PROCESSING

[Continued on next page]

Declaration under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(U))

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
DEVICE AND METHOD FOR CONDITIONING SLAUGHTERED POULTRY AND
PRODUCTION LINE FOR PROCESSING POULTRY CARCASSES

The present invention relates to a device and method for conditioning slaughtered poultry. The invention moreover relates to a production line for processing poultry carcasses transported hanging in carriers.

The slaughter and subsequent processing of poultry, such as particularly chickens, chicks and broilers, but also turkeys and ducks, can be performed according to the prior art in (highly) automated manner. After being killed, the poultry is here usually carried by a transport system along different processing stations until the poultry has been cleaned sufficiently, had undesired parts removed and optionally been disassembled. The thus obtained slaughter products are dressed and packaged such that they can be delivered to the relevant customers. A problem in the automatic processing of poultry slaughter products is that, depending on the form in which the end product must be packaged, this final process step must usually be performed manually. This is the case for instance in trussing, i.e. tying a slaughter product in a specific form, of poultry which is sold as a whole product. This manual labour is physically demanding; the products are cooled and forces in the order of magnitude of as much as 50 N are required per operation in order to reposition carcass parts such as wings and legs relative to each other. An employee herein takes for instance both drumsticks of a slaughtered animal in the palms of the hand and rotates the thighs. The drumsticks are then pivoted downward. The hip-joint (Articulatio Coxae) and the knee-joint (Articulatio Femoropaterallis) are thus brought into a desired (folded) position in successive steps and remain roughly in the desired position after this operation. The legs can then be tied together.

In the prior art (EP 0 413 629) a device is also described with which the legs of poultry can be brought into a desired position and the poultry subsequently trussed. This has an extremely complex construction, as a result of which placing of the poultry into and removal thereof from said device also requires time-consuming operations. This application also shows that the market is searching for a solution for fully automating trussing of poultry.
The present invention has for its object to improve the working conditions and to reduce the workload involved in conditioning slaughtered poultry.

The present invention provides for this purpose a device for conditioning slaughtered poultry, comprising: a carrier provided with a contact surface for locally engaging a first carcass part of a slaughtered poultry animal at a first position, an engaging element provided with at least one contact surface for locally engaging a second carcass part of the slaughtered poultry animal at least at a second position, and drive means for relatively displacing the carrier and the engaging element such that the first and second carcass parts move relative to each other, wherein the carrier forms part of a transport system with which the poultry are displaced hanging in the carrier. Conditioning is here understood to mean removing the rigor mortis of parts of the carcass with the purpose of facilitating manual processing. The carrier is preferably adapted here to engage on a first carcass part defined by two separate legs. The term "legs" should be broadly interpreted here; this is also understood to mean leg parts such as legs shortened to a greater or lesser extent (long legs and short legs). In practice use is made for this purpose of a transport hook in which the slaughtered poultry animal is suspended. Such transport hooks are already generally applied in existing transport systems with which the slaughtered poultry animals are carried along successive processing stations. By applying an existing hook in the device according to the invention, it becomes possible to fit the conditioning device in an existing production line. This of course provides the advantage of simple supply and discharge of products to and from the present device. In other words, it becomes possible with the present invention to incorporate a conditioning device according to the present invention in an existing production line provided with an overhead conveyor. Conditioning is thus fully automated and the device can be integrated in existing production lines without specific modifications. The device is not intended exclusively for the processing of complete poultry animals whose legs and neck have been shortened; other random parts (such as for instance halved animals) can also be conditioned using the present device.

It is further desirable that the carrier is advanced such that the straight line through the engaging positions of separate legs substantially coincides with the transporting direction of the carriers in the transport system. In other words, the slaughtered poultry is advanced sideways. This makes it possible to apply less expensive rigid hooks in the
transport system instead of rotatable hooks which make it possible to move poultry animals with the breast or the back in forward direction, this being necessary for the processing of poultry in conventional manner. Using a rigid hook (non-rotatable hook) it is only possible to advance the poultry in a lateral orientation. Conditioning according to the present invention is possible in a lateral orientation of the poultry animals; rotation of the poultry for conditioning purposes is unnecessary. The use of the relatively simple non-rotatable hook in a (part of a) slaughter line represents a substantial saving when compared to the (partial) use of rotatable hooks.

In order to prevent an engaged poultry animal detaching from the carrier during conditioning, it is desirable for the carrier to co-act with locking means for locking the first carcass part in an engaged position in the carrier. Such locking means can for instance comprise a guide part connected to the fixed world. This means that the guide part does not form part of an advancing conveyor but is stationary relative to the conveyor. It is however possible for the locking means to be adjustable and/or displaceable so as to thus vary for instance the position in which the legs are locked in the carrier or the length of the legs to be locked, for instance in order to compensate, among other things, variation in the dimensioning between different batches. The locking of the legs in the carrier could possibly even be adjustable at individual level such that the position of the locking means is optimized for each individual poultry animal.

