METHOD FOR ELECTROPLATING NICKEL ONTO TITANIUM ALLOYS

Inventors: Donald E. Fornwalt, East Corinth, Vt.; Gary M. Lomasney, New Britain; Kostas Routais, East Hartford, both of Conn.

Assignee: United Technologies Corporation, Hartford, Conn.

Files: Dec. 27, 1990

Reissue of Patent: 634,854

Abstract

This invention relates to an improved method for electroplating a layer of nickel into titanium base alloy substrates. It is particularly useful in electroplating a layer of nickel onto titanium alloys which contain refractory metal elements, such as the alloy Ti-8Al-1V-1Mo. The method includes the steps of etching the surface of the substrate with a solution containing hydrofluoric acid and hydrochloric acid, followed by electroplating the etched surface in a nickel sulfamate solution.

4 Claims, No Drawings
METHOD FOR ELECTROPLATING NICKEL ONTO TITANIUM ALLOYS

The key aspect of the invention is the use of a particular chemical solution for cleaning the surface of the titanium substrate prior to the electrodeposition step. The chemical solution etches the substrate surface, and, as a result, the step is referred to as an etching step. The preferred manner for carrying out this invention is described below.

 Portions of the component (an alloy whose composition was Ti-8Al-1V-1Mo) which are not to be etched or electroplated are masked with an appropriate masking material; wax and polymer based resins are preferred. Dirt, oil and other residue which are present on the surface are removed by a dry pumice swab followed by a wet pumice swab. The surface is vapor blasted with aluminum oxide grit and then rinsed, preferably in water. The substrate is then immersed in a solution whose composition corresponds to that obtained by mixing, by volume, 4-6% of 70% hydrofluoric acid and 94-96% of 35-38% hydrochloric acid. The substrate is immersed in such solution for a period of time sufficient to clean and etch the surface but not so long as to excessively etch or pit the surface. Periods of time between about 8 and 45 seconds are useful; 10 to 20 seconds are preferred, and about 15 seconds is the most preferred immersion time. The substrate is removed from the HF-HCl bath and rinsed in water. To insure that no residual acid and/or smut is present on the substrate, it is ultrasonically cleaned for about 10 seconds in deionized water.

The substrate may be etched in a solution containing hydrofluoric acid, glacial acetic acid and water. The preferred solution contains, by volume, 11-15% of 70% hydrofluoric acid, 81-85% glacial acetic acid, and 2-6% water. The etching is done anodically, at a current of about 1.4 [14] 161 amperes per square meter (ASM) for about 6 minutes. The substrate is then rinsed and then cathodically plated in a conventional nickel sulfamate solution. The plating process takes place for about 30 minutes at 2.7 [27] 323 ASM. The substrate is then preferably heat treated at about 400° C for 4 hours in air.

Use of the aforementioned plating process produces an electrodeposited layer of nickel having a thickness of about 12-18 microns. The bond strength of the layer after heat treatment is in excess of 475 kilograms per square centimeter, as determined by lap shear specimens.

The use of conventional prior art cleaning techniques produced nickel layers which were generally nonadherent to a Ti-8Al-1V-1Mo substrate. In particular, etching solutions containing, by volume, about 12% of 70% hydrofluoric acid and 1% of 70% nitric acid were not useful, as they produced a tenacious smut which could not readily be removed from the substrate surface. The HF-HNO₃ solution is commonly used with much success on titanium alloys which are substantially free of refractory elements.

While this invention has been shown and described with respect to a preferred embodiment, it should be understood by those skilled in the art that various changes in the form and detail may be made without departing from the spirit and scope of the invention. For example, other concentrations of hydrofluoric acid and hydrochloric acid may be used other than the aforementioned 70% HF and 36-38% HCl. Regardless of the particular concentrations used, the solution should have a composition corresponding to that obtained by mixing 4-6% of the 70% HF and 94-96% of the 36-38% HCl.

This invention relates to a process for electroplating a layer of nickel onto titanium and titanium base alloys. It should be understood that the term "titanium base" means those alloys in which titanium is the predominant element in the alloy composition.

This invention has been shown to be particularly applicable to the electrodeposition of nickel onto titanium base alloys which include refractory metal elements. Such alloys include, but are not limited to, the following compositions: Ti-3Al-2.5V; Ti-6Al-4V; Ti-8Al-1V-1Mo; Ti-6Al-2Sn-4Zr-6Mo; and Ti-6Al-2Sn-4Zr-2Mo.
The fluoride ion content of such solutions are readily measured using a conventional fluoride ion specific electrode.

We claim:

1. A method for electroplating a layer of nickel onto a titanium base alloy containing refractory metal element, comprising the steps of etching the component surface in a solution having a composition corresponding to, by volume, about 4-6% of 70% HF and 94-96% of 36-38% HCl, and then cathodically plating a layer of nickel onto the etched surface.

2. A method for electroplating a layer of nickel onto the surface of a titanium base alloy component containing at least 1% by weight of a refractory metal element, comprising the steps of:

 (a) etching the component surface in a room temperature solution containing, by volume, about 94-96% of 36-38% HCl and about 4-6% of 70% HF for at least about 10 seconds;

 (b) anodically etching the component in a room temperature solution containing, by volume, about 11-15% of 70% HF, 81-85% glacial acetic acid and 2-6% H2O; and

(c) cathodically plating a layer of nickel onto the surface.

3. A method for applying a layer of nickel onto a titanium base alloy component containing at least 1 weight % of a refractory metal element, comprising the steps of:

 (a) etching the surface of the component in a room temperature solution consisting essentially of, by volume, about 94-96% of 36-38% HCl and about 4-6% of 70% HF for at least about 10 seconds;

 (b) anodically etching the component surface at about [1.4] 167 amperes per square meter for about 6 minutes in a room temperature solution consisting essentially of, by volume, about 11-15% of 70% HF, 81-85% glacial acetic acid and 2-6% H2O; and

 (c) cathodically plating a layer of nickel onto the etched component surface at [2.7] 323 amperes per square meter for about 30 minutes in a nickel sulfate solution.

4. The method of claim 3, wherein said etching step is conducted is a solution containing 95% of 36-38% HCl and 5% of 70% HF.