发明名称
富马酸昔多巴片及其制备方法

摘要
本发明公开了一种富马酸昔多巴片及其制备方法，属于药物技术领域。由富马酸昔多巴作为药物的活性成分，和药用辅料填充剂、粘合剂、崩解剂组合成颗粒，加入润滑剂后制成片剂。本发明通过选择填充剂、崩解剂、粘合剂、润滑剂的种类和用量的筛选，以及制备过程中原料采用特定的过筛目数等工艺条件，所制得的片剂性状稳定、含量均匀度好、溶出度好、片重差异小、稳定性高，从而保证了体内生物利用度和临床疗效。
1. 一种富马酸卢帕他定片剂，由活性成分富马酸卢帕他定和药用辅料组合成颗粒后制成片剂，其特征在于，每 1000 片处方组成如下：
 富马酸卢帕他定 12.8g
 填充剂 50 ~ 160g
 崩解剂 5 ~ 30g
 粘合剂 4 ~ 20g
 润滑剂 0.2 ~ 5g。

2. 根据权利要求 1 所述的富马酸卢帕他定片剂，其特征在于每 1000 片处方组成如下：
 富马酸卢帕他定 12.8g
 填充剂 80 ~ 120g
 崩解剂 8 ~ 20g
 粘合剂 5 ~ 12g
 润滑剂 0.5 ~ 3g。

3. 根据权利要求 1 或 2 所述的富马酸卢帕他定片剂的制备方法，其特征在于，所述填充剂选用微晶纤维素、乳糖、甘露醇、糊精、淀粉中的一种或几种的混合物。

4. 根据权利要求 1 或 2 所述的富马酸卢帕他定片剂的制备方法，其特征在于，所述崩解剂选用羧甲基淀粉钠、交联聚维酮、交联羧甲基纤维素钠、低取代羟丙基纤维素、交联聚乙烯吡咯烷酮中的一种或几种的混合物。

5. 根据权利要求 1 或 2 所述的富马酸卢帕他定片剂的制备方法，其特征在于，所述粘合剂选用羟丙甲基纤维素乙醇溶液、羟丙甲基纤维素水溶液、聚维酮 K30 乙醇溶液、聚维酮 K30 水溶液、淀粉浆中的一种或几种的混合物。

6. 根据权利要求 1 或 2 所述的富马酸卢帕他定片剂，其特征在于所述润滑剂选用硬脂酸、硬脂酸镁、硬脂酸钙、滑石粉、聚乙二醇 4000、聚乙二醇 6000、氢化植物油或氢化蓖麻油中的一种或多种的混合物。

7. 权利要求 1 至 5 之一所述的富马酸卢帕他定片剂的制备方法，其特征在于，包括下述步骤：
 第一，将富马酸卢帕他定粉碎，过 80 目筛，备用；
 第二，将富马酸卢帕他定与填充剂、崩解剂混合均匀后，加入粘合剂溶液制成湿颗粒，湿颗粒干燥后整粒；
 第三，将整粒后的干颗粒中加入润滑剂，混合均匀后测定片重后压片、包装即得。

8. 权利要求 1 至 5 之一所述的富马酸卢帕他定片剂的制备方法，其特征在于，包括下述步骤：
 第一，将富马酸卢帕他定粉碎，过 80 目筛，备用；
 第二，将富马酸卢帕他定与填充剂、崩解剂、粘合剂混合均匀后，加入干法制粒机中制粒并整粒；
 第三，将整粒后的干颗粒中加入润滑剂，混合均匀后测定片重后压片、包装即得。
富马酸卢帕他定片剂及其制备方法

技术领域
[0001] 本发明属于药物制剂技术领域，具体涉及一种富马酸卢帕他定片剂及其制备方法。

背景技术
[0002] 过敏是一种免疫变态反应，医学的解释为机体被抗原物质致敏后，再次受到同一抗原物质刺激所产生的一种异常或病理性免疫反应。发作较急促，多在1～10分钟后出现，但也有在几日后出现的。其可由多种物质引起，包括异种血清（如破伤风抗病毒），某些动物蛋白（鸡蛋、羊肉、鸡、鸭、鱼、虾、蟹，甚至牛奶等），细菌、病毒，寄生虫，动物皮毛，空气中的植物花粉及尘螨，以及油漆、染料、化学品、塑料、化学纤维或药物等，甚至淀粉也可导致过敏，以上这些物质均称为过敏原。过敏反应的程度与过敏原的数量并不成正比，即症状的出现或严重程度与数量没有关系。过敏性疾病各个年龄段都有可能发生的，部分过敏疾病有一定的遗传因素。最常见的过敏性疾病分别是过敏性皮炎，过敏性鼻炎和过敏性哮喘。