Yet another variant of the device is provided with additional pressing means which operate close to the carrier and using which leg parts can be displaced relative to the leg parts engaged by the carrier. Specifically envisaged here is the bending of parts of longer legs which sometimes also have to be folded together during dressing. This folding together of longer legs can also be simplified by means of the present invention.

In the case where it is difficult to fit a conditioning device according to the present invention into a production line, for instance because of lack of space or because of the balancing of required processing capacity, it is also possible for the device according to the present invention to comprise a carousel in which a plurality of carriers can be held simultaneously. A plurality of successive conditioning steps (partial processes) can be performed in the carousel; in addition to the advantage that a carousel enables a more
compact construction of the slaughter line, a carousel creates flexibility in respect of the capacity to be installed.

In a specific embodiment variant the engaging element is a press-on element, and the vertical through the carrier encloses an acute angle with a contact surface of the pusher directed toward the carrier. This embodiment variant of the device is particularly adapted for conditioning of the legs of poultry animals while the carrier and the pusher are moving toward each other. The contact surface is dimensioned such that it is suitable for engaging on at least a part of the body of the slaughtered poultry animal. As a result of the inclining position of this contact surface relative to a direction of movement according to the vertical through the carrier with which the carrier and the pusher move toward each other, the angular position of the body relative to the legs engaged by the carrier will be changed as a consequence of the force exerted by the contact surface. The body shifts or slides over the contact surface as the pusher moves inward and is herein forced into a different orientation. The pusher can for instance be given a concave form, this also having the advantage that the body, self-locating in lateral orientation, will be able to take up a desired position relative to the pusher. It is further desirable that the pusher is provided with at least one stop on the side of the contact surface remote from the carrier. This stop will ensure that the distance through which the body of a poultry animal can slide over the contact surface is limited. The stop prevents the body sliding further than a determined maximum, and the orientation of the body relative to the pusher will, at least substantially, no longer change as the pusher and the carrier move further toward each other. This orientation is now determined by the contact surface and the stop.

In yet another embodiment variant of the device the engaging element comprises at least two wing folding members which are displaceable such that their mutual distance is variable. Such an embodiment variant of the device is particularly adapted to condition the wings when the carrier and the engaging element move apart, and more particularly to cause the wings to fold out and take up more or less the same positions such that they are more readily processable in subsequent processing operations. In this context the term conditioning is understood to mean not only reducing the rigor mortis of the wings; the term conditioning can here also be understood to mean positioning of the wings. For this purpose the wing folding members must engage behind the wings and
then be moved downward relative to the engaged legs; the wing folding members will thus begin to exert a force on the wings such that they are urged away from the body of the poultry animal. These wing folding members can advantageously be provided with curved contact surfaces directed toward each other. The curvature of the contact surfaces is preferably such that the contact surfaces (at least partially) connect to the sides of the poultry animals. In a spaced-apart relative orientation these wing folding members can be placed at the position of the sides of a poultry animal and then moved toward each other against the sides of the relevant poultry animal. Once the wing folding members connect to the sides of the poultry animal, they can be moved in a direction away from the carrier; provided they are given a sufficiently thin form without this causing damage to the poultry animal, the wing folding members will then slide under the wings and, as the movement continues further, spread the wings (press the wings outward) as described above.

For a good connection of the wing folding members to the sides of the poultry the contact surfaces are given a substantially concave form; they are more particularly preferably concave such that they are complementary to the average (convex) form of the sides of the poultry animals.

The wing folding members are advantageously mounted pivotally on a shared carrier such that the mutual distance between the contact surfaces as a result of pivoting the wing folding members is variable. The wing folding members are pivoted apart before they are brought into contact with a poultry animal. When they reach the correct height relative to the poultry animal (a position between the legs and the wings) they are pivoted inward such that they both lie against the poultry animal. After a full conditioning cycle has been completed, the wing folding members are simply pivoted apart and are situated in a relative orientation which makes it possible to once again engage a subsequent poultry animal. It is also advantageous if the distance between the wing folding members can be reduced until the wing folding members are in a crossed position. In such a crossed position the wing folding members overlap each other and, provided only that the mutual distance between the wing folding members is here kept small enough, the wings cannot therefore come loose of the wing folding members until these latter have been moved over the full length of the wings. The mutual distance between the wing folding members is ideally smaller than the thickness of the wings;
the wings can thus never pass prematurely between the wing folding members; that is, before the wings have been processed along the whole length by the wing folding members. The tips of the wings will, among other parts, also be thus positioned.

