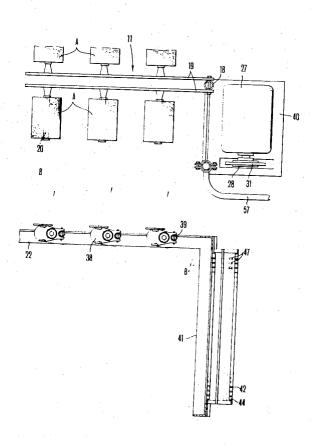
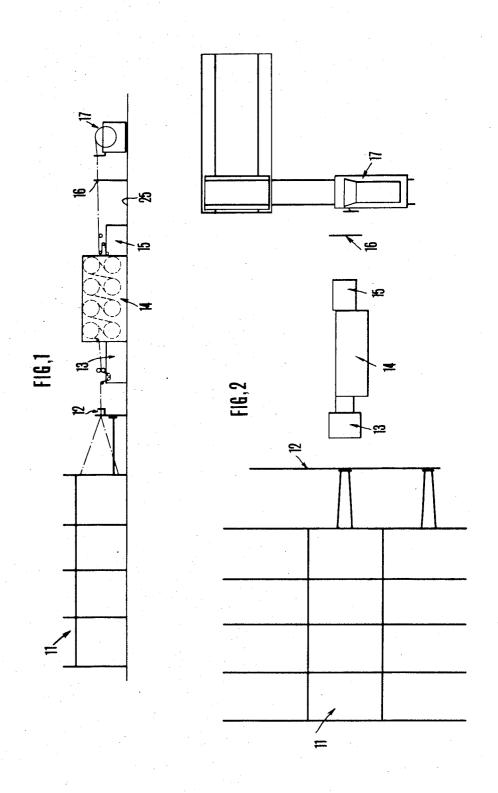
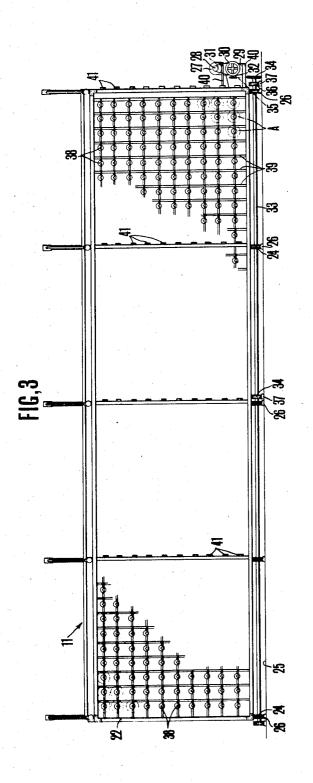
[45] **July 10, 1973**

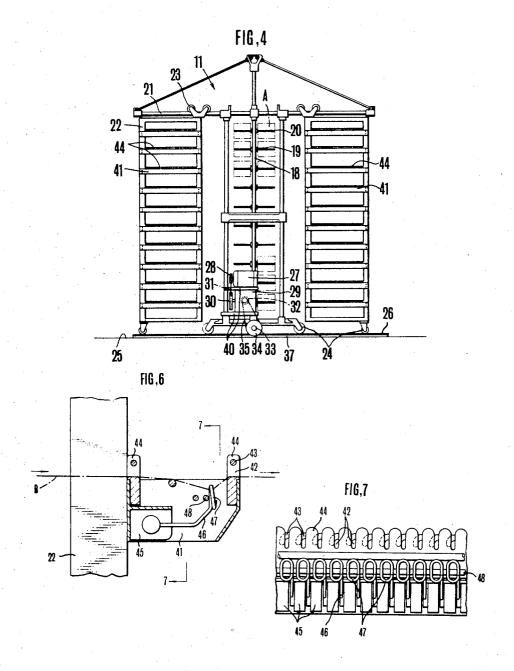

[54]	SIZING AND DRYING SECTIONAL WARPING MACHINE
[75]	Inventors: Hirohito Baba, Osaka; Toshiyuki Takase, Nishiwaki, both of Japan
[73]	Assignees: Baba Snagyo Kikai Kabushiki Kaisha, Osaka-Fu; Naigai Orimona Kabushiki Kaisha, Nishiwaki-shi, Hyogo-ken, Japan
[22]	Filed: Oct. 1, 1971
[21]	Appl. No.: 185,661
[52] [51] [58]	U.S. Cl. 28/28 Int. Cl. D03j 1/02 Field of Secretary 29/29 242/12
[30]	Field of Search
[56]	References Cited
	UNITED STATES PATENTS
3,441,	91 5/1969 Bryan

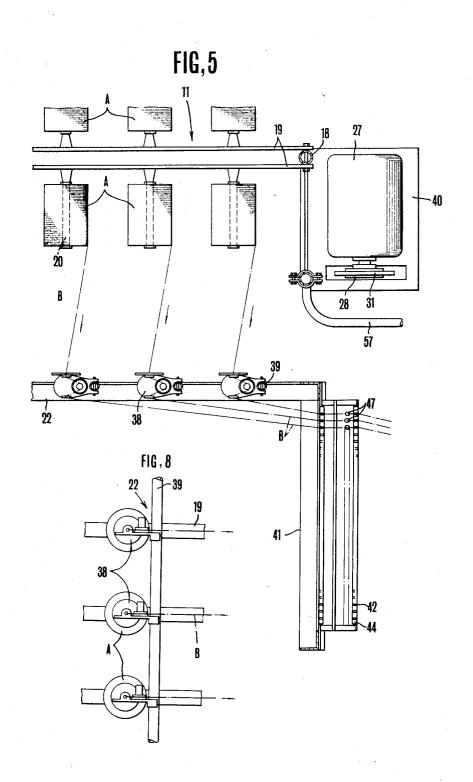
Primary Examiner—Louis K. Rimrodt Attorney—Wenderoth, Lind & Ponack


