US008453107B2

a2z United States Patent (10) Patent No.: US 8,453,107 B2
Danton et al. (45) Date of Patent: May 28, 2013
(54) DIAGRAM LAYOUT PATTERNS 2006/0282830 Al* 12/2006 Kavalametal. ... 717/141
2007/0022399 Al 1/2007 Tsai
. . 2007/0300198 Al 12/2007 Chaplin
(75) Inventors: §zi%ginCMég?tﬁgaiiﬁe’w\y‘(g?’ 2008/0189672 AL* 82008 Shin etal. ..o 716/19
Michael C. Murray, Seattle, WA (US); OTHER PUBLICATIONS
Florian W. H. Voss, Seattle, WA (US);))) .)
Scott M. Roberts, Bothell, WA (US) Maier, Sonja and Mark Minas, “A Pattern-Based Layout Algorithm
’ ’ for Diagram Editors”, Electronic Communications of the EASST
(73) Assignee: Microsoft Corporation, Redmond, WA vol. 7, 2007, pp. 1-16. o . .
(US) Minas, Mark, “Concepts and Realization of a Diagram Editor Gen-
erator Based on Hypergraph Transformation”, Mar. 27, 2001, pp.
(*) Notice: Subject to any disclaimer, the term of this 1-25.
patent is extended or adjusted under 35 ¥ cited b .
U.S.C. 154(b) by 1100 days. ciied by exatmnet
) Primary Examiner — Philip Wang
(21) Appl. No.: 12/271,699 (74) Attorney, Agent, or Firm — Workman Nydegger
(22) Filed: Nov. 14, 2008 (57) ABSTRACT
65 Prior Publication Data Defining a layout of diagram elements. A method includes
g a lay g
receiving user input. The user input includes one or more
US 2010/0125825 Al May 20, 2010 declarative statements specifying conditional patterns based
(51) Int.Cl on attributes of diagram elements. The conditional patterns
G0;$F 9 /44 (2006.01) define layouts of diagram elements. Implementation of the
(52) US.Cl ’ layouts is dependent on conditions defined in the declarative
U‘SI;C ' 717/105 statements and one or more values of one or more of the
5% Field fCl """ ﬁ """ S """" h """"""""""" attributes. The method further includes organizing the condi-
(58) UISP Co assification Searc 7177105 tional patterns as a pattern definition. The pattern definition is
1 """ ﬁlf """"""" 1 """"""" hh stored on a computer readable medium. The pattern definition
See application file for complete search history. is stored such that the pattern definition is retrievable by an
(56) References Cited application program that uses the pattern definition to evalu-

U.S. PATENT DOCUMENTS

6,470,482 Bl 10/2002 Rostoker
7,196,712 B2 3/2007 Rajarajan
2005/0216883 Al 9/2005 Ishimitsu
2006/0161890 Al 7/2006 Green
2006/0209085 Al* 9/2006 Wongetal. 345/629

700 \l&

ate the conditional patterns using values of attributes of one or
more diagram elements. The application is also configured to
display representations of the diagram elements according to
the layouts when conditions for implementing the layouts are
satisfied.

23 Claims, 5 Drawing Sheets

Display A Representation Of A Diagram
Including One Or More Shapes Or Lines

[702

Receive User Input, Including One Or More
Declarative Statements Specifgy
Patterns Based On Attributes Of Diagram

ing Conditional ~ F—_-704

Evaluate The Conditional Patterns Using Attributes
Of The One Or More Shapes Or Lines

[—706

Update The Representation Of The Diagram

|

Display The Updated Representation Of
The Diagram

[710

U.S. Patent May 28, 2013 Sheet 1 of 5 US 8,453,107 B2

108 110

FIG. 1

206

U.S. Patent May 28, 2013 Sheet 2 of 5 US 8,453,107 B2

Y.
| : i Applicable Node |

[

FIG. 4

U.S. Patent May 28, 2013 Sheet 3 of 5 US 8,453,107 B2

Applicable Node

FIG. 5

U.S. Patent May 28, 2013 Sheet 4 of 5 US 8,453,107 B2

600 L

Receive User Input, The Léser Input Comprifsying
One Or More Declarative Statements Specifying
Conditional Patterns Based On Attributes Of 602
Diagram Elements

A 4
Organize The Conditional Patterns As A

Pattern Definition [\—~604
\ 4
Store The Pattern Definition On A Computer
Readable Medium — \—606
FIG. 6
7001&
Display A Representation Of A Diagram L~ 702

Including One Or More Shapes Or Lines

A 4

Receive User Input, Including One Or More
Declarative Statements Specifying Conditional }F—_-704
Patterns Based On Attributes Of Diagram

A 4

o The One Orore ahapes Or Lhes o> [—706
A 4

Update The Representation Of The Diagram 708
Y.