The device can also be embodied with a combination of a pusher as described above and wing folding members, likewise as described above. With such a device two processes can be performed efficiently; during a movement of the carrier and the engaging means toward each other (inward stroke) particularly the legs will be conditioned, and during moving apart of the carrier and the engaging means (outward stroke) the wings will be conditioned. The wing folding members are herein located between the carrier and the pusher. Both the inward and the outward stroke are thus employed productively. Furthermore, both the pusher and the wing folding members can be operated using only a single drive and control mechanism; this is clearly efficient.

The invention further also provides a method for conditioning slaughtered poultry, comprising the processing steps of: A) supplying a slaughtered poultry animal in line with a carrier engaging locally at a first position on a first carcass part of the poultry animal, B) locally engaging at least one second carcass part of the slaughtered poultry animal at a second position with an engaging element, and C) mechanically displacing the carrier and the engaging element relative to each other such that the first and second carcass parts move relative to each other. The poultry animals supplied in line are here preferably advanced sideways hanging from the legs. The above stated advantages in respect of the device according to the invention can be realized by means of this method; in effective manner the legs and/or wings of poultry animals transported in a continuous production line can be efficiently conditioned. It is also very advantageous here that the rigor mortis of the poultry animals can be reduced locally in a lateral orientation; this means that conditioning in this manner does not require a rotatable carrier (hook) which, in view of the large number of hooks (many thousands in a normal production line with cooling line), results in a very considerable saving on the cost of carriers.

The engagement of the carrier on the poultry is preferably locked so as to minimize waste as a result of the conditioning. A poultry animal must of course not become
detached from the carrier with one or both legs during conditioning; it is precisely the conditioning in the carrier while maintaining the grip on the poultry animal by the carrier that makes the conditioning according to the present invention one of the significant advantages of the present method.

The carrier and the engaging element can be moved during processing step C) from a first position spaced further apart to a second position closer to each other such that the engaging element pushes the poultry animal upward by the body, wherein the legs are rotated relative to the body. In addition, it is desirable that the carrier and the engaging element are moved during processing step C) from a second position lying closer to each other to a first position spaced further apart. This process can be performed so as to thus allow the poultry animal to return more or less to the original position in which it was situated before the conditioning process began. These two processing steps can, if desired, also be repeated a number of times until the movement of the legs is sufficiently easy that subsequent trussing/dressing is impeded as little as possible. When reducing the rigor mortis in this manner, it is additionally also possible to envisage moving one or more leg joints in order to thus also reduce the rigor mortis of the legs. This is of course particularly interesting for poultry with long legs which have been less drastically shortened.

As alternative to or in combination with the pushing upward, is also possible that the engaging element, using mutually displaceable wing folding members, engages the poultry animal at the position of the sides such that, when the carrier and the engaging element are moved apart, the wing folding members contact the body of the poultry between the wings and, when the mutual displacement of the carrier and the engaging element is continued further, press the wings away from the body of the poultry animal. When the carrier and the engaging element are moved further apart it is possible that the wing folding members displace the wings such that the wing folding members are moved over the wings and then detach from the wings. In this way the wing folding members are carried a distance from the body of the poultry animal and brought into a more or less standardized spaced-apart position, which simplifies subsequent processing of the wings and simplifies the standardization of the subsequent process(es). It is otherwise possible to control this mutual distance of the wing folding members such that they can only exert a determined maximum force on a slaughtered animal, this so as
to prevent damage to a slaughtered animal. It is also possible to envisage intelligent
control of the mutual distance between the wing folding members such that this varies
subject to the position (in particular the height) they occupy relative to the slaughtered
animal. In yet another preferred application the wing folding members are in a crossed
position during movement over the wings. As already indicated above, it is possible in
this manner to prevent one or both wings detaching from the wing folding members
before these latter have been moved over the full length of the wings. A condition for
being able to ensure that the wings do not prematurely detach from the wing folding
members is that the mutual distance of the crossed wing folding members is smaller
than the thickness of the wings to be processed. After passing through processing step
C) the poultry animal can be engaged manually and further processed. The resistance to
rotation of the legs and the resistance to displacement of the position of the wings is
reduced, with the favourable consequence that this simplifies the further processing of
the poultry animal; less (muscular) strength is required for instance during dressing or
trussing in order to place the poultry animals in the desired position.

As described above, the carrier and the engaging element can be moved to a position
closer to each other and then moved apart in a return movement. Using such a double
stroke, the legs of the poultry animal are conditioned in a first stroke and the wings are
conditioned in the second return stroke, as well as the legs being conditioned once again
in the second stroke (albeit generally to a lesser extent than in the first stroke) because
they at least substantially return to their starting position before the conditioning process
begins.

