain may be selected from a variable heavy germline sequence. The VH domain may be selected, for example, from the human VH domain sequences set forth in SEQ ID NO: 1 or SEQ ID NO: 2, or a variant thereof having modifications in up to four amino acids.

30 The VL domain of the disclosed binding protein may comprise a variable light complementarity determining region 1 (LCDR1), a variable light complementarity determining region 2 (LCDR2), and a variable light complementarity determining

region 3 (LCDR3). In one aspect, the LCDR1 may have the amino acid sequence of SEQ ID NO: 27, the LCDR2 may have the amino acid sequence of SEQ ID NO: 28, and the LCDR3 may have the amino acid sequence of SEQ ID NO: 29.

The framework regions of the VL domain may be selected from a variable 5 lambda or kappa germline sequence. The VL domain may be selected, for example, from the human V κ domain sequences set forth in SEQ ID NO: 5 or SEQ ID NO: 6, or a variant thereof having modifications of up to four amino acids. In one embodiment, each polypeptide of the dimer may comprise the VH domain set forth in SEQ ID NO: 1 and the V κ domain set forth in SEQ ID NO: 5, which are the VH and 10 VL domains present in metelimumab, respectively.

In one embodiment, the variable domains in the scFv component may be linked by a flexible linker about 15 amino acids in length. "About" in this context means the linker can vary by up to plus or minus four amino acids in length. For optimal flexibility, the linker is composed predominantly of glycine and serine 15 residues. For example, the linker may be a [G₄S]₃-type linker. The linker may have the amino acid sequence SGGGSGGGGSGGGGS (SEQ ID NO: 3), the amino acid sequence GGGGSGGGGSGGGGS (SEQ ID NO: 4), or a variant thereof having up to four amino acid modifications. For purpose of this disclosure, "having up to x amino acids modifications" means that the up to x number of amino acids may be changed to 20 different amino acids by one of skill in the art without significantly altering the structure and function of the polypeptide.

In another embodiment, p is 1 and the scFv component is connected to an Fc region by a hinge. The hinge may comprise amino acid sequences derived from a human IgG1 or IgG4 hinge region. For example, the hinge may comprise the amino 25 acid sequence PKSCDKTHTCPPCPAPELLGGP (SEQ ID NO: 7), or a variant thereof having up to four amino acid modifications. In one embodiment, the hinge length may vary from 3-15 amino acids. When the hinge is from a human IgG1, it may comprise the amino acid sequence CPPCP (SEQ ID NO: 21). Further, the variant of the hinge of SEQ ID NO: 7, which is also a human IgG1 hinge, may 30 comprise the amino acid sequence CPPCP (SEQ ID NO: 21).

In another embodiment, m is 1 and a linker2 is present between scFv component and the hinge. In one aspect, linker2 may comprise the amino acid

sequence GGSG (SEQ ID NO: 20), or a variant thereof having up to 2 amino acid modifications.

The Fc region may comprise two or three constant domains, e.g., a CH₂ domain and CH₃ domain. The Fc region may be obtained from a human IgG1, a 5 human IgG4, or a variant of a human IgG1 or IgG4 having up to ten amino acid modifications, for example. In one embodiment, each polypeptide of the dimer has the sequence set forth in SEQ ID NO: 9. The structure of the scFv-Fc dimer of SEQ ID NO: 9 is shown in FIG. 2. The scFv-Fc dimer may bind TGF β 1 selectively. The scFv-Fc dimer may show an apparent dissociation constant less than 1 nM or even 10 less than 0.1 nM. The apparent dissociation constant may be measured by using an A549 bioassay or by surface plasmon resonance, for example.

In another embodiment, an isolated polynucleotide is disclosed which may comprise a nucleotide sequence encoding the scFv-Fc dimer. The isolated polynucleotide may be a cDNA, a recombinant DNA or a synthetic DNA. A host cell 15 may comprise the isolated nucleic acid. The host cell may be a human cell, such as a Human Embryonic Kidney 293 (HEK293) cell and cell lines derived therefrom, or it may be a Chinese Hamster Ovary (CHO) cell. A method of making the scFv-Fc dimer may include culturing the host cell under suitable conditions to produce the scFv-Fc dimer. The scFv-Fc dimer may be purified. The degree of purity may be 20 90%, 95%, 99%, 99.5% or more.

The scFv-Fc dimer of the present invention may be an element of a composition. The composition may be a pharmaceutical composition. The pharmaceutical composition may comprise a therapeutically effective amount of the scFv-Fc dimer. The composition may further comprise one or more biologically 25 active components, excipients, or diluents.

A method of treating a disease or condition resulting directly or indirectly from TGF β 1 activity in a human may comprise administering a pharmaceutical composition comprising a therapeutically effective amount of the scFv-Fc dimer. The disease or condition may be selected from the group consisting of a fibrotic disease, 30 cancer, an immune-mediated disease, e.g., diffuse cutaneous systemic sclerosis, bone remodeling disease, kidney disease and/or combinations thereof. The scFv-Fc dimer may be used in the manufacture of a medicament for treatment of a disease or

disorder selected from the group consisting of a fibrotic disease, cancer, an immune-mediated disease, e.g., diffuse cutaneous systemic sclerosis, bone remodeling disease, kidney disease and/or combinations thereof. The treatment of the disease or disorder may comprise neutralizing TGF β 1 or inhibiting TGF β 1 signaling. The treatment of
5 the disease or disorder may comprise inhibiting TGF β 1-mediated fibronectin production, vascular endothelial growth factor (VEGF) production, epithelial cell proliferation, endothelial cell proliferation, smooth muscle cell proliferation, or immunosuppression. The treatment of the disease or disorder may comprise increasing natural killer cell activity.

10 BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

The drawings presented herein are for purpose of illustration and are not to be used to limit the scope of the present invention.

FIG. 1 depicts the general structures of the various formats.

FIG. 2 depicts the results of a Biacore TGF β 1 binding assay which showed the
15 loss of affinity when the scFv(CAT191) was converted into a full length IgG4 (CAT192) molecule.

FIG. 3 shows the results of an A549 cell bioassay comparing the inhibitory effects by various antibody constructs on TGF β 1-stimulated IL-11 production: scFv diabody 5aa (SEQ ID NO: 14); CAT191(scFv) (SEQ ID NO: 12); CAT191(scFv-Fc)
20 (SEQ ID NO: 9); and CAT192(IgG4) (light chain SEQ ID NO: 10 and heavy chain SEQ ID NO: 11).

FIG. 4 depicts the results of pharmacokinetic tests to determine the half-life of CAT191 (scFv-Fc) following intravenous (IV) administration.

FIG. 5 depicts the results of pharmacokinetic tests to determine the half-life of
25 CAT191 (scFv-Fc) following intraperitoneal (IP) administration.

FIG. 6 shows the TGF β 1-specific binding results of CAT191(scFv-Fc) prepared from CHO cells.

FIG. 7 shows the the cell-based potency assay results of CAT191(scFv-Fc) prepared from CHO cells.

DETAILED DESCRIPTION OF THE INVENTION

The disclosed scFv-Fc dimers bind and neutralize TGF β 1 selectively and with high affinity and avidity. The scFv regions may be composed of the same VH and VL domains as in metelimumab. scFv-Fc dimers advantageously show greater 5 efficacy in neutralizing TGF β 1 than when the variable domains are used in other formats. Because of their relatively small size and extended half-life in serum, the present scFv-Fc dimers are ideal candidates for therapeutic applications.

As used herein, a first element “and/or” a second element means a specific disclosure of the first or second element separately, or the first and second elements in 10 combination. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.

An “isolated” polynucleotide (or nucleic acid) or protein is removed and/or altered from its natural form using genetic engineering technologies. A “purified” nucleic acid or protein may be substantially pure, e.g., at least 90% pure, or in 15 homogeneous form.

“Selective binding”, or “binding selectively” to human TGF β 1, means that the binding protein (e.g., scFv-Fc dimer) is capable of binding human TGF β 1 with a higher affinity than binding to human TGF β 2 or human TGF β 3, e.g., with a dissociation constant with human TGF β 1 at least 50% lower than its dissociation 20 constant with human TGF β 2 or human TGF β 3, as measured by surface plasmon resonance.

scFv-Fc Dimers

In one embodiment, the present scFv-Fc dimer variable domains comprise complementarity determining regions (CDRs) from the CDRs disclosed in U.S. Patent 25 No. 6,492,497 (e.g., SEQ ID NOs: 11-19 of U.S. Patent No. 6,492,497), incorporated herein by reference. The CDR regions are listed below:

	HCDR1	SYGMH	SEQ ID No. 22
	HCDR2	VISYDGSIKYYADSVKG	SEQ ID No. 23
	HCDR3	TGEYSGYDTSGVEL	SEQ ID No. 24
30		TGEYSGYDTDPQYS	SEQ ID No. 25
		TGFYSGYDTPASPD	SEQ ID No. 26
	LCDR1	RASQGIGDDLG	SEQ ID No. 27

LCDR2	GTSTLQS	SEQ ID No. 28
LCDR3	LQDSNYPLT	SEQ ID No. 29

Surprisingly, a consensus HCDR3 binding motif is revealed, having the sequence:

5 HCDR3 TGX₁YSGYDTX₂X₃X₄X₅X₆ SEQ ID No. 30

Wherein: X₁ may be any amino acid (preferably E, or F), or absent,
10 X₂ may be any amino acid (preferably S, D, or P), or absent,
 X₃ may be any amino acid (preferably G, P, or A), or absent,
 X₄ may be any amino acid (preferably V, Q, or S), or absent,
 X₅ may be any amino acid (preferably E, Y, or P), or absent,
 X₆ may be any amino acid (preferably L, S, or D), or absent.

The VH domain comprises the HCDR1 of SEQ ID No. 22, the HCDR2 of SEQ ID No. 23, and one of the HCDR3s selected from the group consisting of SEQ ID No. 24, SEQ ID No. 25, SEQ ID No. 26, and SEQ ID No. 30. The CDR sequences may be separated by anywhere from one to four framework regions, in order from the N-terminal: FW1 – CDR1 – FW2 – CDR2 – FW3 – CDR3 – FW4. The framework regions of the VH domain may be selected from a variable heavy germline sequence. In one embodiment, the FW region sequences may be selected from the same human variable heavy germline sequence. The VL domain comprises the LCDR1 of SEQ ID NO: 7, the LCDR2 of SEQ ID NO: 28, and the LCDR3 of SEQ ID NO: 29. The framework regions of the VL domain may be selected from a variable lambda or kappa germline sequence, e.g., from the same human variable lambda or kappa germline sequence. At present, about 40 variable heavy germline sequences are known in the art, as are about 40 variable kappa germline sequences and about 30 variable lambda germline sequences, e.g., V_H3, V_K1, V_H 1-69, and V_H 1-e.

In another embodiment, composite VH or VL domains may be generated by using the CDR sequences disclosed herein. For example, crystal structures of the VH or VL domains may be used as a guidance to generate composite domain using CDR sequences from one antibody and using the germline FW regions from another antibody. More details can be found in U.S. Patent Application Publication No. 20020099179; and Homes and Foote, J Immunol. 1997 Mar 1;158(5):2192-201, both of which are hereby incorporated into this disclosure by reference.

The present scFv-Fc dimers may be composed of the same VH and VL domains as in metelimumab, having the sequences set forth in SEQ ID NO: 1 and SEQ ID NO: 5, respectively. The VH domain may be replaced by the VH domain having the sequences set forth in SEQ ID NO: 2; the VL domain may be replaced by 5 the VL domain having the sequences set forth in SEQ ID NO: 6. These VH and VL domains are disclosed in U.S. Patent No. 6,492,497 (e.g., SEQ ID NOS: 4, 6, 8, and 10), incorporated herein by reference.

A “variable domain” (VD) refers to a hypervariable binding domain of an immunoglobulin, or a ligand binding domain of a receptor, involved in antigen/ligand 10 binding as is known by persons skilled in the art. Variable domains are routinely referred to by their location or origin within an immunoglobulin; e.g., variable domains of the light chain of an immunoglobulin (VL), variable domains of the heavy chain of an immunoglobulin (VH), variable domains of the heavy chain of a camelid immunoglobulin (VHH).

15 A “variant” variable domain comprises amino acid additions, substitutions, and/or deletions, compared to the reference sequence. A “variant” of the VH or VL domains may have up to four such amino acid modifications. For example, one of the two domains may comprise an amino acid substitution, while the other domain is unmodified, or both of the domains may comprise amino acid substitutions. 20 Modifications that add or delete amino acid residues may be made at the N-terminus or C-terminus of the VH or VL domain. For example, the N-terminal residue of the VH domain may be deleted.

Up to four amino acid substitutions may be made to de-immunize the scFv-Fc dimer, for example. De-immunization can be performed according to the method of 25 Harding et al. (2010) *mAbs* 2: 256-265, for example.

Framework residues of the VH and/or VL domains, for example, may be substituted to increase the stability of the scFv-Fc dimers and/or decrease their tendency to aggregate. Poor stability can affect the ability of the expressed scFv-Fc dimers to fold properly when recombinantly expressed, resulting in a fraction of the 30 expressed antibodies being non-functional. Low stability antibodies also may be prone to forming potentially immunogenic aggregates or may have impaired avidity or shelf-life. scFv polypeptides in particular may demonstrate problems with

stability, solubility, expression, aggregation, breakdown products, and overall manufacturability in both bacterial and mammalian expression systems. Framework amino acid substitutions that are expected to increase the stability and/or decrease the tendency to aggregate of a VH and/or VL domain, e.g., in an scFv polypeptide, are 5 disclosed in WO 2007/109254, for example. Substitutions in corresponding residues in the present VH and VL domains are expected similarly to increase stability and/or decrease the tendency of scFv-Fc dimers to aggregate.

