
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0013994 A1

Handsaker et al.

US 2013 0013994A1

(43) Pub. Date: Jan. 10, 2013

(54)

(76)

(21)

(22)

(60)

(60)

SYSTEMAND METHOD FOR DYNAMIC
DATA ACCESS IN A SPREADSHEET WITH
EXTERNAL PARAMETERS

Inventors: Robert Handsaker, Charlemont, MA
(US); Gregory Rasin, Brookline, MA
(US); Andrey Knourenko, Wayland,
MA (US)

Appl. No.: 13/604,085

Filed: Sep. 5, 2012

Related U.S. Application Data
Continuation of application No. 12/855.282, filed on
Aug. 12, 2010, now abandoned, which is a continua
tion of application No. 1 1/818,852, filed on Jun. 18,
2007, now abandoned, which is a division of applica
tion No. 10/193,015, filed on Jul. 11, 2002, now Pat.
No. 7,251,776.
Provisional application No. 60/305,217, filed on Jul.
13, 2001.

Publication Classification

(51) Int. Cl.
G06F I7/00 (2006.01)

(52) U.S. Cl. 715/217; 715/212; 715/219

(57) ABSTRACT

In one aspect, the present invention relates to utilizing a
spreadsheet by defining a parameter external to the spread
sheet and associating the parameter with the spreadsheet to
define a parameterized workbook. In one embodiment, this
utilization further comprises storing a location of the spread
sheet and storing the name of the parameter in the same
storage module as the location. In another embodiment, it
includes defining a result external to the spreadsheet, the
result referencing one or more cells within the spreadsheet. In
another embodiment, this utilization further comprises
receiving a value for the parameter and generating the result
based at least in part on the value and the spreadsheet. In
another embodiment, it further comprises associating a type
with the parameter. The type can define a range of values or
attributes associated with the parameter.

3.48
3,5533

283
Saxis. .
3.433.
SSaxx
333333

435

33.68
Y,43:5.
3:38
33.3%
3:38:
3:33

3,3::::
34:
83.3
sis

433

88.
45%
8%
3.
s:
&&.
s:
3&
as:
38

als

sixxixe.
:s:

88.33
:34:8:
ses:
S.

838.
83.3

333.33
sis.
3. S.:

5:

45:

28,288.
3.
33%

388
35;
3.33.
3:
38.
%

3.2%
6.8%

435f

US 2013/0013994 A1 Jan. 10, 2013 Sheet 1 of 5 Patent Application Publication

{} }

~~~~*~~~~~~~} 

  

  

  

  

  



US 2013/0013994 A1 Jan. 10, 2013 Sheet 2 of 5 Patent Application Publication 

3 

ww.ax-rrrrrrr'www.wrwr.trins....... xxx-x aw 

w-xxuss-rrerwarrrrrrrl 

rtrama w 

awaxaawaawaaaaawasawaxwaxwwwoooxaaws 

    

  

  

  

  

  



US 2013/0013994 A1 Jan. 10, 2013 Sheet 3 of 5 Patent Application Publication 

******* 

* * * · ********** * * * * * & * & * & . & ..….…… …: 

  



US 2013/0013994 A1 Jan. 10, 2013 Sheet 4 of 5 Patent Application Publication 

~~~~~~--~~~~--~~~~ ~~~~ ~~~~…)--~~); ae 
;&####### 343,3

·*****************-------- *********????

US 2013/0013994 A1 Jan. 10, 2013 Sheet 5 of 5 Patent Application Publication

9 (01-J

3 -a-

tra-r

3 aanx

c
Saa-ar.

x-ra-re
y---------.
C -

{^3 ..."

Naara
NCNN

aaaaaaaaaa.

Asaaa-nnarrrmawraanaaaa.

E.

Nimran
Naaaaaaar

N.N. al-a-

ExON
3 SE
&3 sea

ahraxamwww.wrwww.www.wrwrurra---

:

************~*~*~*~

US 2013/0013994 A1

SYSTEMAND METHOD FOR DYNAMIC
DATA ACCESS IN A SPREADSHEET WITH

EXTERNAL PARAMETERS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional of parent U.S. patent
application Ser. No. 10/193,015, filed Jul. 11, 2002, entitled
“System and Method for Efficiently and Flexibly Utilizing
Spreadsheet Information, the entirety of which is incorpo
rated herein by reference.

TECHNICAL FIELD

0002 This invention relates generally to computer-based
systems and methods for data processing, and more particu
larly relates to systems and methods for manipulating data,
for example, spreadsheet application programs.

BACKGROUND

0003 Generally, spreadsheet application programs are
used to automate numerical and symbolic calculations for
business, financial and Scientific uses. Spreadsheet programs
are the tools of choice for many business and analysis tasks
because they combine a very usable graphical interface with
a simple formula language that allows non-programmers,
within the limits of the simple formula language, to create
computational models.
0004 Spreadsheet programs visually present numeric and
non-numeric data in a two-dimensional grid for easy assimi
lation by the reader. Each element of the two-dimensional
grid is referred to as a cell. A cell can contain either a data
value, or it can contain a formula that calculates a new value
based on the values of other cells. Spreadsheet cells that
contain formulas are automatically recalculated when there
are changes to the other cells that the formula depends upon.
This mechanism allows a spreadsheet user to perform what-if
scenarios only by modifying cell values and viewing or sav
ing the effects of the changes.
0005 Individual two-dimensional spreadsheets can be
organized into a larger entity known as a notebook or work
book. The terms spreadsheet or worksheet will be used inter
changeably herein, as will the terms notebook or workbook.
0006 When worksheets are grouped together to form a
workbook, the workbook and all of its worksheets are stored
together as a single file (i.e. the workbook becomes the unit of
storage and transfer when moving data between the pro
gram’s memory space and disk storage). Formulas stored in
worksheet cells can reference other cells that are in work
sheets in the same workbook and/or cells that are in work
sheets in a different workbook. When formulas refer to a
different workbook, however, known prior art spreadsheet
programs cannot automatically recalculate formula Values
unless that other workbook has also been loaded into the
program’s memory space. These prior art spreadsheet pro
grams do not allow multiple copies of the same workbook to
be loaded into memory simultaneously and they do not allow
multiple what-if scenarios to be calculated simultaneously.
0007. In existing spreadsheet programs, data values can be
stored in cells either by user input (directly or through a
user-input formula) or by the user associating the cells with an
external data source. Such as a query to a database. When cells
are associated with an external data source, the user of the
program can control how often the external data source

Jan. 10, 2013

should be checked for changes. However, no mechanism
exists to automatically detect when data referenced from the
data source has changed and to recalculate the spreadsheet if,
and only if Such a change has occurred.
0008 Spreadsheets in prior art spreadsheet programs per
format most a single calculation with fixed inputs to arrive at
a fixed set of answers. Changes in external data sources can
affect the results of computations performed by a spread
sheet, but the computation itself is fixed. Prior art spreadsheet
programs make the user vary cell values if the user wants to
perform different calculations, including what-if scenarios.
0009. Some prior art spreadsheet programs support vari
ous facilities for programmatic control over the spreadsheets
to automate spreadsheet tasks. Some of these programs
implement a macro recording and playback facility, which
allows repetitive tasks to be automated by recording the user's
actions and later replaying them. Some programs publish
application programming interfaces (APIs) that allow com
puter programs to be written to manipulate the spreadsheets
or to extend the user interface of the program. Because pro
gramming skills are required to use these application pro
gramming interfaces, they are not used by most spreadsheet
USCS.

0010 Some prior art spreadsheet programs cache inter
nally the results of intermediate calculations (cell values) to
improve the speed of recalculation. Prior art spreadsheet pro
grams Support re-execution of external data queries either
when manually requested, on a periodic basis while the work
book is loaded into the programs memory, or whenever the
workbook is opened. None of these methods are optimal, and
none of these methods are effective when the spreadsheet
program is not running.