[57] ABSTRACT

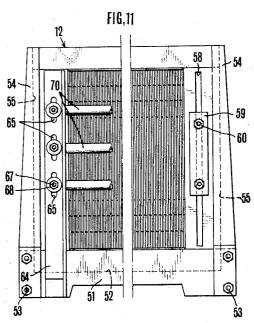
A sizing and drying sectional warping machine. The machine has a set of plural creels movable for replacement in a direction intersecting the travelling direction of the warp. A sizing apparatus for the warp passing between the front sectional warping machine and the winding device and a drying apparatus are provided and the portions of both the sizing and the drying apparatus through which the warp passes are constructed so as to have one-end-support, so that the warp can be loaded while holding the warp passing through the front reed on the side as it is. While sizing, drying and sectional warping are carried on in one creel, in the other creel replacement of the bobbin and the piece of warp are performed to prepare for next operation. By replacement of the creel the next sizing, drying and sectional warping operation can be carried out immedi-

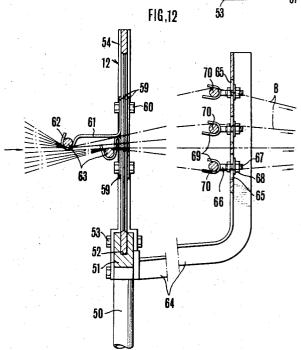

4 Claims, 31 Drawing Figures


SHEET 01 OF 16

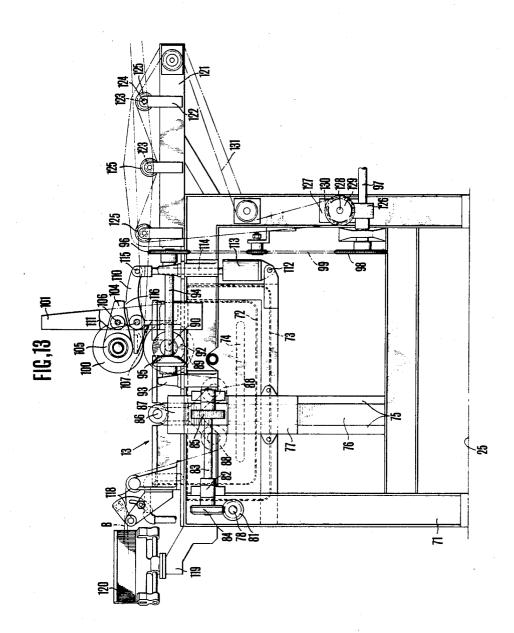

SHEET D2 OF 16


SHEET 03 OF 16

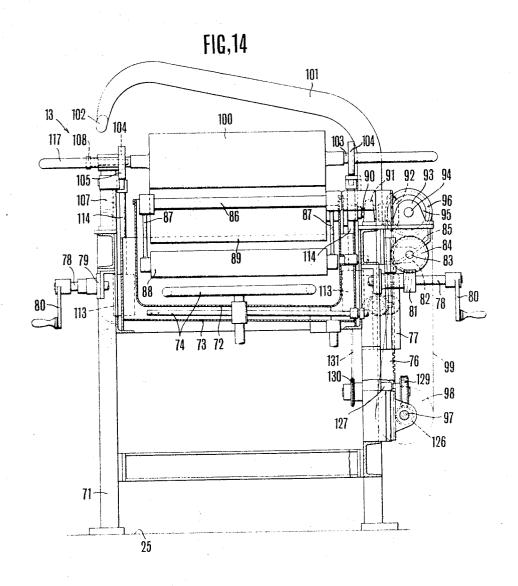

SHEET DU OF 16