Substitutions that can be tolerated are expected to include those that would replace an amino acid of SEQ ID NO: 1, 2, 5, or 6 with a corresponding amino acid 10 that occurs in another human VH or VL domain germline sequence. A substitution of a framework amino acid with an amino acid occurring in any of these germline sequences may be tolerated. For example, a residue of a VH domain of SEQ ID NO: 1 could be substituted with an amino acid appearing in a corresponding position in any VH germline sequence, e.g., the germline sequence from DP-10 (V_H 1-69) or 15 DP-88 (V_H 1-e). Corresponding positions in this case are determined by a sequence alignment between the various germline sequences, using alignment techniques well known in the art, e.g., ClustalW.

Additional substitutions that are expected to be tolerated are those made to an amino acid with most of its side chain exposed to the solvent, as determined by 20 analysis of the three co-crystal structures. The solvent-accessible surface area of a residue may be estimated using techniques well known in the art. Further, it is expected that substitutions to amino acids buried within the variable domains will be better tolerated if the side chain of the amino acid does not create steric hindrance with adjoining residues. For this reason, buried amino acids generally are substituted 25 with amino acids with side chains of similar or smaller size. For example, a substitution of a buried Ile residue with a Leu, Val, Ala, or Gly is expected to be tolerated. Possible steric hindrance created by a substitution can be predicted by analysis of the three co-crystal structures. Further substitutions that are expected to be tolerated are those maintaining existing electrostatic interactions within the variable 30 domains, e.g., dipole-dipole interactions, induced dipole interactions, hydrogen bonds, or ionic bonds.

Additional amino acid substitutions of variable domains include those expected to confer new useful properties to the antibodies or antigen-binding

fragments thereof. For example, putative N-glycosylation sites in the VH and/or VL domains can be removed to prevent or reduce the formation of N-glycoforms. The amino-terminal residue can be substituted with a Gln residue to cause pyroglutamylation, which can decrease the number of charge variants. Amino acid 5 substitutions can be used to lower the isoelectric point, which can decrease the rate of elimination of IgG polypeptide antibodies, for example.

Surface residues of variable domains can be substituted with Cys or Lys residues, for example, which then can be covalently modified and coupled to molecules conferring useful characteristics to the antibodies or antigen-binding 10 fragments thereof, e.g., a detectable label, toxin, targeting moiety, or protein. For example, Cys residue can be coupled to a cytotoxic drug to form a drug conjugate. Cys residues also can be coupled to molecules that increase the serum half-life, e.g., polyethylene glycol (PEG) or serum albumin. Such amino acid modifications are reviewed in Beck et al. (2010) *Nature* 10: 345-52, for example.

15 Detectable labels include radiolabels such as ¹³¹I or ⁹⁹Tc, which may be attached to antibodies or antigen-binding fragments thereof using methods known in the art. Labels also include enzyme labels such as horseradish peroxidase. Labels further include chemical moieties such as biotin which may be detected via binding to a specific cognate detectable moiety, e.g., labeled avidin. Other moieties can be 20 attached that facilitate purification. For example, antibodies or antigen-binding fragments thereof can be His-tagged using well-known methods of recombinant modification and expression.

The VH and VL domains of the scFv-Fc dimers are linked together by a linker, termed Linker1 herein. Linkers suitable for making an scFv fragment are well 25 known in the art. *See, e.g.*, Bird et al. (1988) *Science*, 242: 423-426; Huston et al. (1988) *Proc. Nat'l Acad. Sci. USA* 85: 5879-5883. This can be accomplished by fusing the encoding nucleic acids in-frame and expressing the fusion protein in a suitable host cell, for example. Suitable linkers include those of the [G₄S]₃-type. The [G₄S]₃-type linkers are composed of repeating units of glycine and serine residues. 30 Such linkers may have a sequence of SGGGSGGGGSGGGGS (SEQ ID NO: 3) or GGGGSGGGGSGGGGS (SEQ ID NO: 4) or a variant thereof having up to four amino acid modifications, for example. Modifications can include deletions or insertions that change the linker length, or amino acid substitutions, preferably from

Gly to Ser or vice versa. [G₄S]₃-type linkers have been widely used to link variable domains in an scFv structure, because the linkers are hypoallergenic and causes minimal conformational distortions to the variable domains. *See, e.g.*, Huston et al. (1988) *Proc. Natl. Acad. Sci. USA* 85: 5879-83.

5 In the scFv-Fc dimers, a short linker sequence, termed Linker2 herein, is optionally inserted between the VL domain and the hinge. This linker sequence increases the flexibility of the scFv component with respect to the Fc component. In one embodiment, Linker2 has the sequence of GGSG (SEQ ID NO: 20). Suitable modifications to the GGSG linker include altering its length by one to four amino 10 acids or substituting one to two amino acids, preferably from Gly to Ser or vice versa.

The hinge region is a flexible domain that joins the scFv portion to the Fc region. The flexibility of the hinge region in IgG and IgA molecules allows the Fab arms to adopt a wide range of angles, permitting binding to epitopes spaced variable distances apart. A suitable hinge region includes, for example, the human IgG1 hinge 15 region having the amino acid sequence PKSCDKTHTCPPCPAPELLGGP (SEQ ID NO: 7). This sequence corresponds to a portion of the human IgG1 upper hinge, the middle hinge, and an N-terminal portion of the CH₂ domain, as disclosed in FIG. 4B of U.S. Patent No. 8,048,421, for example. The hinge from a human IgG1 contains two Cys residues, which can form disulfide bonds with the Cys residues of the hinge 20 on the corresponding monomer. The human IgG1 hinge portion that forms the disulfide bonds contains the amino acid sequence CPPCP (SEQ ID NO: 21). Variants of a human IgG1 hinge may comprise this sequence.

The scFv component is fused in frame to an Fc region, which forms the Fc component of the dimer. Suitable Fc regions contain two or three constant regions. 25 Fc regions include those from human IgG1, as set forth in SEQ ID NO: 8, or IgG4, as set forth in the CH₂ and CH₃ domains of SEQ ID NO: 11. The Fc region of an antibody mediates its serum half-life and effector functions, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP).

30 Modifications can be made to the hinge and Fc region to improve various properties of the scFv-Fc dimers. In one embodiment, one, two, three, four, five or up to ten amino acids of a naturally occurring human Fc region can be modified, in

addition to modifications of the hinge region. For example, the Fc region can be modified to increase the serum half-life of the scFv-Fc dimer. The half-life of an IgG depends on its pH-dependent binding to the receptor FcRn. FcRn, which is expressed on the surface of endothelial cells, binds the IgG in a pH-dependent manner and 5 protects it from degradation. Mutations located at the interface between the CH₂ and CH₃ domains, for example, have been shown to increase the binding affinity to FcRn and the half-life of IgG1 *in vivo*. Such modifications are reviewed in Strohl WR., 2009. Optimization of Fc-mediated effector functions of monoclonal antibodies. *Curr Opin Biotechnol.* 20(6):685-91; and Vaccaro C. et al., 2005. Engineering the Fc 10 region of immunoglobulin G to modulate *in vivo* antibody levels. *Nat Biotechnol.* 23(10):1283-8, for example.

Other modifications to the hinge and/or Fc region can increase or reduce effector functions. The four human IgG isotypes bind the activating Fc γ receptors (Fc γ RI, Fc γ RIIa, Fc γ RIIIa), the inhibitory Fc γ RIIb receptor, and the first component 15 of complement (C1q) with different affinities, resulting in different effector functions. Binding of IgG to the Fc γ Rs or C1q, for example, depends on residues located in the IgG hinge region and CH₂ domain. Single or multiple amino acid substitutions of these residues can affect effector function by modulating the IgG interaction with Fc γ Rs or C1q. Other substitutions are known to affect effector function. These 20 modifications are reviewed in Strohl (2009) “Optimization of Fc-mediated effector functions of monoclonal antibodies,” *Curr. Opin. Biotechnol.* 20:685-91, for example.

Representative modifications of the hinge and/or Fc region are summarized in Table 1.

Table 1: Representative Hinge and Fc Region Modifications

Isotype	Species	Substitutions	FcR/C1q Binding	Effector Function	Refs
IgG1	Human	T250Q/M428L	Increased binding to FcRn	Increased half-life	1
IgG1	Human	1M252Y/S254T/T256E + H433K/N434F	Increased binding to FcRn	Increased half-life	2
IgG1	Human	E233P/L234V/L235A/G236 + A327G/A330S/P331S	Reduced binding to Fc γ RI	Reduced ADCC and CDC	3, 4
IgG1	Human	E333A	Increased binding to Fc γ RIIIa	Increased ADCC and CDC	5, 6
IgG1	Human	S239D/A330L/I332E	Increased binding to Fc γ RIIIa	Increased ADCC	7, 8
IgG1	Human	P257I/Q311	Increased binding to FcRn	Unchanged half-life	9
IgG1	Human	K326W/E333S	Increased binding to C1q	Increased CDC	10
IgG1	Human	S239D/I332E/G236A	Increased Fc γ RIIa/Fc γ RIIb ratio	Increased macrophage phagocytosis	11
IgG1	Human	K322A	Reduced binding to C1q	Reduced CDC	5
IgG4	Human	S228P	--	Reduced Fab-arm exchange	12
IgG2a	Mouse	L235E + E318A/K320A/K322A	Reduced binding to Fc γ RI and C1q	Reduced ADCC and CDC	10

1. Hinton et al. (2004) *J. Biol. Chem.* 279(8):6213-16.
2. Vaccaro et al. (2005) *Nature Biotechnol.* 23(10):1283-88.
3. Armour et al. (1999) *Eur. J. Immunol.* 29(8):2613-24.
4. Shields et al. (2001) *J. Biol. Chem.* 276(9):6591-604.
5. Idusogie et al. (2000) *J. Immunol.* 164(8):4178-84.
6. Idusogie et al. (2001) *J. Immunol.* 166(4):2571-75.
7. Lazar et al. (2006) *Proc. Nat'l Acad. Sci. USA* 103(11): 4005-10.
8. Ryan et al. (2007) *Mol. Cancer Ther.* 6: 3009-18.
9. Datta-Mannan et al. (2007) *Drug Metab. Dispos.* 35: 86-94.
10. Steurer et al. (1995) *J. Immunol.* 155(3):1165-74.
11. Richards et al. (2008) *Mol. Cancer Ther.* 7(8):2517-27.
12. Labrijn et al. (2009) *Nature Biotechnol.* 27(8):767-71.

Further, recombinant amino acid modifications can be used to decrease structural homogeneity of the expressed polypeptides. A representative example is Peters et al. (2012) *J. Biol. Chem.* 287(29): 24525-33, which discloses Cys to Ser substitutions in the IgG4 hinge region that reduce the disulfide bond heterogeneity and increase Fab 5 domain thermal stability. Similarly, Zhang et al. (2010) *Anal. Chem.* 82: 1090-99 disclose engineering the IgG2 hinge region to limit disulfide bond scrambling and the formation of structural isomers in therapeutic applications. Amino acid modifications to a CH3 domain also can be used to delete carboxy-terminal Lys residues to decrease the number of charge variants. Amino acid modifications also can be used to improve 10 the pharmacological function of recombinant antibodies or antigen-binding fragments thereof. For example, amino acid modifications can be used to increase complement activation, enhance antibody-dependent cellular cytotoxicity (ADCC) by increasing Fc γ RIIA binding or decreasing Fc γ RIIB binding, and/or increase serum half-life by increasing FcRn binding. Such amino acid modifications are reviewed in Beck et al. 15 (2010) *Nature* 10: 345-52, for example.

Nucleic Acids and Methods of Making scFv-Fc Dimers

A further aspect of the present invention provides nucleic acids encoding scFv-Fc dimers. The isolated nucleic acid may be a synthetic DNA, a non-naturally occurring mRNA, or a cDNA, for example. Examples include the nucleic acids 20 encoding the VH and VL domains set forth in SEQ ID NOS: 3, 5, 7, and 9 of U.S. Patent No. 6,492,497. Additional nucleic acids include the sequence set forth in SEQ ID NO: 13 of the present invention, which encodes the diabody-5aa set forth in SEQ ID NO: 14, and the sequence set forth in SEQ ID NO: 15, which encodes the leucine zipper peptide-derived dimer having the amino acid sequence set forth in SEQ ID 25 NO: 16. Additional nucleic acids include the sequence set forth in SEQ ID NO: 17, which encodes CAT191(scFv-Fc), which has the amino acid sequence set forth in SEQ ID NO: 9. The nucleic acid may be inserted within a plasmid, vector, or transcription or expression cassette. The nucleic acids encoding the scFv-Fc dimers may be made and the expressed antibodies may be tested using conventional 30 techniques well known in the art, such as disclosed in Borsi et al. (2002) *Int. J. Cancer* 102: 75-85.

A recombinant host cell may comprise one or more constructs above. Methods of preparing scFv-Fc dimers comprise expressing the encoding nucleic acid

in a host cell under conditions to produce the scFv-Fc dimers, and recovering the antibodies. The process of recovering the antibodies may comprise isolation and/or purification of the antibodies. The method of production may comprise formulating the antibodies into a composition including at least one additional component, such as 5 a pharmaceutically acceptable excipient.

The term "recombinant host cell" (or simply "host cell"), as used herein, is intended to refer to a cell into which exogenous DNA has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell, but, to the progeny of such a cell. Because certain modifications may occur in 10 succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein. Preferably host cells include prokaryotic and eukaryotic cells selected from any of the Kingdoms of life. Preferred eukaryotic cells include protist, fungal, plant and animal cells. Most preferably host 15 cells include but are not limited to the prokaryotic cell line *E. Coli*; mammalian cell lines CHO, HEK 293 and COS; the insect cell line Sf9; and the fungal cell *Saccharomyces cerevisiae*.

Suitable vectors comprising a nucleic acid encoding scFv-Fc dimers can be chosen or constructed, containing appropriate regulatory sequences, including 20 promoter sequences, terminator sequences, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. Vectors may be plasmids, phage, phagemids, adenoviral, AAV, lentiviral, for example. Techniques and protocols for manipulation of nucleic acid, for example in preparation of nucleic acid constructs, mutagenesis, sequencing, introduction of DNA into cells, and gene 25 expression, are well known in the art.

The term "vector", as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral 30 vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors)

can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, 5 "expression vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, 10 adenoviruses and adeno-associated viruses), which serve equivalent functions.