SUMMARY

0011. In one aspect, the present invention relates to a
method for utilizing a spreadsheet. The method comprises
defining a parameter external to the spreadsheet and associ
ating the parameter with the spreadsheet to define a param
eterized workbook. In one embodiment, the method further
comprises storing a location of the spreadsheet and storing
the name of the parameter in the same storage module as the
location. In another embodiment, the method further com
prises defining a result external to the spreadsheet, the result
referencing one or more cells within the spreadsheet. In
another embodiment, the method further comprises receiving
a value for the parameter and generating the result based at
least in part on the value and the spreadsheet. In another
embodiment, the method further comprises defining a format
for the result. In another embodiment, the method further
comprises associating a type with the parameter, the type
defining a range of values.
0012. In another embodiment, the method further com
prises associating a type with the parameter, the type defining
attributes associated with the parameter. In another embodi
ment, the method further comprises defining a formula within
the spreadsheet using the parameter. In another embodiment,
the method further comprises binding a value of the param
eter to an instance of the associated spreadsheet. In another
embodiment, the parameterized workbook is a first param
eterized workbook, and the method further comprises defin
ing a second parameterized workbook and referencing a
result from the second parameterized workbook in a formula
in the first parameterized workbook. In another embodiment,
the method further comprises storing, separate from the

US 2013/0013994 A1

spreadsheet and after the spreadsheet closes, an intermediate
value used in a calculation for the spreadsheet and associating
the intermediate value with the spreadsheet and a value of the
parameter used to calculate the intermediate value.
0013. In yet another embodiment, the method further
comprises automatically calculating a result associated with
the spreadsheet without opening the spreadsheet by using the
stored intermediate value. In another embodiment, the
method further comprises distributing calculations of the
spreadsheet among a plurality of computing devices. In
another embodiment, the method further comprises distrib
uting calculations of the spreadsheet among a plurality of
computing devices based at least in part on one or more
formulas in the spreadsheet. In another embodiment, the
method further comprises distributing the calculations of the
spreadsheet among a plurality of computing devices based at
least in part on one or more stored associations in a database
associated with the parameterized workbook.
0014. In another aspect, the invention relates to a system
for utilizing a spreadsheet. The system comprises a spread
sheet and a list of parameters. The spreadsheet comprises one
or more associated formulas. The list of parameters is asso
ciated with the spreadsheet. The list of parameters is external
to the spreadsheet and one or more parameters within the list
are referenced in the one or more associated formulas of the
spreadsheet. In one embodiment, the system further com
prises a storage module to store a location of the spreadsheet
and store the name of each parameter in the associated list of
parameters. In another embodiment, the system further com
prises a list of results associated with the spreadsheet. In
another embodiment, the system further comprises a calcu
lation module to receive a value for a first parameter within
the list of parameters and generate a first result based at least
in part on the value and the spreadsheet. In another embodi
ment, the system further comprises an instantiator module to
bind a value of a first parameter within the list of parameters
to an instance of the spreadsheet. In another embodiment, the
spreadsheet is a first spreadsheet and the system further com
prises a second spreadsheet having one or more formulas
referencing a result from the first spreadsheet.
0015. In another aspect, the invention relates to a method
for utilizing a plurality of spreadsheets. The method com
prises defining a parameter and defining a set of one or more
selection rules to select a first spreadsheet from a plurality of
spreadsheets based at least in part on a value of the parameter,
thereby defining a virtual workbook. In one embodiment, the
method further comprises selecting a first workbook from the
plurality of workbooks based at least in part on a value for the
parameter and the set of one or more rules. In another embodi
ment, the method further comprises referencing the virtual
workbook in a created spreadsheetas a Substitute for a second
spreadsheet in the plurality of spreadsheets. In another
embodiment, the method further comprises defining a result
external to the virtual workbook, the result referencing one or
more cells within each spreadsheet in the plurality of spread
sheets.

0016. In another embodiment, the method further com
prises receiving a value for the parameter and generating the
result based at least in part on the value and the first spread
sheet. In another embodiment, the method further comprises
defining a format for the result. In another embodiment, the
method further comprises associating a type with the param
eter, the type defining a range of values. In another embodi
ment, the method further comprises associating a type with

Jan. 10, 2013

the parameter, the type defining attributes associated with the
parameter. In another embodiment, the method further com
prises defining a formula containing the parameter within a
spreadsheet in the plurality of spreadsheets. In another
embodiment, the method further comprises binding a value of
the parameter to an instance of the selected first spreadsheet.
In another embodiment, the virtual workbook is a first virtual
workbook and the method further comprises defining a sec
ond virtual workbook and referencing a result from the sec
ond virtual workbook in a formula in the first virtual work
book. In another embodiment, the method further comprises
defining a parameterized workbook and referencing a result
from the parameterized workbook in a formula in the virtual
workbook. In another embodiment, the method further com
prises defining a parameterized workbook and referencing a
result from the virtual workbook in a formula in the param
eterized workbook.

0017. In another embodiment, the method further com
prises storing, separate from the first spreadsheet and after the
first spreadsheet closes, an intermediate value used in a cal
culation for the first spreadsheet and associating the interme
diate value with the first spreadsheet and a value of the param
eter used to calculate the intermediate value. In another
embodiment, the method further comprises automatically
calculating a result associated with the first spreadsheet with
out opening the first spreadsheet by using the stored interme
diate value. In another embodiment, the method further com
prises distributing calculations of the first spreadsheetamong
a plurality of computing devices. In another embodiment, the
method further comprises distributing calculations of the first
spreadsheet among a plurality of computing devices based at
least in part on one or more formulas in the first spreadsheet.
In another embodiment, the method further comprises dis
tributing the calculations of the first spreadsheet among a
plurality of computing devices based at least in part on one or
more stored associations in a database associated with the
virtual workbook.

0018. In yet another aspect, the invention relates to a sys
tem for utilizing a plurality of spreadsheets. The system com
prises a list of parameters and a selection module. The selec
tion module selects a first spreadsheet from a plurality of
spreadsheets. In one embodiment, the system further com
prises a list of results associated with each of spreadsheets in
the plurality of spreadsheets. In another embodiment, the
system further comprises a calculation module to receive a
value for a first parameter within the list of parameters and
generate a first result based at least in part on the value and the
first spreadsheet. In another embodiment, the system further
comprises an instantiator module to bind a value of a first
parameter within the list of parameters to an instance of the
first spreadsheet. In another embodiment, the spreadsheet is a
first spreadsheet and the system further comprises a second
spreadsheet having one or more formulas referencing a result
from the first spreadsheet. In another embodiment, the system
further comprises a storage module to store a location of each
of the spreadsheets in the plurality of spreadsheets and store
the name of each parameter in the associated list of param
eters.

0019. In another aspect, the invention relates to a method
for storing information associated with a spreadsheet. The
method comprises storing a location of a reference spread
sheet and storing a list of parameters associated with the
reference spreadsheet. In one embodiment, the method fur
ther comprises storing, separate from the reference spread

US 2013/0013994 A1

sheet and after the reference spreadsheet closes, an interme
diate value used in a calculation for a reference spreadsheet
and associating the intermediate value with the reference
spreadsheet and a value of a parameter from the list used to
calculate the intermediate value. In another embodiment, the
method further comprises automatically calculating many
workbook results by enumerating lists of legal parameter
values based on type information associated with each
respective parameter. In another embodiment, the method
further comprises automatically calculating a result associ
ated with the reference spreadsheet without opening the ref
erence spreadsheet by using the stored intermediate value. In
another embodiment, the method further comprises storing a
list of outputs associated with the reference spreadsheet.
0020. In yet another embodiment, the method further
comprises storing an association of the reference spreadsheet
to another spreadsheet upon which the reference spreadsheet
depends. In another embodiment, the method further com
prises monitoring the another spreadsheet to detect a change
within an output. In another embodiment, the method further
comprises automatically performing a calculation using the
reference spreadsheet in response to detecting the change
within the output of the another spreadsheet. In another
embodiment, the method further comprises storing an asso
ciation of the reference spreadsheet to a data source upon
which a formula in the spreadsheet depends. In another
embodiment, the method further comprises monitoring the
data source to detect a change within the data source. In
another embodiment, the method further comprises automati
cally performing a calculation using the reference spread
sheet in response to detecting the change within the data
SOUC.

0021. In another embodiment, the method further com
prises storing version data associated with the reference
workbook. In another embodiment, the location comprises a
network address. In another embodiment, the method further
comprises distributing calculations among a plurality of com
puting devices based at least in part on one or more stored
associations. In another embodiment, the method further
comprises distributing calculations of the reference spread
sheet among a plurality of computing devices. In another
embodiment, the method further comprises distributing cal
culations of the reference spreadsheet among a plurality of
computing devices based at least in part on one or more
formulas in the reference spreadsheet. In another embodi
ment, the method further comprises distributing the calcula
tions of the reference spreadsheet among a plurality of com
puting devices based at least in part on one or more stored
associations in a database associated with the reference
spreadsheet.
0022. In a further aspect, the invention relates to a method
for utilizing a spreadsheet. The method comprises defining a
parameter associated with the spreadsheet and generating a
data query based at least in part on the parameter. In one
embodiment, the method further comprises generating an
output based at least in part on the results of the data query.
0023. In another aspect, the invention relates to a method
for utilizing a spreadsheet. The method comprises defining a
template within the spreadsheet and generating an output
based at least in part on the template. In one embodiment, the
method further comprises generating a data query based at
least in part on a parameter associated with the spreadsheet. In
another embodiment, the one or more cells within the tem
plate contain formulas. In another embodiment, the formulas