[0003] 世界变态反应组织（WAO）对30个国家过敏性疾病的流行病学调查结果显示，这些国家的总人口中，22%的人患有过敏性疾病，如过敏性鼻炎、哮喘、结膜炎、湿疹、食物过敏、药物过敏等。据世界卫生组织估计，全球有1.5亿哮喘患者，并呈逐年上升趋势。据统计我国过敏性疾病的发病率高达37.3%，东南沿海地区发病率高于内陆，大城市特别是工业发达地区发病率要高于乡村，这主要是空气污染所引起的过敏性鼻炎，甚至是哮喘。

[0004] 目前我国临床上治疗过敏性鼻炎及过敏性荨麻疹药主要有抗组胺药物，代表药物有氯雷他定、西替利嗪、咪唑斯汀、地氯雷他定、依巴斯汀、依匹斯汀、左旋西替利嗪等。氯雷他定、西替利嗪作为第二代抗组胺的代表药物，因为无或极少有镇静作用、抗胆碱作用，近年来在临床上得到广泛应用。地氯雷他定等第三代抗组胺药物具有剂量低、起效快、不良反应小等特点，且用药安全，将逐渐替代第二代抗组胺药物。

[0005] 作为抗过敏药，卢帕他定具有抗组胺和拮抗血小板活化因子（PAF）双重作用。研究表明，过敏和炎症性疾病是由多种不同介质的生成和释放产生的多因素复杂过程，组胺就是过敏早期症状出现时含有最多的炎性介质，疾病症状如喷嚏、鼻痒、流泪、流涕、皮肤瘙痒和风团等大多都是由组胺H1受体所导致的。而PAF也可引起支气管收缩和血管通透性增加，从而导致流涕、鼻充血、上皮性、瘙痒，同时也是引起哮喘的主要原因。临床上使用的抗过敏药物只有抗组胺活性作用，而没有PAF拮抗作用。显然同时阻断组胺和PAF的药物将会比仅阻断其中一种具有更好的临床效果。卢帕他定是目前唯一上市的既有抗组胺作用又拮抗PAF活性的抗过敏药物，抗组胺作用比氯雷他定强80倍，比其他抗组胺药物强100倍，起效比西替利嗪快，对改善过敏性鼻炎鼻漏方面的疗效比西替利嗪好，且卢帕他定对血小板活化因子的抑制作用明显强于第二代抗组胺药物。卢帕他定的治疗机制较为新颖，对过敏疾病的治疗前景比较概括，可望成为治疗过敏性鼻炎及过敏性荨麻疹的一种药物。

[0006] 富马酸卢帕他定的化学名称为：8-氯-11-[1-[(5-甲基-3-吡啶基)甲基]-4-哌啶亚基]-6,11-二氢-5H-苯并[5,6]环庚并[1,2-b]吡啶富马酸盐
其结构式如下：

分子式：C_{26}H_{30}ClN_3 O_4

分子量：532.04

片剂具有服用、携带方便、成本低、患者易于接受、易于工业化生产的优点。目前已在国内外上市的富马酸卢帕他定制剂为片剂，规格为10mg。富马酸卢帕他定为白色或类白色结晶性粉末，无臭，味微苦，略有引湿性，在甲醇中溶解，水中几乎不溶，在0.1mol/L盐酸溶液中略溶。因其溶解性不理想，制成片剂时需注意外观、成型性、难溶性主药的溶出度等问题。

由于富马酸卢帕他定在存放过程中容易出现微红色的问题，导致片剂在有效期内的容易出现性状不合格的情况。专利CN103120650A（2013年5月29日公开）公布了一种富马酸卢帕他定的制备方法，该发明中用氧化铁作为染色剂将片剂制备成黄色至红色的片剂，不能有效的反应富马酸卢帕他定原料在制剂制备和存放过程中颜色改变对富马酸卢帕他定片质量的影响。

