Abstract: A system and method for visualizing the location and movement of people in facilities. The facility is provided with a plurality of sensors that communicate with a badge worn by an individual in the facility to send data to a processor which displays the data on a monitor. The display may directly indicate certain specifics about an individual based on data stored in the processor or entered by the observer.

Designated States (unless otherwise indicated, for every kind of regional protection available): A IPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published: with international search report

For two letter codes and other abbreviations, refer to the “Guidance Notes on Codes and Abbreviations” appearing at the beginning of each regular issue of the PCT Gazette
SYSTEM AND METHODS FOR VISUALIZING THE LOCATION AND MOVEMENT OF PEOPLE IN FACILITIES

FIELD OF THE INVENTION

5

The present invention relates to a system and method for monitoring persons in a facility. More particularly, the invention relates to a system and method for visualizing the location and movement of individuals within the facility.
BACKGROUND OF THE INVENTION

As concerns for care of patients and residents of facilities such as hospitals, nursing homes, assisted living and community living centers increases, it is becoming more and more important to have a safe and simple method for monitoring the location of each individual in the facility. These types of facilities have a need to know the location and movement of occupants both for safety and health care reasons. Among safety concerns is the need to identify occupants who have wandered into restricted or unsafe areas in or even outside the facility. This need is complicated by the fact that different occupants may often have different access opportunities and restrictions.

In an emergency, such as a fire, there is obviously a vital need to locate all occupants who have not evacuated the facility and remain inside. Such failures to leave occur due to poor hearing, poor mobility, or cognitive impairment in elderly occupants.

On the health care side, a location system would provide valuable information about a patient, including lack of activity over a period of time. It would also be a benefit to monitor a person’s activity over a period of time, as well as identifying which locations in the facility his or her activity occurred. Care also would benefit from knowing the locations of care facility nursing staff. For billing and liability reasons, it would be useful to the facility administrator to know if a nurse or aide indeed was with a patient in a particular location at a particular time. It would also be helpful if physical assets such as, for example, critical equipment like defibrillators were tracked and displayed and thus located by persons attempting to respond to a situation.

Up to now, this information has not been available in a manner which would allow care providers or other facility operators to visualize the location information and quickly understand its meaning.

It would be of great advantage in the art if system and method could be provided that gave a visualization of each person within a facility.
Another advantage would be if a system and method could use infrared and radio frequency sensing technologies to provide data for visualization of individuals associated with the sensors.

Still another advantage would be if the system and method permitted visualization in two dimension on a monitor screen and would also permit visualization in three dimensions on the screen, as needed.

It would be yet another advance if individual areas such as specific floors in a facility could be selectively monitored by a care provider or other location operators.

Other advantages will appear hereinafter.
SUMMARY OF THE INVENTION

It has now been discovered that the above and other advantages of the present invention may be obtained in the following manner. Specifically, the present invention provides a system and method for visualizing the location and movement of individuals in a facility. Included in the system and method are a plurality of sensors located a plurality of locations in a facility and positioned to interact with persons at any location.

A badge is carried or worn by selected individuals using the facility. The badge is interactive with the plurality of sensors in a conventional manner. Preferred sensors are RF and IR sensors.

The information detected by the sensors is sent to a processor adapted to receive signals from the plurality of sensors to create display signals. These display signals are representative of interaction between the plurality of sensors and each badge being carried in the facility. The display signal may indicate identity, activity or condition of the person wearing or carrying the badge. The processor is able to create the display signals and can store them for use at other times or as an archive.

A monitor is used for displaying the display signals for visualization by an observer located in a place in the facility or at a remote location where he or she can issue commands, control access to doors, summons aid or assistance, and direct others to specific locations where the selected individual happens to be.
BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the invention, reference is hereby made to the drawings, in which:

FIGURE 1 is a pictorial representation of the present invention;

FIGURE 2 is a pictorial representation similar to FIGURE 1 in which information about one individual is displayed;

FIGURE 3 is a pictorial representation of the movement of a specific individual over a period of time;

FIGURE 4 is a pictorial representation of a situation where several individuals have not moved for a period of time;

FIGURE 5 is a pictorial representation of an individual who has entered an area proximate a restricted area;

FIGURE 6 is a pictorial representation of the location of a plurality of individuals when evacuation is needed;