Display The U_Ipr?:tDeg S;&rafi;r)nresentation Of L~ 710

FIG. 7

U.S. Patent

800 L

May 28, 2013 Sheet 5 of 5

US 8,453,107 B2

Receive One Or More Rules, The Rules Including
One Or More Declarative Statements Specifying One
Or More Conditional Diagram Layout Patterns Based

On One Or More Attributes Of Diagram Elements

\— 802

A 4

Evaluate The One Or More Rules Using One
Or More Attributes Of One Or More Elements
Of A Diagram

\— 804

y

Create A Representation Of The Diagram

\— 806

A 4

Display The Representation Of The Diagram

808

FIG. 8

US 8,453,107 B2

1
DIAGRAM LAYOUT PATTERNS

BACKGROUND
Background and Relevant Art

Computers and computing systems have affected nearly
every aspect of modern living. Computers are generally
involved in work, recreation, healthcare, transportation,
entertainment, household management, etc.

Computing systems can be used to create and can use
diagrammatic representations. A diagram, generally, is a col-
lection of one or more shapes and/or connecting lines. The
diagrams can represent, for example, a workflow model, a
business process model, or other flow or process. Shapes and
connections or lines can be used for other purposes as well.
Notably, lines, as used herein, are not necessarily single
straight lines, but may also include rectilinear, curvilinear or
other representations. Diagramming layout systems typically
allow for free form definitions of diagrams, such as by user
interaction with graphical representations of shapes and lines.
Although existing systems provide rudimentary control over
how the diagram responds given specific sets of data, e.g. a
workflow diagram versus a business process model, they lack
the ability to define rules on a “per node” or “per connection”
basis.

The subject matter claimed herein is not limited to embodi-
ments that solve any disadvantages or that operate only in
environments such as those described above. Rather, this
background is only provided to illustrate one exemplary tech-
nology area where some embodiments described herein may
be practiced.

BRIEF SUMMARY

One embodiment described herein includes a method of
defining a layout of diagram elements. The method includes
receiving user input. The user input includes one or more
declarative statements specifying conditional patterns based
on attributes of diagram elements. The conditional patterns
define layouts of diagram elements. Implementation of the
layouts is dependent on conditions defined in the declarative
statements and one or more values of one or more of the
attributes. The method further includes organizing the condi-
tional patterns as a pattern definition. The pattern definition is
stored on a computer readable medium. The pattern definition
is stored such that the pattern definition is retrievable by an
application program that uses the pattern definition to evalu-
ate the conditional patterns using values of attributes of one or
more diagram elements. The application is also configured to
display representations of the diagram elements according to
the layouts when conditions for implementing the layouts are
satisfied.

Another embodiment includes a method which may be
practiced in a computing environment. The method includes
acts for facilitating defining a diagram layout. The method
includes displaying a representation of a diagram, where the
diagram includes one or more elements including one or more
shapes or lines. The method further includes receiving user
input. The user input includes one or more declarative state-
ments specifying conditional patterns based on attributes of
diagram elements. The conditional patterns are evaluated
using attributes of the one or more shapes or lines. The rep-
resentation of the diagram is updated based on evaluating the
conditional patterns using attributes of the one or more shapes
or lines. The updated representation of the diagram is dis-
played.