Jan. 10, 2013

are written in spreadsheet formula language. In another
embodiment, the method further comprises replicating one or
more cells within the template. In another embodiment, the
method further comprises preserving relative cell references.
In another embodiment, the method further comprises repli
cating formatting of the template cells.
0024. In yet another embodiment, the method further
comprises associating values from a data query with the one
or more replicated cells by using column names in formulas
within the one or more replicated cells and performing cal
culations using the associated values. In another embodi
ment, the method further comprises performing special pro
cessing on the output when the data query returns no
associated values. In another embodiment, the method further
comprises automatically sorting the output based at least in
part on the associated values of the one or more cells in the
output. In another embodiment, the method further comprises
associating a formula language name with the output. In
another embodiment, the method further comprises automati
cally updating the output when a change is detected. In
another embodiment, the change comprises a change to i)
template cell formulas, ii) template cell formatting, iii) tem
plate cell values, or iv) data query parameters.
0025. In another aspect, the invention relates to another
method for utilizing a spreadsheet. The method comprises
defining an output range within the spreadsheet, rendering the
output range and allowing a user to modify the rendered
output range. In one embodiment, the method further com
prises rendering the output range using HTML. In another
embodiment, the method further comprises allowing the user
to sort columns within the output range using a user input. In
another embodiment, the method further comprises allowing
a user to interactively expand and collapse a hierarchy using
a user input.
0026. In yet another aspect, the invention relates to an
article of manufacture comprising one or more computer
program portions embodied therein to cause a processor to
perform each of the methods above.
0027. Among other advantages, the invention described
above allows non-programmers greater flexibility, including
allowing the application of spreadsheets to certain kinds of
business problems that are not tractable with conventional
spreadsheet programs. The present inventions derive, in part,
from the observation that currently available spreadsheet sys
tems do not meet the needs of users who would like to use
spreadsheet based systems to solve these kinds of problems.
0028. The spreadsheet-based data processing systems
efficiently perform large business and financial computations
based on a network of inter-related spreadsheets. The systems
include spreadsheet modeling mechanisms that work in con
cert to allow non-programmers to model classes of problems
that are intractable using prior art spreadsheet programs. One
example of a business problem is the use of spreadsheets to
manage sales commission programs. In a typical situation,
each salesperson's commission plan may be based on several
variables, such as sales quota goals or particular commission
rates to be paid on certain sales. Each salesperson’s plan may
also vary based on their seniority or the kind of territory they
cover. In current practice, compensation specialists often
model the commission plans using spreadsheets. Ideally, each
salesperson will have a separate spreadsheet customized to
their situation. Managers will also have their own tailored
commission plans, modeled as a spreadsheet, and these will
often depend on the results of the people reporting to them.

US 2013/0013994 A1

The result is a computational model that consists of a large
web of interdependent spreadsheets, which can number in the
thousands for a large sales organization.
0029. Existing spreadsheet programs lack effective end
user automation functionality to deal with models of this
scale and complexity. These models may not be able to fit into
the memory space of the program, and so must be broken up
into multiple workbooks. Conventional programs allow for
only manual management of the dependencies between the
resulting workbooks, leading to mistakes. The complexity of
the models makes them difficult to change without introduc
ing errors in the references between workbooks. The methods
and systems described above include the concept of a param
eterized spreadsheet, which greatly facilitates the reuse of
spreadsheets as building blocks in large computations, and
automated parameter-sensitive dependency tracking, which
reduces errors caused by unintended sharing of workbooks or
the failure to load a dependent spreadsheet into memory or to
recalculate it when necessary, for example because the data in
a referenced data source has changed.
0030. Moreover, existing spreadsheet calculation algo
rithms do not work efficiently with large models that may
contain hundreds or thousands of workbooks. The methods
and systems described above allow large and complex spread
sheet models to be efficiently recalculated and maintained.
The ability to quickly perform recalculations in turn makes it
practical to perform large what-if scenarios and to deliver
on-demand calculations.

0031. The methods and systems described above also
allow these large spreadsheet calculations to be kept up to
date and to be reported upon without user intervention. The
results of the computations can be made available on demand,
even in the face of continual changes to the underlying data
and the evolution of the spreadsheets themselves. The ability
to access these spreadsheet models on demand allows self
service applications to be created for information consumers.
For example, using a self-service web site, a salesperson can
access their current commission calculations or a chief finan
cial officer can view and download an up to date projection of
the commission expenses for the current quarter.
0032. The specification frequently refers to a sales com
mission model to provide examples of the inventive tech
niques described herein. It is understood, however, that the
present invention is not limited in Scope to the provided
example of sales commission calculations. The present inven
tion is applicable to many other application domains includ
ing, but not limited to, financial services, logistics and process
modeling. In the domain of financial services, the present
invention may be applied to build, manage and calculate
models to determine portfolio valuations or to guide securi
ties or commodity trading based on spreadsheet models
developed by the user. In the logistics and process modeling
domains, the present invention may be used to apply user
developed spreadsheet models to optimize the efficiency of a
manufacturing facility or a transportation network.
0033. In some embodiments, the invention relates to sys
tems and methods for spreadsheet data processing that
applies parameter controlled spreadsheet workbooks to spe
cific data. When a workbook is applied to data sources and
parameters for the workbook are selected (if necessary), the
system and method performs the workbook calculations upon
the data sources and Subsidiary workbooks (ifany) to produce
calculated results. Such results, in one embodiment, can be
manifested in any of several different formats.

Jan. 10, 2013

0034 Each workbook may make reference to subsidiary
workbooks, which may be applied when the parent workbook
is applied. Each applied workbook or subsidiary workbook
may be controlled by Supplied parameters. The parameters
may control the selection and application of each Subsidiary
workbook. Applied workbooks may reference subsidiary
workbooks multiple times with different parameter values
and may make recursive self references with different param
eters. A family of workbooks with similar parameters may be
grouped to form a virtual workbook that uses a set of supplied
rules to select one member of the family when the virtual
workbook is applied.
0035 Workbook parameters may be typed, and the type
may limit the supplied values. Workbook and data dependen
cies are tracked in order to facilitate the maintenance of
workbooks and data. The systems or methods may provide
caching of intermediate computations across workbooks and
data sources and may distribute computations across multiple
computers. Specific sets of cached results may be constantly
maintained and made available as a multidimensional data
Source (e.g. as time series data).
0036. The details of one or more embodiments of the
invention are set forth in the accompanying drawings and the
description below. Other features, objects, and advantages of
the invention will be apparent from the description and draw
ings, and from the claims.

DESCRIPTION OF DRAWINGS

0037 FIG. 1 is a block diagram of an illustrative embodi
ment of a complex model comprising parameterized work
books in accordance with the invention;
0038 FIG. 2 is a block diagram of an illustrative embodi
ment of a virtual workbook in accordance with the invention;
0039 FIG. 3 is a block diagram of an illustrative embodi
ment of a system to generate and use parameterized work
books in accordance with the invention;
0040 FIG. 4 is a screen shot of an illustrative embodiment
of a parameterized workbook in accordance with the inven
tion; and
0041 FIG. 5 is screen shot of an illustrative embodiment
of a report generated using a virtual workbook in accordance
with the invention.
0042. Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

0043 FIG. 1 is a block diagram of an illustrative embodi
ment of a complex model 100 comprising a first parameter
ized workbook 105a, and optionally, a second parameterized
workbook 105b and an nth parameterized workbook 105m.
The parameterized workbooks 105a, 105b . . . 105m are
referred to generally as 105. The first parameterized work
book 105a includes a parameter module 110, a workbook
module 115 and a results module 120. The parameter module
110 can include a list of one or more parameters (e.g., external
inputs). The results module 120 can include a list of one or
more results (e.g., outputs). Results 120 can include, for
example, a single value retrieved from a workbook cell, an
array of values taken from a region of workbook cells, an
HTML rendering of a region (e.g. the print area) of a sheet
from a workbook and/or an image or an alternative represen
tation describing a chart. The arrow 125 represents the asso
ciation of a particular parameter 110 with a particular work