发明内容

本发明根据现有技术中存在的问题，克服富马酸卢帕他定片剂在有效期内性状容易改变导致质量不稳定的难题，提供一种富马酸卢帕他定片剂。

本发明同时提供该富马酸卢帕他定片剂的制备方法，该方法能够有效的改善片剂制备过程中松片，制备和放置过程中变色等情况，尤其改善了难溶性主药富马酸卢帕他定溶出速度，从而保证体内生物利用度，使临床获得良好的效果。

本发明的目的通过下述技术方案实现：

一种富马酸卢帕他定片剂，由富马酸卢帕他定作为药物的活性成分，和药用辅料填充剂、粘合剂、崩解剂组合成颗粒后，加入润滑剂混合均匀后压制成片剂，所述片剂每1000片含有以下成分：

富马酸卢帕他定 12.8g（相当于卢帕他定 10.0g）
填充剂 50～160g
崩解剂 5～30g
粘合剂 4～20g
润滑剂 0.2～5g

所述片剂中填充剂为微晶纤维素、乳糖、甘露醇、糊精、淀粉中的一种或几种混合物。
所述粘合剂选用羟丙基甲基纤维素乙醇溶液、羟丙基甲基纤维素水溶液、聚维酮 K30 乙醇溶液，聚维酮 K30 水溶液、淀粉浆中的一种或几种混合物。

所述粘合剂优选为羟丙基甲基纤维素与 40%～80% 乙醇溶液的混合物或聚维酮 K30 与 40%～80% 乙醇溶液的混合物。

所述润滑剂选自硬脂酸、硬脂酸镁、硬脂酸钙、滑石粉、聚乙二醇 4000、聚乙二醇 6000、氢化植物油或氢化蓖麻油中的一种或多种混合物。

富马酸卢帕他定片剂的制备方法，包括下述步骤：

(1) 将富马酸卢帕他定粉碎，过 80 目筛，备用；

(2) 将富马酸卢帕他定与填充剂、崩解剂混合均匀后，加入粘合剂溶液制成湿颗粒，湿颗粒干燥后整粒；

(3) 将湿粒后的干颗粒中加入润滑剂，混合均匀后测定卢帕他定的含量，确定片重后压片、包装即得。

富马酸卢帕他定片剂的制备方法，还可以按下述步骤制备：

(1) 将富马酸卢帕他定粉碎，过 80 目筛，备用；

(2) 将富马酸卢帕他定与填充剂、崩解剂、粘合剂混合均匀后，加入干法制粒机中制粒并整粒；

(3) 将整粒后的干颗粒中加入润滑剂，混合均匀后测定卢帕他定的含量，确定片重后压片、包装即得。

本发明相比于现有技术具有如下优点：

通过本发明的实施，能够有效的改善片剂制备过程汇中松片、片剂制备和放置过程中变色等情况，使其更方便于溶性，所以药富马酸卢帕他定溶出迅速，从而保证体内生物利用度，使临床获得良好的效果。

目前可查到富马酸卢帕他定相关公开专利主要有如下：

<table>
<thead>
<tr>
<th>权利人</th>
<th>发明名称</th>
<th>公开号</th>
<th>专利类型</th>
<th>公开日</th>
</tr>
</thead>
<tbody>
<tr>
<td>油头大学医学院</td>
<td>卢帕他定口崩片制备及制备方法</td>
<td>CN1985816A</td>
<td>发明专利</td>
<td>2007.06.27</td>
</tr>
<tr>
<td>四川海思科制药有限公司</td>
<td>一种富马酸卢帕他定片剂</td>
<td>CN103120650A</td>
<td>发明专利</td>
<td>2013.05.29</td>
</tr>
<tr>
<td>北京德众万全医药科技有限公司</td>
<td>一种含卢帕他定的药物组合物</td>
<td>CN1883480A</td>
<td>发明专利</td>
<td>2006.12.27</td>
</tr>
</tbody>
</table>

对比已经申请或公开的专利，本发明的实施较专利 CN1985816A、CN1883480A 具有较多的辅料，且与原研的剂型一致，通过生物等效性实验也证明本发明片剂与原研制剂（Rupafin®）具有相同的临床疗效。
由于富马酸卢帕他定在存放过程中容易出现性状由白色变为微红色或红色的问题，导致片剂在有效期内的容易出现性状的改变，导致质量不合格的情况。专利 CN103120650A（2013 年 5 月 29 日公开）公布了一种富马酸卢帕他定的制备方法，该发明中用氧化铁作为染色剂将片剂制备成黄色至红色的片剂，不能有效的反映富马酸卢帕他定原料在制剂制备和存放过程中颜色改变对富马酸卢帕他定片质量的影响。本发明在试验过程中发现原料中有关物质是导致出现变色的主要原因。严控富马酸卢帕他定原料中有关物质，通过本发明的实施可以有效控制富马酸卢帕他定片中的有关物质，保证产品的质量。