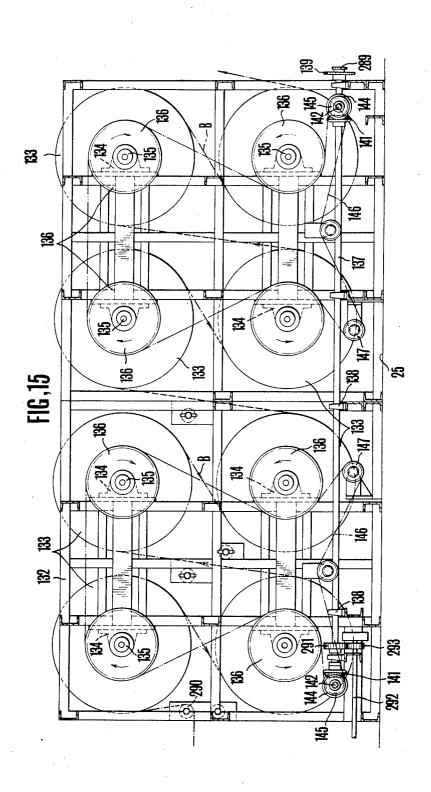


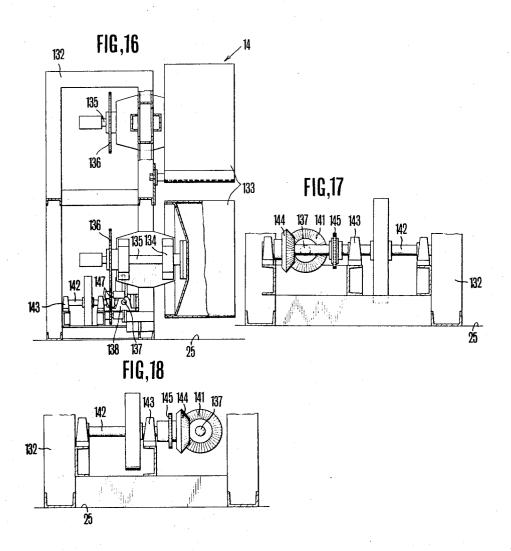
SHEET 05 OF 16



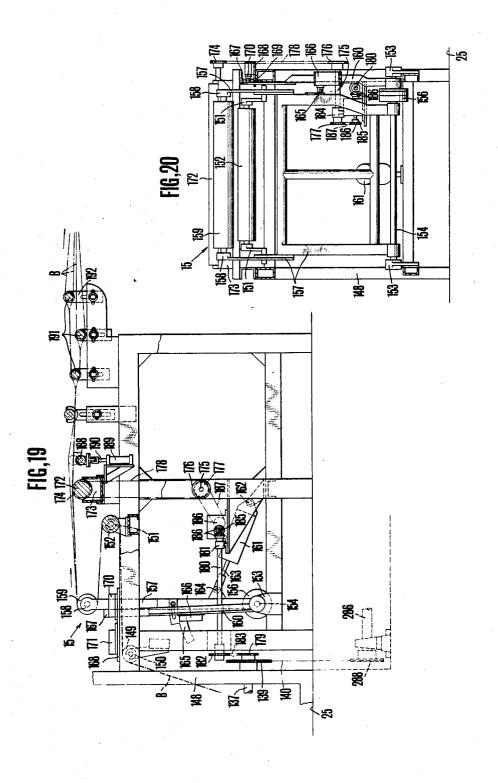
SHEET DE OF 16



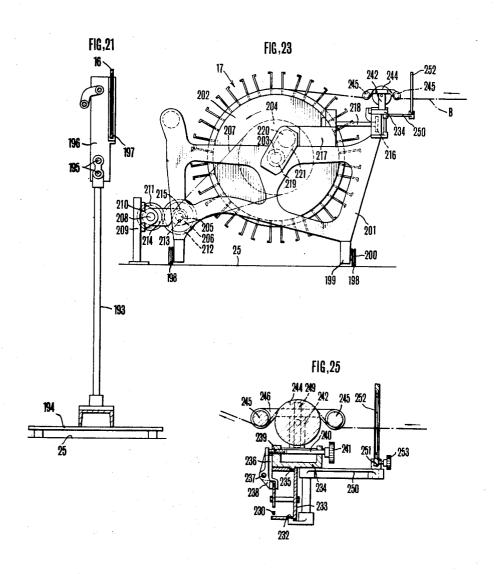

SHEET 07 OF 16

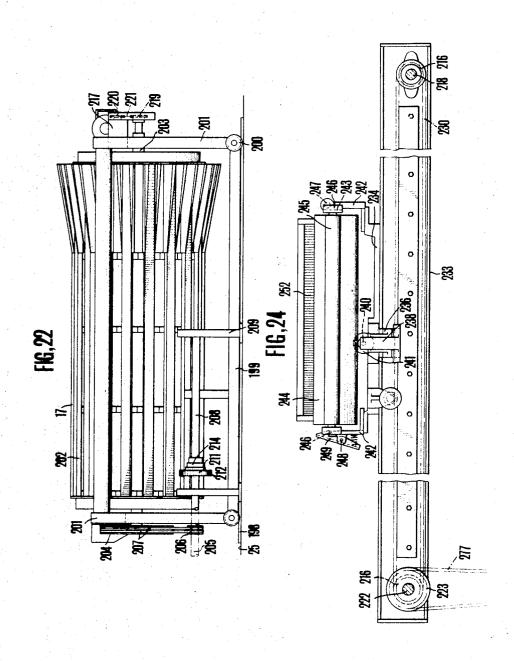


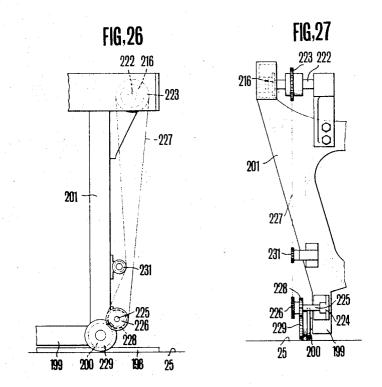
SHEET 08 OF 16

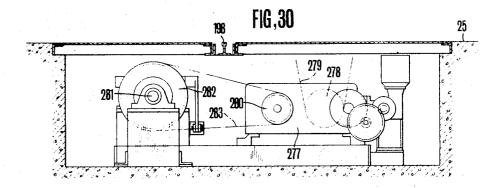


SHEET 09 0F 16

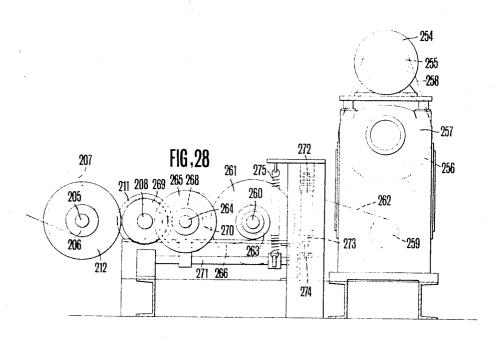


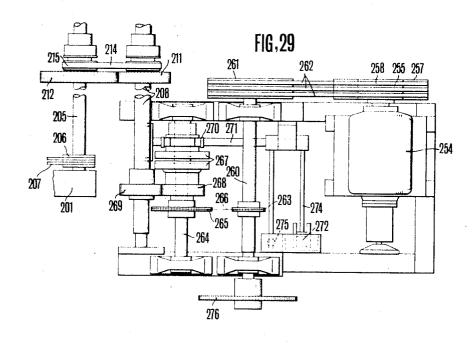

SHEET 11 OF 16

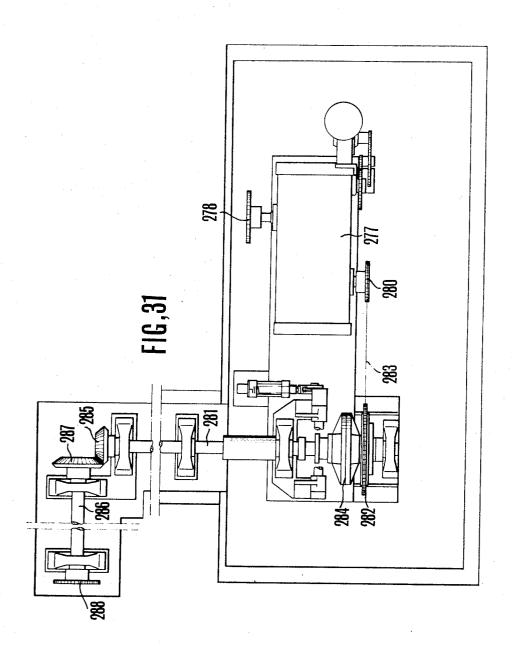

SHEET 12 OF 16



SHEET 13 OF 16




SHEET 14 OF 16



SHEET 15 OF 16

SHEET 16 OF 16

SIZING AND DRYING SECTIONAL WARPING MACHINE

The present invention relates to a sizing and drying sectional warping machine.

Heretofore, yarn warp has been dyed previously in hanks, sized manually and dried in the sun (called a hank sizing process).

The hanks of warp yarn are wound upon a wrap beam, the beam is arranged on a creel and then wound 10 on a drum, but this method and the defect of bringing about a reduction of operation efficiency due to excessive labour and time loss since the method must go through various processes.

