(54) 发明名称
医疗辅助器材中的针织物

(57) 摘要
本发明涉及医疗辅助器材，例如绷带和矫形器，其包括至少一个针织物。在此，针织物特别是经编织物，尤其是具有开放结构的，无毛圈绒头的经编织物，该开放结构可沿纵向和横向同时被拉伸。本发明还涉及这种针织物，特别是经编织物在例如绷带和矫形器这样的医疗辅助器材中的应用，和用于制造这种医疗辅助器材的方法。
1. 一种医疗辅助器材，包括至少一个网状的针织物，其特征在于，所述针织物具有开放的结构，其能够同时沿纵向和横向被拉伸，其中，所述针织物以拉伸状态安装在所述医疗辅助器材中，其中，所述结构的多个局部构件在所述拉伸状态下分别具有至少 2.0mm 和最高 10.0mm 的宽度。

2. 根据权利要求 1 所述的医疗辅助器材，其中，所述针织物是钩编织物。

3. 根据前述权利要求中任一项所述的医疗辅助器材，其中，所述针织物是圆钩编织物或平钩编织物。

4. 根据前述权利要求中任一项所述的医疗辅助器材，其中，所述针织物具有纬纱。

5. 根据权利要求 1 所述的医疗辅助器材，其中，所述针织物是针织物，特别是经编织物。

6. 根据权利要求 5 所述的医疗辅助器材，其中，所述针织物不具有毛圈绒头。

7. 根据前述权利要求中任一项所述的医疗辅助器材，其中，所述针织物在所述医疗辅助器材中沿至少一个方向被拉伸。

8. 根据前述权利要求中任一项所述的医疗辅助器材，其中，所述医疗辅助器材是外科矫形辅助器材。

9. 根据前述权利要求中任一项所述的医疗辅助器材，其中，所述医疗辅助器材是绷带或矫形器。

10. 根据前述权利要求中任一项所述的医疗辅助器材，其中，所述医疗辅助器材是背部绷带。

11. 根据前述权利要求中任一项所述的医疗辅助器材，其中，所述开放的结构是网形结构、菱形结构或蜂窝形结构。

12. 根据权利要求 5 至 11 中任一项所述的医疗辅助器材，其中，所述针织物包括至少一个橡胶弹性纱和一个缠绕线。

13. 根据权利要求 5 至 12 中任一项所述的医疗辅助器材，其中，所述针织物的组件由双缠绕的橡胶弹性纱构成。

14. 根据权利要求 5 至 13 中任一项所述的医疗辅助器材，其中，所述针织物由细或强度为至少 700Dtex 至最高 10.5ktex 的经纱构成。

15. 根据前述权利要求中任一项所述的医疗辅助器材，其中，在所述针织物上设有至少一个成型元件、支承元件和/或无弹性材料的区域。

16. 根据权利要求 15 所述的医疗辅助器材，其中，所述至少一个成型元件、支承元件或至少一个无弹性的元件被焊接、缝制、粘附、铆接或粘接在所述针织物上。

17. 一种用于制造根据权利要求 15 或 16 所述的医疗辅助器材的方法，包括以下步骤：
 a) 使针织物预张紧；和
 b) 将至少一个成型元件、支承元件和/或无弹性的元件放置在预张紧的针织物上。

18. 根据权利要求 17 所述的方法，其中，在步骤 b) 中，所述至少一个成型元件、支承元件和/或无弹性的元件被焊接、缝制、粘附、铆接或粘接在所述预张紧的针织物上。

19. 一种针织物，特别是根据权利要求 1 至 16 中任一项所述的针织物在医疗辅助器材中的应用，特别是在绷带中用作绷带支架。

20. 根据权利要求 19 所述的应用，其中，所述针织物用作所述医疗辅助器材中的压缩
元件。
医疗辅助器材中的针织物

技术领域
[0001] 本发明涉及医疗辅助器材，例如绷带和矫形器，其中包括至少一个针织物。在这些针织物中，特别是经编织物（Kettenwirkwaren），尤其是无毛线圆头的经编织物。该针织物具有开放的结构，并且可以沿纵向和横向同时被拉伸。本发明还涉及这种针织物，特别是经编织物在例如绷带和矫形器这样的医疗辅助器材中的应用和制造这种医疗辅助器材的方法。