参照《中国药典》2010 版二部附录 X C（第二法）及《普通口服固体制剂溶出度试验技术指导原则（初稿）》，对本发明片剂和原研对照药（Rupafin®10mg）进行 4 种不同溶出介质中溶出曲线的测定。分别以 900ml 水、pH6.8 磷酸盐缓冲溶液、pH4.5 醋酸盐缓冲溶液、pH1.0 盐酸溶液为溶出介质，转速为每分钟 50 转，依法操作，分别在不同的溶出时间取样，滤过，采用高效液相色谱法测定溶出液中卢帕他定的含量，计算溶出度，进行溶出一致性评价。实验结果表明：本发明的富马酸卢帕他定片在 pH1.0 溶出介质中 15 分钟溶出度达到 85% 以上，四种介质中溶出曲线与国外原研对照药（Rupafin®10mg）均相似。

按照本发明实施例确定的处方和工艺进行了 3 批中试放大生产和 3 批工艺验证，并对所得产品进行了全检，实验结果表明：本发明处方合理，工艺稳定可行，满足工业化生产的需要。

附图说明

图 1 为本发明卢帕他定在不同 pH 值溶液中溶解度。
图 2 为 pH1.0 介质溶出曲线对比。
图 3 为 pH4.5 介质溶出曲线对比。
图 4 为 pH6.8 介质溶出曲线对比。
图 5 为水介质溶出曲线对比。

具体实施方式

为了更好的理解本发明，将通过本发明的实施例和试验数据对本发明及其优势和有益效果进行详细描述和说明，但并不以任何形式限制本发明所涉及的内容。

实施例 1- 本发明片及其制备方法

处方：
富马酸卢帕他定 12.8g（相当于卢帕他定 10g）
甘露醇 50g
微晶纤维素 50g
羧甲淀粉钠 12g
硬脂酸镁 1g
10%聚维酮乙醇溶液 适量
制成 1000 片

制法：
说明 书

[0048] 1. 将富马酸卢帕他定粉碎, 过 80 目筛, 其余辅料备用；
[0049] 2. 取聚维酮 K30, 加 50% 乙醇适量使溶解, 制成 10% 聚维酮乙醇溶液, 备用；
[0050] 3. 将富马酸卢帕他定、微晶纤维素、甘露醇、羧甲淀粉钠混合均匀, 加入 10% 聚维
酮乙醇溶液适量制成软材, 24 目筛制粒, 60℃干燥, 控制水分在 2.0%, 用 24 目筛整粒；
[0051] 4. 加入硬脂酸镁混合均匀, 测定颗粒含量；
[0052] 5. 压片, 控制片重在理论片重的 ±5% 以内, 脆碎度在 1.0% 以内, 检测素片的性
状、溶出度及含量等；
[0053] 6. 包装, 即得。
[0054] 7. 规格: 10mg/ 片 (按 C_{20}H_{28}ClN_{3} 计算)。
[0055] 8. 用法用量: 口服, 每次 10mg, 一日一次。
[0056] 实施例 2 - 本发明片及其制备方法
[0057] 处方：
富马酸卢帕他定 12.8g (相当于卢帕他定 10g) 乳糖 75g
微晶纤维素 25g 交联聚乙烯吡咯烷酮 6g
硬脂酸镁 1g
5%羟丙基纤维素乙醇溶液 适量
制成 1000 片
[0058] 制法：
[0059] 1. 将富马酸卢帕他定粉碎, 过 80 目筛, 其余辅料备用；
[0060] 2. 取羟丙基纤维素, 加 50% 乙醇适量使溶解, 制成 5% 羟丙基纤维素乙醇溶液, 备
用；
[0061] 3. 将富马酸卢帕他定、微晶纤维素、乳糖、交联聚乙烯吡咯烷酮混合均匀, 加入 5%
羟丙基纤维素乙醇溶液适量制成软材, 24 目筛制粒, 55℃干燥, 控制水分在 2.5%, 用 24 目筛
整粒；
[0062] 4. 加入硬脂酸镁混合均匀, 测定颗粒含量；
[0063] 5. 压片, 控制片重在理论片重的 ±5% 以内, 脆碎度在 1.0% 以内, 检测素片的性
状、溶出度及含量等；
[0064] 6. 包装, 即得。
[0065] 7. 规格: 10mg/ 片 (按 C_{20}H_{28}ClN_{3} 计算)。
[0066] 8. 用法用量: 口服, 每次 10mg, 一日一次。
[0067] 实施例 3 - 本发明片及其制备方法
[0068] 处方：
[0069]
富马酸卢帕他定 12.8g（相当于卢帕他定10g）
微晶纤维素 30g
硬脂酸镁 1g
聚维酮 K30 8g