The object of the present invention is to entirely mechanize the sizing process of warp previously dyed by eliminating manual work and to provide a device wherein sizing and drying apparatus are installed between the bobbin creel and the sectional warping and winding. The sizing process is completed during the sectional warping operation and accordingly, the hank sizing process is completely omitted and the warp from the creel may be replaced very easily.

The object abovementioned is accomplished by the parts and combinations constructing the present invention, and an embodiment thereof will now be illustrated with the accompanying drawings and the detailed explanation described hereinafter.

FIG. 1 is a side view of the sizing and drying sectional warping machine,

FIG. 2 is a plan of the same above.

FIG. 3 is an enlarged side view of the creel,

FIG. 4 is an enlarged front view of the same creel,

FIG. 5 is an enlarged plan of the same creel, partially broken,

FIG. 6 is a longitudinally sectioned side view of a switch attached to the creel,

FIG. 7 is a section along the line 7—7 in FIG. 6,

FIG. 8 is a side view of warp guide attached to the creel,

FIG. 9 is a back view of the rear reed,

FIG. 10 is a side view of the said above, partially broken

FIG. 11 is an enlarged front view of the same rear

FIG. 12 is a longitudinally sectioned side view of the principal part of the same above,

FIG. 13 is a side view of the sizing apparatus,

FIG. 14 is a longitudinally sectioned back view of the principal part of the same above,

FIG. 15 is a side view of the drying apparatus,

FIG. 16 is a longitudinally sectioned back view of the principal part of the same above,

FIG. 17 is a longitudinally sectioned back view showing the drive transmission mechanism of the drying apparatus,

FIG. 18 is a front view of the same above,

FIG. 19 is a partially longitudinally sectioned side view of the tension controlling apparatus,

FIG. 20 is a longitudinally sectioned back view of the same above,

FIG. 21 is a longitudinally sectioned side view of the front reed.

FIG. 22 is a front view of the winding warping drum, 65

FIG. 23 is a side view of the same above,

FIG. 24 is a front view showing the principal part of the same above,

FIG. 25 is a longitudinally sectioned side view of the principal part of the same above,

FIG. 26 is a back view of the drive transmission mechanism of the same above,

FIG. 27 is a side view of the same above,

FIG. 28 is a side view of the driving part,

FIG. 29 is a plan of the same above,

FIG. 30 is a side view of the same above,

FIG. 31 is a plan of the same above.

Element 11 in FIG. 1 and FIG. 2 is a creel and in front of the creel are arranged successively the rear reed 12, the sizing apparatus 13, the drying apparatus 14, the tension controlling apparatus 15, the front reed 16 and the winding warping machine 17 in a straight 5 line.

The creel 11 mentioned above is shown in FIG. 3 through FIG. 8, in the creel 11 the horizontal members 19. In required steps and having horizontal axis are installed between the post member 18 facing each other front and rear and the spindle 20 the axis of which is horizontal is disposed insertedly at an interval lengthwise along both sides of the horizontal member 19, the bobbin A is supported fittedly on this spindle 20. 21 is rail extended transversely from the upper end of the post member 18 with the axis thereof being horizontal. On this rail 21 are embarked the wheels fixed on the front and rear upper edges of the frame 22 and supported movably so that the interval of the frame may be adjusted with respect to the side of the post member 30 18 when required. In addition, each of the wheels 24 fixed at the lower edges of the post member 18 and of the frame 22 is embarked on a plurality of rails 26 laid on the floor 25 to cross said creel 11. 27 is a motor mounted on the base plate at the front lower portion of the front side post member 18. The belt 31 is stretched around the pulley 28 of the motor 27 and the pulley 30 on the input side of the reduction gear mounted on the base plate 40 right below the motor 27. Chain the chain 35 is wound around the sprocket 32 on the output side of the reduction gear 29 and the sprocket 34 mounted on the shaft 33 of said wheel 24 to drive the shaft 33, and the pinion 36 mounted on the shaft 33 is meshed with the rack installed on the floor 25 to be parallel with the rail 26 and thereby the creel 11 is movable outward with the motor 27.

38 is a guide fixed to direct forwards by bending at about 90° after drawing to the side of the frame 22 the warp yarn B on bobbin A supported with the spindle 20 on the juxtaposed vertical rod 39 arranged on the frame 22 to correspond to each of said spindles 20 on the frame 22. 41 is an arm extended sideways horizontally with a required interval between the front and rear of the outside of the frame 22, and on the upper edge of the arm 41 are arranged V-shaped notches 42 to hold each warp B bent and directed forward by the guide 38 at spaced intervals. Guide 44 having an arcshaped rod 43 directed outward from a side of the notch 42, prevents the warp B from floating from the opening at the upper edge of the notch 42. On the arm 41 located at the outermost end are arranged guides 44 in two lines front and rear. The number of notches 42 on the arc-shaped rod of the guide 44 increases from the rearmost end to the outer-most end. In addition, between the guides 44 of the arm 41 at the outermost end are put a number of microswitches equal to the number of notches 42. The warp B travelling between said guides 44 is passed through the annular rod 47 at the 5,711,11

end of the operation rod 46 of the microswitch 45 and the operation rod 46 rises to contact the stopper 48 by the tension of the warp B. However, in the event that the warp B is broken, the operation rod 46 is turned downward by its own gravity, and the sizing apparatus 5 13, the drying apparatus 14 and the winding warping machine 17 are connected electrically to stop simultaneously by the closing of the microswitch 45.

The rear reed 12 shown in FIG. 9, FIG. 10, FIG. 11 and FIG. 12 is supported by fixing the horizontal mem10 ber 51 parallel with the rail 26 on the upper end of the post 50 erected upright on the base plate 49 parallel with the rod 26, fitting the lower edge of the rear reed 12 into the groove 52 provided between both ends at the upper edge of the horizontal member 51, and removably attaching the lower end of the vertical member 54 to both ends of the horizontal member 51 with the clamping device 53 comprising bolts on which nuts are screwed. The edges at both ends of said rear reed 12 are then fitted into the grooves 55 provided between 20 the upper and lower ends of the inner surfaces facing each other of both vertical members 54.