The present invention also provides a production line for processing poultry carcasses
transported hanging in carriers, comprising: a transport system provided with carriers in
which the poultry is displaced in hanging position, wherein the carriers engage on the
transport system with a fixed orientation such that the straight line between the
engaging positions of individual legs in a carrier substantially coincides with the
transporting direction of the carriers in the transport system, visual inspection means
("AQS") for inspecting external characteristics of the individual poultry animals
transported by the transport system, and a device for conditioning poultry as described
above, wherein the visual inspection means are disposed in the transporting direction
downstream of the device for conditioning poultry. The conditioning means can thus
ensure that the individual poultry animals are supplied to the inspection means in a more or less universal method of orientation. This will of course greatly improve the inspection result. Fewer errors will thus be made during visual inspection because for instance a wing which is not folded out is erroneously seen as an irregularity of the breast, with the result of less incorrect rejection. Another example of improved visual inspection possibilities are the shadow areas which formerly could not be viewed satisfactorily. Such locations with difficult visual access will also be left clear in standardized manner as a result of folding out the wings. For instance haemorrhaging on the inner sides of the wings or on the breast under the wings will thus be easier to trace because of the present invention. It is noted that this effect is greatest during conditioning of the wings. The transport system is preferably an endless system. The visual inspection means are preferably formed by a camera system, also referred to as a vision system. The inspection results can then be utilized to control one or more other linked processes.

Alternatively, the invention also provides a production line for processing poultry carcasses transported hanging in carriers, comprising: a transport system provided with carriers in which the poultry is displaced in hanging position, wherein the carriers engage on the transport system with a fixed orientation such that the straight line between the engaging positions of individual legs in a carrier substantially coincides with the transporting direction of the carriers in the transport system, visual inspection means for inspecting external characteristics of the individual poultry animals transported by the transport system, and a device for conditioning poultry as described above, wherein the visual inspection means are disposed in the transporting direction upstream of the device for conditioning poultry such that the functioning of the device for conditioning poultry can be controlled selectively on the basis of the data collected by visual inspection. It is thus possible to condition, or partially condition, for instance by conditioning only the wings or only the legs, only those poultry animals for which such a further processing is worthwhile. An example hereof is formed by chickens which are sold as whole product; it is here worthwhile to condition the legs, while conditioning is not usually worthwhile for chickens which are divided into smaller pieces in a subsequent sub-line. Selective use of the device for conditioning poultry can be obtained by making the operation of the device subject to the recorded visual information (feed-forward process control). Conversely, it is also possible to first divide
the supply of poultry into different sub-flows of slaughtered poultry, these sub-flows being further processed in different ways. One or more devices for conditioning poultry can then still be disposed in one or more sub-flows. In this variant there is feed-forward, on the basis of the visual information, to the selection means which divide the main flow of products into two or more sub-flows.

The invention will be further elucidated on the basis of the non-limitative exemplary embodiments shown in the following figures. Herein:

figures 1A-1D show perspective views of successive processing stages of a device according to the invention for conditioning the legs of a poultry animal hanging in an overhead conveyor;

figures 2A-2D show perspective views of four embodiment variants of engaging elements for pushing chickens upward in a device according to the present invention;

figure 3A is a perspective view of an alternative embodiment variant of a device according to the invention for conditioning the wings of a poultry animal hanging in an overhead conveyor;

figure 3B is a top view of a part of the device as shown in figure 3A;

figures 4A-4D show perspective views of successive processing stages in the spreading of wings using a following embodiment variant of a conditioning device according to the invention;

figure 5A is a perspective view of a second embodiment variant of a conditioning device with a dual functionality;

figure 5B is a view of a part of a conditioning device as a component of the device shown in figure 5A, which can however be applied individually;

figures 6A-6D show schematic perspective views of a number of possible concepts of the rough architecture of the device according to the invention; and

figures 7A-7C show schematic top views of three embodiment variants of production lines according to the present invention for processing poultry carcasses transported hanging in carriers.

Figure 1A shows a carcass of a poultry animal, more particularly a chicken, which is suspended by means of legs 2 in a rigid transport hook 3 which functions as carrier of a transport system 4. Transport system 4 comprises, among other parts, a guide track 5 in which is carried a hook carrier 6 which bears hook 3. In order to prevent legs 2
detaching from hook 3, the shown conditioning device 8 is provided with locking block 9, a protruding edge 10 of which ensures that there is no space for legs 2 to come out of engaging openings 11. Situated under chicken 1 is an engaging element 12 which is carried by a vertically displaceable carriage 13. Engaging member 12 is provided with a concave contact surface 14 which, as will be shown in the following figures, can be moved upward and thus function as a pusher. In the embodiment variant shown in this figure the locking block 9 and engaging element 12 form part of a carousel 15. By rotating carousel 15 a cam roller 16 connected to carriage 13 is carried through a cam track 17, as a result of which the desired upward (and, later in the rotation path, downward) movement is obtained. Carriage 13 is guided by vertical guide rods 18. Figure IA also shows a subsequent locking block 9', a subsequent contact surface 14' and a subsequent guide rod 18', which form a subsequent processing station in carousel 15.