US 2013/0013994 A1

book 115. Similarly, the arrow 130 represents the association
of a particular result with a particular workbook 115. The
parameterized workbook 105 is a basic building block and as
illustrated, can call itself (represented by path 135) and/or a
second parameterized workbook 105b (represented by path
140) to model complex calculations. The modules throughout
the specification can be implemented as a software program
(e.g., a set and/or a Sub-set of processor instructions and the
like) and/or a hardware device (e.g., ASIC, FPGA, processor,
memory, storage device and the like).
0044. A creator (e.g., user, administrator, system and/or
automated process) associates the parameter module 110 and
the results module 120 with the workbook module 115. This
association can facilitate the reuse of workbook calculations
in different contexts. A system, for example as described in
FIG. 3 below, stores the lists of parameters 110 and results
120, and the types of these parameters 110 and results 120, in
a storage module 315 (FIG. 3), for example, a database. By
associating parameters 110 and results 120 with each work
book 115, a single workbook 115 can perform a potentially
unlimited number of calculations. This allows a parameter
ized workbook 105 to become a reusable computational
building block in constructing a larger model 100.
0045. The creator can also associate type information with
each workbook parameter 110 and result 120. The type infor
mation constrains the set of legal data values the system can
use for a parameter 110 when instantiating a workbook and
the set of legal data values that the system can return as an
output result 120 from a workbook 105 instantiation.
0046. The parameter 110 and result 120 values of a param
eterized workbook 105 can be scalar types, such as strings
and numbers, and/or elements of structured data types such as
records or objects. Parameter 110 and result 120 values can
also be arrays of values derived from ranges of cells, which
need not be contiguous. In one embodiment, the types asso
ciated with the parameters 110 and results 120 are described
by an object-oriented type system that can represent objects
with data fields, methods, inheritance and information hiding
capabilities.
0047 For example, a parameter can be a person type
parameter. A person type parameter can include attributes
Such as personal information, title, Supervisor, and compen
sation information. The personal information can include the
attributes First Name, Last Name, Social Security Number,
Login ID, Password, Employee No., Work phone, Home
phone and Date of hire. The compensation information can
include the attributes Base Salary and Effective Date. For ease
ofuse, the system can employ a user interface for defining the
attributes for specific employees of an organization. For
example, a user can input a value for the attribute Title using
a pull-down menu including the values, for example, Sales
Rep. District Manager, Regional Manager, Vice President
Sales, Strategic Account Manager, Director-Strategic
Accounts, CEO, and Commission Administrator. The Super
visor attribute can be a pointer to existing instances of person
type parameters.
0048. The type system of the parameterized workbook
105 also captures data source mapping information about
how object and record types relate to data sources. Object or
record types can optionally be mapped to the database
schema of a data source, which can be either an internal data
Source (e.g., part of the system embodying the present inven
tion) or an external data source. The data Source mapping
information is Sufficient to allow the system to perform que

Jan. 10, 2013

ries against the data source and to enumerate and access all
instances of the object or record type available from the data
Source. The type system can combine the data source map
ping information with the object or record type information to
express arbitrary filters or restrictions on the set of object or
record types. The type system provides the ability to express
data dependent constraints on workbook parameters 110 and
return values 120. In one embodiment, the system includes
built-in primitives for describing constraints based on roles or
hierarchies (e.g. Person where Person HasRole SalesMan
ager and Person.Territory IsIn Europe).
0049. The type information associated with each param
eterized workbook 105 can be created from a combination of
user input and from a programmatic examination of the inter
nal structure of the computations. The system can employ
type inference methods for determining type information
based on an a analysis of the static structure of a computation
(such as the static structure of a computer program) as is
known in the art.
0050. The system uses the type information to constrain
the legal instantiations of a parameterized workbook 105. For
example, a particular workbook 105.a might have two param
eters 110. The first parameter 110 is typed as the person
object, further constrained to have the job title of telesales
representative. The second parameter 110 is typed as a time
period object, further constrained to be a calendar month. The
workbook 105a might define several outputs 120. One output
120 might be a bar chart indicating sales performance of the
sales person for a particular month (the output type might be
specified as a GIF image). Another output might be a list of
daily sales performance metrics (such as the number of calls
or average call duration or product revenue generated). The
type of this second output might be an array of numeric values
(one for each day of the month).
0051. The system can use parameter type information to
avoid a common source of user errors when creating, modi
fying or accessing computations. For example, based on the
available type information for the workbook described above,
the system can automatically generate a user interface to
prompt the user for a telesales representative (chosen from a
list of all such people known to the system) and a month
(based on the months for which the system has data). The
system can also use spreadsheet parameter information 110
for other purposes, including for example, data dependency
tracking and pre-computation and caching of result sets 120,
as described below.

0052. In one embodiment, the system receives an XML
file to create a parameterized workbook 105. For example, the
XML file can be defined as follows:

<NVWorkbook name="Rep ProductLineCommissionCalculations'
file="tworkbooks/Rep ProductLineCommissionCalculations.xls'>

<paramdeftype="Person" name="person">
<paramdeftype="Year" name="period"/>
<attr name="CreatedBy" value="Chris Thompson">
<attr name="Description" value="Workbook calculates

earned commissions for all 12 months of a Year
for two product lines." />

<output name="YTDCommission" cell="Commission YTD">
<NWWorkbook

In this example, the file names the parameterized workbook
105 “Rep ProductLineConmmissionCalculations.” In addi
tion to the name, the parameterized workbook 105 has two

US 2013/0013994 A1

additional attributes, “created by and “description.” In one
embodiment, the system can provide a user interface that lists
the respective values for these three attributes for all of the
parameterized workbooks 105 in the system. The file also
defines the workbook module 115 used for this parameterized
workbook 105. This workbook is “?workbooks/Rep Pro
ductLineCommissionCalculations.xls.”
0053. This example file names the parameters 110 associ
ated with the parameterized workbook 105 Rep ProductLi
neCommissionCaloulations “person' and “period’ and
defines them as “Person' and “Year types, respectively. Per
son and Year have definitions in a data dictionary that
describes the object model of the application. In this example,
the association 125 of the parameter 110 with the workbook
115 is made in the workbook itself in addition to being
described in the file. In other words, the spreadsheet Rep
ProductLineCommissionCalculations.xls contains formulas
that use the parameters person and period in them. When the
system instantiates the parameterized workbook 105, the sys
tem binds specific values for these parameters to the instan
tiation of the Rep ProductIlineCommissionCalculations.xls
spreadsheet.
0054) This example file names the output 120 “YTDCom
mission.” Other parameterized workbooks 105 can use this
name in their formulas and the system can find this value and
pass this value to those other workbooks 105. As described
below, the system can store this value so that the other work
books can receive this value without having to re-instantiate
the Rep ProductLineConunissionCalculations workbook
105. In this example, the file defines the association 135
between the output 120 and the workbook module 115. The
file associates this output 120 with the cell named “Commis
sion YTD.
0055 An output such as “YTDCommission” also defines
a family of related output values based on all possible com
binations of input parameters to the parameterized workbook
105. Sets or subsets of these families of output values can be
used as multi-dimensional data cubes for analyzing trends
and data relationships as is known in the art. An example of a
subset of values derived from this example workbook is the
list of YTDCommission values for all sales managers in
Europe for the year 2000.
0056. In one embodiment, the creator associates the
parameter module 110 and the results module 120 with a
workbook module 115 that includes a workbook (which can
contain multiple worksheets). A workbook is used because
the workbook is a convenient unit of spreadsheet computa
tion, easily identifiable and manageable by the user. The
system, however, does not depend on certain properties of
workbooks manifested in current spreadsheet programs. Such
as the workbook being the unit of file storage and the unit of
transfer when moving a spreadsheet computation into main
memory for processing. In other embodiments, the workbook
module 115 can include any logical unit of spreadsheet com
putation, comprising one or more spreadsheets and associ
ated formulas, as the unit of parameterization. Therefore,
although workbook is used for clarity, the term workbook can
be substituted with this logical unit of spreadsheet computa
tion throughout the specification.
0057 With parameterized workbooks 105, a user does not
have to vary cell values in order to perform different calcula
tions, including what-if scenarios. Using parameterized
workbooks 105, a system can perform these variable calcu
lations non-interactively (e.g., without intervention by an

Jan. 10, 2013

user). As described in more detail below, a system can per
form a varying parameterized workbook 105 calculation on a
client computer or on one or more server computers. An end
user, a formula appearing in a workbook cell, and/or a pro
gram using an API can initiate a parameterized workbook 105
calculation either interactively or non-interactively. Other
computer systems communicating over a network can also
initiate a parameterized workbook 105 calculation. These
other systems may use established communication protocols
such as, for example, CORBA (Common Object Request
Broker, from OMG (Object Management Group)). RMI (Java
Remote Method Invocation) or SOAP (Simple Object Access
Protocol, from Microsoft). A parameterized workbook 105
calculation may be initiated in response to a user request from
a web browser or other user or another user interface device
include cell phones, personal digital assistants, etc.
0058. In one embodiment, the creator of the parameterized
spreadsheet 105 limits the variable calculations to a subset.
Parameterized spreadsheet 105 calculations may limit the
variations to a list of specific parameters 110 and to a poten
tially limited set of possible values for each parameter 110.
0059. The output 120 of a parameterized spreadsheet 105
calculation can take many forms. The Software performing
the parameterized spreadsheet 105 calculation can format a
worksheet or a region on a worksheet for display on some
output device. The display format can vary depending on the
output device, and can include standardized output formats
Such as HTML (HypertextMarkup Language, the main docu
ment format recognized by web browsers), WML (Wireless
Markup Language, similar to HTML but targeted at wireless
devices such as cell phones), or XML (extensible Markup
Language, used for business to business (or system to system)
communication), in addition to device specific formats. Alter
natively, the output 120 of a parameterized spreadsheet 105
calculation can be a set of data values, Suitable for use in
further data processing. Various output formats can be used
for representing these sets of data values 120, including docu
ment formats such as HTML or XML or formats based on
data communication protocols such as CORBA or RMI.
Parameterized spreadsheets 105 allow greater control over
the course of the computation, including the ability to select
different sets of external data upon which to operate.
0060 Parameterized spreadsheets 105 allow computa
tions to be performed and allow those computations to be
influenced by external data sources through parameters, data
ranges, and other mechanisms as described below. They pro
vide increased flexibility to the user, allowing computations
to use varying inputs and allowing the output desired to be
specified by the user without having to change the underlying
spreadsheet 115. Introducing parameterized spreadsheets
105 as a formal modeling mechanism provides an interface
Suitable for non-programmers to create reusable spreadsheet
based computational building blocks and it provides pro
grammers with increased flexibility and power.
0061. When a parameterized workbook 105 calculation is
performed in the context of a specific set of parameters 110.
this can be referred to as a workbook instantiation. As illus
trated with path 135, a model 100 can simultaneously instan
tiate a parameterized workbook 105a multiple times with
different values for the parameters 110. This allows a param
eterized workbook 105 calculation to depend on one or more
calculations from Subsidiary parameterized workbooks (e.g.,
105a, 105b... 105m). Any subset of the subsidiary instantia