Underneath the base plate 49 are disposed the wheels 56. The post 50 and the front post member 18 of the creel 11 are joined together with the connecting rod 25 57, and thereby the base plate 49 supporting the rear reed 12 travels together with creel 11. 58 is an oblong hole both ends of which are located up and down at the edge of the rear reed 12. 59 is a pair of plates belonging to the oblong hole 58 and are contacted to the front 30 and rear surfaces of the rear reed 12. Through the plates 59 and the oblong hole 58 is inserted the clamping device 60 comprising a bolt on which a nut is screwed and thereby the plates 59 are attached to be adjustable vertically. To the plate 59 located at the rear 35side of the rear reed 12 is fixed one end of plate member 61, a set of which consists of upper and lower members. In the U-shaped portion 62 at the other end directed rearward is supported the end of the rod 63 the axis of which is horizontal, and thereby the warp B before passing through the rear reed 12 is collected in the center between the upper and lower portions of the rear reed 12 and between the rods 63. 64 are arms directed forward from both ends of the front side of the horizontal member 51. In the end portion directed upward of the arm 64 are formed the oblong holes 65 in three steps vertically, both ends of which are directed vertically. In the oblong hole 65 is inserted the screw threaded portion 67 of the end directed forward of the attaching shaft 66 and is attached with the nut 68 screwed on the screw-threaded portion 67. In addition, on the end of the attaching shaft 66 is fixed a U-shaped rod 69 both ends of which are directed rearward, and thereby the rod the axis of which is horizontal is installed in the U-shaped rod 69 so that the warp B passing through the rear reed 12 is separated into several vertical steps as required with each of the rods 70.

FIGS. 13 and 14 show the sizing apparatus 13. 71 is a frame opened at the upper side thereof, arranged on the floor 25. At the upper portion within the frame 71 are arranged respectively the sizing tank 72 opened at the upper edge thereof and the hot water tank 73 encircling the outside of the sizing tank 72 from the lower side thereof to heat the sizing tank 72 and within both tanks is arranged the pipe 74 heated with steam. 75 are two lines of vertical guide rails laid on said frame 71 on the outside of the sizing tank 72. Between the rails 75

is fitted the rack 76 to be movable vertically, and the rack 76 is prevented from being released by the plate member 77 connected securedly to the rails 75 at the side edges thereof to cover the rack 76 midway between the upper and lower ends of the rails 75. 78 is a shaft passed through the rear portion of the frame 71 from one side to the other side thereof and journaled with the bearing 79. On both ends of the shaft 78 are mounted the handles 80 respectively. Worm gear 81 mounted on one end of the shaft 78 is meshed with the worm wheel 84 mounted on one end of the shaft 83 journaled with the axis thereof horizontally by the bearing 82 outside of the frame 71. The pinion 85 mounted on the other end of the shaft 83 is meshed with said rack 76. When the shaft 78 is turned by the handle 80, then the worm gear 81, the worm wheel 84 and the rack meshed with the pinion 85 on the shaft 83 are moved vertically. 86 is a shaft member directed from one side to the other side within the upper edge of the sizing tank 72. One end of the shaft member 86 is fixed at the upper end of said rack 76, and reverse Y-shaped arms 87 are fixed on either end of the shaft 86 at the upper ends thereof. Between the lower ends of the arms 87 are rotatably supported the ends of the rollers 88 arranged in two lines front and rear. 89 is a roller located in front of the rollers 88 to be parallel with the rollers 88 and submerged into the sizing tank 72 at the lower periphery thereof, and the shaft 90 at one end of the roller 89 is rotatably supported at one end with the bearing 91 on the upper edge on one side of the frame 71. Bevel gear 92, mounted on the end of the shaft 90, is meshed with the bevel on one end of the shaft 94 supported with the bearing 93 to direct longitudinally both ends thereof at outside of the frame 71. Around the sprocket 96 at the other end of the shaft 94 and the sprocket 98 of the input shaft 97 is stretched the chain 99 so that the roller 89 is forcibly turned.

Immediately above the roller 89 is disposed the roller 100 the lower periphery of which contacts the upper periphery of the roller 89. 101 is an arm of nearly reverse L-shape in front, which is fixed on the upper edge at one side of the frame 71 along the axis of the roller 100 and above the roller 100 at the end thereof. At the rear surface of the front end of the arm 101 is formed the hook 102. 103 are shafts projected from both ends of the roller 100 and the projected shafts 103 are supported by self adjustable bearings 105 provided at the ends of the plate member 104. The center of the plate member 104 at one side is pivoted in the inside surface of the end of said arm 101 with the shaft 106 and the center of the plate member 104 on the other side is supported on the supporting member 107 erected upright from the upper edge on the other side of the frame 71 by removably inserting pin 108. On the inside of the end of the arm 101 and the upper portion of the supporting member 107 and also below the shaft 106 and the pin 108 are pivoted the ends of the rotary plates 110 respectively with the shaft 111. At the front end of the rotary plate 110 is pivoted with the pin 115 the front end directed upward of the piston rod 114 of the cylinder 113 which is pivoted at the frame 71 at the end thereof with the pin 112. The lug 116 in the central portion at the upper edge of the rotary plate 110 contacts the lower edge of the front end of the plate member 104, thereby the piston rod 114 is raised by the air pressure led into the cylinder 113, the rotary plate 110 using the shaft 111 as its fulcrum is turned counterclockwise in FIG. 13, and the lug 116 of the rotary plate 110 forcibly turns the rotary plate 104 using the shaft 106 as its fulcrum also in the same direction and thereby the roller 100 is pressed against the roller 89.

117 is a grip rod formed on the extension of the projected shaft 103 at the other end of the roller 100. 118 are guide rods arranged in two lines front and rear located right above the upper edge at the rear side of the frame 71. 119 is a bracket directed upward from the upper edge at the rear side of the frame 71, and on the 10 upper edge of the bracket 119 is fixed the lower edge of the reed 120.

121 are arms projected forward from both sides of the upper edge at the front side of the frame 71. Between the front and rear portions of each of the facing arms 121 are erected upright the legs 122 directed upward. Between the legs 122 are rotatably supported the projected shafts at the end of the roller 123 the axis of which is horizontal, and on the projected shaft 124 is mounted the sprocket 125. 126 is a worm gear mounted on the input shaft 97, the worm gear 126 is meshed with the worm wheel 129 on the shaft 128 supported with the bearing 127 mounted on the frame 71. On the shaft 125 is fixed the sprocket 130, and around the sprocket 125 and the sprocket 130 is stretched the endless chain 131.