背景技术
[0002] 针织物包括针织编练（Gewirke,针织品）和钩编练品（Gestricke,编织品）。
[0003] 在本发明的上下文中，也被称为针织编织物（Strickware）的针织编织品是指经过钩编织成的针织物，即尤其是纬编针织物（Geflecht,编织物）或编织物（Gewebe）。根据本发明的优选的针织编制物特别可以是压缩钩针织物。针织编织物是通过利用纱（Faden）或线（Garn）一个接一个地构成线圈（Maschen）来制成。
[0004] 相反，也被称为针织带（Gewirk）或针织物（Wirkwaren,有机物）的针织编织品是用纱线系统在针织机（Wirkmaschine）上形成线圈而工业化的针织物（Stoffe）。这些针织物属于针织物，人们对编织物和经编织物之间做了区分。在编织或钩编过程中，一个线圈挨着另一个线圈被制成期间，纱水平地沿着线圈横排（Maschenreihe）运行，在针织物中，由纱构成彼此叠放的线圈，纱竖向运行并与相邻的纱构成线圈连接（Maschensteg）。
经编织物是利用许多的纱和至少同样多的针来制造。在经编过程中，纱竖向运行，被针勾出并被牵引穿过前述的线圈横排。
[0005] 经编织物例如以网的形式被使用，例如汽车中的行李网。这种网可以设计为有弹性的或无弹性的。但是，关于弹性保持准确的参数在此已不起作用或最多起次要作用，例如准确地设定网的应力伸长性能（Kraft-Dehnungsverhalten,应力伸长比）。

发明内容
[0006] 本发明的目的在于提供一种具有新型和经过改进的针织物的医疗辅助器材。在该医疗辅助器材中所使用的针织物应该具有所要求的应力伸长预设值（Kraft-Dehnungsvorgabe）并因此具有良好的透气性。这种针织物还应该是有弹性的，从而能够良好地适应体型。
[0007] 本发明的目的还在于为针织物，特别是钩编织物和/或针织物，优选为经编织物，特别是网形的、无毛线圆头的经编织物提供新的应用领域。
[0008] 本发明所提出的技术问题有利地通过如独立权利要求和从属权利要求所述的医疗辅助器材、应用和方法来实现，特别是通过包括至少一个网状针织物的医疗辅助器材来实现。在该网状针织物具有开放的结构，其可沿纵向和横向同时被拉伸，并有利地以拉伸的状态安装到医疗辅助器材中。优选该开放结构的多个局部构件在拉伸状态分别具有至少2.0mm至最高10.0mm的宽度。替代地或附加地，优选开放结构的多个局部构件在拉伸状态分别具有至少2.0mm至最高10.0mm的高度。
根据本发明，优选所述至少一个针织物，特别是钩编针织物和／或针织物，优选为经编针织物是网状的，优选构造为网。即，针织物，特别是钩编针织物和／或针织物，优选为经编针织物优选是网形的，即针织物是有开孔的平面结构，其具有构造为开口的、规则的线圈。线圈或开孔例如可以是菱形、方形、六角形、钻石型或蜂窝型。网状结构优选由许多相同或至少相似的局部结构构成。在本发明的上下文中，局部结构是指线圈或开口和围绕并围成线圈或开口的边界的纱。

在本发明的上下文中，针织物，特别是钩编针织物和／或针织物，优选为经编针织物的开放的结构特别是指网状结构，该网状结构具有大量的孔和线圈，特别是大量较大的孔。优选这些孔在拉伸状态下的宽度和／或高度至少为2.0mm，特别优选至少为3.0mm。即，该开放的结构特别是有开孔的网。

在本申请文件中，除非另有说明，所有对孔、局部结构和／或线圈的高度和／或宽度的说明是指医疗辅助器材中的针织物的孔、局部结构和／或线圈在已安装和使用状态下（即拉伸状态下）的高度和／或宽度。