US 2013/0013994 A1

tions, and even the referencing workbook instantiation itself.
can be instantiations of the same parameterized workbook
105.

0062. The combination of parameterized spreadsheets
105 and simultaneous instantiation allow many business
problems to be modeled naturally by the end user. For
example, ifa sales manager is paid based on the performance
of the salespeople who report to him, and if each salesper
son’s performance is determined by a parameterized spread
sheet 105 calculation, then the manager's performance can be
modeled 100 by a parameterized spreadsheet 105a that
depends upon values calculated by Subsidiary workbook
instantiations (e.g., 105b... 105m). The number of dependent
instantiations and the parameters 110 used in each instantia
tion are controlled by the formulas in the referencing work
book 115, perhaps for example, based on a database repre
sentation of the organizational structure of the company. As
described in more detail below, FIG. 4 illustrates an exem
plary embodiment of a screenshot of a parameterized work
book 105.

0063. In addition to the parameterized workbook 105,
FIG. 2 illustrates an exemplary embodiment 200 of another
building block for use in complex modeling, the virtual work
book 205. The virtual workbook 205 includes a parameter
module 110', a results module 120', a virtual workbook mod
ule 210 and a selection module 215. In one embodiment, the
selection module 215 can be included in and/or as part of the
virtual workbook module 210. An instantiation of the virtual
workbook 205 selects a concrete workbook (e.g., 105a' . . .
105n') to instantiate based on the values of the supplied
parameters 110' and a set of rules 215 associated with the
virtual workbook 205. The virtual workbook 205 mecha
nisms are similar to programming language polymorphism
mechanisms, such as virtual methods or function overload
ing, that are a part of programming languages Such as Java or
C++.

0064. As described above, a parameterized workbook
105a (FIG. 1) creates a set of outputs 120 (FIG. 1) based on a
set of input parameters 110 (FIG. 1). In other words, the
parameterized workbook 105a is a function mapping a set of
inputs 110 to a set of outputs 120. The outputs 120 may be
visual. Such as a chart or a report rendered in some format
(e.g. GIF, HTML) intended for display or printing. The out
puts 120 may also be data values represented in some format
(e.g. XML) intended for further processing.
0065. A virtual (polymorphic) workbook 205 maps a set
of inputs 110' to a set of outputs 120' by selecting a concrete
parameterized workbook (e.g., 105a' . . . 105m', generally
105') from among a set 220 of compatible workbooks and
then instantiating the concrete workbook 105'. The selection
module 215 selects a concrete workbook 105' based on the
value of the parameters 110' the virtual workbook 205
receives and a set of rules 215 associated with the virtual
workbook 205. As an example, a virtual workbook 205 can
represent monthly commission payments to sales employees.
Different kinds of employees might have different sales plans
depending on their job title, seniority, territory, and the like,
and the parameterized workbook 105 for different employees
might be different for different months, for example, because
they were promoted. The selection module 215 selects a
concrete parameterized workbook 105" based on received
values of parameters 110' corresponding to job title, seniority,
territory, month, and the like. The virtual workbook 205 pro
vides a uniform mechanism of determining any employee's

Jan. 10, 2013

commission payment for any particular month, while the
underlying set of concrete parameterized workbooks 220
allow for the differences in the actual calculations for the
different employees or different months.
0066. In one embodiment, virtual workbooks 205 (as well
as concrete workbooks 105) are associated with uniform
resource locators (URLs), which are part of the naming
scheme used in the World WideWeb. The particular naming
scheme used to refer to workbooks 105, 205 does not matter,
however, since the virtual workbooks 205 themselves provide
the mechanism for mapping a generic request to a specific
workbook 105" that implements that request for a given set of
parameters 110'.
0067. A model can employ a virtual workbook 205 in any
context where a parameterized workbook 105 can be used.
For example, a virtual workbook 205 may be referenced by
formulas within other workbooks (this reference may be
based on the URL associated with the workbook or it may be
based on a different naming scheme not based on URLs). As
a result, a parameterized workbook 105 may have a depen
dency on a virtual workbook 205 that is in turn implemented
by one or more concrete workbooks 105", perhaps including
the referencing workbook 105 itself. This mechanism allows
the formulas in the referencing workbook 105 to refer trans
parently to one of several concrete workbooks 105 that the
virtual workbook 205 selects based on the value of the param
eters 110' the virtual workbook 205 receives. A user or the
system can add and/or change over time the set of rules 215
for selecting a concrete workbook 105" and the set 220 of
concrete workbooks. These changes are transparent to a ref
erencing (calling) workbook and so the user or system does
not need to change the formulas within the referencing work
book. This transparency makes a virtual workbook 205 a
powerful building block to allow end users to create and
manage large, flexible spreadsheet-based computations.
0068. Similar to the parameterized workbook 105, in one
embodiment, the system receives an XML file to create a
virtual workbook 205. For example, the XML file can be
defined as follows:

<NVQuantity name="CommissionEarnedYTD"
type="By DecisionTree">

<paramdeftype="Person" name="person">
<paramdeftype="Year" name="period"/>
<paramdeftype="MonthIndex" name="monthindex">
<NVDecisionTree
<NVRule>
<NVRulet parameter name="person">

<NVCondition type="attr' attr="Position"
value="Sales Rep"/>

<NVCondition type="attr' attr="Position"
value="District Manager">

<NVCondition type="attr' attr="Position"
value="Regional Manager" >

<ANVRet
<NVQuantity Impl type="ByCellName" valueType="Real">
<NVCell name="Commission YTD"
workbook="Rep ProductLineCommissionCalculations">

</NVQuantity Implic
<ANVRec
<NVRule>
<NVRulet parameter name="person">

<NVCondition type="attr' attr="Position"
value="Strategic Account Manager">

<ANVRet
<NVQuantity Impl type="ByCellName" valueType="Real">
<NVCell name="Commission YTD"

US 2013/0013994 A1

-continued

workbook="SAM ProductLineCommissionCalculations">
</NVQuantity Imple

<ANVRec
</NVDecisionTree

</NVQuantity>

0069. The file in this example names this virtual workbook
205 “CommissionEarnedYTD and defines the type of the
virtual workbook 205 as “ByDecisionTree.” As defined in this
example, the selection module 215 uses the two rules of the
decision tree to select the appropriate concrete parameterized
workbook 105'. Both rules examine the parameter 110' named
“person' and the value of its attribute “position.” According
to the first rule, if the value of the position attribute is sales
rep, district manager or regional manager, the selection mod
ule 215 selects the parameterized workbook 105' Rep Pro
ductLineCommissionCalculations. The associated output
120' returned after this selection is the value from the cell in
the selected workbook named Commission YTD. According
to the second rule, if the value of the position attribute is
strategic account manager, the selection module 215 selects
the parameterized workbook 105" SAM ProduetLineCom
missionCalculations. The associated output 120" returned
after this selection is the value from the cell in the selected
workbook named Commission YTD. Although the exem
plary embodiment above uses two rules and a decision tree, it
is understood that the system can employ other selection rules
and mechanisms to select a concrete workbook 105" from the
Set 220.

0070. In broad overview, FIG.3 illustrates an embodiment
of a system 300 to generate and use parameterized 105 and
virtual 205 workbooks in accordance with the invention. The
system 300 includes an application server node 305, a calcu
lation module 310, a storage module 315 and a client node
320. The system 300 can optionally include models 325 and
miscellaneous Web services 330.

