
USOORE42685E

(19) United States
(12) Reissued Patent (10) Patent Number: US RE42,685 E

Oesterreicher et al. (45) Date of Reissued Patent: Sep. 6, 2011

(54) UPGRADING DIGITAL MEDIASERVERS 2002/O120601 A1 8, 2002 Elmendorf et al. 707/1
2002/0170052 A1 11/2002 Radatti 717/171

(76) Inventors: Richard T. Oesterreicher, Naples, FL 2003, OO18964 A1 1/2003 Fox et al.
(US); Craig Murphy, Suwanee, GA 2003/0051235 A1 3/2003 Simpson
(US s s 2003/0066.065 A1 4/2003 Larkin 717/177

2003/0074487 A1 * 4/2003 Akgul et al. 719,328
2004/O133888 A1 7/2004 Ardet al. 717/174

(21) Appl. No.: 11/961,991 2004/0255293 Al 12/2004 Spotswood

(22) Filed: Dec. 20, 2007 FOREIGN PATENT DOCUMENTS

Related U.S. Patent Documents CN 1762154 4/2006

Reissue of: s 25, 22
(64) Patent No.: 6,978,452 JP 2002366381 2, 2002

Issued Dec. 20, 2005 JP 20O2506249 2, 2002
Appl. No. 10/406,108 JP 2006-522416 9, 2006
Filed: Apr. 2, 2003 JP O3019362 2, 2011

JP 720O279 2, 2011
(51) Int. Cl. WO WO 98.05462 12/1998

G06F 9/44 (2006.01) WO WO O2/O911.78 11, 2002
WO WO 2004/090686 10, 2004

(52) U.S. Cl. 717/171; 717/175; 709/203;
386/332: 348/E5.008 OTHER PUBLICATIONS

(58) Field of Classification Search 717/168-173 Niemeyer et al., “Learning Java.” May 2000, 1979–181,
See application file for complete search history. 557 593.

(56) References Cited (Continued)
U.S. PATENT DOCUMENTS Primary Examiner Li B Zhen

5,210,854 A 5, 1993 Beaverton et al.
5.432,927 A 7, 1995 Grote et al.
5,826,085 A 10, 1998 Bennett et al.
5,867,713 A 2f1999 Shrader et al.
5,870,611 A 2f1999 London Shrader et al.
5,920,725 A 7, 1999 Ma et al.
6,101,327 A 8, 2000 Holte-Rost et al.
6,112,253 A 8/2000 Gerard et al. 719,315
6,189,145 B1 2/2001 Bellin et al. 717/170
6,266,736 B1 7/2001 Atkinson et al. T11 103
6,360,363 B1 3, 2002 Moser et al.
6,463,584 B1 * 10/2002 Gard et al. 717/171
6,978,452 B2 12/2005 Oesterreicher et al.
7,003,767 B2 2/2006 Larkin
7,155,712 B2 * 12/2006 Takimoto 717/170
7,373,643 B2 5, 2008 Radatti

505

Management
initiates upgrade

ldentify new
Objects in

upgrade package
Does

Upgrade
package
exist?

510 Enumerate
methods

and properties
in Objects

Evaluate version
compatibility with

dependent
Objects

No

590

(57) ABSTRACT

A system and method are disclosed for upgrading both hard
ware and software components of a digital media server
without disrupting media delivery services. In a preferred
embodiment, the present system and method employ an
object-oriented model that allows system servers to remain
fully operational while software upgrades at both the operat
ing system and application levels are installed. Additionally,
the system and method use redundant or partitionable pro
grammable logic devices to perform firmware upgrades
without disrupting media delivery services.

Perform runtime extensible upgrade

Instantiate new rais50

50 Claims, 9 Drawing Sheets

520

Objects into
applications and

services

if replacing
Objects: copy

existing
fields from
old Objects

to new Objects

Establish
dynamic
references

for new Objects

Copy existing
references from
replaced Objects

Unload unused or
replaced Objects

570

575

580

US RE42,685 E
Page 2

OTHER PUBLICATIONS

“Extensible Firmware Interface.” intel.com/technology/efi/
index.htm>, 2003.
“Auto Update Server, cisco.com/warp/public/cc/pd/wr2k//
vpmnso/ps3993/index.shtml>, 1992–2002.
“Georgia Tech DEOS Project, .cc.gatech.edu/systems/
projects/DEOS>, Mar. 28, 2001.
Clarke et al., “An Architecture for Dynamically Extensible
Operating Systems.” 1998.
Clarke et al., “An Explicit binding Model for Runtime
Extensible Operating Systems.” 1999.
Bershad et al., “Extensibility, Safety and Performance in the
Spin Operating System.” 1995.
Peollabauer et al., “Cooperative Runtime Management of
Adaptive Applications and Distributed Resources. 2002.
Salles et al., “Security of Runtime Extensible Virtual Envi
ronments.” Sep. 2002, 3–4.

Supplementary European Search Report dated Jul. 6, 2007
issued in corresponding EP Application No. EP0475.8665.
Written Opinion of the International Searching Authority
mailed Jun. 17, 2005 issued in corresponding PCT Applica
tion No. PCT?USO4/O9887.
International Preliminary Examination Report on Patentabil
ity issued Oct. 14, 2005 in corresponding PCT Application
No. PCT?USO4/O9887.

International Search Report mailed Jun. 17, 2005 in corre
sponding PCT Application No. PCT/US04/09887.
United States Patent and Trademark Office: Non-Final
Office Action dated Feb. 1, 2005, U.S. Appl. No. 10/406,
108.
United States Patent and Trademark Office: Notice of Allow
ance dated Aug. 2, 2005, U.S. Appl. No. 10/406,108.