20

25

30

35

40

45

50

55

60

65

2

Yet another embodiment includes a method that may be
practiced in a computing environment. The method includes
acts for displaying diagrams. The method includes receiving
one or more rules. The rules include one or more declarative
statements specifying one or more conditional diagram lay-
out patterns based on one or more attributes of diagram ele-
ments. The one or more rules are evaluated using one or more
attributes of one or more elements of a diagram. Based on
evaluating the one or more rules using one or more attributes
of one or more elements of the diagram, a representation of
the diagram is created and the representation of the diagram is
displayed.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

Additional features and advantages will be set forth in the
description which follows, and in part will be obvious from
the description, or may be learned by the practice of the
teachings herein. Features and advantages of the invention
may be realized and obtained by means of the instruments and
combinations particularly pointed out in the appended
claims. Features of the present invention will become more
fully apparent from the following description and appended
claims, or may be learned by the practice of the invention as
set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more
particular description of the subject matter briefly described
above will be rendered by reference to specific embodiments
which are illustrated in the appended drawings. Understand-
ing that these drawings depict only typical embodiments and
are not therefore to be considered to be limiting in scope,
embodiments will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates an example of a diagram layout;

FIG. 2 illustrates relative Y positioning of a diagram lay-
out;

FIG. 3 illustrates relative X positioning of a diagram lay-
out;

FIG. 4 illustrates an example diagram layout;

FIG. 5 illustrates an example diagram layout;

FIG. 6 illustrates a method including acts for creating and
storing pattern definitions;

FIG. 7 illustrates a method including acts for updating
diagram representations; and

FIG. 8 illustrates a method including acts for evaluating
rules and displaying representations.

DETAILED DESCRIPTION

In some embodiments, layout patterns include user defined
layout rules that apply only when the conditions of the pattern
are met. In some embodiments, the conditions may be defined
in metadata about shapes, lines, and/or diagrams (which
include collections of one or more shapes and one or more
lines). For example, a pattern may include rules that specify
that decision diamond boxes should always have lines flow-
ing from the right hand side and the bottom. Other rules may
specify sizes, orientations, centers, relative positioning, etc.
based on information about diagrams or diagram elements.

US 8,453,107 B2

3

The information may be related to any of a number of difter-
ent factors or conditions. For example, the information may
be related to object shapes themselves as illustrated in the
diamond decision box example above. Alternatively, the
information may be related to how the diagram will be used,
such as for what industry sector or business environment. The
information may be related to hardware characteristics where
a diagram is rendered, such as screen size, processor power,
available memory, etc. Other factors may be used in various
alternative embodiments.

Tlustrating now an example, rules in a definition may
specify use of a merged connection routing pattern when a
node matches a “decision” pattern. A layout pattern may be
defined by a pattern definition and a set of associated setters as
will be discussed in more detail below. The pattern definition
includes an enumeration of characteristics of diagrams, while
the setters specify attributes that are applied to diagrams
meeting the characteristic definitions.

Layout patterns may be scoped to a particular layout type.
For example, a layout pattern may be scoped to a hierarchy or
model type.

In addition to the definition of layout patterns through
configuration of a given shape or line, default patterns can be
defined for layout type and thereby be used in the absence of
additional configuration. In some embodiments, this may be
expressed through a hierarchy layout.

As will be described herein, embodiments may include
functionality for defining pattern triggers based on any meta-
data property of a diagram element. For example, layout
patterns may specify one or more of: number of connections,
incoming vs. outcoming for a shape, direction of connection,
general entity type, etc

Additionally, embodiments may be implemented where
patterns can be saved for reuse and combination with other
patterns. In some embodiments, patterns may be organized
hierarchically when used with other patterns. Some embodi-
ments may allow for multiple patterns for a given situation
and have patterns optionally triggered. Further, embodiments
may include functionality configured to detect conflicts
between patterns and to provide such information to a user.

The following discussion includes a number of examples
illustrating different metadata properties and setters that may
be specified in a layout pattern.

Users can define a pattern that triggers based on any infor-
mation available to the diagram. Examples of some metadata
are provided below. Notably however, this list is by no means
exhaustive as other metadata, or other information may be
used for a pattern definition. These metadata property
examples will be used later herein to demonstrate defining
patterns. It should be noted that while certain property names
have been given here, other embodiments may implement
different property names that define the same or similar prop-
erties to those illustrated below.