0071. The application server node 305, the calculation
module 310 and the storage module 315 communicate with
each other via a network340a using communication channels
345a,345b, and 3450, respectively. The client node 320 com
municates with the application server node 305 via a network
340b using communication channels 335d and 335e, respec
tively. The networks 34.0a and 340b can also be part of the
same network340 as shown with optional connection 340c. If
optional connection 340c is included, then one of the appli
cation server node's 305 communication channels 345a or
345e can be eliminated. If the models 325 and the miscella
neous Web services 330 are included in the system 300, they
communicate with the network 340b using communication
channels 335f and 335g, respectively. The networks 340a,
340b and 340c are generally referred to as 340. The commu
nication channels 345a, 345b, 345c., 345d., 345e, 345f and
345g are generally referred to as 345.
0072 For example, the networks 340 and the communi
cation channels 345 can include and/or be part of an internal
bus, a local-area network (LAN). Such as a company Intranet,
a wide area network (WAN) such as the Internet or the World
WideWeb and/or the like. The networks 340 and the commu

Jan. 10, 2013

nication channels 345 represent, for example, standard tele
phone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25),
broadband connections (ISDN. Frame Relay, ATM), wireless
connections (cellular, WLAN, WWAN, 802.11) and/or the
like. The connections can be established and data can be
exchanged using a variety of communication protocols and
languages (e.g., ITTP(S), TCP/IP, SSL, PPTP, HTML, XML,
SOAP, IPX, SPX, NetBIOS, Ethernet, RS232, direct asyn
chronous connections, VPN protocols, a proprietary protocol,
a proprietary language and/or the like). In one embodiment,
the servers 305, 310 and 315 and the client 320 encrypt all
communication when communicating with each other.

0073. Each of the servers and modules 305, 310 and 315
can be any computing device capable of providing the Ser
vices requested by the other servers and modules or by the
client node 320. Particularly, this includes generating and
processing parameterized workbooks as described herein.
For clarity, FIG. 3 depicts server node 305 as an entity sepa
rate and distinct from modules 310 and 315, and each node
305, 310 and 315 can independently be in communication
with the network 340a, representing that the nodes 305,310
and 315 are logically independent. It is to be understood,
however, that the nodes 305,310 and 315 can also be imple
mented individually or in any combination, for example, on a
single server, distributed on portions of several (i.e., more
than two) servers, and/or as part of a single server node or
server farm in communication with the network 340b
through, for example, a single Web server (not shown).
0074 The client node 315 can be any computing device
(e.g., a personal computer, set top box, wireless mobile
phone, handheld device, personal digital assistant, kiosk, etc)
used to provide a user interface to access the application
server 305. The client node 320 can include a browser module
350.

0075. A user can use the system 300, interalia, to generate
and process parameterized 105 and virtual 205 workbooks.
Two objectives of the present invention are to simplify the
creation and maintenance of large spreadsheet-based compu
tation models and to allow those models to be computed
without manual intervention. The system 300 facilitates these
objectives by storing tracking information about workbooks,
including their parameters 110, parameter types and depen
dencies in the storage module 315. In one embodiment, the
system 300 stores this information as a workbook informa
tion database. The workbook information database tracks and
controls the names and storage locations of all parameterized
105 and virtual 205 workbooks used in the system 300. The
database records information about the parameters 110 and
parameter types and outputs 120 and output types of each
workbook (e.g., 105, 205) and the dependencies between
workbooks that exist when one workbook refers to another
workbook using a formula. Each workbook instantiation may
depend on one or more instantiations of the same workbook
or of other workbooks. The dependency information allows
the system 300 to perform workbook computations without
manual intervention, for example in a application server 305
environment, because the system 300 can determine all
dependent workbooks, open them, instantiate them and
resolve all linkages between the workbooks appropriately.
Table 1 represents an embodiment of parameter and where
used data stored in the workbook information database.

US 2013/0013994 A1

TABLE 1.

Workbook:

Name: DM Sales Rank
Location: ?workbooks/DM Top Performers.xls

Associated Parameters:

Name: Type: Restriction:

Person Class Person Ole
Period Class Period type = Year
MonthIndex Enumeration1... 12 Ole

Associated Outputs:

Name: Type: Cell:

TopRank Number MaximumRank

Dependencies:

Dependency Type: Description:

Workbook Output CommissionCalculations, outputYTDCommission
Data Query PeopleByManager

As shown in Table 1, the database stores the name, the type
and any restrictions of the parameters 110 associated with the
represented workbook. The names of parameters associated
with the represented workbook are person, period and mon
thindex. Each parameter has a defined type. Class person and
class period are class types that define the attributes associ
ated with the respective parameter. Enumeration is an index
type that associates an index with a corresponding calendar
month. The restrictions data notes any restrictions on the
parameters associated with this workbook and in this
example, there is a restriction on the value of the parameter
period to be stated as a year.
0076. In the Table 1 example, the database also stores the
name, the type and reference information on all defined out
puts of the represented workbook. The names of the defined
output shown is TopRank, which is mapped to a cell named
Maximum Rank within the workbook.

0077. In the Table 1 example, the database also stored data
on dependencies of the workbook on other workbooks or
external data sources. There are two dependencies shown.
One dependency shows that the represented workbook cal
culation depends on the output of a calculation from another
workbook, the YTDCommissions output of the Commission
Calculations workbook. The second dependency indicates
that the represented workbook uses a data range that depends
on a named data query PeopleByManager.
0078. In one embodiment, the workbook information
database also tracks multiple versions of workbooks (e.g.,
105, 205) as they are created and modified over time. This
version information provides a historical record of changes,
allows changes to be rolled back, and can provide for stability
of prior computations (changes to a workbook do not neces
sarily have to affect existing computations, which can con
tinue to use the previous version of the workbook at the user's
discretion). The system 300 can also use version tracking of
workbooks to limit the visibility of certain workbook versions
to particular people. For example, a new workbook version
might be visible only to a set of “approvers' as part of a formal
approval process. Once the new version has been approved, it
is then made visible globally and affects the computations

Jan. 10, 2013

seen by everyone. Table 2 represents an embodiment of ver
sion data stored in the workbook information database.

TABLE 2

Versions:

Branch: Version: State: Elective: Labels:

Main 1 Published Anytime None
Main 2 Unpublished Aug. 01, 2002 None

The Table 2 example stores the version data for the repre
sented workbook, including the branch, the version number
the state of the version, the effective date of the version and
any associated labels of the version. The branch values rep
resent named branches within the version graph of the work
book. The version number is an ID for each version relative to
its branch. Thus, a particular workbook version is uniquely
identified by a combination of its branch name and version
number. The state values represent whether the cached data
associated with that workbook version has been published
(e.g., available to users to view and/or edit). The effective
value represents the time frame in which the version is valid.
The labels values represent user-defined names that can be
assigned to individual workbook versions.
0079. The workbook information database also tracks
information about the data sources used by each workbook
(e.g., 105, 205). This information is used to detect when
workbook results 120 are out of date and to efficiently recal
culate the workbooks. For every reference in a workbook to
external data, the system 300 records information in the
workbook information database that represents a predicate
describing the set of external data upon which the workbook
computation depends. This predicate may be based, in part,
on the values of workbook parameters 110. In other words,
the results of different instantiations of the workbook may
depend upon different sets of external data.
0080. The system 300 may monitor each data source to
detect changes to the data source, using the information in the
workbook information database to determine which work
book instantiations are affected by any change. Several dif
ferent means may be used to monitor the data source. Data
Sources can include both internal and external data sources.
An internal data source is a database (or other data storage
mechanism) that is accessed only through the system 300. All
changes to data in an internal data source are made through
interfaces provided by the system 300 and these update inter
faces can perform the necessary monitoring of the data
Source. An external data source is one that is not under the
exclusive control of the system 300 and can be updated
through other interfaces. For external data Sources, the system
300 can use known techniques such as database triggers,
database polling and/or data timestamps to provide similar
levels of monitoring functionality. In the case of external data
Sources, the application server 105 is the active agent respon
sible for monitoring the external data source. The system 300
can use mechanisms used to monitor external data sources to
monitor internal data sources as well.
I0081. By analyzing the computations and data dependen
cies within each workbook (e.g., 105, 205), the system 300
can in many cases optimize the data source monitoring
required. For example, a particular workbook (e.g., 105,205)
may have a parameter 110 that is a time period (perhaps a
calendar month). Analysis of the workbook computation may