* cited by examiner

US RE42,685 E Sheet 2 of 9 Sep. 6, 2011 U.S. Patent

?FZ J??nduuOO ?sodund-|eleues)

U.S. Patent Sep. 6, 2011 Sheet 3 of 9

Read Blocks from
Storage Device

(DMA) 310

Assemble Data
from Blocks in
Media Buffer 32O

Generate Packets
in Hardware While
Reading from
Media Buffer

Write Packets
to NetWork

Fig. 3

330

340

US RE42,685 E

US RE42,685 E Sheet 4 of 9 Sep. 6, 2011 U.S. Patent

75 s??uedou)

US RE42,685 E Sheet 5 Of 9 Sep. 6, 2011 U.S. Patent

919 019

G -61-I

099

999

029

pLIE

069

ON

019

US RE42,685 E Sheet 6 of 9 Sep. 6, 2011 U.S. Patent

w
c

)

ON

OZ9 9 | 9

US RE42,685 E Sheet 7 Of 9 Sep. 6, 2011 U.S. Patent

08/0/.../.

US RE42,685 E Sheet 8 of 9 Sep. 6, 2011 U.S. Patent

8 (61-)

0£8 029

CITc]

0 || 8

US RE42,685 E Sheet 9 Of 9 Sep. 6, 2011 U.S. Patent

uo?sses epeu6dn

6 (61-)

096 OZ6

0,6

US RE42,685 E
1.

UPGRADING DIGITAL MEDIA SERVERS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

This invention relates to the field of digital media servers.
BACKGROUND OF THE INVENTION

Digital media servers such as Web-based servers and
video-on-demand servers typically include a number of
functional components including components for storing
digital media, converting such media from file format to wire
format, and scheduling the delivery of media packets. Dur
ing operation, a media server accepts incoming requests for
content from clients or administrators and delivers media
packets to clients via a network.

Most digital media servers employ a PC-based architec
ture and run a variety of software components to provide the
above-described functionality. Great effort is made during
the design of such software components to ensure that they
are fully debugged and free from defects. As a practical
matter, however, many defects are not discovered during the
design phase and are exposed only when the software is put
into actual operation.

Defects discovered during system operation are often cor
rected by performing a software upgrade. Software upgrades
are also sometimes performed to supplement or improve
server functionality, thus extending a server's competitive
life.

To upgrade an executing software component, the compo
nent must be stopped, and the replacement version loaded
into memory and run. During this period, services normally
provided by the component are unavailable.
The consequences of a defect in a media server's operat

ing system may be even more severe. Operating systems are
typically designed around a number of tightly coupled mod
ules that supply abstract data structures such as files,
memory storage, input/output streams, semaphores,
processes, and threads to other programs. Application pro
grams access these abstract structures through an application
programming interface (API). A change made to one of
these structures may cause side-effects in other structures or
modules. Generally, replacement of operating system-level
components requires reloading the entire operating system,
and is accomplished during a reboot of the server. Thus,
operating system-level resources cannot be upgraded with
out taking the media server offline, and rebooting may take a
considerable amount of time before these services can be
restored.

Offline servers are unable to accept incoming requests or
deliver content to existing sessions. Consequently, an offline
server may affect the availability of an entire service net
work unless adequate redundant servers are available

FIG. 1 illustrates a typical upgrade process and its effect
on network availability. As shown in FIG. 1, in step 105, an
upgrade is initiated. Next, in step 110, an upgrade package is
detected. If the upgrade package cannot be downloaded, the
upgrade process terminates (step 190).

Before the upgrade can be installed, pre-upgrade manage
ment steps 120 are performed. In particular, in step 125, user
sessions are either thinned or transferred to unaffected
machines. Next, in step 127, services affected by the soft
ware to be upgraded are discontinued.

5

10

15

25

30

35

40

45

50

55

60

65

2
Next, upgrade process steps 140 are performed. In

particular, in step 145, the settings and properties of the Sys
tem are either copied or modified. In step 147, new compo
nents are copied from the upgrade package. Although some
media servers may permit the local or remote transfer of data
into the server while it is operating, some service disruption
is typically necessary to effect the-upgrade, and in most
cases the server must first be brought offline.

Next, post-upgrade process steps 160 are performed. In
particular, in step 165, the media server's power is cycled off
and then back on (if the server was taken offline), and ser
vices provided by the upgraded software are restarted. A
single power cycle may last anywhere from a few seconds to
several minutes. The amount of time required for a single
power cycle depends on how long the server needs to per
form an orderly shutdown of running applications before
powering off plus the time needed to reboot the server and
restore the applications after powering back on. Only after
these events are completed can the server begin to accept
new user sessions (step 167).
The above process may significantly affect system

operation, especially in cases of system-wide upgrades such
as an upgrade of all system APIs and low-level drivers. A
typical digital-media company may have dozens of on-line
media servers affected by such an upgrade. Although the
company may select a time for the upgrade when server
usage is at its lowest point, the upgrade may still disrupt
service to some extent if it necessitates shutting down media
servers. At a minimum, the company may experience loss of
revenue for the downtime and risk customer dissatisfaction
To avoid such service disruptions, companies often main

tain excess server capacity or redundant systems to handle
traffic channeled away from affected servers during an
upgrade. But redundant systems introduce additional over
head cost and in many cases are not available.

SUMMARY OF THE INVENTION

A system and method are disclosed for upgrading both
hardware and software components of a digital media server
without disrupting media delivery services In a preferred
embodiment, the present system and method employ an
object-oriented model that allows system servers to remain
fully operational while software upgrades at both the operat
ing system and application levels are installed. Additionally,
the system and method use redundant or partitionable pro
grammable logic devices to perform firmware upgrades
without disrupting media delivery services.

In one aspect, the present invention is directed to a method
of upgrading a digital media server comprising checking for
the existence of an upgrade package comprising new
objects; identifying new objects in the upgrade package;
identifying functions and properties of the new objects;
evaluating compatibility of the new objects; instantiating
new objects as applications objects or services objects:
determining whether a new object replaces an old object:
and if the new object replaces the old object, replacing the
old object.

In another aspect of the present invention, the step of
replacing further comprises: locking the old object and the
new object; copying fields from the old object to the new
object; establishing links from the new object to objects
dependent on the old object; rerouting links to the old object
from other objects to the new object; unlocking the new
object; and removing the old object.