Introducing such nucleic acids into a host cell can be accomplished using techniques well known in the art. For eukaryotic cells, suitable techniques may include calcium phosphate transfection, DEAE-Dextran, electroporation, liposome-mediated transfection, and transduction using retroviruses or other viruses, for 15 example. For bacterial cells, suitable techniques may include calcium chloride transformation, electroporation, and transfection using bacteriophage. The introduction may be followed by causing or allowing expression from the nucleic acid, e.g. by culturing host cells under conditions for expression of the gene. In one embodiment, the nucleic acid of the invention is integrated into the genome, e.g., 20 chromosome, of the host cell. Integration may be promoted by inclusion of sequences which promote recombination with the genome, in accordance with standard techniques.

Systems for cloning and expression of a polypeptide in a variety of different host cells are well known. Suitable host cells include bacteria, mammalian cells, plant 25 cells, insect cells, fungi, yeast and transgenic plants and animals. Mammalian cell lines available in the art for expression of a heterologous polypeptide include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney cells, mouse melanoma cells, rat myeloma cells, human embryonic kidney cells, e.g., HEK293 cells, human embryonic retina cells, and many others. The expression of antibodies and antibody 30 fragments in prokaryotic cells, such as *E. coli*, is well established in the art. For a review, *see* for example, Plückthun *Bio/Technology* 9: 545-551 (1991). Expression in cultured eukaryotic cells is also available to those skilled in the art, as reviewed in Andersen et al. (2002) *Curr. Opin. Biotechnol.* 13: 117-23, for example.

scFv-Fc dimers may be glycosylated, either naturally or the choice of expression host, e.g., CHO, HEK293, or NSO (ECACC 85110503) cells, or they may be unglycosylated, for example if produced by expression in a prokaryotic cell. Glycosylation may also be intentionally altered, for example by inhibiting 5 fucosylation, in order to increase ADCC activity of the resulting scFv-Fc dimer.

Methods of Using Antibodies or Antigen-Binding Fragments Thereof

The scFv-Fc dimers may be used in a method of treatment or diagnosis of the human or animal body, such as a method of treatment (which may include prophylactic treatment) of a disease or disorder in a human patient, which comprises 10 administering an effective amount to treat the patient. Treatable conditions include any in which TGF β 1 plays a role, e.g., a fibrotic disease, cancer, an immune-mediated disease, and wound healing, e.g., diffuse systemic sclerosis, bone remodeling disease, kidney disease and/or combinations thereof.

Antibodies specific for human TGF β 1 have been shown to be effective in 15 animal models for the treatment of TGF β 1 glomerulonephritis (Border et al. (1990) *Nature* 346: 371-374), neural scarring (Logan et al. (1994) *Eur. J. Neurosci.* 6: 355-363), dermal scarring (Shah et al. (1992) *Lancet* 339: 213-214; Shah et al. (1994) *J. Cell Science* 107: 1137-1157; Shah et al. (1995) *J. Cell Science* 108: 985-1002), and pulmonary fibrosis (Giri et al. (1993) *Thorax* 48: 959-966). Further, antibodies to 20 TGF β 1, 2, and 3 have been shown to be effective in models of lung fibrosis, radiation induced fibrosis (U.S. Patent No. 5,616,561), myelofibrosis, burns, Dupuytren's contracture, gastric ulcers, and rheumatoid arthritis (Wahl et al. (1993) *Exp. Medicine* 177: 225-230).

The scFv-Fc dimers are useful to treat a disease and condition resulting 25 directly or indirectly from TGF β 1 activity. The scFv-Fc dimers may selectively inhibit the activity of a human TGF β 1 isoform *in vitro* or *in vivo*. Activities of TGF β 1 isoforms include, but are not limited to, TGF β -mediated signaling, extracellular matrix (ECM) deposition, inhibiting epithelial and endothelial cell proliferation, promoting smooth muscle proliferation, inducing Type III collagen 30 expression, inducing TGF- β , fibronectin, VEGF, and IL-11 expression, binding Latency Associated Peptide, tumor-induced immunosuppression, promotion of angiogenesis, activating myofibroblasts, promotion of metastasis, and inhibition of NK cell activity. For example, the scFv-Fc dimers are useful to treat focal segmental

glomerulosclerosis (FSGS), hepatic fibrosis (HF), acute myocardial infarction (AMI), idiopathic pulmonary fibrosis (IPF), scleroderma (SSc), and Marfan Syndrome.

The scFv-Fc dimers are useful to treat diseases and conditions including, but not limited to, a fibrotic diseases (such as glomerulonephritis, neural scarring, dermal scarring, pulmonary fibrosis, lung fibrosis, radiation induced fibrosis, hepatic fibrosis, myelofibrosis), burns, immune mediated diseases, inflammatory diseases (including rheumatoid arthritis), transplant rejection, cancer, Dupuytren's contracture, and gastric ulcers. They are also useful for treating, preventing and reducing the risk of occurrence of renal insufficiencies including but not limited to: diabetic (type I and type II) nephropathy, radiation-induced nephropathy, obstructive nephropathy, diffuse systemic sclerosis, pulmonary fibrosis, allograft rejection, hereditary renal disease (e.g., polycystic kidney disease, medullary sponge kidney, horseshoe kidney), glomerulonephritis, nephrosclerosis, nephrocalcinosis, systemic lupus erythematosus, Sjogren's syndrome, Berger's disease, systemic or glomerular hypertension, tubulointerstitial nephropathy, renal tubular acidosis, renal tuberculosis, and renal infarction. In particular, they are useful when combined with antagonists of the renin-angiotensin-aldosterone system including, but not limited to: renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, Ang II receptor antagonists (also known as "Ang II receptor blockers"), and aldosterone antagonists. Methods for using scFv-Fc dimers in combination with such antagonists are set forth in WO 2004/098637, for example.

The scFv-Fc dimers also are useful to treat diseases and conditions associated with the deposition of ECM, including, systemic sclerosis, postoperative adhesions, keloid and hypertrophic scarring, proliferative vitreoretinopathy, glaucoma drainage surgery, corneal injury, cataract, Peyronie's disease, adult respiratory distress syndrome, cirrhosis of the liver, post myocardial infarction scarring, post angioplasty restenosis, scarring after subarachnoid hemorrhage, multiple sclerosis, fibrosis after laminectomy, fibrosis after tendon and other repairs, scarring due to tattoo removal, biliary cirrhosis (including sclerosing cholangitis), pericarditis, pleurisy, tracheostomy, penetrating central nervous system injury, eosinophilic myalgic syndrome, vascular restenosis, veno-occlusive disease, pancreatitis and psoriatic arthropathy.

The scFv-Fc dimers further are useful to promote re-epithelialization in diseases and conditions such as venous ulcers, ischaemic ulcers (pressure sores),

diabetic ulcers, graft sites, graft donor sites, abrasions and burns, diseases of the bronchial epithelium, such as asthma, ARDS, diseases of the intestinal epithelium, such as mucositis associated with cytotoxic treatment, esophageal ulcers (reflux disease), stomach ulcers, small intestinal and large intestinal lesions (inflammatory bowel disease).

The scFv-Fc dimers also may be used to promote endothelial cell proliferation, for example, in stabilizing atherosclerotic plaques, promoting healing of vascular anastomoses, or to inhibit smooth muscle cell proliferation, such as in arterial disease, restenosis and asthma.

10 The scFv-Fc dimers are useful to enhance the immune response to macrophage-mediated infections. They are also useful to reduce immunosuppression caused, for example, by tumors, AIDS, or granulomatous diseases. The scFv-Fc dimers are useful to treat hyperproliferative diseases, such as cancers including, but not limited to, breast, prostate, ovarian, stomach, renal, pancreatic, colorectal, skin, 15 lung, cervical and bladder cancers, glioma, mesothelioma, as well as various leukemias and sarcomas, such as Kaposi's sarcoma, and are useful to treat or prevent recurrences or metastases of such tumors. The scFv-Fc dimers of the invention also are useful to inhibit cyclosporin-mediated metastases.

20 In the context of cancer therapy, "treatment" includes any medical intervention resulting in the slowing of tumor growth or reduction in tumor metastases, as well as partial remission of the cancer in order to prolong life expectancy of a patient.

25 Methods of treatment comprise administering a scFv-Fc dimer or pharmaceutical compositions comprising the scFv-Fc dimer. The scFv-Fc dimers may be used in the manufacture of a medicament for administration. For example, a method of making a medicament or pharmaceutical composition comprises formulating a scFv-Fc dimer with a pharmaceutically acceptable excipient. A composition may be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated.

30 Administration is preferably in a "therapeutically effective amount" sufficient to show benefit to a patient. Such benefit may be at least amelioration of at least one symptom of a particular disease or condition. The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of the disease or condition being treated. Prescription of treatment, e.g., decisions on dosage

etc., may be determined based on preclinical and clinical studies the design of which is well within the level of skill in the art.

The precise dose will depend upon a number of factors, including whether the scFv-Fc dimer is for diagnosis or for treatment, the size and location of the area to be treated, and the nature of any detectable label or other molecule attached to the scFv-Fc dimer. A typical dose of a scFv-Fc dimer, for example, can be in the range 100 µg to 1 gram for systemic applications, and 1 µg to 1 mg for topical applications. The dose for a single treatment of an adult patient may be adjusted proportionally for children and infants. Treatments may be repeated at daily, twice-weekly, weekly, monthly or other intervals, at the discretion of the physician. Treatment may be periodic, and the period between administrations is about two weeks or more, preferably about three weeks or more, more preferably about four weeks or more, or about once a month.

Dose levels of about 0.1, 0.3, 1, 3, 10, or 15 mg per kg body weight of the patient are expected to be useful and safe. For example, 0.5-5 mg/kg in rat and mouse has been an effective dose in an acute setting. Therefore, for long-term dosing, 0.3-10 mg/kg may be administered to humans, based on an expected half-life of 21 days. Doses may be sufficient for efficacy, while low enough to facilitate optimal administration. For example, a dose of less than 50 mg facilitates subcutaneous administration. Intravenous administration may be used as the route of delivery for severe diseases, where high doses and the long dosing intervals may be required. Subcutaneous injection can increase the potential immune response to a product. Local administration for localized disease can reduce the amount of administered product and increase the concentration at the site of action, which can improve safety.

The scFv-Fc dimers of the invention may be administered by injection, for example, subcutaneously, intravenously, intracavity (e.g., after tumor resection), intralesionally, intraperitoneally, or intramuscularly. ScFv-Fc dimers also may be delivered by inhalation or topically (e.g., intraocular, intranasal, rectal, into wounds, on skin), or orally.

A scFv-Fc dimer will usually be administered in the form of a pharmaceutical composition, which may comprise at least one component in addition to the scFv-Fc dimer. Thus pharmaceutical compositions may comprise a pharmaceutically acceptable excipient, carrier, buffer, stabilizer or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the

efficacy of the active ingredient. Such materials could include, for example, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic, and absorption delaying agents. Some examples of pharmaceutically acceptable carriers are water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, and 5 the like, as well as combinations thereof. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols, such as mannitol, sorbitol, or sodium chloride in the composition. Additional examples of pharmaceutically acceptable substances are wetting agents or auxiliary substances, such as emulsifying agents, preservatives, or buffers, which increase the shelf life or effectiveness.

10 The precise nature of the carrier or other material will depend on the route of administration. For intravenous injection, or injection at the site of affliction, the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pK, isotonicity, and stability. Those of relevant skill in the art are well able to prepare suitable solutions using, for example, 15 isotonic vehicles such as sodium chloride injection, Ringer's injection, and lactated Ringer's injection. Preservatives, stabilizers, buffers, antioxidants, and/or other additives may be included.

20 A scFv-Fc dimer may be formulated in liquid, semi-solid, or solid forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, powders, liposomes, and suppositories. The preferred form depends on the intended mode of administration, the therapeutic application, the physicochemical properties of the molecule, and the route of delivery. Formulations may include 25 excipients, or combinations of excipients, for example: sugars, amino acids and surfactants. Liquid formulations may include a wide range of scFv-Fc dimer concentrations and pH. Solid formulations may be produced by lyophilization, spray drying, or drying by supercritical fluid technology, for example.

30 Therapeutic compositions can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the scFv-Fc dimer in an appropriate solvent with one or a combination of ingredients enumerated above, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred

methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by using a coating such as lecithin, by maintaining the particle size of a 5 dispersion, or by using surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.

In certain embodiments, the active compound may be prepared with a carrier that will protect the scFv-Fc dimer against rapid release, such as a controlled release 10 formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art.

15 A method of using a scFv-Fc dimer may comprise causing or allowing binding to TGF β . Such binding may take place *in vivo*, e.g., following administration of a scFv-Fc dimer to a patient, or it may take place *in vitro*, e.g., in ELISA, Western blotting, immunocytochemistry, immunoprecipitation, affinity chromatography, or cell based assays, or in *ex vivo* based therapeutic methods, e.g., methods in which 20 cells or bodily fluids are contacted *ex vivo* with a scFv-Fc dimer and then administered to a patient.

A kit comprising a scFv-Fc dimer is provided. The scFv-Fc dimer may be 25 labeled to allow its reactivity in a sample to be determined. Kits may be employed in diagnostic analysis, for example. A kit may contain instructions for use of the components. Ancillary materials to assist in or to enable performing such a method may be included within the kit.

The reactivity of a scFv-Fc dimer in a sample may be determined by any appropriate means, e.g., radioimmunoassay (RIA). Radioactively labeled antigen may be mixed with unlabeled antigen (the test sample) and allowed to bind to the scFv-Fc 30 dimer. Bound antigen is physically separated from unbound antigen and the amount of radioactive antigen bound to the scFv-Fc dimer is determined. A competitive binding assay also may be used with non-radioactive antigen, using an antigen or an analogue linked to a reporter molecule. The reporter molecule may be a fluorochrome, phosphor, or dye. Suitable fluorochromes include fluorescein,

rhodamine, phycoerythrin and Texas Red. Suitable chromogenic dyes include diaminobenzidine.