在本发明的上下文中，术语“在拉伸状态下”是指针织物例如安装在医疗辅助器材中的一种状态。根据本发明，优选针织物不是在未拉伸状态下，而是优选在预先拉伸状态下安装在医疗辅助器材中。优选针织物在医疗辅助器材中不是被最大程度地拉伸，而是优选在将医疗辅助器材穿到人或动物的身体上时可以被继续拉伸。

在本发明的一种优选的实施方式中，针织物是钩编针织物，特别是圆钩编针织物或平钩编针织物。在一种优选的实施方式中，针织物是平钩编针织物（Flachgestrick）。在一种优选的实施方式中，针织物是圆钩编针织物（Rundgestrick）。在一种优选的实施方式中，针织物是三维的。在一种优选的实施方式中，针织物是三维的平钩编针织物，例如细带。在本发明的一种优选的实施方式中，针织物具有纬纱，也被称为衬纬（Einleger，嵌件）和／或衬纱（Einlegefaden，嵌纱）。

在本发明的一种优选的实施方式中，针织物是针织物，特别是经编针织物。

在一种优选的实施方式中，针织物没有毛圈绒头（Polfäden，绒头纱）。

在本发明的另一种实施方式中提出一种医疗辅助器材，其具有针织物，特别是网状针织物，在此，针织物是针织物，特别是经编针织物，其特征在于，针织物不具有毛圈绒头并具有开放的结构，其能够沿纵向和横向同时被拉伸。