One property that is used in the examples illustrated herein
is the OutgoingEdges property. This property defines the
number of edges leaving a shape. In the present example,
values of this property may be: 0, 1, or n, where n is a positive
integer number. This property may have a default value
assigned, such as 0, 1 or some other default value. Examples
are illustrated in FIG. 1. FIG. 1 illustrates a source block or
node 102, a decision block or node 104, and three activity
blocks or nodes 106, 108 and 110. An OutgoingEdges prop-
erty for the source node 102 may specify a property value of
1. An OutgoingEdges property for the decision node 104 may
specify a property value of 3. An OutgoingEdges property for
each of the activity nodes may specify property values of 0.

20

25

30

35

40

45

50

55

60

65

4

Another property that is used in the examples illustrated
herein is the IncomingEdges property. This property defines
the number of edges entering a shape. In the present example,
values of this property may be: 0, 1, or n, where n is a positive
integer number. This property may have a default value
assigned, such as 0, 1 or some other default value. In the
example illustrated in FIG. 1, each of the nodes, except the
source node 102, may have an IncomingFEdges property value
of 1. The source node 102 may have an IncomingHdges
property value of 0.

Another property that is used in the examples illustrated
herein is the Depth property. This property defines the depth
in the tree relative to a root node. In some embodiments, this
property applies to directed diagrams only. For example, this
property may apply to directed graphs. In the present
example, values of this property may be any integer. The
default value of this property may be any integer.

Another property that is used in the examples illustrated
herein is the Orientation property. This property defines the
current orientation of the shape or diagram.

Another property that is used in the examples illustrated
herein is the IsRotated property. This property defines rota-
tion state relative to parent node. In the present example,
values of this property may be: TRUE or FALSE. If the
property value is TRUE, then a node to which the property
applies is rotated in “horse” fashion relative to a parent node.
The default value of this property is False in this example.

Another property that is used in the examples illustrated
herein is the IsSource property. This property specifies if the
node is a source. In the present example, values of this prop-
erty may be: TRUE or FALSE. Ifthe property value is TRUE,
then node is a source. The default value of this property is
NULL in this example. For example, in FIG. 1, the source
node 102 may have an IsSource property value of TRUE,
while the other nodes 104-110 have IsSource vales of FALSE.

Another property that is used in the examples illustrated
herein is the RelativeTop property. This property specifies
position of node relative to an associated node with respect to
top-bottom arrangement, based on the center point of the two
nodes. In the present example, values of this property may be:
1,0, 1. If the value of this property is 1, the node to which it
applies has ahigherY coordinate than the associated node. An
example of this is illustrated by diagram 202 in FIG. 2. If the
value of this property is —1, the node to which it applies has a
lowerY coordinate than the associated node. An example of
this is illustrated at diagram 204 in FIG. 2. If the value of this
property is 0, then the node to which it applies has the same Y
coordinate as the associated node. An example of this is
illustrated by diagram 206 in FIG. 2. The default value of this
property is NULL in this example. F1G. 2 illustrates examples
of'behaviors for different values for the RelativeTop property.

Another property that is used in the examples illustrated
herein is the Relativeleft property. This property is similar to
the RelativeTop property, but with respect to left-right
arrangement. In the present example, values of this property
may be: 1, 0, —1. If this property has a value of 1, then the
relevant node’s X is greater than an associated node. An
example of this is illustrated at 302. If this property has a value
of -1, then the relevant node’s X is less than associated node.
An example of this is illustrated at 304 in FIG. 3. If this
property has a value of 0, then the relevant node’s X is equal
to an associated node. An example of this is illustrated at 304
in FIG. 3. The default value for this property in the present
examples is NULL.

Example pattern triggers are illustrated below. These are
only representative and by no means exhaustive.

US 8,453,107 B2

<LayoutTrigger Name="Decision”

OutgoingEdges="0..n" IncomingEdges="0..1" IsSource="True”
RelativeTop="- 17>

<Setter Property=""SourceSide” Value="Bottom” />

<Setter Property="SinkSide” Value="Top” />

<Setter Property="ConnectionStyle” Value="Curved” />

<Setter Property”ConnectionVariant” Value="Merged” />
</LayoutTrigger>

The preceding pattern trigger results in the diagram illus-
trated in FIG. 4. Another example is illustrated as:

<LayoutTrigger Name="Decision”

OutgoingEdges="0..n" IncomingEdges="0..1" IsSource="True”
RelativeTop="- 17>

<Setter Property=""SourceSide” Value="Left” />

<Setter Property="SinkSide” Value="Top” />

<Setter Property="ConnectionStyle” Value="Curved” />
</LayoutTrigger>

The preceding code results in the example illustrated in FIG.
5.