FIGS. 15, 16, 17 and 18 show the drying apparatus 14 located in front of the sizing apparatus 13. 132 is a frame erected upright on the floor 25 along the warp B outside of the travelling path of the warp B. Between the front and rear ends of the side of the frame 132 facing to the travelling path of said warp B are fixed the drums 133 (8 in number) having a distance vertically and longitudinally at the outside end of the pipe shafts 135 supported on the bearings 134 of the frame 132 so that the axis thereof are horizontal, and steam is supplied from the pipe shafts 135 to the interior of the drums 133 to heat them.

pipe shafts 135 respectively. 137 is a rotary shaft supported with the bearings 138 and passing through longitudinally at the lower portion of the frame 132. The rotary shaft 137 is driven by winding the chain 140 around the sprocket 139 at one end thereof.

141 are bevel gears mounted on both ends of the rotary shaft 137. Supported with the bearing 143 mounted on the frame 132 at a right angle to the rotary shaft 137, the bevel gear 144 mounted on the shaft 142 is meshed with said bevel gear 141, thereby the drive is transmitted to the shaft 142. Also mounted on the shaft 142 is the sprocket 145. Each of the drums 133 is driven forcibly in a direction with a given speed by winding the endless chain 146 around each of the four front and four rear sprockets 136 and around the sprocket 145. 147 are sprockets mounted on the frame 132 to be engaged with the chain 146 to eliminate slack of the chain 146.

FIGS. 19 and 20 show the tension controlling apparatus 15 located in front of the drying apparatus 14, 148 is a frame disposed on the floor 25 to be located right below the travelling path of the warp B. On the upper edge at the rear end of the frame 148 is rotatably supported the ends of the roller 149 in the bearings 150 of the frame 148 so that the axis thereof crosses the warp B. The ends of the roller 152 are supported rotatably in the bearings 151 on the upper edge at both sides of

the frame 148 to be parallel therewith in front of the roller 149.

At the lower portion between the rollers 149 and 152 are rotatably supported the ends of the shaft 154 with the bearings 153 at both lower sides of the frame 148. One end of the shaft 154 is severed, and a magnetic clutch 156, which is set free when a predetermined resistance is applied to the severed portion of the shaft 154, is interposed to make the severed portion engageable and disengageable. 157 is a rocking frame fixed to the other end of the shaft 154 and the portion located inside the magnetic clutch 156 respectively at the lower end thereof. The ends of the roller 159 are supported rotatably on the bearings 158 in between at the upper end on both sides located higher than the roller 149 of the rocking frame 157. 160 is a rocking rod fixed at the lower end thereof on the portion located outside the magnetic clutch 156 at one end of the shaft 154. 161 is a cylinder pivoted with the pin 162 within the frame 20 148 in front of the rocking frame 157 at the end thereof. The front end of the piston rod 163 of the cylinder 161 is pivoted with the pin 164 in front of the rocking frame 157, and thereby the rocking frame 157 is afforded retreating rotatability for restoring by the air pressure compressed in the cylinder 161.

165 is an operation piece projected rearward from one side of the rocking frame 157. 166 is a switch mounted on the rocking arm 160 to make the magnetic clutch 165 engage when the rocking frame 157 is rocked forward. 167 is an operation plate formed upwardly from the upper end of the rocking rod 160. The oblong hole 169 is formed with both ends thereof directed longitudinally in the plate 168 on the upper edge at one side of the frame 148 to define the rocking rod 160, and in the oblong hole 169 is inserted the operation plate 167. Furthermore, the switch 170 contacting the operation plate 167 at the point where the operation plate 167 is stopped after being rocked forward is mounted on the frame 148, and thereby is connected electrically so that feed is accelerated when the switch is turned on (described later). 171 is a switch on the frame 148 to be contacted by the rocking frame 157 when the rocking frame 157 reaches a point just before the completion of its retreat, and is connected electrically so that feed is decelerated when the switch 171 is turned on (described later). 172 is a roller mounted to be located in front of the roller 152 and with the axis thereof parallel with the roller 152, the lower periphery of the roller 172 is to be held submerged in the tank 173 for receiving wax. 174 is a sprocket mounted on the shaft at the end of the roller 172. Between the sprocket 174 and the sprocket 176 of the double sprocket 176 and 177 of the shaft 175 supported by the frame 147 is stretched the chain 178. 179 is a sprocket mounted on the rotary shaft 137. 180 is a shaft supported with the bearing 181 of the frame 148 to be rotatable with both ends thereof directed longitudinally. Between the sprocket 182 mounted on the end of the shaft 180 and the sprocket 179 is stretched the chain 183, and the drive is transmitted by meshing the bevel gears mounted on the end of the shaft 180 and the end of the shaft 185 supported with the bearing 184. In addition, between the sprocket 186 on the end of the shaft 185 and the sprocket 177 is stretched the chain 187. 188 is a roller located in front of the roller 172 and does not contact to the warp B during operation time. This roller rises with the piston rod 190 of the cylinder

189 to part the warp B from the roller 172 during shut down. 191 are rods arranged longitudinally in three steps to separate the warp B of sheet like shape after the sizing and drying operation, and the ends of the rods 191 are supported with the arms 192 of the frame 5 148.

FIG. 21 shows the front reed 16. 193 is a post member erected upright from the base plate 194. On both ends of the shaft member 195 fixed on the upper end of the post member 193 at the central portion thereof 10 and with both ends thereof directed transversely, is fixed the lower end of the side plate 196. Said front reed 16 is supported by inserting both ends thereof in the groove 197 directed downward from the upper edges of the inner surface of the side plate 196 facing 15 each other.

FIGS. 22, 23, 24, 25, 26 and 27 show the winding warping machine 17. 198 are rails of two lines laid on the floor 25 to be at a right angle to the travelling direction of the warp B. On the rails 198 are embarked the 20 wheels 200 of the truck 199 and in the side frames 201 erected upright from the edges on both sides of the truck 199 are rotatably supported the projected shafts 203 at both ends of the drum 202.