Figure IB shows conditioning device 8 of figure IA in a situation where carriage 13 has moved upward as according to arrow P1 as a result of the rising cam track 17 and resulting upward movement of cam roller 16. Contact surface 14 hereby comes into contact with chicken 1. Chicken 1 will hereby slide over contact surface 14 as according to arrow P2. As already shown to a limited extent in figure IB, as carriage 13 with contact surface 14 proceeds further upward (see figure 1C, arrow P3) the chicken will slide over the contact surface such that the shoulders of chicken 1 are moved toward two stops 19 until, as shown in figure 1C, they lie against these stops 19. Chicken 1 will then slide no further over contact surface 14 when carriage 13 is moved still further upward. As a consequence of chicken 1 sliding over contact surface 14 and contact surface 14 moving still further upward once chicken 1 lies against stops 19, the position of legs 2 is changed. The result hereof is that the hip-joint (Articulatio Coxae) 21 and the knee-joint (Articulatio Femoropaterallis) 22 are rotated more and more until the position as shown in figure ID is finally obtained. The position of hip-joint 21, knee-joint 22, splint bone (fibula) 23 and thighbone (femur) 24 are shown schematically by means of a broken line. Legs 2 are folded so far together in figure ID that later in the process they can be returned more easily (i.e. with less resistance than before) to this position. Also apparent from figure ID is the importance of the presence of locking block 9. The deformation of legs 2 can take place in this manner without the legs coming out of the engaging openings 11 of hook 3, with the undesirable result that they
do not undergo the desired processing. After passing through the positions as shown in figures IA-ID, engaging element 12 will be carried back again to the starting position shown in figure IA.

Figure 2A shows a first embodiment variant of engaging element 12 for pushing chickens upward corresponding with that shown in figures 1A-ID. Contact surface 14 takes a concave form such that a chicken will take up the desired position relative to contact surface 14 in self-locating manner. Stops 19 have also already been described above. Contact surface 14 is mounted in a fixed position on carriage 13 with which the vertical upward pushing movement is realized.

Figure 2B shows a second embodiment variant of an engaging element 30 which is provided with a vertically displaceable carriage 31. Engaging element 30 has a contact surface at 32 with a stop 33 for arresting chickens sliding over contact surface 32.

Figure 2C shows a third embodiment variant of an engaging element 34 provided with a vertically displaceable carriage 35. Engaging element 34 has a contact surface 36 with a stop 37. Stop 37 is provided here with a centrally placed recess in order to prevent damage to a possibly remaining neck part.

Figure 2D shows a fourth embodiment variant of an engaging element 38 which, in addition to the components as already shown in the above three embodiment variants of an engaging element 12, 30, 34, which are therefore not stated here again, now comprises two additional supporting elements 39 with which the thighs of a chicken for processing are engaged sideways, i.e. on sides of the thighs remote from each other, which can also be designated the outer sides of the thighs, if they tend to move apart under the influence of the upward pressing. It is thus possible to prevent particularly the hip-joint (Articulatio Coxae) 21 rotating sideways (figure IB).

Figure 3A shows a perspective view of a device 40 according to the invention for conditioning the wings 41 of a chicken 1 suspended in an overhead conveyor 4. Similarly to that shown in figures 1A-ID, legs 2 are suspended in a rigid transport hook 3 which functions as carrier of transport system 4. Transport system 4 comprises, among other parts, a guide track 5 in which is carried a hook carrier 6 which bears hook
3. Conditioning device 40 is also provided with two wing folding members 42. These
two wing folding members 42 are mounted rotatably around two vertical rotation shafts
43 on a vertically displaceable carriage 44. For a description of the operation of carriage
44 reference is made to the above description of carriage 13 as shown in figures IA- ID,
with the proviso that cam roller 16 in carriage 44 not only operates the vertical
displacement of carriage 44 but also drives the pivoting of wing folding members 42
toward and away from each other. Just as conditioning device 8 shown in figures IA-
ID, conditioning device 40 shown in this figure also forms part of a carousel 15.
Conditioning device 40 can otherwise also be modified in relatively simple manner by
also making the wing folding members 42 rotatable around a horizontal shaft (not
shown in figure). Wing folding members 42 can then also be used in their position
pivoted toward each other to push chicken 1 upward, more specifically at the position of
the hips of chicken 1.

The operation of conditioning device 40 is as follows. Wing folding members 42 are
carried in pivoted-apart position to about the level of the position in which they are
situated in figure 3A. Wing folding members 42 are then pivoted toward each other
such that they lie against the sides 44 of chicken 1. Carriage 46 with wing folding
members 42 will then be moved downward as according to arrow P4, as a result which
the wing folding members 42 will slide between wings 41 in sides 44 of chicken 1. This
downward movement as according to arrow P4 is now continued further, and wing
folding members 42 thus urge wings 41 outward into a spread-apart position. A part of
carriage 44 with wing folding members 42 is shown in top view in figure 3B.