Any pattern that is constructed by the user can be saved and
then reused in other diagrams or at different locations in the
same diagram. As such it is safe to view patterns as isolated
units that can be reused within the same context or be taken
out of their original context and placed in a new context.

Patterns can be combined together to create higher-order
patterns. For instance, users could take the above connection
routing pattern and reuse it in a pattern that dictates shape
alignment. Consider the following example which uses pat-
terns defined previously as a field in a new pattern:

<MultiLayoutTrigger RelativeLeft="0">

<PatternReference PatternName="Decision” />

<Setter Property="Alignment” Value="CenterRelativeToParent” />
</MultiLayoutTrigger>

Just as patterns can be combined, they can also be applied
separately to the same situation. For instance, the above pat-
tern could have been broken down into two patterns, each for
handling a different aspect of a diagram, one for handling line
routing and the other for shape alignment. This is useful in
complex diagrams where breaking down the patterns appli-
cation helps the author deal with issues of scale.

On occasion pattern definitions will cause conflicts. For
instance two or more patterns may match but “trigger” con-
flicting diagram layouts. Considering the above examples,
pattern 1 could state . . .

<MultiLayoutTrigger RelativeLeft="0">

<PatternReference PatternName="Decision” />

<Setter Property="Alignment” Value="CenterRelativeToParent” />
</MultiLayoutTrigger>

while pattern 2 could state . . .

<MultiLayoutTrigger RelativeLeft="0">

<PatternReference PatternName="Decision” />

<Setter Property=""Alignment” Value="LeftRelativeToParent” />
</MultiLayoutTrigger>

20

25

30

35

40

45

50

55

60

65

6

In such a case the system is able to fail gracefully. In one is
example, a conflict is resolved by First “triggering” the last
read pattern. Additionally embodiments may include func-
tionality for surfacing an information message to the diagram
layout system so that a visual or textual representation can be
surfaced to the user.

The following discussion now refers to a number of meth-
ods and method acts that may be performed. It should be
noted, that although the method acts may be discussed in a
certain order or illustrated in a flow chart as occurring in a
particular order, no particular ordering is necessarily required
unless specifically stated, or required because an act is depen-
dent on another act being completed prior to the act being
performed.

Referring now to FIG. 6, a method 600 is illustrated. The
method included acts for defining a layout of diagram ele-
ments. The method includes receiving user input (act 602).
The user input includes one or more declarative statements
specifying conditional patterns based on attributes of diagram
elements. The conditional patterns define layouts of diagram
elements. Implementation of the layouts is dependent on
conditions defined in the declarative statements and one or
more values of one or more of the attributes. For example, in
one embodiment a user may enter declarative statements into
a command line user interface with the declarative statements
specify the conditional patterns. An alternative embodiment,
a user may use a wizard tool which outputs declarative state-
ments specifying conditional patterns. Other alternatives may
also be implemented.

The method 600 further includes organizing the condi-
tional patterns as a pattern definition (act 604). For example,
in one embodiment conditional patterns may be organized in
a hierarchical format in a pattern definition to define how
rules are applied.

The method 600 includes storing the pattern definition on a
computer readable medium (act 606). The pattern definition
is stored such that the pattern definition is retrievable by an
application program that uses the pattern definition to evalu-
ate the conditional patterns using values of attributes of one or
more diagram elements. The application may be configured
to display representations of the diagram elements according
to the layouts when conditions for implementing the layouts
are satisfied. For example, as discussed previously, an appli-
cation may determine that a diagram is of a particular layout
type. For example, a diagram may be a model type, a work-
flow instance, or a workpad instance. In one example, when
an application determines that a diagram is, for example, a
model type, then the application may consult the conditional
patterns in the pattern definition to determine that elements
should be oriented in a particular direction, that elements
should be displayed to the right or left of other elements, that
elements should be displayed above or below other elements,
and/or that connectors, such as lines, and should extend from
certain portions of elements.