In another aspect of the present invention, the step of
removing comprises archiving the old object.

US RE42,685 E
3

In another aspect of the present invention, the step of
removing comprises purging the old object.

In another aspect of the present invention, the upgrade
package further comprises one or more new methods for old
objects, and the method further comprises: identifying the
one or more new methods; evaluating compatibility of the
one or more new methods; determining whether a new
method replaces an old method; and if the new method
replaces the old method, blocking and replacing the old
method.

In another aspect of the present invention, the old method
is an interface.

In another aspect of the present invention, the method
further comprises downloading the upgrade package from a
network Source.

In another aspect of the present invention, the method
further comprises loading the upgrade package from a stor
age medium.

In another aspect, the present invention is directed to a
method of upgrading a digital media server having a parti
tionable programmable logic device having a first active par
tition and a second inactive partition, comprising: program
ming the second partition with new logic; transitioning the
second partition from the inactive state to the active state and
simultaneously assuming data processing functions from the
first partition; and transitioning the first partition to an inac
tive state.

In another aspect of the present invention, the method
further comprises programming the first partition with the
new logic

In another aspect, the present invention is directed to a
method of upgrading a digital media server having two or
more redundant programmable logic devices, each having an
active and inactive state, comprising: determining a first set
of programmable logic devices that are in the active state;
loading new logic into a second set of one or more logic
devices in the inactive state; transitioning the second set of
devices to the active state and simultaneously assuming data
processing functions from the first set of devices; and transi
tioning the first set of devices to the inactive state.

In another aspect of the present invention, the method
further comprises loading new logic into the first set of
devices.

In another aspect, the present invention is directed to a
method of installing upgrades on a digital media server com
prising a general purpose computer and a hardware engine,
the computer comprising an object oriented runtime
environment, and the hardware engine comprising a pro
grammable logic device having a first active partition and a
second inactive partition, the method comprising: checking
for the existence of an upgrade package comprising new
objects and new logic; identifying new objects in the
upgrade package; identifying functions and properties of the
new objects; evaluating compatibility of the new objects,
instantiating new objects as applications objects or services
objects; determining whether a new object replaces an old
object; if the new object replaces the old object, replacing
the old object; identifying new logic in the upgrade package,
programming the second inactive partition with the new
logic; transitioning the second partition from an inactive
state to an active state and simultaneously assuming data
processing functions from the first active partition; and tran
sitioning the first partition to an inactive state.

In another aspect of the present invention, the step of
replacing further comprises: locking the old object and the

10

15

25

30

35

40

45

50

55

60

65

4
new object; copying fields from the old object to the new
object; establishing links from the new object to objects
dependent on the old object; rerouting links to the old object
from other objects to the new object; unlocking the new
object; and removing the old object.

In another aspect, the present invention is directed to a
method of installing upgrades on a digital media server com
prising a general purpose computer and a hardware engine,
the computer comprising an object oriented runtime
environment, and the hardware engine comprising two or
more programmable logic devices, each having active and
inactive states, the method comprising checking for the
existence of an upgrade package comprising new objects and
new logic; identifying new objects in the upgrade package;
identifying functions and properties of the new objects;
evaluating compatibility of the new objects; instantiating
new objects as applications objects or services objects;
determining whether a new object replaces an old object; if
the new object replaces the old object, replacing the old
object; identifying new logic in the upgrade package; deter
mining a first set of programmable logic devices that are in
the active state; programming the new logic into a second set
of one or more logic devices in an inactive state; transition
ing the second set of devices to the active state and simulta
neously assuming data processing functions from the first set
of devices; and transitioning the first set of devices to the
inactive state.

In another aspect of the present invention, the step of
replacing further comprises: locking the old object and the
new object; copying fields from the old object to the new
object; establishing links from the new object to objects
dependent on the old object; rerouting links to the old object
from other objects to the new object; unlocking the new
object; and removing the old object.

In another aspect of the present invention, the upgrade
package further comprises one or more new methods for old
objects, and the method further comprises: identifying the
one or more new methods; evaluating compatibility of the
one or more new methods; determining whether a new
method replaces an old method; and if the new method
replaces the old method, blocking and replacing the old
method.

In another aspect of the present invention, the old method
is an interface.

In another aspect, the present invention is directed to a
digital media server comprising: an object store; and an
object-oriented, runtime environment, comprising: service
objects, application objects, and an object manager adapted
to facilitate the replacement of the service objects and the
application objects without disrupting data processing func
tionality Supplied by the service and application objects.

In another aspect of the present invention, the server fur
ther comprises a network interface for downloading an
upgrade package comprising replacement service and appli
cation objects.

In another aspect of the present invention, the server fur
ther comprises storage media for storing an upgrade package
comprising replacement service and application objects.

In another aspect, the present invention is directed to a
digital media server comprising: two or more programmable
logic devices, each capable of Switching between an active
state and an inactive state; an input data path; and an output
data path; wherein one or more programmable logic devices
in the active state processes digital media arriving on the
input data path and presents processed digital media to the
output data path while one or more programmable logic
devices in the inactive state are programmed.

US RE42,685 E
5

In another aspect, the present invention is directed to a
digital media server comprising: a partitionable program
mable logic device having two or more independently pro
grammable partitions, each partition capable of Switching
between an active state and an inactive state; an input data
path; and an output data path; wherein one or more partitions
in the active state process digital media arriving on the input
data path and present processed digital media to the output
data path while one or more partitions in the inactive state
are programmed.

In another aspect, the present invention is directed to a
digital media server comprising: an object store; an object
oriented, runtime environment, comprising: service objects,
application objects, an object manager adapted to facilitate
the replacement of the service objects and the application
objects without disrupting data processing functionality Sup
plied by the service and application objects; two or more
programmable logic devices, each capable of Switching
between an active state and an inactive state; an input data
path; and an output data path; wherein one or more program
mable logic devices in the active state processes digital
media arriving on the input data path and presents processed
digital media to the output data path while one or more pro
grammable logic devices in the inactive state are pro
grammed with new logic.