Figure 4A shows a conditioning device 50 with a combined functionality comparable to
that of conditioning device 8 as shown in figures IA- ID and that of conditioning device
40 as shown in figure 3A. Device 50 is also provided with two wing folding members
51 for engaging on and conditioning the wings 41 of chicken 1. In the embodiment
variant shown here however, wing folding members 51 are driven by a drive
mechanism 53 arranged on the underside of a carriage 52. In the position shown in
figure 4A the wing folding members 51 are pivoted toward each other as according to
arrows P10 by drive mechanism 53 until they come to lie against the sides of chicken 1.
Figure 4B shows a subsequent processing stage in which carriage 52 is moved
downward as according to arrow Pu. Wings 41 are hereby urged apart and a distance
away from the body of chicken 1. Figure 4C shows the subsequent stage in which carriage 52 is moved still further downward as according to arrow P12. Wing folding members 51 have now fulfilled an important part of their function; wings 41 have already been urged outward and wing folding members 51 are pressed apart to a limited extent (see arrow Pn) such that they can be moved further downward over wings 41. In order to begin again with a following processing step as shown in figure 4A, wing folding members 51 will be pivoted still further apart so that carriage 52 can be moved upward. As the carriage moves upward, a pusher 54 will push chicken 1 upward in accordance with the description relating to figures 1A-ID. It is thus possible using conditioning device 50 to condition both wings 41 and legs 2 of chicken 1.

Figure 4D shows an alternative embodiment variant of a conditioning device 55 in which the components corresponding to conditioning device 50 according to figures 4A-4C are not referred to again. The two wing folding members 56 in particular differ from the form of the above discussed wing folding members 51. In addition to the fact that wing folding members 56 have a flattened form, they are also displaceable relative to each other such that they overlap (or cross) each other. Wings 41 are now fully enclosed by wing folding members 56 and can therefore only be released when wing folding members 56 are moved so far downward as according to arrow Pu that they have passed fully over the wings (including the wing ends or wing tips).

Figure 5A shows yet another embodiment variant of a positioning device 60 with a combination of a pusher 61 and wing folding members 62. These wing folding members 62 are also shown separately in figure 5B. The operation of pusher 61 corresponds to that of the above described pushers. Wing folding members 62 however operate differently from the above shown embodiment variants. As shown in figure 5B, wing folding members 62 are pivotable as according to arrows P5 around a shaft 63 running parallel to the suspension positions of legs 2. That is, the distance between wing folding members 62 remains more or less constant during pivoting.

Figures 6A-6D show schematically a number of concepts of the rough architecture of the device. Figure 6A thus shows in partially cut-away view a carousel 70 provided with a cam groove 71. The position of pushers 72 here depends on the angular position taken
up by a specific press—an element 72 relative to cam groove 71. The rotation of carousel
70 provides the controlled vertical displacement of pushers 72.

Figure 6B shows a work station 75 in which pushers 78 (only one of which is shown in
the figure) pass through an endless path by means of two rotating cylinders 76, 77. A
cam track 80 held stationary by a frame 79 provides for the position-controlled vertical
displacement of pushers 78. The supply of a chicken 1 in an overhead transport system
is also shown clearly in this figure.

Figures 6C and 6D show a work station 85 in which pushers 86 are mounted on element
carriers 87 which pass (as according to arrows P6) through an endless path lying in a
vertical plane. A cam track 88 is once again connected in stationary manner to a frame
89 forming part of work station 85.

Figure 6E shows a work station 90 which, by means of a rod assembly 91 and a drive
cylinder 92, follows an intermittent path 93 as indicated with a dash-dot line. The
driving of a pusher 94 now takes place by means of a drive spindle 95.

Figure 6F shows a work station 100 wherein pushers 101 follow an endless path and the
mutual distance between hooks 102 and pushers 101 is varied by the progression of a
guide track 103 along which the hooks 102 are carried.

Figure 7A shows a part of a production line 110 with a cooling line 111 from which the
cooled poultry is supplied as according to arrow Pio. In a transfer means 117 the
hanging position of the poultry is changed from cooling line 111 to a subsequent
transport system. In a conditioning device 112 the thus supplied poultry animals are all
carried through a conditioning device 112 as described above. The legs and/or wings of
all supplied poultry animals can thus be conditioned. Following on from conditioning
device 112 a quality control of all supplied poultry animals takes place with a camera
system 113. Because of the conditioning 112 preceding the visual quality control 113
the reliability of the quality control 113 is relatively high. As indicated with arrow Pn,
the inspected poultry animals are moved further and, subject to the quality detected at
the quality control 113, are discharged partially along a disassembly line 114 (see arrow
P12), while a second fraction is guided as according to arrow P13 to an ejection system
115 for whole poultry animals. The part 116 of the conveyor belt which is empty after
the ejection system 115 is guided back for renewed loading with fresh poultry animals
to be cooled and disassembled.