As noted above, storing the pattern definition on a com-
puter readable medium may include storing the pattern defi-
nition in a hierarchy of pattern definitions. In one embodi-
ment, by storing the pattern definition in the hierarchy, the
pattern definition can be used to implement diagram element
layouts in the absence of other layout configuration informa-
tion. In particular, if a parameter for a diagram layout pattern
has not been defined, then a top or higher level pattern can be
used to define a layout for elements of a diagram.

Referring now to FIG. 7, another example is illustrated.
FIG. 7 illustrates a method 700 that may be practiced in a
computing environment. The method 700 includes acts for
facilitating defining a diagram layout. The method 700

US 8,453,107 B2

7

includes displaying a representation of a diagram (act 702).
The diagram includes one or more elements including one or
more shapes or lines.

The method 700 further includes receiving user input (act
704). The user input includes one or more declarative state-
ments specifying conditional patterns based on attributes of
diagram elements. In one embodiment, a computing system
may display a command line interface near the displayed
representation of a diagram. A user can then enter declarative
commands in the command line interface which are then
applied to diagrams or diagram elements. In another embodi-
ment, a computing system may display in a user interface
declarative commands that are currently being used to define
diagrammatic layout. The declarative commands may be
editable, such that a user can insert or delete declarative
commands, select portions of the commands to modify, and
the like.

The method 700 further includes evaluating the conditional
patterns using attributes of the one or more shapes or lines (act
706). For example, the conditional patterns may include
information specifying shape type or diagram type. As noted,
conditional patterns may specify decision diamonds or other
shape types, workflows, or other diagram types, etc. The
elements ofthe diagram can be evaluated against the specified
shape type or diagram type.

The method 700 further includes updating the representa-
tion of the diagram based on evaluating the conditional pat-
terns using attributes of the one or more shapes or lines (act
706) and displaying the updated representation of the dia-
gram (act 706).

Embodiments of the method 700 may further include stor-
ing the one or more declarative statements as a pattern defi-
nition that can be applied to other diagrams. For example, the
declarative statements may be stored in a data structure of a
computer readable medium and used later for displaying rep-
resentations of diagrams.

Reference in now made to FIG. 8, which illustrates a
method 800 which may be implemented in another embodi-
ment. The method 800 may be practiced in a computing
environment and includes acts for displaying diagrams. In
particular, the method may include acts for using stored pat-
tern definitions or otherwise received definitions to display
representations of diagrams and diagram elements. The
method includes receiving one or more rules, the rules com-
prising one or more declarative statements specifying one or
more conditional diagram layout patterns based on one or
more attributes of diagram elements (act 802). The method
800 further includes evaluating the one or more rules using
one or more attributes of one or more elements of a diagram
(act 802). As noted, this may include evaluating such
attributes as shape type, line type, diagram type, etc. Based on
evaluating the one or more rules using one or more attributes
of one or more elements of the diagram, a representation of
the diagram is created (act 802) and the representation of the
diagram is displayed (act 802).

Embodiments of the method 800 may be practiced where at
least a portion of the one or more attributes of one or more
elements of the diagram are contained in metadata about one
or more elements of the diagram.

As noted, receiving one or more rules may include receiv-
ing a pattern definition including the one or more rules. In
some embodiments, the pattern definition may be scoped to a
particular layout type, model type, workflow instance, or
workpad instance. In some embodiments, the pattern defini-
tion is a default pattern definition used in the absence of one
or more other pattern definitions.

20

25

30

35

40

45

50

55

60

65

8

Notably, embodiments of the method 800 may be practiced
where evaluating the one or more rules includes evaluating
the pattern definition in conjunction with one or more addi-
tional pattern definitions. Each of the one or more additional
pattern definitions includes one or more rules comprising one
or more declarative statements specifying one or more con-
ditional diagram layout patterns based on one or more
attributes of diagram elements. When multiple pattern defi-
nitions are used, there is a chance for conflicts between the
rules. Thus, some embodiments of the method 800 may fur-
ther include detecting that the pattern definition conflicts with
one or more of the additional pattern definitions and provid-
ing an indication to a user indicating that the pattern definition
conflicts with one or more of the additional pattern defini-
tions. In addition to and/or alternatively, embodiments may
include provisions for resolving detected conflicts. For
example, the method 800 may include resolving the detected
conflict and selecting one of the pattern definition or one of
the one or more additional pattern definitions to resolve the
conflict. In one embodiment, resolving the detected conflict
includes selecting a pattern definition that was read last in a
multiple pattern definition.