Other reporters include macromolecular colloidal particles or particulate material such as latex beads that are colored, magnetic or paramagnetic, and

5 biologically or chemically active agents that can directly or indirectly cause detectable signals to be visually observed, electronically detected or otherwise recorded. These molecules may be enzymes that catalyze reactions that develop or change colors or cause changes in electrical properties, for example. They may be molecularly excitable, such that electronic transitions between energy states result in characteristic

10 spectral absorptions or emissions. They may include chemical entities used in conjunction with biosensors. Biotin/avidin or biotin/streptavidin and alkaline phosphatase detection systems may be employed. The signals generated by antibody-reporter conjugates may be used to derive quantifiable absolute or relative data of the relevant antibody binding in samples.

15 The present invention also provides the use of a scFv-Fc dimer for measuring antigen levels in a competition assay. The scFv-Fc dimer can be linked to a reporter molecule so that a physical or optical change occurs on binding, for example. The reporter molecule may directly or indirectly generate detectable, and preferably measurable, signals. The reporter molecules may be linked directly or indirectly,

20 covalently, e.g., via a peptide bond or non-covalently. The scFv-Fc dimer and a protein reporter may be linked by a peptide bond and recombinantly expressed as a fusion protein.

Further aspects and embodiments of the present invention will be apparent to those skilled in the art in the light of the present disclosure, including the following

25 experimental exemplification.

Examples

Example 1: Affinity and Potency of scFv and IgG4 Antibody

CAT192(IgG4) (metelimumab) is a human IgG4 monoclonal antibody that selectively neutralizes TGF- β 1. TGF β 1 (20-600RU) was immobilized to a CM5 chip on Biacore using NHS/EDC chemistry. Various amounts of CAT192(IgG4) were injected over the surface to monitor the binding to TGF β 1 determined by surface plasmon resonance. The data were analyzed with a 1:1 binding model to determine binding constants. CAT192(IgG4) was found to bind TGF β 1 with relatively low

affinity as determined by surface plasmon resonance, when compared to the binding by the parental CAT191scFv as shown in FIG.2. CAT192(IgG4) also showed a relatively low efficacy ($IC_{50} = \sim 10$ nM) in an A549 cell-based potency assay, which measured inhibition of TGF β 1-stimulated IL-11 production. Representative results of 5 an A549 assay are shown in FIG. 3. The A549 assay was conducted according to the procedure disclosed in Rapoza et al. (2006) "Development of an in vitro potency assay for therapeutic TGF β antagonists: the A549 cell bioassay," *J. Immunol. Methods* 316: 18-26. While an apparent dissociation constant of ~ 10 nM showed specific binding to TGF β 1, therapeutic applications of CAT192 (IgG4) would benefit 10 from a higher relative potency.

Example 2: Modified IgG1 Antibody

CAT192(IgG4) affinity can be slightly enhanced by certain denaturing conditions, suggesting that antibody folding may have caused the loss of affinity during the conversion of scFv to IgG4. IgG4 folding has been proposed to be unique 15 (Aalberse and Schuurman "IgG4 breaking the rules", *Immunology* 105:9-19). The Fab arm exchange in IgG4 and the interaction of Fabs with Fc CH2 domain may possibly explain this loss of affinity by CAT192(IgG4). Therefore, CAT192 was remodeled to produce the IgG1 version by replacing IgG4 Fc (CH1, CH2 and CH3 domains) with the consensus IgG1 sequence. The DNA coding the CAT192 (IgG1) 20 was synthesized from GeneArt and subcloned into expression vector pCEP4(-E+I)Dest.

CAT192(IgG1) was produced from HEK293 transfection and purified with Protein A column. Remodeling CAT192 from IgG4 to IgG1, however, did not increase its affinity. Fab fragments generated from the IgG1 and IgG4 did not 25 increase its affinity either. It was concluded that the high affinity of CAT191(scFv) (SEQ ID NO: 12) was lost during conversion to a full-length antibody format, whether it was a IgG1 or IgG4. This was unexpected, because scFv components obtained from a library are often engineered to a full-length IgG format for therapeutic development.

Example 3: Various Dimer Designs

CAT191(scFv) (SEQ ID NO: 12) was found to bind TGF β 1 with high affinity, using surface plasmon resonance, but CAT191(scFv) lacked the avidity needed for effective neutralization of TGF β 1. Accordingly, various other formats were tested,

using the scFv component as a basic building block. General formats of antibody fragments, including the tested formats, are depicted in FIG. 1.

Tested formats included a diabody, a peptide-derived dimer (*e.g.*, a leucine zipper peptide-derived dimer), and an scFv-Fc dimer. scFv CAT191 diabody had the (Gly4Ser)3-type linker replaced with a short 5aa linker (GSSGG) (SEQ ID NO: 19) to create a non-covalent divalent binder (diabody dimer). Each monomer had the sequence set forth in SEQ ID NO: 14. Each monomer of the leucine zipper peptide-derived dimer had the sequence set forth in SEQ ID NO: 16. Finally, each monomer of the scFv-Fc dimer had the sequence set forth in SEQ ID NO: 9. The diabody and the peptide derived dimer were expressed in *E. Coli* and the scFv-Fc was expressed in HEK293 cells.

The leucine zipper peptide-derived dimer was difficult to express, and the partially purified dimer only showed intermediate affinity, as measured by surface plasmon resonance. The diabody (scFv 5aa) only showed intermediate affinity, but no avidity. By contrast, a scFv-Fc dimer produced from transient HEK293 transfection was found to bind to TGF β 1 specifically with high affinity and avidity. The binding results expressed as apparent dissociation constants obtained with surface plasmon resonance are summarized below in Table 2.

Table 2: Binding Results for scFv-Fc Dimer

Sample	24 RU TGF β 1 K_D (nM)	105 RU TGF β 1 K_D (nM)	544 RU TGF β 1 K_D (nM)
scFv-Fc	0.5	0.2	0.09
CAT191 scFv	1.7	1.8	1.3
scFv 5aa	4.1	3.8	4.8

Avidity
No Avidity

20

The TGF β 1 neutralizing potency of various formats was also compared in the A549 cell-based bioassay. FIG. 3 shows the A549 bioassay results for the diabody (“scFv diabody 5aa”), CAT191(scFv) (“scFv”), the scFv-Fc dimer (“CAT191(scFv-Fc”), and CAT192(IgG4) (“CAT192”). As seen in FIG. 3, the scFv-Fc dimer demonstrated an apparent dissociation constant in this assay over four orders of magnitude lower than CAT192 ($\sim 10^{-3}$ nM versus $\sim 10^{-1}$ nM).

Example 4: scFv-Fc Clone

CAT191(scFv-Fc) was cloned and produced in larger scale in CHO cells.

30 CAT191 scFv-Fc coding sequence was PCR amplified from a pCEP4 based

expression vector using a gene specific forward and reverse primer set. As part of the PCR amplification the following changes were introduced to the CAT191 scFv-Fc coding sequence: 1) addition of endonuclease sites at the 5' and 3' ends, 2) addition of Kozak consensus sequence immediately upstream of the start codon, 3) change of the 5 "TAG" stop codon to "TAA", and 4) mutation of the thymidine 4 nucleotides upstream of the stop codon to a guanosine thus eliminating an endogenous splice donor site. The splice donor site mutation did not result in an amino acid change.

The PCR amplified CAT191 coding sequence was subcloned into a shuttle vector to facilitate sequence verification and molecular cloning. After sequence 10 verification, the CAT191 coding sequence was cloned into Genzyme expression vectors pGZ600 and pGZ620. Both vectors used the hamster β -actin promoter to drive expression of the CAT191 transgene. They also contained the DHFR selectable marker that was driven by a separate promoter (SV40) to enable selection in CHO cells. CHO-8D6 host cell line was transfected with either the pGZ600-CAT191 or 15 pGZ620-CAT191 expression plasmid. Following a brief recovery period, the transfected cells were placed into nucleotide-deficient growth medium for selection to generate pools of stable transfectants. After pools recovered from selection, a second round of selection was performed in the presence of 20nM methotrexate. The CHO pools selected this way was scaled up and the conditioned media was used for 20 purification using Protein A column.

The CHO cell-produced protein was characterized by SDS-PAGE, Biacore binding, SEC-HPLC, and the A549 cell potency assay. The results confirmed that the scFv-Fc dimer had a higher affinity and potency, and it specifically neutralized 25 TGF β 1. The potency compared favorably to the pan-specific GC1008 antibody (FIG. 6 and FIG. 7).

Example 5: Circulation Half-Life

The circulation half-life of CAT191(scFv-Fc) was tested in a mouse model using the study design depicted in Table 3.

Table 3: Circulation Half-Life of scFv-Fc Dimer

Group	Animal #'s	Test Article	Dose (mg/kg)	Dose Route	Time Points
1	1~8	scFv-Fc	1.0	IP	2, 6, 24, 72, 144, 240, and 336 hours post-dose
2	9-16	scFv-Fc	1.0	IV	0.25, 6, 24, 72, 144, 240, and 336 hours post-dose

Blood was drawn from the retro-orbital plexus at the specified times after intraperitoneal (IP) or intravenous (IV) administration. Approximately 60 μ L of whole blood was collected into hematocrit tubes and processed for serum. All samples were stored at -80°C until analysis. The CAT191(scFv-Fc) concentration was determined by ELISA. The results of this pharmacokinetic study are depicted in FIG. 4 and FIG. 5. The results suggested a circulation half-life of 1.5-2.0 days, much longer than that for a typical scFv molecule, which is several hours.

10 **Example 6: scFv-Fc Dimer Stability**

The stability of CAT191(scFv-Fc) stored at -80°C was monitored for a year by SEC-HPLC, Biacore TGF β 1 binding, and the A549 potency assay. No change in aggregation, affinity, or potency was observed during the test period. Material stored at 4°C displayed a slight but steady increase in aggregation over 1 year. The unique 15 combination of the smaller size, high selectivity, potency against TGF β 1, and long *in vivo* half-life made CAT191(scFv-Fc) an ideal candidate for therapeutic applications.

All documents cited throughout this disclosure, including but not limited to scientific publications, patents and publication of patent applications, are hereby incorporated by reference in this disclosure as if the full contents are reproduced 20 herein.

SEQUENCE LISTING

SEQ ID No. 1: Human IgG1 VH domain Clone SL15 (SQN4 US6492497)

EVQLVESGGVVQPGRLRLSCAASGFTFSSYGMHWVRQAPGKELEWVAVI
SYDGSIKYYADSVKGRTISRDNSKNTLYLQMNSLRAEDTAVYYCARTGEYS
25 GYDTDPQYSWGQGTTVTVSS

SEQ ID No. 2: Human IgG1 VH domain Clone JT182 (SQN10 US6492497)

QVQLVESGGVVQPGRLRLSCAASGFTFSSYGMHWVRQAPGKELEWVAVI
SYDGSIKYYADSVKGRTISRDNSKNTLYLQMNSLRAEDTAVYYCARTGEYS
30 GYDTPASPDWGQGTTVTVSS

SEQ ID No. 3: Synthetic linker

SGGGSGGGSGGGGS

SEQ ID No. 4: Synthetic linker

5 GGGGSGGGSGGGGS

SEQ ID No. 5: Human IgG1 V_k domain Clone SL15A: (SQN6 US6492497)EIVLTQSPSSLSASVGDRVITCRASQGIGDDLWYQQKPGKAPILLIYGTSTL
10 QSGVPSRFSGSQGTDFLTINSLQPEDFATYYCLQDSNYPLTFGGTRLEIK**SEQ ID No. 6: Human IgG1 V_k domain Clone SL15S: (SQNS US6492497)**EIVLTQSPSSLSASVGDRVITCRSSQGIGDDLWYQQKPGKAPILLIYGTSTL
QSGVPSRFSGSQGTDFLTINSLQPEDFATYYCLQDSNYPLTFGGTRLEIK**15 SEQ ID No. 7: Human IgG1 hinge region**

PKSCDKTHTCPPCPAPELLGGP

SEQ ID No. 8: Human IgG1 Fc regionSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK
20 PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIKTISKAKGQ
PREPVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTP
PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK**SEQ ID No. 9: CAT191(scFv-Fc)**EVQLVESGGVVQPGRLRLSCAASGFTSSYGMHWVRQAPGKELEWVAI
SYDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTGEYS
GYDTDPQYSWGQGTTVTVSSGGGGGGGGSEIVLTQSPSSLSASVGD
RVTITCRSSQGIGDDLWYQQKPGKAPILLIYGTSTLQSGVPSRFSGSQGTDF
30 TLTINSLQPEDFATYYCLQDSNYPLTFGGTRLEIKGGSGPKSCDKTHTCPPCP
APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV
EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ
PENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT
35 QKSLSLSPGK**SEQ ID No. 10: CAT192 (IgG4) Light Chain**EWLTQSPSSLSASVGDRVITCRASQGIGDDLWYQQKPGKAPILLIYGTSTL
QSGVPSRFSGSQGTDFLTINSLQPEDFATYYCLQDSNYPLTFGGTRLEIKR
TVAAPSVFIFPPSDEQLKSGTASVVCLLNFYPREAKVQWKVDNALQSGNSQ
40 ESVTEQDSKDSTYLSSTTLSKADYEHKVYACEVTHQGLSSPVTKSFRGE
C

SEQ ID No. 11: CAT192 (IgG4) Heavy Chain

EVQLVESGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKELEWVAVI
SYDGSIKYYADSVKGGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTGEYS
GYDTDPQYSWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF
5 PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD
HKPSNTKVDKRVESKYGPPCPSCPAPAEFLGGPSVFLPPKPKDTLMISRTPEVT
CVVVVDVSQEDPEVQFNWYVDGVEVHNAAKTPREEQFNSTYRVVSVLTWLHQ
DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQV
SLTCLVKGFYPSDIAVEWESNGQPENNYKTPVLDSDGSFFLYSRLTVDKSR
10 WQEGNVFSCSVMHEALHNHYTQKSLSLGK

SEQ ID No. 12: CAT191(scFv)

EVQLVESGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKELEWVAVI
SYDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTGEYS
15 GYDTDPQYSWGQGTTVTVSSSSGGGGGGGGSEIVLTQSPSSLASVGD
RVTITCRSSQGIGDDLGWYQQKPGKAPILLIYGTSTLQSGVPSRFSGSGTDF
TLTINSLOPEDFATYYCLQDSNYPLTFGGGTRLEIK

SEQ ID No. 13: Diabody-5aa encoding nucleic acid

20 atgaccatgattacgccaaagctttggagcctttttggagatttcaacgtaaaaaaattattattcgcaattcctttagtgtcc
tttctatcgcccccagccggccatggccgaggtgcagctggtagtctggggaggcggtccaggctggagggtcc
ctgagactctcctgtgcagcctctggattcacccctcagtagctatggcatgcactgggtccaggctcaggcaaggag
ctggagtggtggcagttatcatatgatggaagtattaaatactatgcagactccgtgaaggggccattaccatccag
agacaattccaagaacacgctgtatctgcaaatacgcctgagagactgaggacacggctgttattactgtgcgcgaac
25 tggtaatatagtggctacgatacggcccccagtagtactcctggggcaaggaccacggtcaccgtctcagggtcc
tggcggtgaaattgtgctgactcagtctccatcctccctgtctgcattgttaggagacagactcaccatcactgcccgtcaa
gtcaggcattggagatgattggctggatcagcagaagccaggaaagcccctatcctgatctatggtacatccac
tttacaaagtgggtcccgtcaagggttcagcggcagtggatctggcacagattcacttcaccatcaacagcctgcaggc
30 gaagatttgcaacttattactgtctacaagattccaattaccgctcactttcggcggaggacacgactggagattaaacgt
gcggccgcacatcatcaccatcacggggccgcagaacaaaaactcatcagaagaggatctgaatggggccgcatt
atgcgtcgagatcaaacggctagccagccagaactcgccccggaaagaccccgaggatgtcgagcaccaccacc
ac

SEQ ID No. 14: Diabody-5aa

35 EVQLVESGGVVQPGRLSCAASGFTESSYGMHWVRQAPGKELEWVAI
SYDGSIKYYADSVKGRFTISRDN SKNTLYLQMNSLRAEDTAVYYCARTGEYS
GYDTDPQYSWGQGTTVTVSSGSSGGEIQLTQSPSSL SASVGDRVTITCRSSQGI
GDDLGWYQQKPGKAPILLIYGTSTLQSGVPSRFSGSGTDFLTINSLQPEDF
ATYYCLQDSNYPLTFGGGTRLEIKRAAAHHHHHGAAEQKLISEEDLNGAA

SEQ ID No. 15: Leucine zipper peptide-derived dimer encoding nucleic acid

gagggtgcagctgggtggagtcgtggggaggcgtggtccagcctggaggtccctgagactctgtgcagcctctggatt
caccttcagtagctatggcatgcactgggtccgccaggctccaggcaaggagctggagtggtggcagttatatcatatga
tggaagtattaaatactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgcttatctg
45 caaatgaacagcctgagagactgaggacacggctgtgtattactgtgcgcgaactggtaatatagtggctacgatacggac
ccccagtagtcctggggcaagggaccacggtcaccgtctcaagtggaggcggtggcagcggc

5 ggtggcgatcgaaattgtgtactcgtactcgtccatcctccgtctgcacatgttaggagacagagtaccatcactgccc
 gtcaagtcaaggcattggagatgattggctggatcagcagaagccaggaaagccctatcctctatgtaca
 tccacttacaaagtgggtcccgtaagggttcagcggcagtgatctggcacagattcactcaccatcaacagcctgc
 agcctgaagatttcaacttattactgtctacaagattcaattacccgtcacttccggcggaggacacgactggagatta
 10 aacgtgcggccgcacatcatcaccatcacggggccgcagaacaaaaactcatctcagaagaggatctgaatggggc
 cgcacccaagcccagtaccccccagggttcaggcgaactgaaactgctgaaacatctgaaagaactgctgaaag
 gcccgcgtaaaggcgaactgaaactgctgaaacatctgaaagaactgctgaaaggcggtgcgcggcggcggatc
 atcatcaccatcat

10 **SEQ ID No. 16: Leucine zipper peptide-derived dimer**

EVQLVESGGVVQPGRLSRAASGFTFSSYGMHWVRQAPGKELEWVAI
 SYDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTGEYS
 GYDTDPQYSWGQGTTVTVSSSGGGSGGGGGSEIVLTQSPSSLSASVGD
 15 RVTITCRSSQGIGDDLWYQQKPGKAPILLIYGTSTLQSGVPSRFSGSGSGTDF
 TLTINSLQPEDFATYYCLQDSNYPLTFGGGTRLEIKRAAAHHHHHGAAEQK
 LISEEDLNGAAPKPSTPPGSSGELEELLKHLKELLKGPRKGELEELLKHLKELL
 KGGAPGGHHHHHH

10 **SEQ ID No. 17: CAT191(scFv-Fc) encoding nucleic acid**

20 gaggtgcagctggaggctggggaggcgtggccagcctggagggtccctgagactcctgtgcagcctctggatt
 cacccatggcatgcactgggtccgcaggctccaggcaaggagctggagggtggcagttatcatatgt
 tggaaagtattaaatactatgcagactccgtgaaggccgattcaccatccagagacaattcaagaacacgctgtatctg
 caaatgaacagcctgagagctgaggacacggctgttattactgtgcgcgaactggtgaatatagtggctacgatacggac
 ccccaactcctggggcaaggaccacggtcaccgtccctcaagtggaggcggtcaggcggagggtgcagcggc
 25 ggtggcgatcgaaattgtgtactcgtactcgtccatcctccgtctgcacatgttaggagacagagtaccatcactgccc
 gtcaagtcaaggcattggagatgattggctggatcagcagaagccaggaaagccctatcctctatgtaca
 tccacttacaaagtgggtcccgtaagggttcagcggcagtgatctggcacagattcactcaccatcaacagcctgc
 agcctgaagatttcaacttattactgtctacaagattcaattacccgtcacttccggcggaggacacgactggagatta
 aaggtggcagcggacctaatttgcacacatgcccacgtgcccacactgaactcctgggggacc
 30 gtcagtcttccttcccccaaaaccaaggacaccctcatgtatcccgaccctgaggtcacatgcgtgggtggac
 gtgagccacgaagaccctgaggtcaaggtaactggtaactgtggacggcgtggaggtgcataatgccaagacaagccgc
 gggaggaggcactacaacagcacgtaccgtgtggcagcgtccctcaccgtccgtcaccaggactggctgaatggcaagga
 gtacaagtgcaggctccaacaaaggccctcccgcccccattcgagaaaaccatctccaaagccaaaggcagccccga
 gaaccacagggtacaccctccccatccggatgagctgaccaagaaccaggcagcgtcactggtggcaag
 35 gcttctatcccagcgcacatgcgcgtggagggtggagacatggcagccggagaacaactacaagaccacgcctccgt
 gctggactccgacggctcccttcctctacagcaagctcaccgtggacaagagcagatggcagcaggaaacgtttctc
 atgtccgtgtcatgaggctctgcacaaccactacacgcagaagagcctccctgtctccggtaatagtag

10 **SEQ ID No. 18: Human TGF β 1**

40 ALDTNYCFSSTEKNCCVRQLYIDFRKDLGWKWIHEPKGYHANFCLGPCPYIW
 SLDTQYSKVLALYNQHNPGASAAPCCVPQALEPLPIVYYVGRKPKVEQLSNM
 IVRSCKCS

10 **SEQ ID No. 19**

45 GSSGG

SEQ ID No. 20

GGSG

SEQ ID No. 21

5 CPPCP

SEQ ID No. 22

SYGMH

10 **SEQ ID No. 23**

VISYDGSIKYYADSVKG

SEQ ID No. 24

TGEYSGYDTSGVEL

15

SEQ ID No. 25

TGEYSGYDTDPQYS

SEQ ID No. 26

20 TGFYSGYDTPASPD

SEQ ID No. 27

RASQGIGDDLG

25 **SEQ ID No. 28**

GTSTLQS

SEQ ID No. 29

LQDSNYPLT

30

SEQ ID No. 30TGX₁YSGYDTX₂X₃X₄X₅X₆

CLAIMS

1. An isolated binding protein that binds TGF β 1, wherein said binding protein comprises a first polypeptide chain and a second polypeptide chain, the first and the second polypeptide chains both having the formula of, from N-terminal to C-terminal:

(VH domain)-(linker1)_n-(VL domain)-(linker2)_m-(hinge)_p-(Fc region),
 wherein the VH domain of each of the first and second polypeptide chains comprises a variable heavy complementarity determining region 1 (HCDR1), a variable heavy complementarity determining region 2 (HCDR2), and a variable heavy complementarity determining region 3 (HCDR3), said HCDR1 comprising the amino acid sequence of SEQ ID NO: 22; said HCDR2 comprising the amino acid sequence of SEQ ID NO: 23; and said HCDR3 comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, and SEQ ID NO: 30;
 wherein the VL domain of each of the first and second polypeptide chains comprises a variable light complementarity determining region 1 (LCDR1), a variable light complementarity determining region 2 (LCDR2), and a variable light complementarity determining region 3 (LCDR3), said LCDR1 comprising the amino acid sequence of SEQ ID NO: 27, said LCDR2 comprising the amino acid sequence of SEQ ID NO: 28, and said LCDR3 comprising the amino acid sequence of SEQ ID NO: 29; and
 wherein p is 0 or 1, n is 0 or 1, and m is 0 or 1.
2. The binding protein of claim 1, wherein the first and second polypeptide chains are identical and form a dimer.
3. The binding protein of any of claims 1-2, wherein the framework regions of the VH domain of the first or second polypeptide chain are selected from the same variable heavy germline sequence, and the framework regions of the VL domain of the same polypeptide chain are selected from the same variable lambda or kappa germline sequence.
4. The binding protein of any of claims 1-3, wherein the VH domain of the first or second polypeptide chain comprises the human VH domain sequences set

forth in SEQ ID NO: 1 or SEQ ID NO: 2, or a variant thereof having up to four amino acid modifications; and

wherein the VL domain of the same polypeptide chain comprises the human V κ domain sequences set forth in SEQ ID NO: 5 or SEQ ID NO: 6, or a variant thereof having up to four amino acid modifications.

5. The binding protein of any of claims 1-4, wherein the VH domain of the first or second polypeptide chain comprises the sequence set forth in SEQ ID NO: 1 and the VL domain of the same polypeptide chain comprises the sequence set forth in SEQ ID NO: 5.
6. The binding protein of any of claims 1-5, wherein the first polypeptide chain or the second polypeptide chain comprises the sequence set forth in SEQ ID NO: 9.
7. The binding protein of any of claims 1-6, wherein the binding protein selectively binds TGF β 1.
8. The binding protein of any of claims 1-7, wherein the binding protein has an IC50 to human TGF β 1 of less than 1 nM in an A549 bioassay.
9. The binding protein of any of claims 1-8, wherein the binding protein has an IC50 to human TGF β 1 of less than 0.1 nM in an A549 bioassay.
10. The binding protein of any of claims 1-9, wherein n is 1 and the linker1 is about 15 amino acids in length.
11. The binding protein of any of claims 1-10, wherein n is 1 and the linker1 comprises the amino acid sequence SGGGSGGGSGGGS (SEQ ID NO: 3), the amino acid sequence GGGSGGGSGGGGS (SEQ ID NO: 4), or a variant thereof having up to four amino acid modifications.
12. The binding protein of any of claims 1-11, wherein p is 1, and the hinge comprises an amino acid sequence from a human IgG1 or IgG4 hinge region.

13. The binding protein of any of claims 1-12, wherein the hinge comprises the amino acid sequence PKSCDKTHTCPPCPAPELLGGP (SEQ ID NO: 7), or a variant thereof having up to four amino acid modifications.
14. The binding protein of any of claims 1-12, wherein the hinge comprises the amino acid sequence CPPCP (SEQ ID NO: 21).
15. The binding protein of any of claims 1-14, wherein m is 1 and the linker2 comprises the amino acid sequence GGSG (SEQ ID NO: 20), or a variant thereof having up to 2 amino acid modifications.
16. The binding protein of any of claims 1-15, wherein the Fc region comprises constant domains CH2 and CH3.
17. The binding protein of any of claims 1-16, wherein the Fc region is derived from a human IgG1, a human IgG4, or a variant of a human IgG1 or IgG4 wherein up to ten amino acid may be modified.
18. An isolated binding protein that binds TGF β 1, wherein said binding protein comprises a polypeptide chain having the formula of, from N-terminal to C-terminal:

(VH domain)-(linker1)_n-(VL domain)-(linker2)_m-(hinge)_p-(Fc region),
 wherein the VH domain comprises a variable heavy complementarity determining region 1 (HCDR1), a variable heavy complementarity determining region 2 (HCDR2), and a variable heavy complementarity determining region 3 (HCDR3), said HCDR1 having the amino acid sequence of SEQ ID NO: 22; said HCDR2 having the amino acid sequence of SEQ ID NO: 23; and said HCDR3 having the amino acid sequence selected from the group consisting of SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, and SEQ ID NO: 30;

wherein the VL domain comprises a variable light complementarity determining region 1 (LCDR1), a variable light complementarity determining region 2 (LCDR2), and a variable light complementarity determining region 3 (LCDR3), said LCDR1 having the amino acid sequence of SEQ ID NO: 27, said LCDR2 having the amino acid sequence of SEQ ID NO: 28, and said LCDR3 having the amino acid sequence of SEQ ID NO: 29; and

wherein p is 0 or 1, n is 0 or 1, and m is 0 or 1.