In another aspect, the present invention is directed to a
digital media server comprising: an object store, an object
oriented, runtime environment, comprising: service objects,
application objects, an object manager adapted to facilitate
the replacement of the service objects and the application
objects without disrupting data processing functionality Sup
plied by the service and application objects; a partitionable
programmable logic device having two or more indepen
dently programmable partitions, each partition capable of
Switching between an active state and an inactive state; an
input data path; and an output data path; wherein one or
more partitions in the active state process digital media arriv
ing on the input data path and present processed digital
media to the output data path while one or more partitions in
the inactive state are programmed with new logic.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram illustrating an upgrade process in
accordance with the prior art;

FIG. 2 is a block diagram depicting a preferred embodi
ment of a digital media server,

FIG. 3 is a flow diagram illustrating a preferred embodi
ment of a digital media server streaming process;

FIG. 4A is an exemplary embodiment of an object;
FIG. 4B is a block diagram depicting a preferred embodi

ment of a general-purpose computing device in one embodi
ment of the present invention;

FIG. 5 is a flow diagram illustrating the steps in a pre
ferred embodiment for performing an upgrade process;

FIG. 6 is a flow diagram illustrating the steps in a pre
ferred embodiment for staging the replacement of objects;

FIG. 7A is a block diagram illustrating a preferred
embodiment of a digital media delivery pipeline with a par
titionable reprogrammable logic device;

FIG. 7B is a block diagram illustrating a preferred
embodiment of a digital media delivery pipeline with redun
dant reprogrammable devices;

FIG. 8 is a flow diagram illustrating a preferred embodi
ment for performing a firmware upgrade of a hardware
engine with a partitionable programmable logic device; and

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 9 is a flow diagram illustrating a preferred embodi

ment for performing a firmware upgrade of a hardware
engine with redundant programmable logic devices.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

For purposes of illustration and to facilitate understanding
of the present invention, the preferred embodiments
described below will be described in connection with a par
ticular digital media server.
As shown in FIG. 2, the digital media server 200 of these

preferred embodiments preferably comprises a hardware
engine 220, a general-purpose computer 240, and a storage
device 210. Hardware engine 220 preferably comprises a
media buffer 225, one or more programmable logic devices
(PLDs) 227, and a network interface 230. As described in
detail below, in a preferred embodiment, hardware engine
220 may comprise a partitionable PLD or redundant PLDs to
facilitate media server upgrading without service disruption.

General-purpose computer 240 preferably comprises an
object-oriented runtime environment 250, an operating sys
tem 260, and hardware interfaces 270. Buses 280 provide
data communication paths between hardware engine 220,
general-purpose computer 240, and storage 210.

Hardware engine 220 is preferably adapted to generate
wire data packets from data stored on Storage device 210 and
send them to clients across a digital network. In a preferred
embodiment, data is copied from storage device 210 to
media buffer 225 under control of general-purpose comput
ing device 240. A preferred architecture comprising a
general-purpose computing device 240 and hardware engine
220 is described in U.S patent application Ser. No. 10/369,
305, entitled “Hybrid Streaming Platform.” filed on Feb. 19,
2003 (and identified by Pennic & Edmonds LLP docket no.
11055-005-999), which is hereby incorporated by reference
in its entirety for each of its teachings and embodiments.
PLDs 227 are preferably adapted to convert the copied

data in media buffer 225 from file format to wire format.
Complete data packets are sent onto the network by network
interface 230. A preferred system and method for imple
menting these steps is described in U.S. patent application
Ser No. 10/369,306, entitled “Flexible Streaming
Hardware.” filed on Feb. 19, 2003 (and identified by Pennie
& Edmonds LLP docket No. 11055-006-999), which is
hereby incorporated by reference in its entirety for each of
its teachings and embodiments.
A preferred embodiment of a streaming process imple

mented by digital media server 200 is illustrated in FIG. 3.
As shown in FIG. 3, in step 310, blocks of media data are
read from storage device 210 and copied directly to media
buffer 225 in accordance with instructions from general
purpose computing device 240. In step 320, hardware engine
220 reassembles the media data from the blocks stored in
media buffer 225.

In step 330, hardware engine 220 generates data packets
while reading from media buffer 225. In step 340, hardware
engine 220 transfers the freshly generated data packets to
network interface 230, which in turn writes the packets to a
digital network. As noted, this process and a platform for
implementing it are described in more detail in U.S. patent
application Ser. No. 10/369,306, entitled “Flexible Stream
ing Hardware.” filed on Feb. 19, 2003 (and identified by
Pennie & Edmonds LLP docket No. 11055-006-999), and
Ser. No. 10/369,305, entitled “Hybrid Streaming Platform.”
filed Feb. 19, 2003 (and identified by Pennic & Edmonds
LLP docket No. 11055-005-999), both of which are hereby

US RE42,685 E
7

incorporated by reference in their entirety for each of their
teachings and embodiments.

In a preferred embodiment, general-purpose computing
device 240 preferably has installed a runtime environment
250 adapted to run object-oriented software programs
including programs for accomplishing any desired stream
ing solutions or other tasks. Such tasks may include session
setup, management and teardown of streaming sessions, and
error handling. In a preferred embodiment, these programs
are designed as object-oriented programs.

FIG. 4A illustrates the composition of an object 410 in a
preferred embodiment. As shown in FIG. 4A, object 410
preferably comprises fields 412, methods 415, and dynamic
references 418. Fields 412 store data within object 410 and
comprise data that can be accessed by other objects, known
as properties 414, and data hidden from other objects. Fields
412 represent the current state of object 410.

Methods 415 are procedures or functions that may be used
to operate on data in fields 412. Methods of an object that
may be called by other objects to interact with the object are
known as interfaces 417.

Dynamic references 418 represent control and data flow
paths between objects 410. An object's references 418 need
not be defined before runtime, and can be changed even after
object 410 has been created in runtime environment 250.