The method 800 may also include selecting the pattern
definition from among a number of pattern definitions speci-
fied for a given condition. The act of evaluating the one or
more rules using one or more attributes of one or more ele-
ments of a diagram is performed as a result of selectively
triggering the pattern definition. In other words, embodi-
ments may be practiced where one pattern definition may be
selected from among a number of different pattern defini-
tions. In some embodiments, a user may be able to select a
definition by declarative command, by interacting with a
graphical user interface such as by selecting radio or check
boxes or using pull-down menu selections, or with other user
interfaces.

Embodiments of the present invention may comprise or
utilize a special purpose or general-purpose computer includ-
ing computer hardware, as discussed in greater detail below.
Embodiments within the scope of the present invention also
include physical and other computer-readable media for car-
rying or storing computer-executable instructions and/or data
structures. Such computer-readable media can be any avail-
able media that can be accessed by a general purpose or
special purpose computer system. Computer-readable media
that store computer-executable instructions are physical stor-
age media. Computer-readable media that carry computer-
executable instructions are transmission media. Thus, by way
of'example, and not limitation, embodiments of the invention
can comprise at least two distinctly different kinds of com-
puter-readable media: physical storage media and transmis-
sion media.

Physical storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store desired program code means in the
form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special
purpose computer.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or

US 8,453,107 B2

9

desired program code means in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to physical storage media
(or vice versa). For example, computer-executable instruc-
tions or data structures received over a network or data link
can be buffered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transferred to computer
system RAM and/or to less volatile physical storage media at
a computer system. Thus, it should be understood that physi-
cal storage media can be included in computer system com-
ponents that also (or even primarily) utilize transmission
media.

Computer-executable instructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
The computer executable instructions may be, for example,
binaries, intermediate format instructions such as assembly
language, or even source code. Although the subject matter
has been described in language specific to structural features
and/or methodological acts, it is to be understood that the
subject matter defined in the appended claims is not neces-
sarily limited to the described features or acts described
above. Rather, the described features and acts are disclosed as
example forms of implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located in both local and remote memory storage devices.

The present invention may be embodied in other specific
forms without departing from its spirit or essential character-
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:

1. A computer-implemented method of defining a layout of

diagram elements, the method comprising:

a computer system, which includes a processor, receiving
user input, the user input comprising one or more
declarative statements specifying conditional patterns
based on attributes of diagram elements, the conditional
patterns defining layouts of diagram elements, wherein
implementation of the layouts is dependent on condi-
tions defined in the declarative statements and one or
more values of one or more of the attributes;

5

20

25

30

35

40

45

50

55

60

65

10

the computer system organizing the conditional patterns as
a pattern definition, wherein organizing the conditional
patterns as a pattern definition comprises at least one of:
combining conditional patterns together to create a
higher order pattern with a previously defined pattern
being included in a new pattern as a definition field, or
breaking down a conditional pattern into the two or more
patterns which are both applied to a same situation,

but which define different aspects of a diagram; and

the computer system storing the pattern definition on a

computer readable medium, wherein the pattern defini-
tion is stored such that the pattern definition is retriev-
able by an application program that uses the pattern
definition to evaluate the conditional patterns using val-
ues of attributes of one or more diagram elements, the
application further being configured to display represen-
tations of the diagram elements according to the layouts
when conditions for implementing the layouts are satis-
fied.

2. The method of claim 1, wherein storing the pattern
definition on a computer readable medium comprises storing
the pattern definition in a hierarchy of pattern definitions.

3. The method of claim 2, wherein the pattern definition is
stored in the hierarchy such that the pattern definition is used
to implement diagram element layouts in the absence of other
layout configuration information.

4. The method of claim 1, wherein at least one of the
attributes of diagram elements comprises a layout type to
which the diagram element belongs.

5. The method of claim 1, wherein organizing the condi-
tional patterns as a pattern definition comprises combining
the conditional patterns together to create one or more higher
order patterns.

6. The method of claim 1, wherein organizing the condi-
tional patterns as a pattern definition comprises breaking
down the conditional patterns into the two or more patterns.