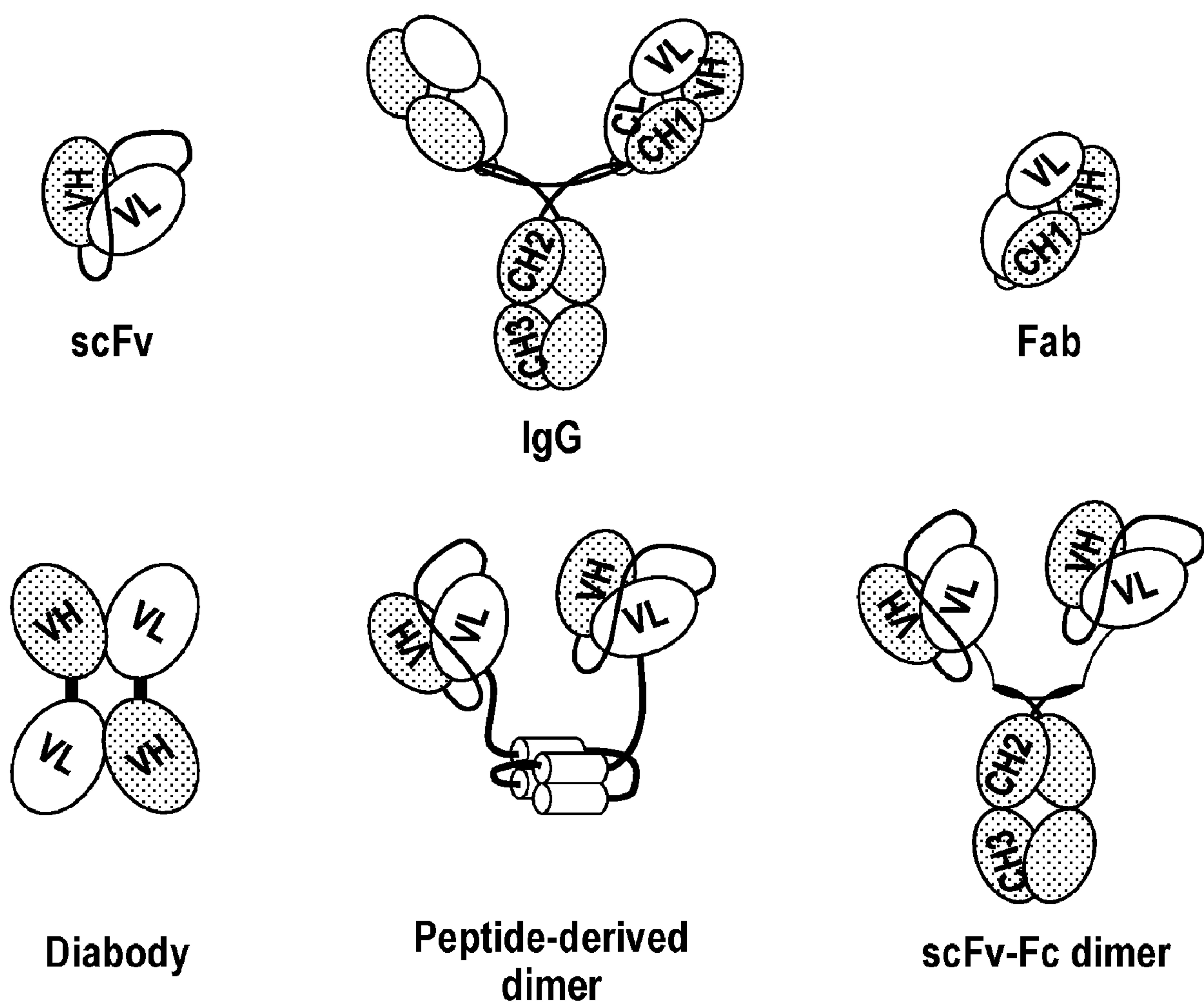
19. An isolated binding protein comprising a variable domain that is capable of binding TGF β 1, wherein said binding protein exhibits a K_d for human TGF β 1 at least about 50% lower than said binding protein's K_d for human TGF β 2 as measured by surface plasmon resonance.
20. An isolated binding protein comprising a variable domain that is capable of binding TGF β 1, wherein said binding protein exhibits a K_d for human TGF β 1 at least about 50% lower than said binding protein's K_d for human TGF β 3 as measured by surface plasmon resonance.
21. An isolated binding protein comprising a variable domain that is capable of binding TGF β 1, wherein said binding protein exhibits a K_d for human TGF β 1 at least about 50% lower than said binding protein's K_d for human TGF β 2 and at least about 50% lower than said binding protein's K_d for human TGF β 3 as measured by surface plasmon resonance.
22. An isolated binding protein that binds TGF β 1, wherein said binding protein comprises a first polypeptide chain and a second polypeptide chain, the first and the second polypeptide chains each having the formula of:

(VD₁)-(linker1)_n-(VD₂)-(linker2)_m-(hinge)_p-(Fc region),

wherein VD₁ comprises a first variable domain selected from the group consisting of a VL domain isolated from an antibody capable of binding TGF β 1, and a VH domain isolated from an antibody capable of binding TGF β 1, and VD₂ comprises a second variable domain selected from the group consisting of a VL domain isolated from an antibody capable of binding TGF β 1, and a VH domain isolated from an antibody capable of binding TGF β 1; and

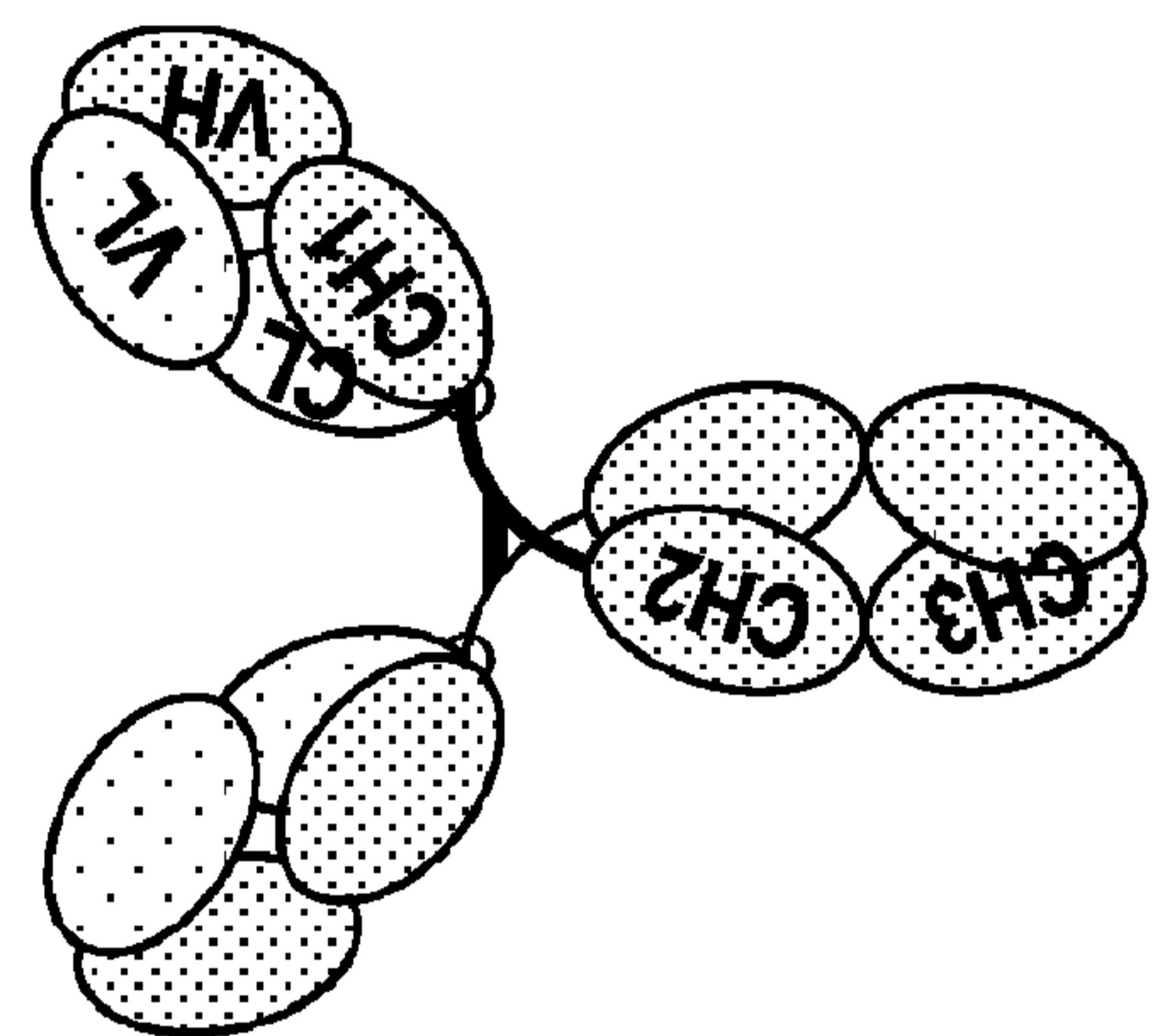
wherein, n is 0 or 1, m is 0 or 1, and p is 0 or 1.
23. An isolated binding protein that binds TGF β 1, wherein said binding protein comprises a first polypeptide chain and a second polypeptide chain, the first and the second polypeptide chains both having the formula of, from N-terminal to C-terminal:

(VH domain)-(linker1)_n-(VL domain)-(linker2)_m-(hinge)_p-(Fc region),


wherein p is 0 or 1, n is 0 or 1, and m is 0 or 1, and wherein said binding protein selectively binds TGF β 1.

24. An isolated polynucleotide comprising a nucleotide sequence encoding the binding protein of any of claims 1-23.
25. The isolated polynucleotide of claim 24 comprising the nucleotide sequence set forth in SEQ ID NO: 17.
26. A vector comprising the polynucleotide of any of claims 24-25.
27. A host cell comprising the polynucleotide of any of claims 24-25.
28. The host cell of claim 27, wherein the host cell is a human cell.
29. The host cell of any of claims 27-28, wherein the host cell is a Human Embryonic Kidney 293 (HEK293) cell.
30. The host cell of claim 27, wherein the host cell is a Chinese Hamster Ovary cell.
31. A method of making the binding protein of any of claims 1-23, comprising culturing the host cell of claim 27 under suitable conditions to produce the binding protein.
32. The method of claim 31, further comprising purifying the binding protein.
33. A composition comprising the binding protein of any of claims 1-23.
34. The composition of claim 33, wherein the composition is a pharmaceutical composition comprising a therapeutically effective amount of the binding protein.
35. The composition of any of claims 33-34, further comprising one or more biologically active components, excipients, or diluents.
36. A method of treating a disease or condition resulting directly or indirectly from TGF β 1 activity in a human comprising administering to a human a

pharmaceutical composition comprising a therapeutically effective amount of the binding protein of any of claims 1-23.


37. The method of claim 36, wherein the disease or condition is selected from the group consisting of a fibrotic disease, cancer, an immune-mediated disease, and a combination thereof.
38. The method of any of claims 36-37, where the disease is diffuse cutaneous systemic sclerosis.
39. Use of the binding protein of any of claims 1-23 in the manufacture of a medicament for treatment of a disease or disorder selected from the group consisting of a fibrotic disease, cancer, an immune-mediated disease, and a combination thereof.
40. The use of claim 39, wherein the disease is diffuse cutaneous systemic sclerosis.
41. The use of claim 39, wherein the disease is bone remodeling disease
42. The use of claim 39, wherein the disease is kidney disease.