204 is a pulley mounted on one end of the drum 202 25 and the belt 207 is stretched between the pulley 204 and the pulley 206 of the rotary shaft 205 supported in between both ends of the truck 199. 208 is a shaft parallel with the rotary shaft 205 in front of the rotary shaft 205. Shaft 208 is supported with the bearing 210 30 of the leg member 209 erected upright on the floor 25, and the gear 211 is fixed on the shaft 208. Gear 212 arranged on the rotary shaft 205 is meshed with the gear 211, and to make the gear 212 movable axially with respect to the rotary shaft 205, the key 213 is fitted in the 35 rotary shaft 205 throughout the length thereof. 214 is a rotary plate pivoted to the shaft 208 at one end thereof on one side of the gear 211. Hook 215 at the other end of the rotary plate 214 is located at the side of the gear 212 and fitted on the rotary shaft 205 from the upper end, and thereby the gears 211 and 212 are meshed with each other when the hook 215 is fitted on the shaft 205 even if the truck is travelling. 216 are sprockets mounted on both ends of the upper member 233 at the back of the truck 199. Between the sprockets 216 is stretched the endless chain 230. Sprocket 216 is mounted on the output shaft 218 of the reduction gear 217, and between the sprocket 219 in the center of the side of the drum 202 and the sprocket 220 on the input side of the reduction gear 217 is stretched the chain 221 and drive is transmitted. On the shaft 222 of the sprocket 216 is mounted the sprocket 223 and on the shaft 225 supported with the bearing 224 of the truck 199 is mounted the sprocket 226 below the shaft 222. Between the sprockets 223 and 226 is stretched the chain 227, and drive is transmitted to move the truck 119 by meshing the gear 228 mounted on the shaft 225 and the gear 229 fixed to said wheel 200. 231 is a sprocket to eliminate the slack of the chain 227 and 232 are grooves formed in both the upper and lower ends of the upper member 233 at the back of the truck 199. In the grooves 232 is fitted the projected line 235 of the travelling body 234 rested on the upper member 233 and is made to serve as the guide for travelling. The lower end of the fast body 236 fixed on the front side of the travelling body 234 at the upper end thereof is protruded to one side of the chain 230, and also the

lower end of the movable body 238, pivoted to the front side of the travelling body at the middle between the upper and lower ends, is projected to the other side of the chain 230 in front of the lower end of said fast body 236. And the front end of the screw stock 240 screwed in the tapped hole 239 formed in the travelling body 234 from the back side to the front side of the travelling body 234 is protruded to the back side of the upper end of the movable body 238. At the end of the screw stock 240 are mounted the knob 241. 242 is supporting members erected upright facing each other at both ends of the travelling body 234. In the bearings 243 on the facing sides at the upper ends of the supporting members 242 are rotatably supported the ends of the rollers 244. 245 are rollers of two lines located in the front and in the rear of the roller 244. The ends of the rollers 245 are supported with both ends of a side member 246, and the center of the side member 246 located at one side is pivoted on the upper end of the supporting member on one side with the shaft 247. On the upper edge of the side member 246, located at the other side is engaged the hook 249 pivoted to the supporting member 242 on the other side with the shaft 248 to prevent rise-up.

250 is an arm directed backward from the travelling body 234, and the lower edge of the reed 252 is fitted in the groove 251 in the upper edge of the arm 250 and is fixed with the screw 253.

FIGS. 28, 29, 30 and 31 show the drive transmission mechanism. 254 is a motor and between the pulley 255 of the motor 254 and the pulley 257 on the input side of the reduction gear 256 is stretched the belt 258. Between the pulley 259 on the output side of the reduction gear and the pulley 261 on the shaft 260 is stretched the belt 262 and between the sprocket 263 on the shaft 260 and the sprocket 265 on the shaft 264 disposed to be parallel with the shaft 260 is stretched the chain 266. On the shaft 264 is mounted the gear 268 engageable and disengageable by using the clutch 267. The gear 268 is meshed with the gear 269 on the shaft 208 and the operating body 270 for engaging and disengaging the clutch 267 is fixed on the shaft 271 supported rotatably. Rotation of the shaft 271 is performed by pivoting the end of the piston rod 273 of the cylinder 272 to the lug 274 of the shaft 271. 275 is a spring to turn the shaft 271 for restoring, and 276 is sprocket mounted on the shaft 260. Around the sprocket 276 and the sprocket 278 on the input side of the speed change gear 277, the speed of which is changed by the switches 170 and 171, is wound the chain 279, and between the sprocket 280 on the output side of the speed change gear 277 and the sprocket 282 on the shaft 281 is stretched the chain 283. Mid-way along the shaft 281 is interposed the clutch 284 for engaging and disengaging, and the bevel gear 285 mounted on the end of the shaft 281 and the bevel gear 287 mounted on the end of the shaft 286 are meshed with each other. Around the sprocket at the other end of the shaft 286 is wound the chain 140.

Furthermore, drive is transmitted from the sprocket 276 to the sprocket 189 on the shaft 97 and the shaft 137 respectively.

With the gear 291 mounted on the rotary shaft 137 is meshed the gear 193 mounted on the shaft 292 parallel with the rotary shaft 137, and drive is transmitted between the shaft 292 and the shaft 97 through gears.

In the sizing and drying sectional warping machine according to the present invention described above, the bobbin A previously dyed is set on the spindle 20 on the creel 11 in order of warp required. The warp B of the bobbin A taken outside respectively through the guide 5 38 is directed forward and led forward being inserted in the notch 42 of the guide 44. Thereupon it is passed through the annular rod 47 of the operation rod 46 incorporated with the guide 44 located at the formost being passed through the rear reed 12, is passed to the reed 12 and is separated up and down by contacting the rod 70 in front in order of the warp B as required.

Thus, the front end of the warp B is taken out forward and passed through the sizing apparatus 13, and 15 the operation is that connection of the plate member 104 and the supporting member 107 is initially released by pulling out the pin 108. Then, when the grip rod 117 is pulled upward the roller 100 is inclined round in the bearing 105 located opposite with respect to the rod 20 bobbin A set on the spindle 20 in a second creel to be 117 as the fulcrum, and the roller 100 is set free with respect to the roller 89 by engaging the rod 117 on the hook 102.