制成 1000片

制法：
（1）将富马酸卢帕他定粉碎，过80目筛，其余辅料备用；
（2）将富马酸卢帕他定、微晶纤维素、硬脂酸镁、聚维酮混合均匀，使用干法制粒机进行制粒，20目筛网整粒。
（3）加入硬脂酸镁混合均匀，测定颗粒含量；
（4）压片，控制片重在理论片重的±5%以内，脆碎度在1.0%以内，检测素片的性状、溶出度及含量等；
（5）包装，即得。

规格：10mg/片（按C_{21}H₂₇ClN₃计算）
用法用量：口服，每次10mg，一日一次。

处方：
富马酸卢帕他定 12.8g（相当于卢帕他定10g）
乳糖 50g
甘露醇 50g
交联羧甲基纤维素钠 15g
硬脂酸镁 1g

10%聚维酮乙醇溶液 适量

制成 1000片

制法：
（1）将富马酸卢帕他定粉碎，过80目筛，备用；
（2）取聚维酮 K30，加50%乙醇适量使溶解，制成10%聚维酮乙醇溶液，备用；
（3）将富马酸卢帕他定、乳糖、甘露醇、交联羧甲基纤维素钠混合均匀，加入10%聚维酮乙醇溶液适量制成软材，24目筛制粒，60℃干燥，控制水分在2.0%，用24目筛整粒；
（4）加入硬脂酸镁混合均匀，测定颗粒含量；
（5）压片，控制片重在理论片重的±5%以内，脆碎度在1.0%以内，检测素片的性状、溶出度及含量等；
（6）包装，即得。
（7）规格：10mg/片（按C_{21}H₂₇ClN₃计算）
（8）用法用量：口服，每次10mg，一日一次。

试验例1-本发明的富马酸卢帕他定片的处方及工艺研究
本发明在研发过程中发现，不当的处方制备的样品外观、硬度达不到要求；同时因
原料在合成或放置过程中有变成粉红色的现象，导致制剂的有变色的现象，为了解决样品外观、硬度、变色及溶出度低等难题，发明人对富马酸卢帕他定片的处方工艺进行研究。

根据处方和试验结果分析，本品溶出度低的原因在于处方中主药富马酸卢帕他定在较高pH值时溶出介质中溶解度低（见图1），富马酸卢帕他定溶解度具有pH依赖性。

针对富马酸卢帕他定溶解度的特点，预测其对富马酸卢帕他定片溶出度的影响，处方筛选过程中重点考察富马酸卢帕他定片性状和溶出度，实验结果见表1。

表1 处方筛选结果

<table>
<thead>
<tr>
<th>原辅料名称</th>
<th>实验例1</th>
<th>实验例2</th>
<th>实验例3</th>
<th>实验例4</th>
<th>实验例5</th>
<th>实验例6</th>
<th>实验例7</th>
</tr>
</thead>
<tbody>
<tr>
<td>富马酸卢帕他定</td>
<td>12.8g</td>
<td>12.8g</td>
<td>12.8g</td>
<td>12.8g</td>
<td>12.8g</td>
<td>12.8g</td>
<td>12.8g</td>
</tr>
<tr>
<td>甘露醇</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
</tr>
<tr>
<td>微晶纤维素</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
<td>50g</td>
</tr>
<tr>
<td>羧甲淀粉钠</td>
<td>5g</td>
<td>5g</td>
<td>5g</td>
<td>0g</td>
<td>10g</td>
<td>15g</td>
<td>20g</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>1g</td>
<td>1g</td>
<td>1g</td>
<td>1g</td>
<td>1g</td>
<td>1g</td>
<td>1g</td>
</tr>
<tr>
<td>10%聚维酮乙醇溶液</td>
<td>31ml</td>
<td>45ml</td>
<td>60ml</td>
<td>60ml</td>
<td>60ml</td>
<td>60ml</td>
<td>60ml</td>
</tr>
<tr>
<td>外观</td>
<td>表面光</td>
<td>表面光</td>
<td>表面光</td>
<td>表面光</td>
<td>表面光</td>
<td>表面光</td>
<td>表面光</td>
</tr>
</tbody>
</table>
| 滑平整、滑
按本发明实施案例所制备的富马酸卢帕他定片的检验结果见表 2。