US 2013/0013994 A1

reveal that an instantiation of the workbook only depends on
data for the month specified by the parameter. The data source
monitoring Subsystem can then optimize by remembering
which months have had data updates and only recalculating
workbook instantiations that depend on those months. If data
updates to prior months are rare, this avoids many unneces
sary calculations when referring to historical data.
0082 An alternative or additional method the system 300
can use tracks data source dependencies and dependencies of
one workbook instantiation on other workbook instantiations
by observing and recording the data requests made by the
referencing workbook and the results of these data requests.
The system 300 compares this recorded data against newly
computed data in the future to determine whether a workbook
instantiation needs to be recalculated.
I0083. A third method the system 300 can use allows the
user to Supply Surrogate tests for determining when a work
book instantiation needs to be recalculated. For example, the
user may specify that instantiations of particular workbooks
for prior periods should only be recalculated when specifi
cally requested by the user and should be treated as up to date
in all other situations.
0084. In the system 300, a server processing component
(not shown) or an auxiliary agent processing component (not
shown) can perform data source monitoring. In one embodi
ment, these components are always active (or are started on
demand by other components. Such as a database server,
which is always active). This allows the system 300 to moni
tor data source changes without the need for human interven
tion, unlike existing spreadsheet applications.
0085. The system 300 supports distributing the computa
tional load of evaluating a spreadsheet model (e.g., 100, FIG.
1) across multiple servers (i.e., calculation module 110 rep
resents workbook calculations on multiple servers). By uti
lizing the workbook dependencies and data source dependen
cies stored in the storage module 115, as well as other
workbook database information, the system 300 can schedule
the execution of different workbook instantiations on differ
ent server computers.
I0086 Exploiting this parallelism improves the speed with
which large models can be calculated, either for on-demand
calculations or for automatic pre-calculations. Without the
ability to perform true distributed processing, computations
involving large networks of interconnected spreadsheets can
be impractical. Complex models using parameterized 105
and virtual 205 workbooks typically exhibit a large amount of
potential parallelism.
0087 Distributed processing of workbook computations
depends on the ability of the system 300 to separate the
calculation of a referenced workbook from the use of a result
from the referenced workbook by the referencing workbook.
In one embodiment, the system 300 accomplishes this by
utilizing special formula primitives to allow one workbook to
refer to a result of another workbook, although other mecha
nisms are possible.
0088. To perform the distributed workbook calculation
component, the system 300 can utilize dependency informa
tion recorded in the database for efficiency, but does not need
to. The system 300 can also schedule distributed executions
of workbook computations dynamically as the computation
proceeds. For example, if one workbook (e.g., 105, 205)
references outputs 120 from a number of subsidiary work
books (e.g., 105b... 105m), the computation of the subsidiary
workbooks can proceed in parallel as long as the parameter

Jan. 10, 2013

110 values for one instantiation do not depend on the output
120 of a different subsidiary workbook instantiation.
I0089. In addition to distributed computing, the system also
utilizes caching algorithms and a database of cached compu
tation results to optimize the performance of evaluating large
computational models, especially models created as a net
work of interrelated workbooks. The system 300 stores
results 120 and/or other intermediate calculations in the stor
age module 115 so that these values are not only available
after the workbook file has been loaded into the memory of
the spreadsheet program and opened. By caching the results
in, for example a database, the system 300 can provide faster
access and improve the performance of multi-workbook com
putations. The system 300 may cache values for many differ
ent instantiations of the same workbook with different param
eter values. The system 300 can also distinguish result values
of workbooks that are the values of intermediate computa
tions from subsidiary workbooks performed in the process of
instantiating some other workbook and may also cache these
result values in the database. These result values or aggrega
tions of these result values, which may come from many
different workbooks and workbook instantiations, can then
be queried and manipulated using standard database tools.
These result values, whether cached or not, can also be
accessed through application programming interfaces pro
vided by the system 300, including network-based interfaces
Such as web services.
0090 The system can perform workbook calculations
either on demand (e.g. when a particular result is requested by
an end user through a web browser or some other user inter
face) or automatically by pre-calculating and caching the
results of the pre-calculations, using for example a process on
the server 305, before they are requested. Automatic pre
calculation improves the interactive performance of the sys
tem 300 when users subsequently request these computa
tions. The system 300 can perform these automatic pre
calculations at times when the servers 305,310, 315 would
otherwise be idle.

0091. The system 300 uses information about workbook
parameter types and workbook dependencies to determine
the set of computations to pre-calculate. Parameter type infor
mation determines the set of allowable values for each param
eter, and thus the set of all possible instantiations that may be
requested for a particular workbook. The set of allowable
values for a parameter may depend not only on the parameter
type, but also on the state of some data source. So, for
example, if a new user is added, then some workbook param
eters may now have additional legal values. The data source
monitoring of the system 300 detects this change to the data
Source and may pre-calculate and cache new results for the
newly possible instantiations of these workbooks.
0092. The system can perform automatic pre-calculation
and caching for intermediate results (e.g. the output of one
workbook instantiation, which is used by another workbook
instantiation), for results that may be displayed for the user,
and/or for a set of aggregated result values that are cached so
that they can be efficiently queried. Aggregated result values
might include time series or multi-dimensional data, Such as
daily gross profit broken down by region and product line.
(0093. The system 300 can use several different factors to
decide which values should be precalculated and cached. One
factor, for example, is information available within the sys
tem300 about dependencies between workbooks and the size
of individual computations. As described above, this infor

US 2013/0013994 A1

mation can be stored in the storage module 315, in for
example a database. The system 300 uses this information to
estimate the potential cost savings for pre-calculating particu
lar computations. Another factor, for example, is historical
access patterns and frequency of data accesses (e.g., includ
ing web page hits), which provides predictive information
about the demand for particular data values or workbook
instantiations in the future. A third factor, for example, is user
specified instructions about which workbook instantiations to
pre-calculate and which data values (including aggregated
result values) to cache.
0094 FIG. 4 illustrates an embodiment of a screen shot
400 of a specific example of parameterized workbook 105
(FIG. 1) that the system 300 (FIG. 3) can generate and process
in accordance with the invention. The screenshot 400
includes a first portion 405 indicating the name of the work
book containing the associated spreadsheet formulas and a
second portion 415 indicating an exemplary formula used for
producing descriptive textbased on the workbook parameters
110 and a third portion 420 showing the resulting descriptive
text displayed in a cell. The screenshot 400 also includes a
fourth portion 425 illustrating tabular data calculated using a
data range. The table 425 includes a prototype range 430 and
five columns 435a, 435b, 435c, 435d and 435f. The screen
shot 400 also includes a fifth portion 450 illustrating results
120 in a graphical format.
0095. In this example, the name of the parameterized
workbook 105 represented by this sereenshot 400 is
DM Sales Rank, representing a ranking of all people report
ing to a particular district manager who is identified by a
person parameter of the workbook. To generate this param
eterized workbook 105, the system 300 instantiates work
book module 115 named DM Top Performers.xls, as indi
cated by the first portion 405.
0096. The equation in the second portion 415 uses the
parameters 110 "person' and “period’ as part of the formula.
When the system 300 instantiates the workbook, the system
300 binds the value of the parameters person and period sent
with the call to generate that instance. The result of the for
mula is a descriptive text string based on the workbook
parameter values, shown in a cell in the third portion 420.
0097. In this example, the system 300 generates the table
425 using a data range. A data range, as used herein, is a
spreadsheet extension that associates a data query with a
variable sized set of workbook cells. The features of the data
range of the system 300 provide facilities for performing
automated, data-driven spreadsheet calculations based on
variable input data.
0098. A data range of the system 300 associates a param
eterized data query with a range of workbook cells. Each data
query parameter is identified by name and/or position. Each
query parameter has a type that constrains the allowable val
ues for the parameter. Queries are expressed in a textual
Syntax that a user and/or administrator creates. A data range
can also refer by name to a pre-defined query: A data range
defines a set of query parameter value expressions using the
spreadsheet formula language. There is one expression for
each required query parameter in the query. The system 300
uses the results of these expressions as the values of the query
parameters when the system 300 evaluates the data range
query.
0099. In general overview, a data range can include a pro
totype range, a replication direction, an output range, an
output range name, a sorting specification and a row insertion

Jan. 10, 2013

specification. The prototype range specifies a set of “tem
plate” cells that the system 300 replicates once for each set of
results (or row) the query returns. The prototype range is
usually one cell high (or alternatively one cell wide), but it can
also be rectangular. The replication direction indicates
whether the cells from the prototype range are replicated
downwards or to the right. The output range is the set of cells
that are populated after the system 300 evaluates the data
range by replicating the formulas from the prototype range
once for each set of results (orrow) from the data range query.
The output range is of variable size, depending on the query
results, which in turn depend on the values of the query
parameters, which in turn usually depend, directly or indi
rectly, on the parameters to the workbook containing the data
range. The creator of a data range does not provide formulas
for cells in the output range, the formulas for these cells and
the resulting cell values are computed by the process of rep
licating the formulas from the prototype range. When the
prototype range is replicated, formatting information is rep
licated as well as cell formulas. Therefore, the prototype
range controls the visual presentation of the data range as well
as the calculated values.