7. In a computing environment, a method of facilitating
defining a diagram layout, the method comprising:

displaying a representation of a diagram, wherein the dia-

gram comprises one or more elements including one or
more shapes or lines;
displaying a command line interface that is operable to
receive typed input comprising one or more declarative
statements, the command line interface being displayed
near the displayed representation of the diagram;

receiving user input at the command line interface, the user
input comprising the one or more declarative statements
specifying conditional patterns based on attributes of
diagram elements;

evaluating the conditional patterns using attributes of the

one or more shapes or lines;

updating the representation of the diagram based on evalu-

ating the conditional patterns using attributes of the one
or more shapes or lines; and

displaying the updated representation of the diagram.

8. The method of claim 7, further comprising storing the
one or more declarative statements as a pattern definition that
can be applied to other diagrams.

9. The method of claim 7, wherein receiving user input, the
user input comprising one or more declarative statements
specifying conditional patterns based on attributes of diagram
elements comprises receiving conflicting user input, the
method further comprising surfacing the conflict to the user.

10. The method of claim 7, wherein receiving user input,
the user input comprising one or more declarative statements
specifying conditional patterns based on attributes of diagram

US 8,453,107 B2

11

elements comprises receiving conflicting user input, the
method further comprising resolving the conflict by using the
last read user input.

11. In a computing environment, a method of displaying
diagrams, the method comprising:

receiving one or more rules, the rules comprising one or

more declarative statements specifying one or more con-
ditional diagram layout patterns based on one or more
attributes of diagram elements, wherein the one or more
rules are scoped to either a particular use or particular
hardware;

identifying the particular use or hardware that applies to a

current situation for displaying a representation of a
diagram;

selecting the one or more rules based on a determination

that the one or more rules correspond to the current
situation;

evaluating the one or more selected rules using one or more

attributes of one or more elements of a diagram;

based on evaluating the one or more selected rules using

one or more attributes of one or more elements of the
diagram, creating a representation of the diagram; and
displaying the representation of the diagram.

12. The method of claim 11, wherein at least a portion of
the one or more attributes of one or more elements of the
diagram are contained in metadata about one or more ele-
ments of the diagram.

13. The method of claim 11, wherein receiving one or more
rules comprises receiving a pattern definition including the
one or more rules.

14. The method of claim 13, wherein the pattern definition
is scoped to a particular layout type, model type, workflow
instance, or workpad instance.

15. The method of claim 13, wherein the pattern definition
is a default pattern definition used in the absence of one or
more other pattern definitions.

16. The method of claim 13, wherein evaluating the one or
more rules comprises evaluating the pattern definition in con-
junction with one or more additional pattern definitions,
wherein each of the one or more additional pattern definitions

20

25

30

35

12

comprises one or more rules comprising one or more declara-
tive statements specifying one or more conditional diagram
layout patterns based on one or more attributes of diagram
elements.
17. The method of claim 16, further comprising:
detecting that the pattern definition conflicts with one or
more of the additional pattern definitions; and

providing an indication to a user indicating that the pattern
definition conflicts with one or more of the additional
pattern definitions.

18. The method of claim 17, further comprising resolving
the detected conflict and selecting one of the pattern defini-
tion or one of the one or more additional pattern definitions to
resolve the conflict.

19. The method of claim 18, wherein resolving the detected
conflict comprises selecting a pattern definition that was
defined read last in a multiple pattern definition.

20. The method of claim 13, further comprising selecting
the pattern definition from among a plurality of pattern defi-
nitions specified for a given condition, and wherein evaluat-
ing the one or more rules using one or more attributes of one
or more elements of a diagram is performed as a result of
selectively triggering the pattern definition.

21. The method of claim 11, wherein the one or more rules
are scoped to the particular use as well as the particular
hardware, and such that the selection of the one or more rules
includes selecting the one or more rules based on the particu-
lar use as well as the particular hardware that correspond to
the current situation for displaying the representation of the
diagram.

22. The method of claim 11, wherein the one or more rules
include property definitions, the property definitions includ-
ing at least a plurality of the following: an OutgoingHEdges
property, an IncomingEdges property, an IsRotated property,
an IsSource property, a RelativeTop property, or a Rela-
tiveLeft property.

23. The method of claim 22, wherein the property defini-
tions further include at least one of a Depth property or an
Orientation property.