表 2 富马酸卢帕他定片检验结果

<table>
<thead>
<tr>
<th></th>
<th>合格标准</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>对照药</th>
</tr>
</thead>
<tbody>
<tr>
<td>性状</td>
<td>白色片或类白色片</td>
<td>白色片</td>
<td>白色片</td>
<td>白色片</td>
<td>粉红色片</td>
</tr>
<tr>
<td>含量均匀度</td>
<td>A+1.8S＜15</td>
<td>4.82</td>
<td>6.01</td>
<td>5.63</td>
<td>5.94</td>
</tr>
<tr>
<td>单杂</td>
<td>≤0.4%</td>
<td>0.06%</td>
<td>0.04%</td>
<td>0.02%</td>
<td>0.03%</td>
</tr>
<tr>
<td>总杂</td>
<td>≤1.0%</td>
<td>0.08%</td>
<td>0.07%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>溶出度</td>
<td>≥75%</td>
<td>95%</td>
<td>98%</td>
<td>96%</td>
<td>99%</td>
</tr>
<tr>
<td>含量</td>
<td>90.0%～110.0%</td>
<td>99.8%</td>
<td>98.9%</td>
<td>100.1%</td>
<td>102.3%</td>
</tr>
</tbody>
</table>

注：由于对照药处方中含有氧化铁等物质，制剂呈现粉红色。

试验结果表明，从质量方面来看，按本发明实施例所制备的富马酸卢帕他定片与对照药在含量均匀度、溶出度、有关物质及含量等方面基本一致。

实验例 3- 本发明片剂的影响因素试验

为了考察辅料对主药的影响，验证处方的合理性和工艺的可行性，参照《中国药典》2010 版二部附录 XI C 药物稳定性试验指导原则，选择高温（60±2℃）、高湿（75±5%）光照（4500±500lx）条件对实施例 1 样品进行影响因素试验。结果显示，高湿（92.5±5%）10 天的吸湿增重已经超过 5.0%，试验结果见表 3。

表 3 影响因素实验结果
由影响因素试验结果可知，实施例 1 制得的产品在高温、光照和高湿条件下放置 10 天后，各项指标均与 0 天比较未见明显变化，表明辅料对主药稳定性无影响，处方组成合理，生产工艺可行。

实验例 4- 本发明片剂的工艺验证和检验结果

为了进一步验证本发明处方的合理性，工艺的稳定可行性，按照实施例 1 确定的处方和工艺进行了 3 批中试放大生产和 3 批工艺验证，并对所得产品进行了全检，实验结果见表 4、5。

表 4 中试及工艺验证结果

<table>
<thead>
<tr>
<th>批量(片)</th>
<th>合格成品量(片)</th>
<th>得率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>中试第 1 批</td>
<td>20000</td>
<td>19585</td>
</tr>
<tr>
<td>中试第 2 批</td>
<td>20000</td>
<td>19652</td>
</tr>
<tr>
<td>中试第 3 批</td>
<td>20000</td>
<td>19603</td>
</tr>
<tr>
<td>工艺验证第 1 批</td>
<td>25000</td>
<td>24245</td>
</tr>
<tr>
<td>工艺验证第 2 批</td>
<td>25000</td>
<td>24349</td>
</tr>
<tr>
<td>工艺验证第 3 批</td>
<td>25000</td>
<td>24304</td>
</tr>
</tbody>
</table>
实验结果表明，本发明处方合理，工艺稳定可行，满足工业化大生产的需要。

实验例 5- 本发明富马酸卢帕他定片的溶出曲线测定

口服固体制剂的溶出是影响人体生物利用度的一个重要因素。对于难溶性药物，常常由于在水中溶解度小，导致溶出缓慢，生物利用度低，从而限制了药效的发挥，达不到预期的临床疗效，因此提高溶出速率和溶出度是难溶性药物制成口服制剂需要重点关注的问题。