FIG. 4B illustrates runtime environment 250 in more
detail. Environment 250 preferably comprises applications
420, services 430, and an object manager 440. Applications
420 are a collection of objects designed to perform a certain
task. Dynamic references 418 between objects are illustrated
as double-headed arrows in FIG. 4B. Services 430 are col
lections of objects designed to provide an interface between
application objects and general-purpose computer 240's
operating system (OS) 260 and hardware interfaces 270.

Object manager 440 is preferably responsible for main
taining the state of all objects 410 included in applications
420 and services 430. In a preferred embodiment, object
manager 440 validates objects 410 to ensure that these
objects are properly formed and not corrupt before loading
them into runtime environment 250. Object manager 440
also enumerates the objects and evaluates them to ensure
compatibility with object manager 440, environment 250
generally, and other objects 410.

Runtime environment 250 is preferably built on facilities
provided by general-purpose computer 240's operating sys
tem 260. Application objects can indirectly access hardware
270 by interacting with services 430 through operating sys
tem 260. One with skill in the art will recognize that operat
ing system 260 may be implemented using object-oriented
components. Such an operating system may be located
within runtime environment 250, and operate as an exten
sion of services 430. Effectively, runtime environment 250
may then be viewed as merged with operating system 260.
This permits the operating system to be upgraded without
interrupting the functionality it provides, as described below.

Hardware 270 preferably includes input-output interface
cards 272, 274 for interfacing with objects in the runtime
environment as well as data storage 210.

Data storage 210 is a repository that preferably contains
definitions for objects or collections of objects known as
packages 490. Such packages are typically assembled to
make delivery of a collection of objects more convenient.
Upgrade Process
A preferred embodiment for upgrading object-oriented

Software running on general-purpose computer 240 is
described in connection with FIG. 5. As shown in FIG. 5, in

10

15

25

30

35

40

45

50

55

60

65

8
step 505, a system administrator initiates an upgrade session.
In step 510, object manager 440 determines whether an
object package 490 (containing upgraded objects) exists in
data store 210. If an upgrade package is available, a runtime
extensible upgrade is performed in step 520.

Before performing the runtime extensible upgrade (step
520), object manager 440 continually tracks the state of all
current instances of objects in environment 250 including
their dynamic references 418 to other objects. In step 530,
object manager 440 identifies any new objects in upgrade
package 490, and, if so, validates that they are properly
formed and not corrupt. In step 535, each object in package
490 and the objects corresponding interfaces and properties
are enumerated. During this enumeration process, object
manager 440 determines how the objects will interact with
other objects. Next, in step 540, each object is evaluated for
compatibility with other objects that may call it. Also, the
object version is preferably checked to ensure that it is com
patible with object manager 440 and environment 250, as
well as other interacting objects.

In step 550, object manager 440 creates instances of the
new objects in appropriate areas of environment 250. Object
manager 440 also establishes the logical connections
between the new objects and existing services 430 or appli
cations 420.
With respect to new objects that wholly or partially

replace functions provided by existing objects, object man
ager 440 is preferably adapted to direct an orderly transition
from those existing objects being replaced to the new objects
being installed. This process is referred to herein as staging,
and is described in more detail below in connection with
FIG. 6. In step 560, object manager 440 copies fields 412
from existing objects into their corresponding replacement
objects. Next, in step 570, new dynamic references 418 are
established between existing objects that are to remain on
line and any new objects. In step 575, existing dynamic ref
erences 418 are re-routed to the new objects. This permits an
orderly rerouting of object references 418 from existing
objects to new objects.

In step 580, objects 410 that are no longer in active use are
either permanently purged from environment 250 by object
manager 440, or archived to storage 210 for possible later
retrieval.

Because an upgrade may include a partial or complete
replacement of existing objects, a potential exists for Suspen
sion of services or functions provided by objects being
replaced. In a preferred embodiment, the present system and
method address this issue by staging new replacement
objects to avoid service disruption as existing objects are
replaced. More specifically, staging allows object manager
440 to transfer active data communication paths from exist
ing objects to new objects during an upgrade rather than
disrupting or terminating these data communication paths.
An exemplary staging process is illustrated in FIG. 6. In

the exemplary scenario of FIG. 6, object A is being replaced
by object B as part of an upgrade. In step 610, object man
ager 440 verifies that the methods and properties of object B
are compatible with upstream objects that object A refer
ences These upstream objects are objects that provide data or
services to object A. In step 615, object manager 440 verifies
that the methods and properties of object B are compatible
with downstream objects that reference object A. These
downstream objects are objects that require services or
receive data from object A. Once these verifications have
been completed, object manager 440 creates an instance of
object B in environment 250.

Next, in step 625, object manager 440 locks object A and
object B in environment 250. Locking prevents fields 412 of

US RE42,685 E
9

either object from changing, and provides object manager
440 with exclusive access to these objects during the transi
tion from object A to object B.

While the objects are locked in step 630, object manager
440 copies the value of fields found in object A to object B.
Then, in step 635, references 418 to upstream objects are
copied from object A to object B. Likewise, in step 640,
references to object A found in downstream objects are redi
rected to object B. In step 645, object B is unlocked by
object manager 440, thus restoring the services and func
tionality originally provided by object A but now provided
by object B and making available any new services and func
tionality provided by object B. In step 650, object manager
440 purges or archives object A, thus completing the staging
process.

Staging may also comprise a finer-grained approach
where an objects methods are changed without replacing
the entire object. In such cases, the entire object need not be
locked; instead, access to the upgraded method is restricted.
For example, Suppose that a log writer interface contained in
a stream manager object requires upgrading. The stream
manager object continues to provide functions to other
objects through other methods. The staging process blocks
object access to the log writer interface, but does not lock the
stream manager object. After the code for the log writer
interface has been replaced, objects can resume interaction
with the log writer interface.
Run Time Extensible Digital Media Servers

Programmable logic devices 227 in hardware engine 220
do not typically comprise an operating system like general
purpose computer 240. Instead, PLDs 227 are typically
designed with programmable logic to efficiently accomplish
a relatively limited set of data processing tasks, as described
above. Two preferred embodiments for maintaining media
delivery at full capacity during an upgrade of the program
mable logic found in a PLD 227 are described below.