1/5

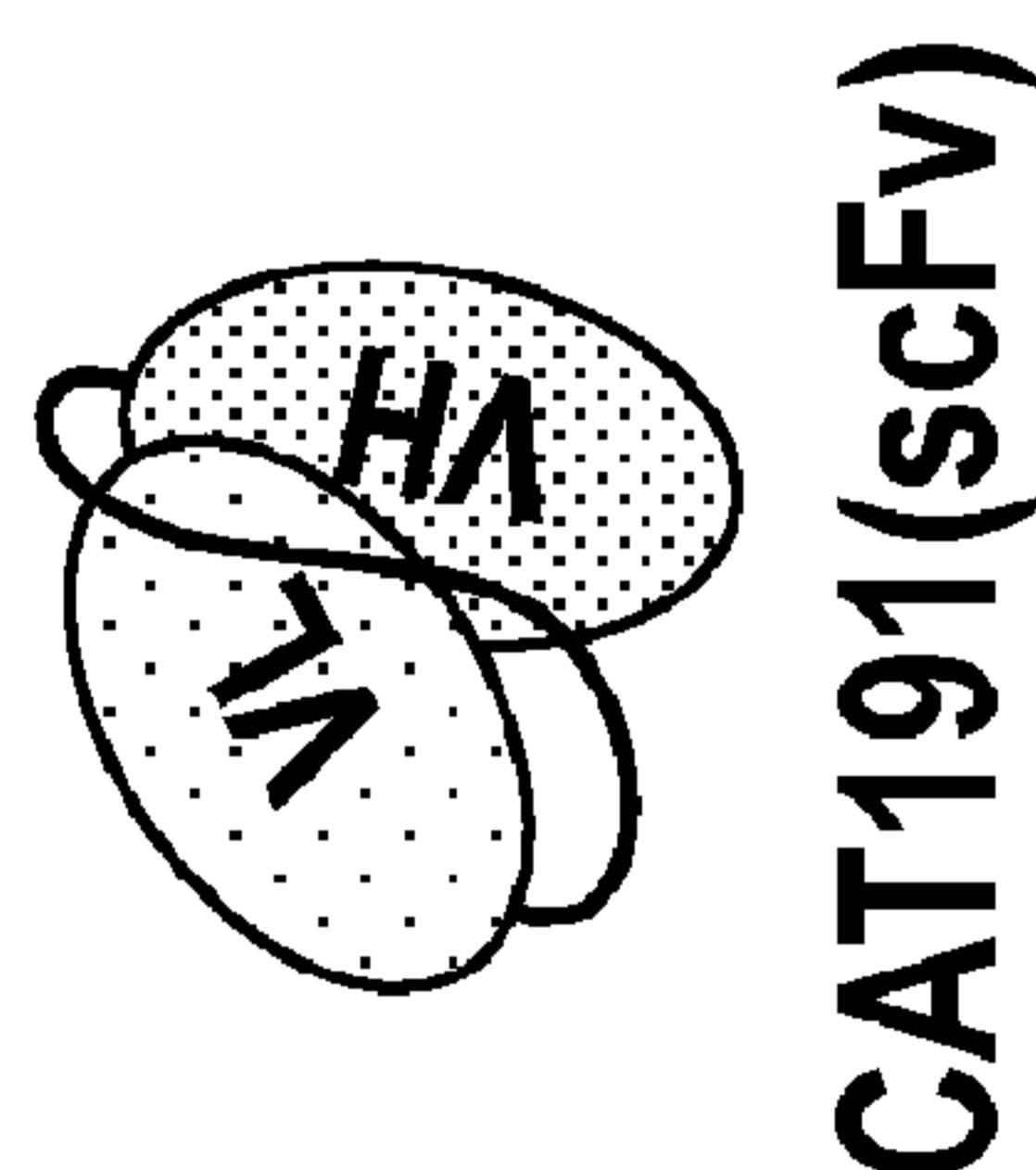
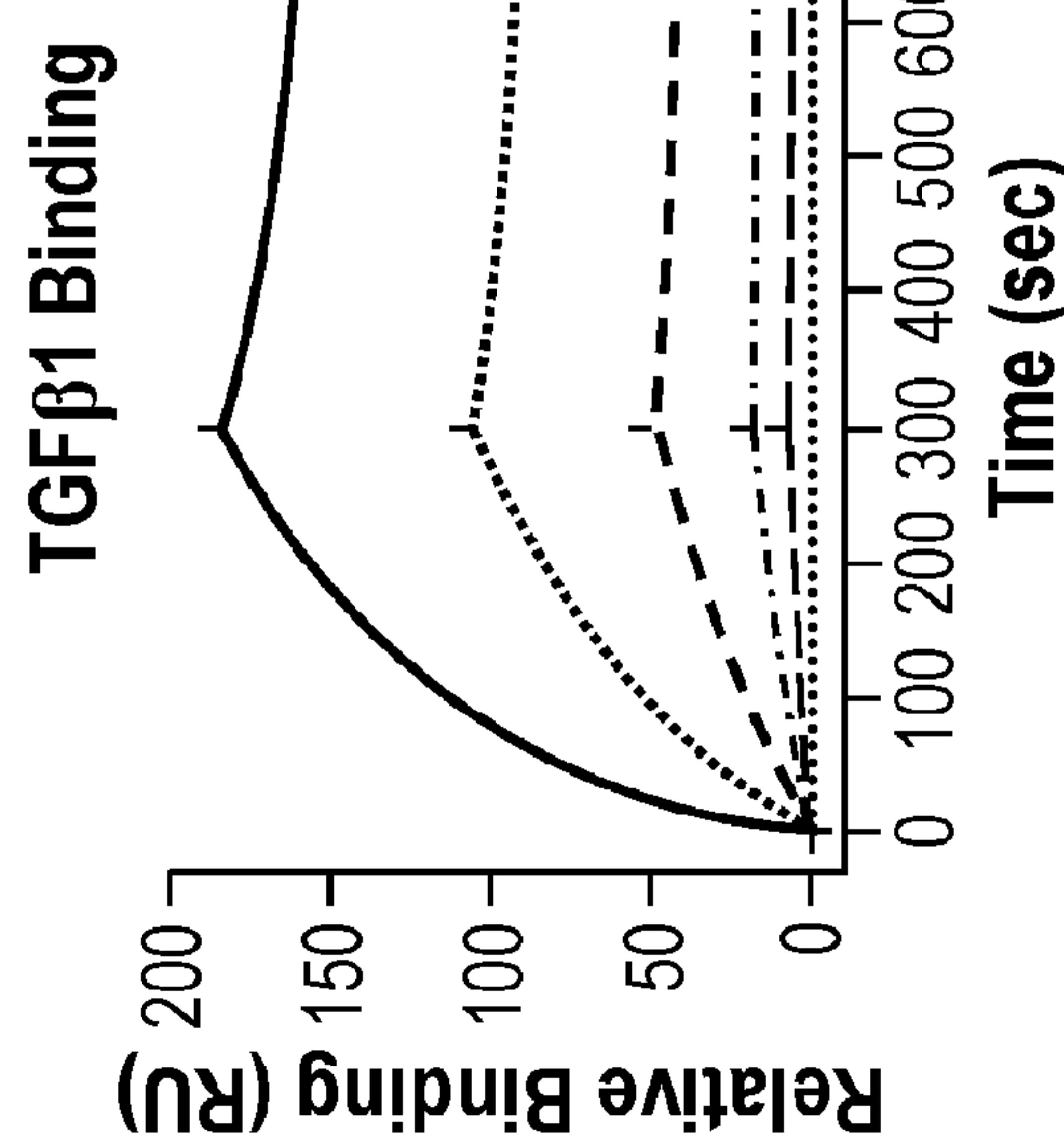
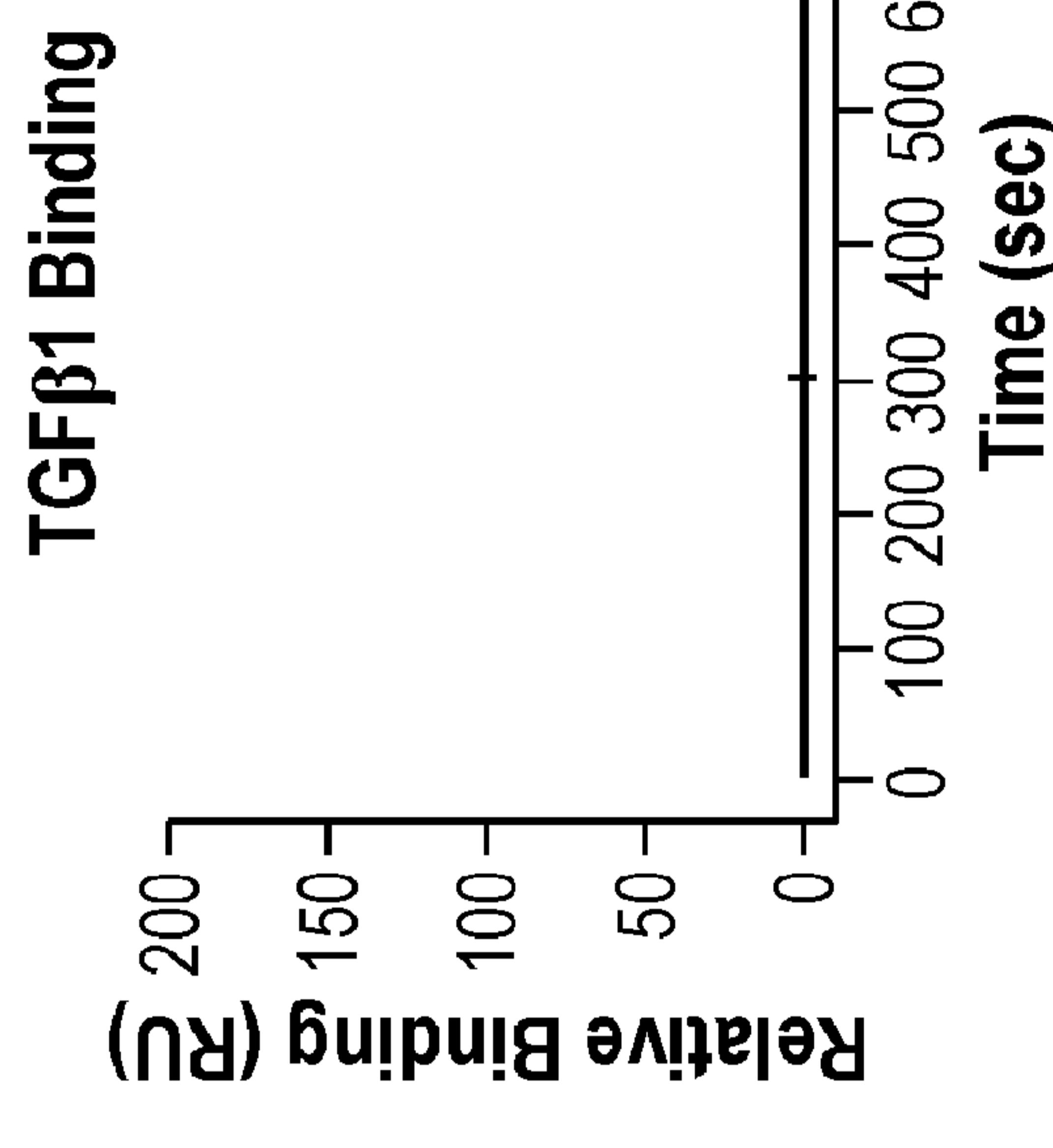
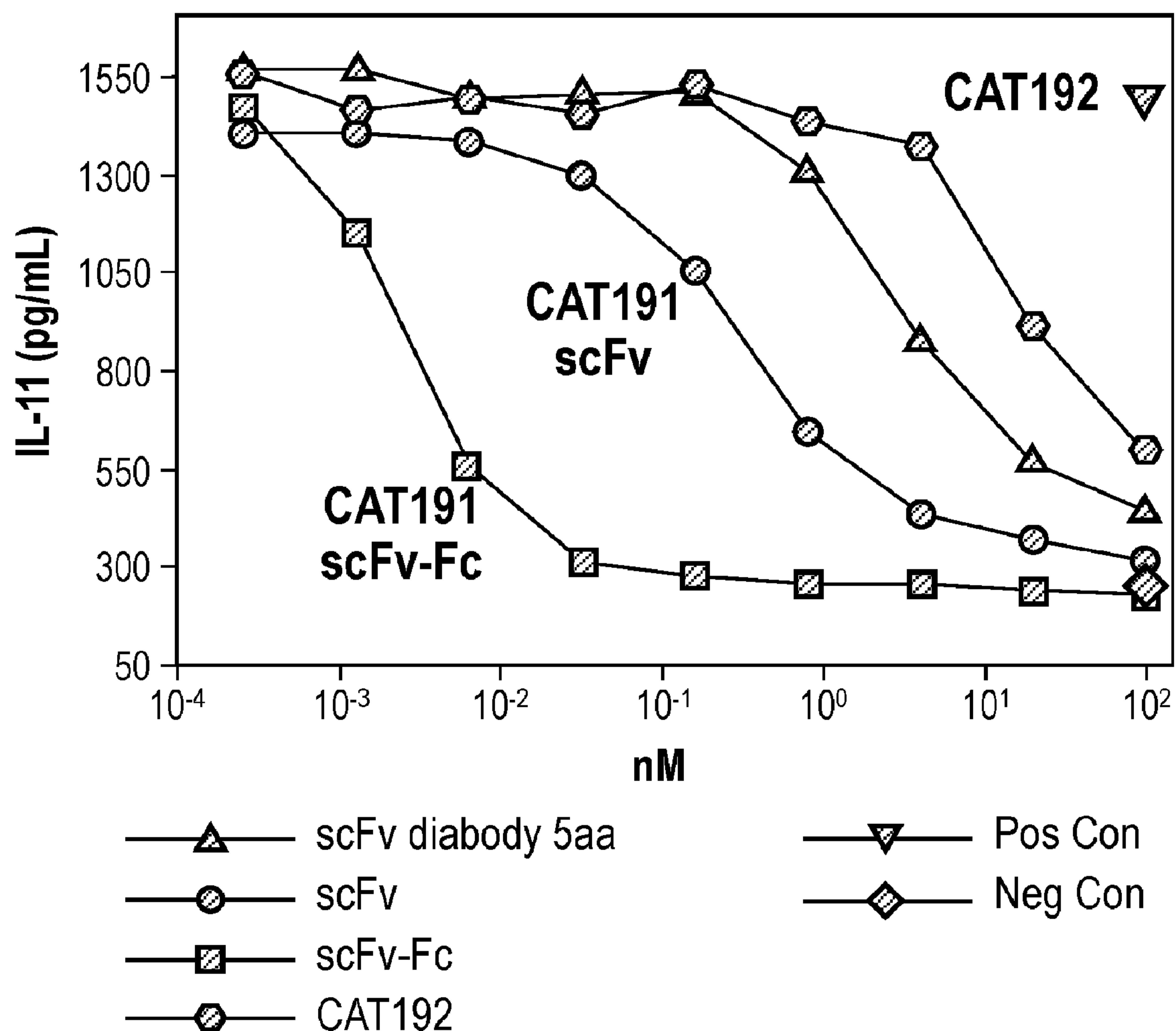
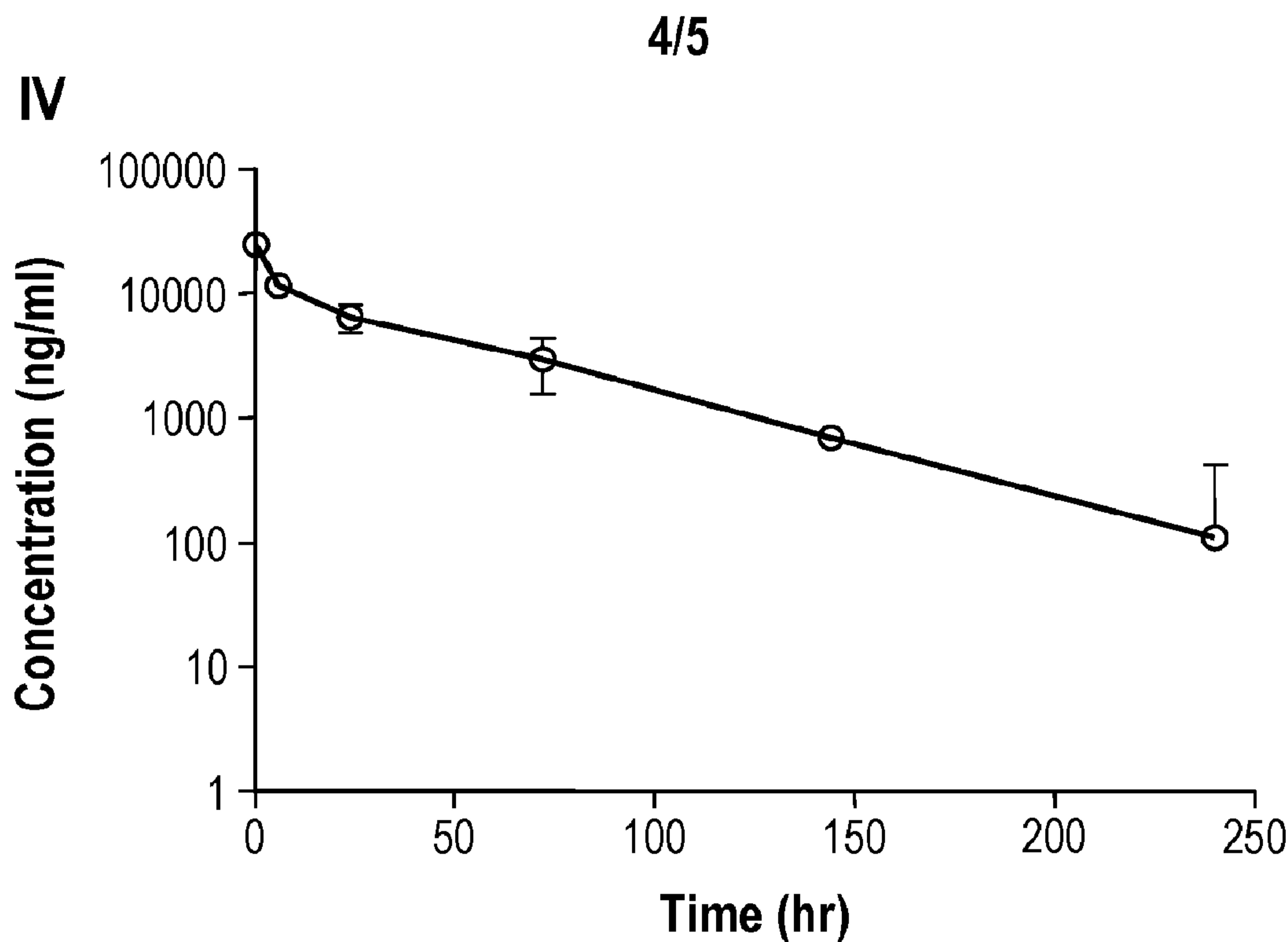