在一种优选的实施方式中，针织物具有底纱（Grundfaden）和至少一根另外的纱，特别是纬纱。

在一种优选的实施方式中，底纱的强度大于至少一根其他纱的强度，特别是纬纱的强度。

在另一种优选的实施方式中，底纱的强度小于至少一根其他纱的强度，特别是纬纱的强度。

在本发明的一种优选的实施方式中，针织物、优选经编针织物不具有毛圈绒头，即，是无毛圈绒头的。毛圈绒头是处于毛圈中的纱，其可以产生例如三维性。

本发明的发明人发现：令人吃惊的是，针织物，特别是经编针织物，尤其是无毛圈绒头的针织物，尤其是无毛圈绒头的经编针织物，特别是在其具有开放的结构时，还可以作为针织物安装在医疗辅助器材中。令人吃惊的是已经证实：在该，针织物，特别是经编针织物，优选经编针织物。
物可以特别良好地代替传统的针织物。
[0022] 本发明的发明人发现，针织物，特别是钩编织物和/或针织物，优选为经编织物不仅可以设计为能够沿纵向和横向被拉伸，特别是同时被拉伸，而且针织物，特别是钩编织物和/或针织物，优选为经编织物还可以被设计为，能够以较高的精度与所需要的应力伸长预设值相匹配，使得即使在施加特定的力的情况下，针织物也可以具有期望的，特定的延申（Dehnung，延伸率）。此外，针织物，特别是钩编织物和/或针织物，优选为经编织物通过优选在拉伸状态下的宽度和/或高度为至少2mm，最高10mm的线圈和孔来透气。已经证实，针织物，特别是钩编织物和/或针织物，优选经编织物比现有技术中所使用的编织物具有明显更好的透气性。由此可以防止热量积聚，从而减少汗的形成。根据本发明所使用的针织物，特别是钩编织物和/或针织物，优选为经编织物具有弹性，这种弹性使得能够良好地适应体型，在此，二维的平面能够最小地适应病人的三维的身体。这特别是可以通过开口为菱形的设计方案来实现。发明人还发现，使用针织物，特别是钩编织物和/或针织物，优选为经编织物可以降低褶皱的形成。
[0023] 即，根据本发明的针织物，特别是钩编织物和/或针织物，优选为经编织物，特别是本发明所定义的经编织物在医疗辅助器材（例如绷带或矫形器）中的应用能够在准确地预先设定压缩效果的同时获得更好的透气性。
[0024] 通过针织物，特别是钩编织物和/或针织物，优选为经编织物的特殊构造，可以有利地形成新的设计效果，特别是结构效果，因为可以不同的纱颜色实现纵向条纹。
[0025] 优选这种针织物，特别是钩编织物和/或针织物，优选为经编织物可以沿横向和纵向被拉伸。
[0026] 在一种优选的实施方式中，针织物，优选为钩编织物和/或针织物，优选为经编织物在医疗辅助器材中可以沿至少一个方向被拉伸。即，针织物，优选为钩编织物和/或针织物，优选为经编织物这样安装（例如焊接或粘接）在医疗辅助器材中，针织物在医疗辅助器材未被使用且未被拉伸的情况下沿至少一个方向被拉伸，优选为预拉伸。
[0027] 本领域技术人员可容易地确定针织物，优选为钩编织物和/或针织物，优选为经编织物的相应参数，并利用这些参数来制造针织物，优选为钩编织物和/或针织物，优选为经编织物。
[0028] 在一种优选的实施方式中，医疗辅助器材是外科矫形辅助器材。在一种优选的实施方式中，医疗辅助器材是绷带或矫形器。在一种优选的实施方式中，医疗辅助器材是绷带。在一种替代的实施方式中，医疗辅助器材是矫形器。
[0029] 在一种优选的实施方式中，医疗辅助器材是背部绷带。在一种替代的实施方式中，医疗辅助器材是臀部绷带或足部绷带。
[0030] 在一种优选的实施方式中，针织物，优选为钩编织物和/或针织物，优选为经编织物被设计为绷带支架。
[0031] 在一种优选的实施方式中，针织物，优选为钩编织物和/或针织物，优选为经编织物的开放的结构是网形、菱形或蜂窝形的结构。在一种优选的实施方式中，针织物，优选为钩编织物和/或针织物，优选为经编织物的开放的结构是菱形或蜂窝形结构。在一种优选的实施方式中，针织物，优选为钩编织物和/或针织物，优选为经编织物的开放的结构是菱形结构。
[0032] 在一种优选的实施方式中，结构，特别是菱形结构的各个局部构件分别具有至少 2mm 和最高 8mm 的宽度和 / 或高度。在一种优选的实施方式中，结构，特别是菱形结构的各个局部构件分别具有至少 2mm，特别是至少 3mm 的宽度和 / 或高度。在一种优选的实施方式中，结构，特别是菱形结构的各个局部构件分别具有最高 8mm，特别是最高 6mm 的宽度和 / 或高度。在一种优选的实施方式中，结构，特别是菱形结构的各个局部构件分别具有至少 2mm 和最高 8mm，特别是最高 6mm 的宽度和 / 或高度。在一种优选的实施方式中，结构，特别是菱形结构的各个局部构件分别具有至少 2mm 和最高 6mm 的宽度。在一种优选的实施方式中，结构，特别是菱形结构的各个局部构件分别具有至少 2mm 和最高 6mm 的高度。

[0033] 在一种优选的实施方式中，在医疗辅助器材的未使用、未拉伸的情况下，结构，特别是菱形结构的各个局部构件在未拉伸状态下的宽度和 / 或高度分别为至少 0.5mm 和最高 5mm，优选为至少 0.7mm 和最高 4mm，优选为至少 0.9mm 和最高 3mm，优选为至少 1mm 和最高 3mm。在一种优选的实施方式中，在医疗辅助器材的已使用、已拉伸的形式下，结构，特别是菱形结构的各个局部构件的宽度和 / 或高度分别为至少 2mm 和最高 10mm。

[0034] 在一种优选的实施方式中，结构，特别是菱形结构或蜂窝形结构的各个局部构件在拉伸状态下，优选为最大拉伸状态下的宽度和 / 或高度为至少 2mm，优选为至少 2mm 和最高 10mm，优选为至少 3mm 和最高 8mm，优选为至少 3mm 和最高 7mm，优选为至少 3mm 和最高 6mm，优选为至少 5mm 和最高 6mm。

[0035] 在一种优选的实施方式中，多个局部构件沿纵向和横向具有相同的延伸。优选在拉伸状态下，织物中的结构的局部构件的宽度和高度是大致相同的，优选为同样大小。

[0036] 在一种优选的实施方式中，结构，特别是菱形结构的各个局部构件在未使用、未拉伸的情况下分别具有至少 0.5mm 的宽度和 / 或高度，当在医疗辅助器材中处于已使用、已拉伸的情况时具有最高 8mm 的宽度和 / 或高度。