为了考察本发明处方中辅料及生产工艺对富马酸卢帕他定的影响，取本发明实验例 4 制得片剂，参照《中国药典》2010 版二部附录 X C（第二法）及《普通口服固体制剂溶出度试验技术指导原则（初稿）》，进行 4 种不同溶出介质中溶出曲线的测定。分别以 900ml 水、pH6.8 磷酸盐缓冲溶液、pH4.5 醋酸盐缓冲溶液、pH1.0 盐酸溶液为溶出介质，转速为每分钟 50 转，依法操作，分别在不同的溶出时间取样，滤过，采用高效液相色谱法测定溶液中卢帕他定的含量，计算溶出度，结果见图 2 ～ 5，表 6。

表 6 中相似因子计算结果
实验结果表明，本发明的富马酸卢帕他定片在 pH1.0、pH4.5 和水三种溶出介质中 15 分钟溶出度均达到 85% 以上，pH6.8 溶出介质中原研制剂与自制富马酸卢帕他定片溶出曲线相似因子大于 50。综上所述，三种介质中溶出曲线与国外对照药（Rupafin@10mg）均相似。表明本发明有效的解决了富马酸卢帕他定的溶出度问题，从而保证了药物的体内生物利用度和临床疗效。

试验例 6：本发明富马酸卢帕他定片的稳定性研究

为了进一步研究本实施例得到的产品质量，将本发明实施例 4 的中试 3 批样品进行了产品的稳定性研究，包括加速稳定性试验研究和长期稳定性试验研究。（1）加速稳定性试验

将上市包装样品置于恒湿恒湿箱内，保持温度 40℃±2℃；湿度 75%±5%，定期取样检验。检验结果见表 7。

表 7 加速稳定性检验结果

<table>
<thead>
<tr>
<th>批号</th>
<th>时间(月)</th>
<th>性状</th>
<th>溶出度</th>
<th>有关物质(%)</th>
<th>含量(%)</th>
</tr>
</thead>
</table>

0128 | 中试第一批
15 分钟溶出度 大于 85%
15 分钟溶出度 大于 85%
15 分钟溶出度 大于 85%
0129 | 中试第二批
15 分钟溶出度 大于 85%
15 分钟溶出度 大于 85%
15 分钟溶出度 大于 85%
0130 | 中试第三批
15 分钟溶出度 大于 85%
15 分钟溶出度 大于 85%
15 分钟溶出度 大于 85%

11/13 页
<table>
<thead>
<tr>
<th>质量标准</th>
<th>项目</th>
<th>白色或类白色片</th>
<th>≥75</th>
<th>≤0.4</th>
<th>≤1.0</th>
<th>90.0～110.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>中试第1批</td>
<td>0</td>
<td>白色片</td>
<td>95</td>
<td>0.03</td>
<td>0.08</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>类白色片</td>
<td>97</td>
<td>0.05</td>
<td>0.10</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>类白色片</td>
<td>97</td>
<td>0.05</td>
<td>0.15</td>
<td>100.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>类白色片</td>
<td>99</td>
<td>0.08</td>
<td>0.18</td>
<td>99.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>类白色片</td>
<td>96</td>
<td>0.09</td>
<td>0.21</td>
<td>99.5</td>
</tr>
<tr>
<td>中试第2批</td>
<td>0</td>
<td>白色片</td>
<td>98</td>
<td>0.05</td>
<td>0.07</td>
<td>100.3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>类白色片</td>
<td>98</td>
<td>0.04</td>
<td>0.11</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>类白色片</td>
<td>99</td>
<td>0.07</td>
<td>0.14</td>
<td>99.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>类白色片</td>
<td>101</td>
<td>0.09</td>
<td>0.12</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>类白色片</td>
<td>97</td>
<td>0.10</td>
<td>0.15</td>
<td>99.5</td>
</tr>
<tr>
<td>中试第3批</td>
<td>0</td>
<td>白色片</td>
<td>97</td>
<td>0.04</td>
<td>0.06</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>类白色片</td>
<td>99</td>
<td>0.04</td>
<td>0.09</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>类白色片</td>
<td>100</td>
<td>0.08</td>
<td>0.14</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>类白色片</td>
<td>96</td>
<td>0.09</td>
<td>0.17</td>
<td>99.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>类白色片</td>
<td>95</td>
<td>0.11</td>
<td>0.15</td>
<td>99.4</td>
</tr>
</tbody>
</table>