In the first preferred embodiment, each PLD 227 is
capable of selectively partitioning and reprogramming spe
cific portions of the device, leaving other non-affected por
tions operating normally. In the Second preferred
embodiment, hardware engine 220 comprises redundant
PLDs. These embodiments are described in connection with
FIGS. 7A B and FIGS. 89.

FIG. 7A illustrates the partitionable, PLD embodiment. In
this embodiment, a digital media delivery pipeline 700 pref
erably comprises a data path 710 and a partitionable repro
grammable logic device 720. Partitionable programmable
logic device 720 preferably includes a plurality of partitions,
(e.g., 722, 724, 726) each of which may be separately repro
grammed while the other partitions continue to operate.
An example of a firmware upgrade process for partition

able PLD 700 is illustrated in more detail in FIG. 8. As
shown in FIG. 8, in step 810, when a system administrator
initiates a firmware upgrade, a new partition is created in
PLD 700. Next, in step 820, the partition is programmed
with a new set of hardware description language (HDL)
logic. In step 830, an operational transfer is made, wherein
the partition takes control of processing functions from an
original partition that it is replacing. More specifically, the
new, inactive partition is transitioned to the active state, and
Supplies the processing functions necessary to continue
streaming digital media. Concurrently, the original partition
is transitioned to an inactive state. Then, in step 840, the
original partition is reprogrammed, thus completing the
upgrade session.

FIG. 7B illustrates the redundant logic device embodi
ment. In this embodiment, a digital media delivery pipeline

10

15

25

30

35

40

45

50

55

60

65

10
750 preferably includes a data path 760, a first program
mable logic device 770 (PLD-A), and a second program
mable logic device 780 (PLD-B). The inactive device merely
passes data through path 760.

With this redundant approach, one PLD may be left avail
able for reprogramming while the other responds to requests
from general-purpose computer 240. Later, the two PLDs
may again Swap control so that the other may be upgraded. A
firmware upgrade may thus be completed without disrupting
digital media delivery service.
An example of a firmware upgrade process for redundant

PLD pipeline 750 is illustrated in more detail in FIG. 9. As
shown in FIG. 9, in step 910, when a system administrator
initiates a firmware upgrade, a determination is made as to
which device 770, 780 is active and which is inactive or
pass-through. For purposes of the exemplary scenario of
FIG. 7B, it will be assumed that PLD-A 770 is active. Next,
in step 920, PLD-B 780 is upgraded by loading a new set of
hardware description language (HDL) logic. In step 930, an
operational transfer is made, wherein PLD-B 780 becomes
the active device, and PLD-A 770 becomes inactive. Then,
in step 940, PLD-A is upgraded with a new set of HDL logic,
thus completing the upgrade session.

While the invention has been described in conjunction
with specific embodiments, it is evident that numerous
alternatives, modifications, and variations will be apparent to
those persons skilled in the art in light of the foregoing
description.
What is claimed is:
1. A method of upgrading a digital media server compris

ing an object oriented runtime environment implemented in
a memory, the method comprising:

checking for the existence of an upgrade package com
prising new objects;

identifying the new objects in the upgrade package;
identifying functions and properties of the new objects;
evaluating compatibility of the new objects;
instantiating new objects as applications objects or Ser

vices objects in the memory;
determining whether a new object replaces an old object

in the object oriented runtime environment; and
if the new object replaces the old object, replacing the old

object by:
locking the Old Object and the new object,
copying fields from the Old Object to the new object,
establishing links from the new object to objects depen

dent on the old object,
rerouting links to the old object from other objects to

the new object,
in response to rerouting the links, unlocking the new

object, and
removing the old object.

2. The method of claim 1, wherein the step of replacing
further comprises:

locking the old object and the new object;
copying fields from the old object to the new object;
establishing links from the new object to objects depen

dent on the old object;
rerouting links to the old object from other objects to the
new object;

unlocking the new object; and
removing the old object.
3. The method of claim 21, wherein the step of remov

ing comprises further comprising archiving the old object.
4. The method of claim 21, wherein the step of remov

ing the old object comprises purging the old object.

US RE42,685 E
11

5. The method of claim 1, wherein the upgrade package
further comprises one or more new methods for old objects,
the method further comprising:

identifying the one or more new methods from the
upgrade package;

evaluating compatibility of the one or more new methods;
for each of the One or more new methods.

determining whether a new method replaces an a cor
responding old method; and

if the new method replaces the corresponding old
method, blocking and replacing the old method with
the new method.

6. The method of claim 5, wherein the old method is an
interface.

7. The method of claim 1, further comprising download
ing the upgrade package from a network Source.

8. The method of claim 1, further comprising loading the
upgrade package from a storage medium.

9. A method of installing upgrades on a digital media
server comprising a general purpose computer and a hard
ware engine, the computer comprising an object oriented
runtime environment, and the hardware engine comprising a
programmable logic device having a first active partition in
an active state and a second inactive partition in an inac
tive state, the method comprising,

checking for the existence of an upgrade package com
prising new objects and new logic;

identifying the new objects in the upgrade package;
identifying functions and properties of the new objects;
evaluating compatibility of the new objects;
instantiating new objects as applications objects or ser

vices objects;
determining whether a new object replaces an old object

in the object oriented runtime environment;
if the new object replaces the old object, replacing the old

object;
identifying the new logic in the upgrade package;
programming the second inactive partition with the new

logic;
transitioning the second partition from an the inactive

state to an the active state and simultaneously assum
ing data processing functions from the first active par
tition; and

transitioning the first partition to an the inactive state.
10. The method of claim 9, further comprising program

ming the first partition with the new logic.
11. The method of claim 9, further comprising download

ing the upgrade package from a network Source.
12. The method of claim 9, further comprising loading the

upgrade package from a storage medium.
13. The method of claim 9, wherein the step of replacing

the old object further comprises:
locking the old object and the new object;
copying fields from the old object to the new object;
establishing links from the new object to objects depen

dent on the old object;
rerouting links to the old object from other objects to the
new object;

in response to rerouting the links, unlocking the new
object; and

removing the old object.
14. The method of claim 13, wherein the step of remov

ing comprises further comprising archiving the old object.