FIGURE 7 is a pictorial representation of the progress of evacuation of the situation in FIGURE 6;

FIGURE 8 is a pictorial representation of a single individual in FIGURES 6 and 7 who has not evacuated; and

FIGURE 9 is a pictorial representation indicating that an individual has moved to another floor in the facility.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides for graphical representations of selected occupants in a facility in the form of a visualization framework that places graphical objects representing those occupants and their locations on two dimensional (2D) and three dimensional (3D) graphical models of the facility. The present invention is designed for a wide variety of facilities such as, but not limited to, nursing homes, hospitals, assisted living and community living sensors, and is also applicable to prisons, particularly those with less than maximum security demands, camps, schools and the like. Also within the scope of this invention is tracking and displaying the locations of various physical assets, such as, by way of example and not of limitation, critical equipment like defibrillators, oxygen masks, and the like. The present invention provides spatial context for the location information, relieving the user of a difficult spatial integration task.

Fig. 1 represents an embodiment in which the basic display shows the most recent locations of patients and assets detected by the location system. The individuals and assets are given badges that communicate with sensors in the facility. By the term "badge" is meant any device that can communicate with a sensor to provide information such as identity, movement and the like as described herein. The individuals have different mobility levels in Fig. 1, such as those who can walk unassisted, those using a walker, and those using or requiring a wheelchair. The operator selects the floor range, then the specific floor of the facility, in this case selecting floor 28. The date and time is also shown. The operator can click on any graphical object representing an occupant and retrieve information about that occupant. The individuals wear different files store building information, contact information, a building site plan, and an alarm list. In Fig. 2, the operator has clicked on or selected one individual as illustrated. In Fig. 3, a single occupant has been selected and the location and movement history is replayed in time compressed animation on the display monitor. The ability to
replay the location history of an individual person, e.g., the movement path, for a specific time specified by the operator is useful. The history is displayed in time compressed animation, where the time intervals between reported locations along the occupant’s path of movement would be "compressed" and reduced in a proportional manner to very short values, such as less than one second. When replayed with these compressed time intervals, this results in greatly speeded up sequential display of movement. This enhances the operator's perception of motion and direction over time. User controls are provided to stop, start, and go backward or forward in the time compressed animation display. The total distance and time spent moving can also be displayed.

Fig. 4 illustrates the ability to locate the last known position of a person and highlight lack of movement during a specific or predetermined period of time. This lack of movement is often an indication of a health problem in a facility occupant or possibly an incapacitating fall. This is critical information for the nursing staff. Icons representing occupants showing lack of movement can be highlighted, such as change in color or facial representation, to call the attention of the staff to this individual.

Fig. 5 illustrates the situation when an occupant has wandered into a restricted area, such as the pharmacy, and the person in that area is identified along with her location. Ad aide can be dispatched to investigate. Wandering by occupants with dementia is a major concern in care facilities and the icons can readily be highlighted when one or more occupants wander beyond their allowed boundaries. The nursing station can then be alerted.

In the event of an emergency requiring the occupants to evacuate or move to a new location, an alarm is sounded. Fig. 6 illustrates an emergency evacuation that proceeds, and locations where an occupant has remained in the facility are highlighted. Navigation buttons on the left of Fig. 6 indicate where occupants still remain in the facility. Shown in Fig. 6 are occupants on floor 28 and somewhere in the floor 13-17 range. Often it is merely a situation where the occupants are hearing impaired and do not hear the alarm. Others simply lack the required mobility to escape quickly. Some others
may not comprehend the order to evacuate, either because of lack of cognitive ability or because of medication effects. Fig. 7 illustrates some progress being made in that fewer evacuees are on the 28th floor. Fig. 7 also illustrates that some persons remain on floors 13-17, so the operator can change the monitor to that set of floors, then look at each individual floor as needed. In Fig. 8, the monitor shows that floors 13-17 are now clear and one person remains on floor 28. The monitor also displays that the person is wheelchair bound and most probably needs assistance. Algorithms to understand and process these situations may be integrated with this system to raise very specific alarms to human operators.

The forgoing examples have been in 2D. Fig. 9 illustrates a 3d display on the monitor that allows viewing multiple floors at one time and provides a quick view, revealing in this case that someone has wandered or walked off of floor 28 and on to an adjacent floor. If that is permitted, nothing needs to be done but if that is of concern, an aide can be dispatched.