Fig. 1

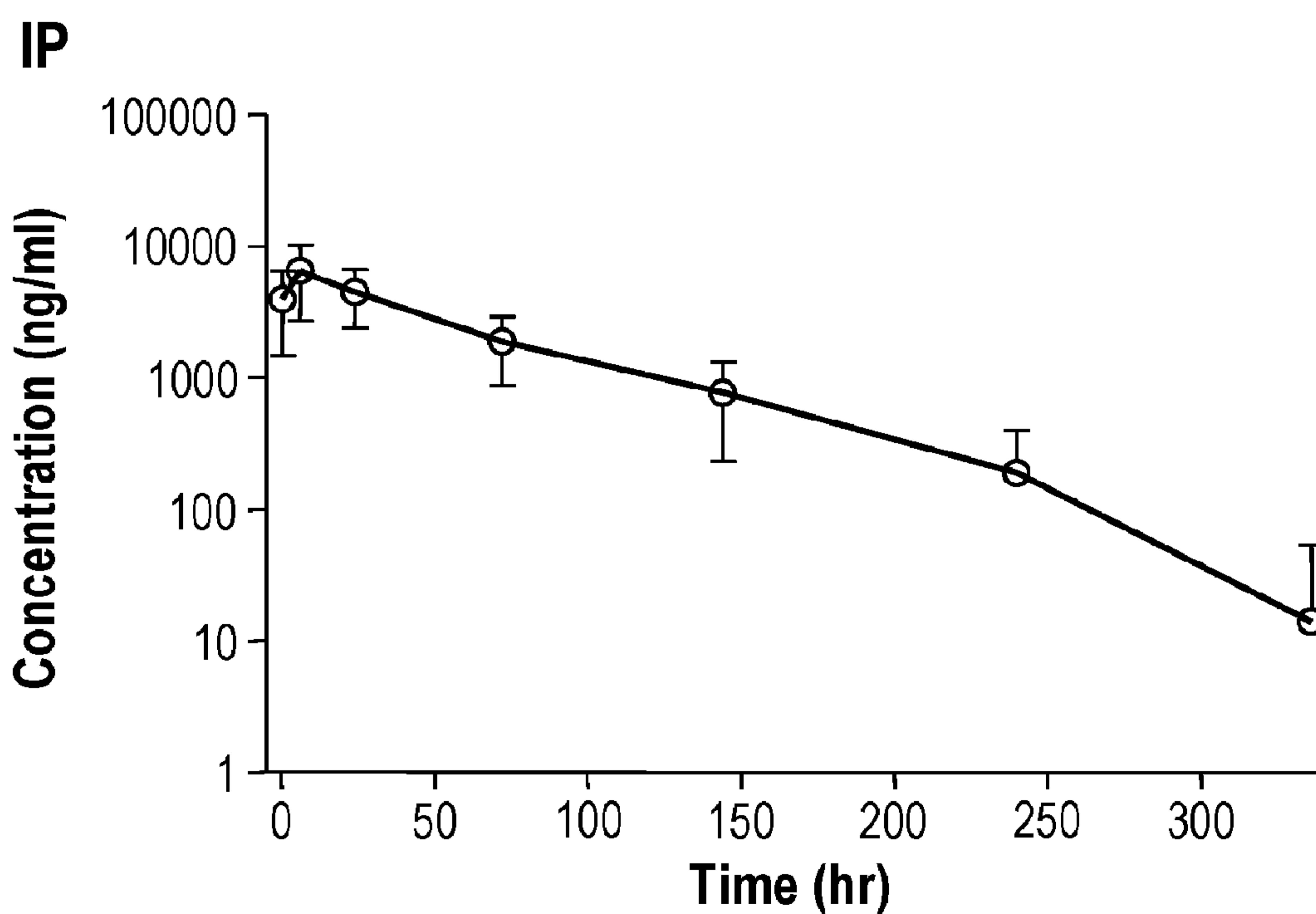

2/5


CAT192(IgG4)


CAT191(scFv)



SUBSTITUTE SHEET (RULE 26)


Fig. 2

3/5

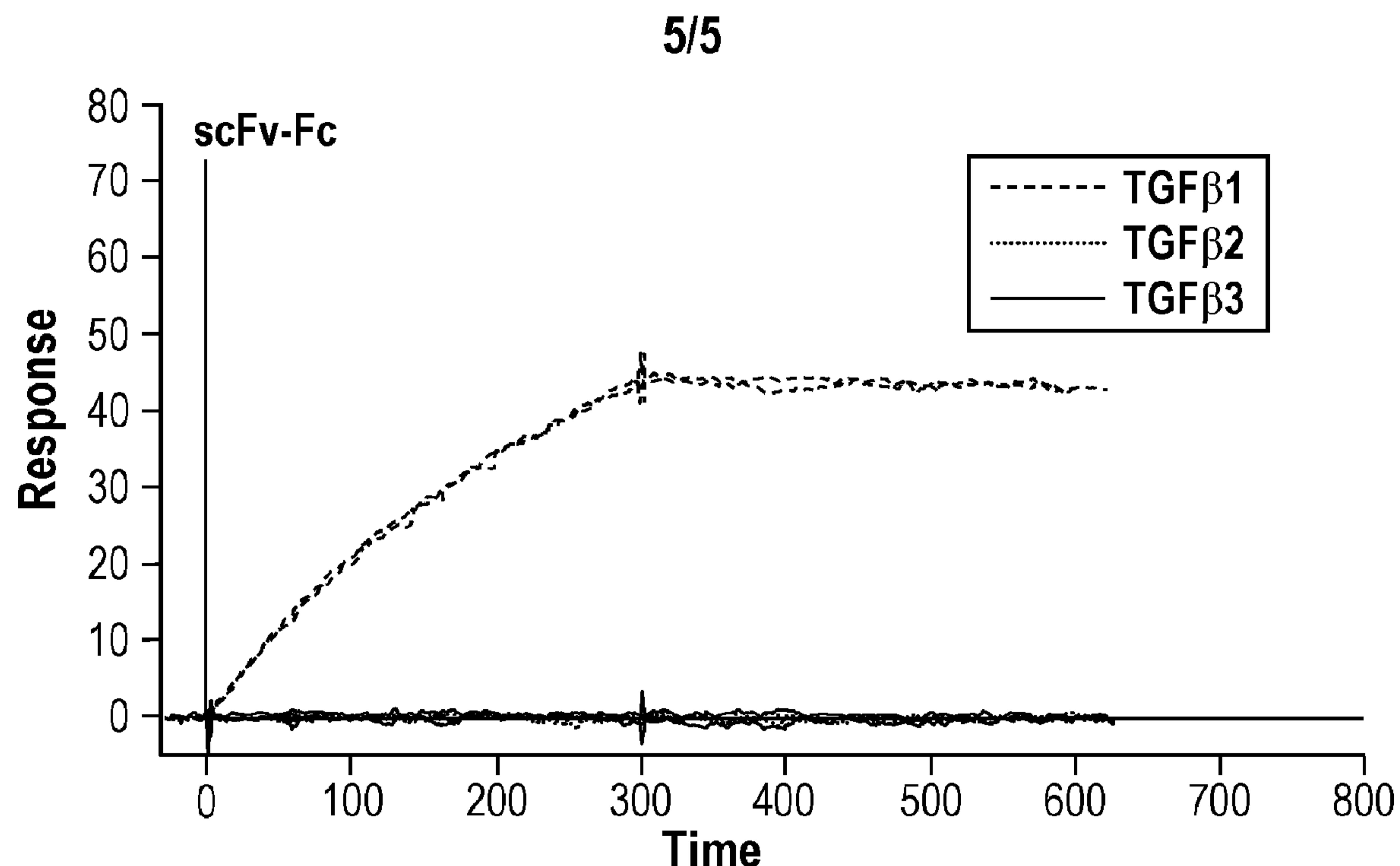

A549 Bioassay (TGF β 1)*Fig. 3*

Fig. 4

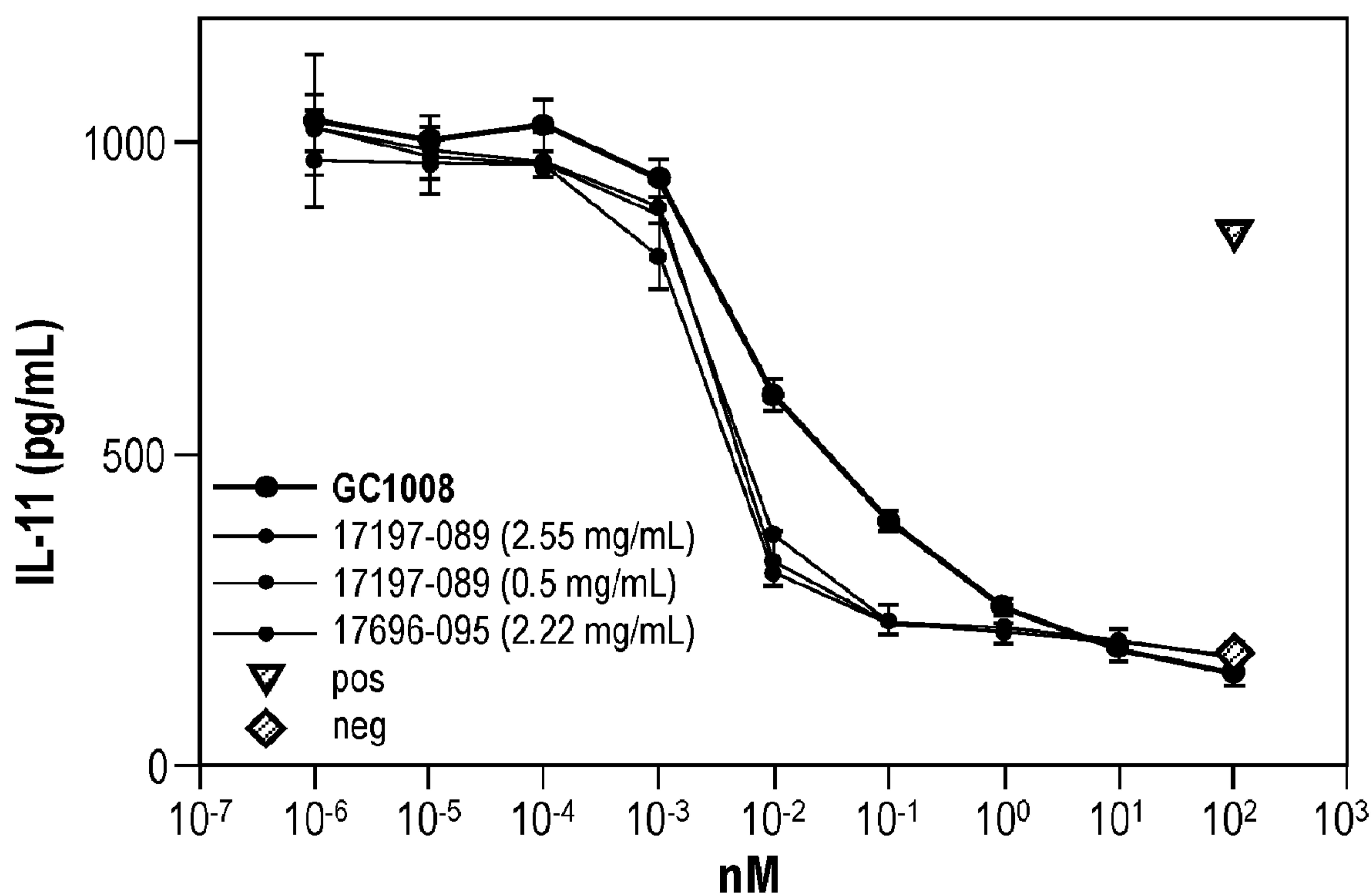


Fig. 5

Fig. 6

Inhibition of TGF β 1 by scFv-Fc fusions

Fig. 7