Now, when the pinion 85 is rotated by driving the shaft 83 of the worm wheel 84 meshed with the worm 25 gear 81 with the rotary operation of the handle 80, the rollers 88 of the arm 87 are raised from the surface of the sizing fluid in the tank 72 together with the rack 76 meshed with the pinion 85. Accordingly, the warp B drawn forward passing through the lower periphery of 30 the roller 88 from the guide rod 118, is pulled out to contact to the upper periphery of the roller 89. Thereafter by rotating the handle 80 in a direction opposite that above mentioned the rollers 88 of the arm 87 are submerged in the sizing tank, and by releasing the rod 35 117 from the hook 102 the warp B is held between the lower periphery of the roller 100 and the upper periphery of the roller 89, but thereupon the pin 108 is pushed in toward the plate member 104 and the supporting member 107.

The warp B passed between the rollers 100 and 89 is pulled out forward after contacting the roller 123, led from the guide roller 290 through the upper and front periphery of the upper drum 133 of the rearmost line, and then, led to the upper drum 133 from the following front side through the rear and lower periphery of the lower drum 133, and with similar means is pulled out forward passing successively each drum 133 in front through the side opposite the one-end-supported side 50 of the drum 133.

Thereafter, the warp B is separated by the rod 191 after passing through the upper peripheries of the rollers 149, 152, 159 and 172 of the tension controlling apparatus 15 in front. It is then passed successively through the front reed 16, the reed 252, the rollers 245 and 244 and engaged to the periphery at one end of the drum 202 of the winding warping machine 17 to wind up thereon.

As above mentioned, when all of the apparatus is operated simultaneously to wind up the warp B from the creel 11 on the drum 202 of the winding warping machine 17, the warp B from the creel 11 is sized as it is passing through the tank 72 of the sizing apparatus 13, dried while contacting the drum 133 of the drying apparatus, and thereafter wound up on the drum 202 of the winding warping machine 17, and wound and warped while the truck 199 of the drum 202 is moved

slowly to one side using the rails 198 as the guide and the travelling body 234 having the reed 252 to the

And, when the sectional warping stops, the warp B is cut in front of the reed 16 and is kept in a state of being passed through the reed 16. It is then pulled out from the open side formed as the result of the one-endsupport of the drums 133 of the drying apparatus 14 and from between the roller 100 and 89 with the roller end. Thereby the front end of the warp B, which is 10 100 parted from the roller 88 and 89 risen from the surface of the fluid in the sizing apparatus 13 while winding the warp B on the front reed 16 pulled out from the groove 197, and the front reed 16 is supported on the side of the creel 11.

> And then, the creel 11 is moved sideways with the pinion 36 meshed with the rack 37 by starting the motor 27. The reed 12 is also moved sideways and thereafter the warp B is cut at the rear of the rear reed 12. Then the end of the warp B drawn out from the in an order of warp arrangement required for sectional warping and said cut warp B passed to the rear reed 12 are pieced and preparation for the next sectional warping is completed.

> The adjacent creel 11 previously prepared as above described is moved to the rear of the sizing apparatus 13 by means of guide rails 26. Thereafter the warp B pieced in an order as required and wound on the other front reed 16 is passed from the open side formed as the result of the one-end-support of the sizing apparatus 13, and the drying apparatus 14, and the front reed 16 is set by fitting in the groove 97, and also the front end of the warp B passed through the front reed 16 is drawn forward and wound up on the drum 202 of the winding warping machine 17.

The group of the drums of the sizing apparatus positioned in between the creel and the warping machine carrying out sectional warping are one-end-supported respectively. Therefore after sectional warping of the preceding warp is finished, the warp is cut in front of the front reed of the drying apparatus, and when the warp is to be removed from the drying apparatus and the sizing apparatus while winding the warp kept in the state of being passed through the front reed, since the group of the drums and of the rollers of both apparatus are one-end-supported respectively, it will be easy to remove the wrap from the open side thereof. Thereby, the reed wound with the warp and removed is supported temporarily at the rear of the sizing apparatus and moved sideways together with the creel. The replacement of the bobbin and change of piece of warp arrangement are performed to make preparation for the next sizing and warping.

While another adjacent creel prepared similarly as above mentioned is protruded to the rear of the sizing apparatus, thw warp wound on said front reed is passed to the group of the rollers of the sizing apparatus and that of the drums of the drying apparatus respectively from the open side of the one-end-support while unwinding. Simultaneously the reed is returned back to the initial position and the winding operation of the warping machine is performed, and these operations are repeated. The difficulty and expenditure of long time intervals caused by the frequent replacement of bobbins on the creel and piece of warp, inefficiency of the machine brought about due to long downtime spent during the time interval above mentioned and many a

year for depreciation of the machine may be eliminated by using the apparatus according to the present invention. In addition, the apparatus according to the present invention will demonstrate useful effects such as, while sizing, drying and sectional warping are carried on in one creel, in another creel replacement of the bobbins and piece of warp are performed to make preparation for the next operation, and immediately after completion of sizing, drying and sectional warping the next sizing, drying and sectional warping may be carried out easily and speedily so that downtime of the machine can be shortened.

What I claim is:

1. In a sizing and drying sectional warping machine comprising a movable creel, a rear reed, a sizing apparatus including a plurality of rollers, a drying apparatus also including a plurality of rollers, a front reed and a winding device for winding said warp and pulling it from a creel through said rear reed, said sizing apparatus, said drying apparatus and said front reed, the improvement comprising means to move said creel transversely to the travelling direction of the warp, said roll-

ers of said sizing apparatus and said drying apparatus being supported on only one common side, said front and rear reeds being mounted so as to be movable and at least one additional creel, rear reed and front reed adapted to replace said first mentioned creel, rear reed and front reed, whereby when one sectional warping operation is completed, said first mentioned creel, rear reed and front reed can be removed together with the warp extending therebetween and immediately replaced by said additional creel, rear reed and front reed previously preapred with warp extending therebetween.

2. The improvement as claimed in claim 1 wherein said rear reed is mounted so as to be moved transversely to the travelling direction of the warp.

3. The improvement as claimed in claim 1 further including a tension applying means positioned between said drying apparatus and said winding apparatus.

4. The improvement as claimed in claim 1 wherein said front reed is mounted so as to be easily removable.

25

30

35

40

45

50

55

60