[0136] 实验结果表明,经加速6个月的加速稳定性考察,其性状、溶出度、有关物质和含量等各项指标均符合质量标准。

[0137] (2) 长期稳定性试验

[0138] 将上市包装产品置于恒温恒湿箱中,保持温度25℃±2℃,湿度60%±5%,定期取样检验。检验结果见表8。

[0139] 表8 长期稳定性检验结果
<table>
<thead>
<tr>
<th>质量标准</th>
<th>白色或类白色片</th>
<th>≥75</th>
<th>≤0.4</th>
<th>≤1.0</th>
<th>90.0~110.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>中试第1批</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>白色片</td>
<td>95</td>
<td>0.03</td>
<td>0.08</td>
<td>99.8</td>
</tr>
<tr>
<td>3</td>
<td>白色片</td>
<td>98</td>
<td>0.05</td>
<td>0.11</td>
<td>97.2</td>
</tr>
<tr>
<td>6</td>
<td>白色片</td>
<td>92</td>
<td>0.04</td>
<td>0.12</td>
<td>98.5</td>
</tr>
<tr>
<td>9</td>
<td>类白色片</td>
<td>99</td>
<td>0.07</td>
<td>0.15</td>
<td>99.4</td>
</tr>
<tr>
<td>12</td>
<td>类白色片</td>
<td>96</td>
<td>0.07</td>
<td>0.16</td>
<td>97.3</td>
</tr>
<tr>
<td>18</td>
<td>类白色片</td>
<td>95</td>
<td>0.09</td>
<td>0.20</td>
<td>96.7</td>
</tr>
<tr>
<td>24</td>
<td>类白色片</td>
<td>94</td>
<td>0.08</td>
<td>0.21</td>
<td>95.7</td>
</tr>
<tr>
<td>中试第2批</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>白色片</td>
<td>98</td>
<td>0.05</td>
<td>0.07</td>
<td>100.3</td>
</tr>
<tr>
<td>3</td>
<td>白色片</td>
<td>96</td>
<td>0.03</td>
<td>0.06</td>
<td>99.4</td>
</tr>
<tr>
<td>6</td>
<td>白色片</td>
<td>97</td>
<td>0.05</td>
<td>0.11</td>
<td>99.7</td>
</tr>
<tr>
<td>9</td>
<td>类白色片</td>
<td>92</td>
<td>0.09</td>
<td>0.14</td>
<td>98.5</td>
</tr>
<tr>
<td>12</td>
<td>类白色片</td>
<td>96</td>
<td>0.07</td>
<td>0.12</td>
<td>99.1</td>
</tr>
<tr>
<td>18</td>
<td>类白色片</td>
<td>91</td>
<td>0.09</td>
<td>0.15</td>
<td>99.0</td>
</tr>
<tr>
<td>24</td>
<td>类白色片</td>
<td>96</td>
<td>0.07</td>
<td>0.18</td>
<td>98.7</td>
</tr>
<tr>
<td>中试第3批</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>白色片</td>
<td>97</td>
<td>0.04</td>
<td>0.06</td>
<td>99.7</td>
</tr>
<tr>
<td>3</td>
<td>白色片</td>
<td>99</td>
<td>0.05</td>
<td>0.08</td>
<td>98.7</td>
</tr>
<tr>
<td>6</td>
<td>白色片</td>
<td>100</td>
<td>0.03</td>
<td>0.10</td>
<td>99.2</td>
</tr>
<tr>
<td>9</td>
<td>类白色片</td>
<td>101</td>
<td>0.02</td>
<td>0.12</td>
<td>99.5</td>
</tr>
<tr>
<td>12</td>
<td>类白色片</td>
<td>97</td>
<td>0.04</td>
<td>0.11</td>
<td>98.9</td>
</tr>
<tr>
<td>18</td>
<td>类白色片</td>
<td>95</td>
<td>0.07</td>
<td>0.16</td>
<td>99.3</td>
</tr>
<tr>
<td>24</td>
<td>类白色片</td>
<td>93</td>
<td>0.08</td>
<td>0.15</td>
<td>99.2</td>
</tr>
</tbody>
</table>

[0142] 实验结果表明：经长期24月的稳定性考察，其性状、溶出度、有关物质和含量等各项指标均符合质量标准。