Figure 7B shows a production line 120 with the above shown cooling line 111 from
which the cooled poultry is once again supplied as according to arrow Pio. The poultry
animals are supplied immediately following cooling line 111 to a system for visual
quality control 121 (for instance a vision system). A fraction of the thus inspected
poultry animals is discharged to a disassembly line 122 and the remaining fraction is
supplied to a conditioning device 123 according to the present invention and finally
passed (see arrow P13) to an ejection system 124 for whole products. The part 125 of the
conveyor belt which is empty following ejection system 124 can once again be guided
back. The advantage of this production line is that only the fraction of the poultry
animals here undergo a conditioning process for which conditioning of the legs is
important in improving the working conditions in the further processing of the poultry
animals not to be disassembled. Conditioning device 123 is therefore not loaded
excessively.

Figure 7C finally again shows production line 130 with cooling line 111 from which the
cooled poultry is supplied as according to arrow P10. The poultry animals are supplied
immediately following cooling line 111 to a system for visual quality control 131. The
results of the quality control 131 are processed by a computer 132 and transmitted by
means of a control line 133 to a conditioning device 134. Computer 132 provides for a
selective processing of the poultry animals in conditioning device 134. That is, only the
poultry animals which it is worthwhile subjecting to a wing and/or leg conditioning. A
fraction of the poultry animals is then discharged to a disassembly line 135 and the
remaining fraction is passed (see arrow PH) to an ejection system 136 for whole
products. The selection of poultry animals to respectively disassembly line 135 and
ejection system 136 will be controlled by computer 132. The part 137 of the conveyor
belt which is empty following ejection system 136 can once again be guided back.
Claims

1. Device for conditioning slaughtered poultry, comprising:
 - a carrier provided with a contact surface for locally engaging a first carcass part of
 a slaughtered poultry animal at a first position,
 - an engaging element provided with at least one contact surface for locally
 engaging a second carcass part of the slaughtered poultry animal at least at a
 second position, and
 - drive means for relatively displacing the carrier and the engaging element such
 that the first and second carcass parts move relative to each other,

 wherein the carrier forms part of a transport system with which the poultry are displaced
 hanging in the carrier.

2. Device as claimed in claim 1. characterized in that the carrier is adapted to
 engage on a first carcass part defined by two separate legs.

3. Device as claimed in claim 2, characterized in that the carrier is advanced such
 that the straight line through the engaging positions of separate legs substantially
 coincides with the transporting direction of the carriers in the transport system.

4. Device as claimed in any of the foregoing claims, characterized in that the
 carrier co-acts with locking means for locking the first carcass part in an engaged
 position in the carrier.

5. Device as claimed in claim 4, characterized in that the locking means comprise
 a guide part connected to the fixed world.

6. Device as claimed in any of the foregoing claims, characterized in that the
 device is provided with additional pressing means which operate close to the carrier and
 using which leg parts can be displaced relative to the leg parts engaged by the carrier.

7. Device as claimed in any of the foregoing claims, characterized in that the
 device comprises a carousel in which a plurality of carriers are held simultaneously.
8. Device as claimed in any of the foregoing claims, characterized in that the engaging element is a pusher, and the vertical through the carrier encloses an acute angle with a contact surface of the pusher directed toward the carrier.

9. Device as claimed in claim 8, characterized in that the pusher is provided with at least one stop on the side of the contact surface remote from the carrier.

10. Device for conditioning slaughtered poultry as claimed in any of the claims 1-7, characterized in that the engaging element comprises at least two wing folding members with a mutually variable distance.

11. Device as claimed in claim 10, characterized in that the wing folding members are provided with curved contact surfaces directed toward each other.

15. Device as claimed in any of the claims 1-7, characterized in that the engaging means comprise an assembly of a pusher according to either of the claims 7-8 and wing folding members according to any of the claims 10-14.

16. Device as claimed in claim 15, characterized in that the wing folding members are located between the carrier and the pusher.

17. Method for conditioning slaughtered poultry, comprising the processing steps of:
A) supplying a slaughtered poultry animal in line with a carrier engaging locally at a first position on a first carcass part of the poultry animal,
B) locally engaging at least one second carcass part of the slaughtered poultry animal at a second position with an engaging element, and
C) mechanically displacing the carrier and the engaging element relative to each other such that the first and second carcass parts move relative to each other.

18. Method as claimed in claim 17, characterized in that the poultry animal is advanced hanging sideways from the legs.

19. Method as claimed in claim 17 or 18, characterized in that the engagement of the carrier on the poultry is locked.

20. Method as claimed in any of the claims 17-19, characterized in that the carrier and the engaging element are moved during processing step C) from a first position spaced further apart to a second position closer to each other such that the engaging element pushes the poultry animal upward by the body, wherein the legs are rotated relative to the body.