While particular embodiments of the present invention have been illustrated and described, it is not intended to limit the invention, except as defined by the following claims.
CLAIMS

1. A system for visualizing the location and movement of individuals in a facility, comprising:
 a plurality of sensors located a plurality of locations in and around a facility and
 positioned to interact with persons at any location;
 a badge to be carried by selected individuals using the facility and physical assets
 in the facility, said badge being interactive with said plurality of sensors;
 a processor adapted to receive signals from said plurality of sensors to create
 display signals representative of interaction between said plurality of sensors and each
 badge being carried in said facility; and
 a monitor for displaying said display signals for visualization by an observer.

2. The system of claim 1, wherein said sensors are selected from RF sensors, IR
 sensors and combinations thereof.

3. The system of claim 1, wherein said display signals optionally illustrate the
 location of each of said selected individuals, and the movement of selected individuals
 over a period of time, responses by selected individuals to an alarm over a period of
 time, and lack of movement by selected individuals over a period of time.

4. The system of claim 1, wherein said processor displays said display signals in
 two dimensional space or in three dimensional space.

5. The system of claim 1, wherein said processor is adapted to redisplay display
 signals on demand of the activity of selected individuals over a period of time.
6. The system of claim 1, wherein said processor is adapted to receive a signal from a fire detection and alerting system and sending a display signal setting an emergency state in the system.

7. A method for visualizing the location and movement of individuals in a facility, comprising the steps of:
 locating a plurality of sensors a plurality of locations in and around a facility and positioning said plurality of sensors to interact with persons at any location;
 providing a badge to be carried by selected individuals using the facility and physical assets in the facility, said badge being interactive with said plurality of sensors;
 processing signals from said plurality of sensors to create display signals representative of interaction between said plurality of sensors and each badge being carried in said facility; and
 displaying said display signals for visualization by an observer.

8. The method of claim 7, wherein said sensors are selected from RF sensors, IR sensors and combinations thereof.

9. The method of claim 7, wherein said display signals optionally illustrate the location of each of said selected individuals, and the movement of selected individuals over a period of time, responses by selected individuals to an alarm over a period of time, and lack of movement by selected individuals over a period of time.

10. The method of claim 7, wherein said processor displays said display signals in two dimensional space or in three dimensional space.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) and/or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G05B G07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 02/075352 A (NYFELT LEIF [SE]; BENGTSSON JAN [SE]) 26 September 2002 (2002-09-26) page 3, line 11 - page 4, line 19 page 5, line 19 - page 6, line 3 page 7, line 30 - page 8, line 25 page 10, lines 30,31 page 11, line 8 - page 12, line 13 page 14, lines 29-32</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on the novelty claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

12 March 2007

Date of mailing of the international search report

26/03/2007

Name and mailing address of the ISA/Authorized officer

Schriefl, Oosef

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx 31 651 epo nl, Fax (+31-70) 340-3016
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 2 265 038 A (OLIVETTI RES LTD [GB]; DIGITAL EQUIPMENT CORP [US]) 15 September 1993 (1993-09-15) page 1, lines 1-13 page 2, lines 6-17 page 18, lines 9-12 pages 23-24</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 602 459 A2 (SIEMENS MEDICAL SYSTEMS INC [US]) 22 June 1994 (1994-06-22) abstract column 3, line 20 - column 7, line 4</td>
<td>1,2,4,5, 7,8,10, 11</td>
</tr>
<tr>
<td>X</td>
<td>WO 03/090174 A (COMPUTER ASS THINK INC [US]) 30 October 2003 (2003-10-30) the whole document</td>
<td>1,7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2004229560 A1</td>
<td>18-11-2004</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 02075352 A</td>
<td>26-09-2002</td>
<td>CA 2449191 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1370887 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20034162 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 523165 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 0100973 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004135694 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2131726 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 944111 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9318476 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 70721 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7504545 T</td>
</tr>
<tr>
<td>US 2005035862 A1</td>
<td>17-02-2005</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69326934 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69326934 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5458123 A</td>
</tr>
<tr>
<td>WO 03090174 A</td>
<td>30-10-2003</td>
<td>AU 2003262402 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0309261 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2482960 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1653491 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1497799 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OP 2005523535 T</td>
</tr>
</tbody>
</table>