10

15

25

30

35

40

45

50

55

60

65

12
15. The method of claim 13, wherein the step of remov

ing the old object comprises purging the old object.
16. A method of installing upgrades on a digital media

server comprising a general purpose computer and a hard
ware engine, the computer comprising an object oriented
runtime environment, and the hardware engine comprising
two or more programmable logic devices, each having active
and inactive states, the method comprising:

checking for the existence of an upgrade package com
prising new objects and new logic;

identifying the new objects in the upgrade package;
identifying functions and properties of the new objects;
evaluating compatibility of the new objects;
instantiating the new objects as applications objects or

services objects;
determining whether a new object replaces an old object

in the object oriented runtime environment;
if the new object replaces the old object, replacing the old

object;
identifying the new logic in the upgrade package;
determining a first set of programmable logic devices that

are in the active state;
programming the new logic into a second set of one or
more logic devices in an inactive state;

transitioning the second set of devices to the active state
and simultaneously assuming data processing functions
from the first set of devices; and

transitioning the first set of devices to the inactive state.
17. The method of claim 16, further comprising program

ming the new logic into the first set of devices.
18. The method of claim 16, further comprising down

loading the upgrade package from a network source.
19. The method of claim 16, further comprising loading

the upgrade package from a storage medium.
20. The method of claim 16, wherein the step of replac

ing the old object further comprises:
locking the old object and the new object;
copying fields from the old object to the new object;
establishing links from the new object to objects depen

dent on the old object;
rerouting links to the old object from other objects to the
new object;

in response to rerouting the links, unlocking the new
object; and

removing the old object.
21. The method of claim 20, wherein the step of remov

ing comprises further comprising archiving the old object.
22. The method of claim 20, wherein the step of remov

ing the old object comprises purging the old object.
23. The method of claim 16, wherein the upgrade package

further comprises one or more new methods for old objects,
the method further comprising:

identifying the one or more new methods;
evaluating compatibility of the one or more new methods;
determining whether a new method replaces an old

method; and
if the new method replaces the old method, blocking and

replacing the old method.
24. The method of claim 23, wherein the old method is an

interface.
25. A digital media server comprising:
a storage medium comprising an object store; and
a computing device configured to execute an object

oriented, runtime environment, the object-Oriented,
runtime environment comprising:

US RE42,685 E
13

service objects, application objects, and an object man
ager adapted to facilitate the replacement of the ser
Vice objects and the application objects without dis
rupting data processing functionality Supplied by the
service and application objects by:
locking an old object and a new object,
copying fields from the old object to the new object,
establishing links from the new object to objects

dependent on the old object,
rerouting links to the old object from other objects to

the new object,
in response to rerouting the links, unlocking the new

object, and
removing the old object.

26. The server of claim 25, further comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects.

27. The server of claim 25, further comprising the stor
age media for storing medium further comprising an
upgrade package comprising replacement service and appli
cation objects.

28. A digital media server comprising:
an object store;
an object-oriented runtime environment, comprising:

service objects, application objects, and an object man
ager adapted to facilitate the replacement of the service
objects and the application objects without disrupting
data processing functionality Supplied by the service
and application objects;

two or more programmable logic devices, each capable of
Switching between an active state and an inactive state;

an input data path; and
an output data path;

wherein one or more programmable logic devices in the
active state processes digital media arriving on the
input data path and presents processed digital media
to the output data path while one or more program
mable logic devices in the inactive state are pro
grammed with new logic.

29. The server of claim 28, further comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects and new logic.

30. The server of claim 28, further comprising storage
media for storing an upgrade package comprising replace
ment service and application objects and new logic.

31. A digital media server comprising:
an object store;
an object-oriented runtime environment, comprising:

service objects, application objects, and an object man
ager adapted to facilitate the replacement of the service
objects and the application objects without disrupting
data processing functionality Supplied by the service
and application objects;

a partitionable programmable logic device having two or
more independendy programmable partitions, each par
tition capable of Switching between an active state and
an inactive state;

an input data path; and
an output data path;

wherein one or more partitions in the active state pro
cess digital media arriving on the input data path and
present processed digital media to the output data
path while one or more partitions in the inactive state
are programmed with new logic.

32. The server of claim 31, further comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects and the new
logic.

14
33. The server of claim 31, further comprising storage

media for storing an upgrade package comprising replace
ment service and application objects and the new logic.

34. A method of upgrading a digital media server com
5 prising an object Oriented runtime environment implemented

in a memory, the method comprising:
tracking logical connections to other objects for each

object in the object Oriented runtime environment,
identifying functions and properties of a new object in an

10 upgrade package,
instantiating the new object as an application object or

service object in the memory,
determining whether the new object replaces an old object

15 in the object Oriented runtime environment,
establishing new logical connections between the new

object and the other objects in the object Oriented runt
ine environment,

in response to establishing the new logical connections,
2O replacing the old object with the new object,

identifying new logic in the upgrade package,
programming an inactive programmable logic device par

tition with the new logic,
transitioning the inactive programmable logic device par

25 tition from an inactive state to an active state and
assuming data processing functions from an active pro
grammable logic device partition, and

transitioning the active programmable logic device parti
tion to an inactive State.

35. The method of claim 34, wherein replacing the old
object further comprises locking the Old Object and the new
object.

36. The method of claim 35, wherein replacing the old
object further comprises copying fields from the old object to
the new object.

37. The method of claim 35, wherein replacing the old
object further comprises establishing links from the new
object to objects dependent on the Old Object.