21. Method as claimed in any of the claims 17-20, characterized in that the carrier and the engaging element are moved during processing step C) from a second position lying closer to each other to a first position spaced further apart.

22. Method as claimed in claim 21, characterized in that the engaging element, using mutually displaceable wing folding members, engages the poultry animal at the position of the sides such that, when the carrier and the engaging element are moved apart, the wing folding members contact the body of the poultry between the wings and, when the mutual displacement of the carrier and the engaging element is continued further, press the wings away from the body of the poultry animal.

23. Method as claimed in claim 22, characterized in that when the carrier and the engaging element are moved further apart the wing folding members displace the wings such that the wing folding members are moved over the wings and then detach from the wings.
24. Method as claimed in claim 22 or 23, characterized in that the wing folding members are in a crossed position during movement over the wings.

25. Method as claimed in any of the claims 17-24, characterized in that after passing through processing step C) the slaughtered poultry animal is engaged manually and further processed.

26. Method as claimed in any of the claims 17-25, characterized in that the carrier and the engaging element are moved to a position closer to each other as according to claim 20 and then moved apart in a return movement as according to either of the claims 23 or 24.

27. Production line for processing poultry carcasses transported hanging in carriers, comprising:
 - a transport system provided with carriers in which the poultry is displaced in hanging position, wherein the carriers engage on the transport system with a fixed orientation such that the straight line between the engaging positions of individual legs in a carrier substantially coincides with the transporting direction of the carriers in the transport system,
 - visual inspection means for inspecting external characteristics of the individual poultry animals transported by the transport system, and
 - a device for conditioning poultry as claimed in any of the claims 1-16, wherein the visual inspection means are disposed in the transporting direction downstream of the device for conditioning poultry.

28. Production line as claimed in claim 27, characterized in that the data obtained by means of the visual inspection means are utilized to control at least one processing step on the poultry carcasses.

29. Production line for processing poultry carcasses transported hanging in carriers, comprising:
 - a transport system provided with carriers in which the poultry is displaced in hanging position, wherein the carriers engage on the transport system with a fixed
orientation such that the straight line between the engaging positions of individual
legs in a carrier substantially coincides with the transporting direction of the
carriers in the transport system,
- visual inspection means for inspecting external characteristics of the individual
 poultry animals transported by the transport system, and
- a device for conditioning poultry as claimed in any of the claims 1-16,
wherein the visual inspection means are disposed in the transporting direction upstream
of the device for conditioning poultry such that the use of the device for conditioning
poultry can be controlled selectively on the basis of visual inspection.
FIG. 1A
A. CLASSIFICATION OF SUBJECT MATTER

INV. A22C 21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A22C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>paragraphs [0031] - [0033], [0038], [0044]; figures 1-4, 1a, 6a-6j</td>
<td>4, 5, 19, 23, 25, 26</td>
</tr>
<tr>
<td>X</td>
<td>US 2 958 092 A (CURTIS) 1 November 1960 (1960-11-01)</td>
<td>1-3, 8, 9, 17, 18, 25, 27-29</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>US 2 785 437 A (STANDLEY) 19 March 1957 (1957-03-19)</td>
<td>1-3, 10, 13-15</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>17, 18, 22-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Date of the actual completion of the international search

25 September 2007

Name and mailing address of the ISA/
European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV RUISWIJK
Tel (+31-70) 340-2040, Tx 31 651 eipo nl, Fax (+31-70) 340-3016

Date of mailing of the international search report

02/10/2007

Authorized officer

von Arx, Vit
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>NL 7 905 612 A (MEYN) 21 January 1981 (1981-01-21) claim 1; figure 1</td>
<td>1,17, 27-29</td>
</tr>
<tr>
<td>A</td>
<td>US 2 560 067 A (BELL) 10 July 1951 (1951-07-10) the whole document</td>
<td>1,2,8,9, 17,20</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 350 399 A (VILLEMIN) 10 January 1990 (1990-01-10) abstract; figures 1-4</td>
<td>1-3,7, 10-13, 17,18, 22,23,25</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 522 475 A (SPECIAL MANUTENTION) 9 September 1983 (1983-09-09)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 395 169 A (LINCO HOLLAND ENGINEERING B.V.) 31 October 1990 (1990-10-31)</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>LP 1665936</td>
<td>07-06-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2958092</td>
<td>01-11-1960</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2785437</td>
<td>19-03-1957</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4322872 A</td>
</tr>
<tr>
<td>US 2560067</td>
<td>10-07-1951</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 336389 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2633806 A1</td>
</tr>
<tr>
<td>FR 2522475</td>
<td>09-09-1983</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 0395169</td>
<td>31-10-1990</td>
<td>CA 2015217 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69014971 D1</td>
</tr>
</tbody>
</table>