[0037] 结构，特别是菱形结构的具有此处所述大小的局部构件将有利地减少或完全防止形成肿胀。

[0038] 在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物包括至少一个橡胶弹性纱。

[0039] 在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物包括至少一个橡胶弹性纱和至少一个缠绕线 (Umwindegarn)。

[0040] 在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物包括至少一个橡胶弹性纱和至少一个缠绕线构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由橡胶弹性纱和缠绕线构成。

[0041] 在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物的组件由双缠绕的橡胶弹性纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物的局部构件由双缠绕的橡胶弹性纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由双缠绕的橡胶弹性纱构成。

[0042] 缠绕的橡胶纱将有利地使针织物，优选为钩编织物和 / 或针织物，优选为经编织物具有良好的纵向弹性。

[0043] 在一种优选的实施方式中，橡胶弹性纱由热塑性的纱材料构成。
[0044] 在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由细度或强度至少为 700dtex 的纱，优选经纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由细度或强度为至少 10.5ktx 的纱，优选经纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由细度或强度为至少 700dtex 至高 10.5ktx 的纱，优选经纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由细度或强度为至少 850dtex 至高 1050dtex 的纱，优选经纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由细度或强度为至少 900dtex 至高 999dtex 的纱，优选经纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由细度或强度为至少 850dtex 的纱，优选经纱构成。在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物由细度或强度为大约 940dtex 的纱，优选经纱构成。

[0045] 已经证实：通过对材料和 / 或针织物，优选为钩编织物和 / 或针织物，优选为经编织物的局部构件的选择，可以准确地设定和调整经编织物的应力伸长性能。

[0046] 在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物在所施加的力为 1.0N/cm 至 5.0N/cm，优选为大约 2.5N/cm 时具有大约 30% 的拉伸率。在一种特别优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物在所施加的力为 1.0N/cm 至 5.0N/cm，优选为 2.5N/cm 时具有 30% 的拉伸率。

[0047] 在一种优选的实施方式中，与针织物未被拉伸时的状态相比，针织物，优选为钩编织物和 / 或针织物，优选为经编织物在医疗辅助器材中沿至少一个方向，优选沿纵向和 / 或横向延伸至少 10% 和最高 90%，优选为至少 15% 和最高 80%，优选为至少 15% 和最高 70%，优选为至少 20% 和最高 50%，优选为至少 20% 和最高 40%。

[0048] 在一种优选的实施方式中，针织物，优选为钩编织物和 / 或针织物，优选为经编织物被用作医疗辅助器材中的压缩元件。

[0049] 在一种优选的实施方式中，在针织物，优选为钩编织物和 / 或针织物，优选为经编织物上设有至少一个成型元件、支承元件和 / 或无弹性材料的区域。在一种优选的实施方式中，在针织物，优选为钩编织物和 / 或针织物，优选为经编织物上设有至少一个成型元件、支承元件或无弹性材料的区域。

[0050] 在一种优选的实施方式中，将至少一个成型元件、支承元件或至少一个无弹性的元件焊接、缝制、粘附（aufgeklettet）、铆接或粘接在针织物，优选为钩编织物和 / 或针织物，优选为经编织物上。在一种优选的实施方式中，将至少一个成型元件、支承元件或至少一个无弹性的元件焊接或粘接在针织物，优选为钩编织物和 / 或针织物，优选为经编织物上。在一种优选的实施方式中，将至少一个成型元件、支承元件或至少一个无弹性的元件焊接在针织物，优选为钩编织物和 / 或针织物，优选为经编织物上。已经证实：在此公开的针织物，优选为钩编织物和 / 或针织物，优选为经编织物在使用热塑性的纱材料时可以例如通过超声波切割和 / 或热切（Heißchnitt）和 / 或超声波焊接和 / 或高频焊接进行良好地热处理。

[0051] 本发明所提出的技术问题还通过在医疗辅助器材中使用针织物，优选为钩编织物和 / 或针织物，优选为经编织物，特别是根据本发明的针织物，优选为钩编织物和 / 或针...
说明书