38. The method of claim 35, wherein replacing the old
object further comprises rerouting links to the old object
from other objects to the new object.

39. The method of claim 35, wherein replacing the old
object comprises removing the old object from the object
Oriented runtime environment and archiving the old object.

35

40. A method of upgrading a digital media server com
prising an object Oriented runtime environment implemented
in a memory, the method comprising:

identifying a new method for an old object in an upgrade
50 package, wherein the old object comprises at least one

Other method
evaluating compatibility of the new method
determining whether the new method replaces an old

method in the object Oriented runtime environment, and
ss if the new method replaces the old method, replacing the

old method while allowing access to the at least one
other method by:
blocking access to the old method,
replacing the old method with the new method, and

60 allowing access to the new method
identifying new logic in the upgrade package,
programming an inactive programmable logic device par

tition with the new logic,
transitioning the inactive programmable logic device par

65 tition from an inactive state to an active state and
assuming data processing functions from an active pro
grammable logic device partition, and

US RE42,685 E
15

transitioning the active programmable logic device parti
tion to an inactive State.

41. The method of claim 40, wherein the old method is an
interface.

42. A method of installing upgrades on a digital media
server comprising a general purpose computer and a hard
ware engine, the computer comprising an object Oriented
runtime environment, and the hardware engine comprising a
programmable logic device having a first partition in an
active State, the method comprising:

detecting an instruction to initiate an upgrade,
responsive to detecting the instruction to initiate the

upgrade, creating a second partition in an inactive
State on the programmable logic device,

identifying a new object in an upgrade package, said new
object being for execution in the object Oriented runt
ine environment,

determining that the new object replaces an old object in
the object Oriented runtime environment,

programming the second partition with the new object,
transitioning the second partition from the inactive state

to an active State,
assuming, by the second partition, data processing func

tions from the first partition, and
transitioning the first partition to the inactive state.
43. The method of claim 42, filrther comprising program

ming the first partition with the new object.
44. A method of installing upgrades on a digital media

server comprising a general purpose computer and a hard
ware engine, the computer comprising an object Oriented
runtime environment, and the hardware engine comprising
two or more programmable logic devices, each having active
and inactive states, the method comprising:

identifying a new object in an upgrade package, said new
object being for execution in the object Oriented runt
ine environment,

determining that the new object replaces an old object in
the object Oriented runtime environment,

determining that a first programmable logic device is in
an active State,

programming the new object into a second programmable
logic device in an inactive state,

copying the values of at least one field of the old object
into at least one field of the new object,

transitioning the second programmable logic device to the
active State,

assuming, by the second programmable logic device, data
processing functions from the first programmable logic
device, and

transitioning the first programmable logic device to the
inactive State.

45. The method of claim 44, filrther comprising program
ming the new object into the first programmable logic
device.

46. A digital media server comprising:
an object-Oriented runtime environment comprising ser

vice objects and an object manager; wherein the object
manager is configured to:
identif fitnctions and properties of a new object,
instantiate the new object as an application object or a

service object in a memory,
determine whether the new object replaces an old

object in the object Oriented runtime environment,
establish new logical connections between the new

object and other objects in the object Oriented runt
ime environment, and

10

15

25

30

35

40

45

50

55

60

65

16
in response to establishing the new logical connections
between the new object and the other objects,
replace the old object with the new object,

two or more programmable logic devices, each capable of
Switching between an active state and an inactive state,

an input data path, and
an output data path,

wherein One or more programmable logic devices in the
active State processes, in the object Oriented runtime
environment, digital media arriving on the input data
path and presents processed digital media to the out
put data path while One or more programmable logic
devices in the inactive state are programmed by the
object manager with new logic for execution in the
object Oriented runtime environment, and wherein
the object manager establishes new logical connec
tions between the new logic and objects in the object
Oriented runtime environment.

47. The server of claim 46, filrther comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects and the new
logic.

48. The server of claim 46, further comprising a storage
medium for storing an upgrade package comprising replace
ment service and application objects and the new logic.

49. A digital media server comprising:
an object-Oriented runtime environment comprising ser

vice objects and an object manager; wherein the object
manager is configured to:
identif functions and properties of a new object,
instantiate the new object as a service object in a

memory,
determine whether the new object replaces an old

object in the object Oriented runtime environment,
establish new logical connections between the new

object and other objects in the object Oriented runt
ime environment, and

in response to establishing the new logical connections
between the new object and the other objects,
replace the old object with the new object,

a partitionable programmable logic device having two or
more independently programmable partitions, each
partition capable of switching between an active state
and an inactive state, wherein a second partition in the
inactive state is created on the partitionable program
mable logic responsive to detecting an instruction to
initiate an upgrade,

an input data path, and
an output data path,

wherein a first partition in the active state processes, in
the object Oriented runtime environment, digital
media arriving on the input data path and presents
processed digital media to the output data path while
the second partition in the inactive state is pro
grammed with new logic for execution in the object
Oriented runtime environment.

50. The server of claim 49, filrther comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects and the new
logic.

51. The server of claim 49, further comprising a storage
medium for storing an upgrade package comprising replace
ment service and application objects and the new logic.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : RE42,685 E Page 1 of 1
APPLICATIONNO. : 1 1/96.1991
DATED : September 6, 2011
INVENTOR(S) : Oesterreicher et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item (56), under “Foreign Patent Documents, in Column 2, Line 7,
delete “JP 03019362 2/2011 and insert -- WO 03019362 2/2011 --.

Title page, item (56), under “Other Publications, in Column 2, Line 1, delete “1979-181, and insert
-- 179-181, --.

IN THE CLAIMS:

Column 11, line 26, in Claim 9, delete “comprising, and insert -- comprising: --.

Column 12, line 53, in Claim 23, delete “comprising; and insert -- comprising: --.

Column 13, line 54, in Claim 31, delete “independendy and insert -- independently --.

Signed and Sealed this
Seventh Day of February, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