专利权人: 未指定

发明名称: 未指定

申请号: 未指定

申请日: 未指定

公开号: 未指定

公开日: 未指定

国际分类: 未指定

发明内容

[0052] 在一种优选的实施方式中，所述编织物、优选为钩编织物或/或针织物、优选为经编织物被用于在绷带或矫正器中。在一种优选的实施方式中，所述针织物、优选为钩编织物和/或针织物、优选为经编织物被应用于绷带中。在一种优选的实施方式中，所述针织物、优选为钩编织物和/或针织物、优选为经编织物在绷带中用作绷带支架。

[0053] 在一种优选的实施方式中，针织物、优选为钩编织物和/或针织物、优选为经编织物在医疗辅助器材中用作压缩元件。

[0054] 本发明还涉及一种制造医疗辅助器材的方法，包括以下步骤：a）使针织物、优选为钩编织物和/或针织物、优选为经编织物预扩张；b）将至少一个成型元件、支承元件和/或无弹性的元件安装在预预扩张的针织物、优选为钩编织物和/或针织物、优选为经编织物上。

[0055] 在一种优选的实施方式中，医疗辅助器材是根据本发明的医疗辅助器材。在一种优选的实施方式中，针织物、优选为钩编织物和/或针织物、优选为经编织物是根据本发明的针织物、优选为钩编织物和/或针织物、优选为经编织物，或者说成其他如上所述的针织物、优选为钩编织物和/或针织物、优选为经编织物。

[0056] 在一种优选的实施方式中，在步骤b) 中将至少一个成型元件、支承元件和/或无弹性的元件焊接、缝制、粘附、铆接或粘接在预扩张的针织物、优选为钩编织物和/或针织物、优选为经编织物上。在一种优选的实施方式中，在步骤b) 中将至少一个成型元件、支承元件和/或无弹性的元件焊接、缝制、粘附、铆接或粘接在预扩张的针织物、优选为钩编织物和/或针织物、优选为经编织物上。在一种优选的实施方式中，在步骤b) 中将至少一个成型元件、支承元件和/或无弹性的元件焊接或粘接在预扩张的针织物、优选为钩编织物和/或针织物、优选为经编织物上。在一种优选的实施方式中，在步骤b) 中将至少一个成型元件、支承元件和/或无弹性的元件焊接（例如通过超声波焊接方法焊接）在预扩张的针织物、优选为钩编织物和/或针织物、优选为经编织物上。

[0057] 当然，在步骤a) 之前仍然可以设立其他的步骤，例如用机器制造针织物、优选为钩编织物和/或针织物、优选为经编织物，和例如通过热切或激光切割来冲制(Zustanzen) 或裁剪针织物、优选为钩编织物和/或针织物、优选为经编织物。

[0058] 优选的实施方式由从属权利要求给出。

附图说明

[0059] 下面参照附图中示出的实施例对本发明作详细说明，但是并不形成对本发明的限制。

[0060] 图1中示出了根据本发明的具有多个局部构件的经编织物的片段。A 中示出了处于未拉伸状态的经编织物。B 中示出了处于已拉伸状态的经编织物。

[0061] 图2示出了根据本发明的由多个局部构件构成的钩编织物的片段。A 中示出了处于未拉伸状态的钩编织物。B 中示出了处于已拉伸状态的钩编织物。

具体实施方式
举例

经编织物是由双缠绕的生橡胶纱通过机器制成。用于形成线圈的纱的纤度为
940dtex。在图中可看到经编织物 (10, 20) 的片段。经编织物 (10, 20) 是网形的。经编织物
(10, 20) 由多个局部构件组成，在此，每个局部构件由开口 (11, 21) 和围绕开口 (11, 21) 的
纱 (12, 22) 构成，纱还同时形成开口 (10, 20) 的边界并可以由此预先设定开口的大小。在 A
中，经编织物 (10) 未被拉伸。而在 B 中则是以特定的力使经编织物 (20) 拉伸。通过拉伸
经编织物 (20) 来打开结构 (22)，以使开口 (21) 沿拉伸方向扩大。

经编织物可以例如被剪成适当的大小并且作为背部绷带的支架起作用。在此可以
将背部绷带的其他元件安装在经编织物上。例如，可以焊接上成型元件，以使经编织物在背
部绷带未被拉伸的基本情况下沿一个方向被拉伸。
图 1
图 2