0100. The system 300 binds the output range name to the
output range of the data range after each time the data range
is modified or re-evaluated. This mechanism facilitates writ
ing formulas that extract selected data from the data range
without depending on the size of the data range, because
formulas can refer to the range through this name rather than
referencing a fixed set of cells that can change over time. The
output range name is optional. The sorting specification lists
one or more columns (or rows) of the data range and for each
column whether the column should be sorted in ascending or
descending order. The sorting takes place after the system300
evaluates the formulas for each cell in the output range and is
based on the result shown in each sorted cell of the output
range. This post-evaluation sorting is independent of, and in
addition to, any pre-evaluation sorting performed by the
query associated with the data range. The sorting specifica
tion is optional. The row insertion specification controls the
behavior when the output range grows and shrinks. The row
insertion specification determines whether cells are either (a)
inserted and deleted as the range grows and shrinks or (b)
overwritten and cleared as the range grows and shrinks. In
addition, in case (a), the row insertion specification indicates
whether the entire set of rows or columns outside of the data
range is replicated when the data range is evaluated or just the
cells within the data range itself.
0101. In other embodiments, the data range can include
other aspects. These other aspects can include options for
handling special cases, such as when the query returns Zero
rows or one row. For example, when a query returns Zero
rows, the prototype range can be hidden (so that it occupies no
space in rendered output) or the prototype range can display
as blank fields independent of the values produced by the
formulas in the prototype range. Other aspects can include
options for formatting the data range as a whole. Such as
borders to apply to, the entire data range or striping effects
created by alternating the background colors on each row of
the output range as shown in the table 425 in FIG. 4 Other
aspects can also include options for special rendering of the
data range in particular output formats. For example, the data
range might render in HTML in a manner that allows the user

US 2013/0013994 A1

to sort or pivot the data range or otherwise interact with and/or
change the data range or how it is displayed in a web browser
350.

0102. In general overview, to evaluate a data range, the
system 300 evaluates each parameter value expression for the
data range query. The system 300 then evaluates the query
itself. The query expression may depend on the parameter
value expressions, which may in turn depend on other cells in
the workbook and (directly or indirectly) on the workbook
parameter values. The query evaluation returns a set of rows,
where each row contains multiple values. Each value in a row
is identified by a name (the same names are used for the
corresponding values in each row). The values may have a
variety of data types, including, for example, numbers,
strings, dates and references to complex objects.
0103 For each row the query returns, the system 300
replicates the prototype range, either downward or to the
right, depending on the replication direction. To replicate a
cell, the system 300 evaluates the formula from the prototype
cell in the context of the new cell, with the same behavior as
if the user had copied the cell. In addition, formulas within a
data range can refer to the named values of the current row by
using the names as defined workbook names for the duration
of the evaluation of the formula. When replicating a cell in a
data range, the system 300 also replicates the formatting
associated with the cell.

0104 Referring back to the FIG. 4 example, the data range
for the table 425 is associated with a named query, for
example, a PeopleByManager query, which is a predefined
query taking as parameters a person and a time period. The
parameter expressions for this data range (not shown) simply
pass the corresponding workbook parameters as the param
eters values for the query. This query returns a set of rows with
two values in each row, an “EMPLOYEE value and a “POSI
TION’ value. The “EMPLOYEE value is a unique identifier
for a complex person object reporting to this manager, which
is Abraham Lincoln as indicated in portion 420. The “POSI
TION’ value is a string indicating the person's position
within the organization (e.g. "Sales Rep'). The prototype
range 430 consists of cells A19 to F19, which are formatted to
be green in this example. Cell A19 contains the
formula=PersonName(EMPLOYEE). This formula uses a
system accessor function (PersonName) to return the full
name of the employee object in each row. The resulting names
fill column 435a within the data range. Cell B19 contains the
formula=NVQuantity("Quota”, EMPLOYEE,Year(period)).
This formula uses a system spreadsheet extension (NVQuan
tity) to return a calculated value (i.e., the current employee's
quota) for the year containing the period parameter to the
workbook itself. In this case, the system 300 retrieves the
Quota quantity by retrieving a value from a database It is
noteworthy that this formula refers to both a workbook
parameter (i.e., period) and a named value in the row (i.e.,
EMPLOYEE). The system 300 displays the corresponding
value for each selected employee within the data range in
column 435b. Cell E19 contains the formula-NVQuantity
(“CommissionEarnedYTD, EMPLOYEE, period). This for
mula references a value calculated, in this case, as the output
of another parameterized workbook 105. The system 300
displays the computed value for each selected person within
the data range in column 425e. The formula in cell F19
contains the expression=E19/C19. This expression calculates
the ratio between the person's year to date commission and
their total sales. This formula uses relative references to per

Jan. 10, 2013

form this calculation. As the system replicates this formula in
the output range, the system preserves the relative references
so that the system 300 calculates the ratio correctly in each
OW

0105. It is understood that a creator of a workbook can
reference the system formula language extensions (e.g., Per
sonName and NVQuantity) in any cell in a parameterized 105
or virtual 205 workbook, not only in cells within a data range.
The process of evaluating a data range or the process of
evaluating a formula containing a system formula language
extension may cause the system 300 to perform further pro
cessing. For example, a reference to a quantity Such as Com
missionEarnedYTD, which is implemented as the output 120
of another workbook (e.g., 105, 205), may cause the system
300 to instantiate other workbooks (recursively) as a conse
quence of instantiating the original workbook.
0106 When an output 120 from another workbook (e.g.,
105,205) is needed, the system 300 instantiates the workbook
unless a cached value for the required output 120 is available
and up to date. The system 300 searches the storage module
315 to determine if such a cached value is available. If so, then
the system determines whether any dependencies of the
cached value have changed since the value was cached.
Dependencies of the cached value include the workbook that
calculated the value, any queries or external references. Such
as NVQuantity expressions made during the instantiation of
the workbook that produced the cached value, and any out
puts from other workbooks that were consumed by the work
book that calculated the value. The system 300 can use vari
ous methods to circumvent full dependency checks,
including, for example, user specified rules defining how
often to update cached values.
0107 If a given quantity has no cached value or the cached
value is not up to date, then the system 300 instantiates the
target workbook. After the target workbook is instantiated,
the system 300 retrieves the designated output 120 from the
workbook instantiation and then caches the updated result if
caching is enabled for the specified system quantity. A work
book output 120 may be specified by cell coordinates (e.g.
Sheet"Summary”, cell B10) or more typically by referring to
a named workbook quantity within the workbook (e.g.
“YTDCommission'). The named quantity typically refers to
a predefined cell within the workbook that contains the
desired output value, but it may also refer to a range of cells or
other kinds of system formula language expressions. Each
workbook may specify several different outputs, and the sys
tem cache maintenance module may choose to cache multiple
outputs from the workbook instantiation even though only
one output from the instantiation was originally requested.
The system 300 may need these other cached output values
for other system calculations.
0108. In the example, the data range in the DM Top
Performers workbook requests year-to-date commission
numbers for each employee reporting to the specified man
ager (i.e., Abraham Lincoln). This results in a variable num
ber of workbook instantiations. The system may find some of
the requested outputs cached in the storage module 315 and
may have to recompute others. The creator of the Commis
sionEarned YTD quantity can implement that quantity by a
set of virtual workbook rules that selects different workbooks
for different sets of input parameters.
0109. In the example, the system 300 may calculate com
missions for sales reps by one workbook while calculating
commissions for district managers by a different workbook.

US 2013/0013994 A1

For each workbook that needs to be instantiated, the applica
tion server 305 schedules the calculation of the workbook.
The calculation of workbooks may be spread over multiple
calculation server processes 310 running on multiple
machines.

0110. To further improve interactive performance, it is
often useful to precalculate sets of system quantities that are
frequently referenced. For example, it can be useful to pre
calculate Some quantities at night after daily sales transac
tions have been posted. The system 300 utilizes the type
system to guide precalculation. For example, the Commissio
nEarned YTD quantity has a person parameter and a month
parameter. It is possible to run an automated precalculation of
this quantity for all people (or alternatively for Sales Reps in
Europe) for the current month.
0111. For example, as described above, cell C19 of the
table 425 contains the formula-NVQuantity(“SalesCredits',
EMPLOYEE, period). The system can precalculate and cache
the sales credits for each employee for each year. The entries
for this quantity are shown in Table 3. As shown in Table 3, the
system 300 stores the data using the ID attribute of a person
type parameter.

TABLE 3

Period

ID 1998 1999 2OOO 2001 2002

infasth 1OOOOOO 1500000 17OOOOO 12OOOOO 120OOOO
acabrera 12OOOOO 190OOOO 22OOOOO 1 SOOOOO 15OOOOO
jolazabal 190OOOO 29OOOOO 34OOOOO 24OOOOO 24OOOOO
aScott 12OOOOO 190OOOO 22OOOOO 1 SOOOOO 15OOOOO
haas 22OOOOO 33OOOOO 390OOOO 28OOOOO 28OOOOO
sflesch 1SOOOOO 23OOOOO 26OOOOO 190OOOO 190OOOO
checkman SOOOOO 8OOOOO 9 OOOOO 7OOOOO 7OOOOO
bmay 18OOOOO 26OOOOO 31 OOOOO 22OOOOO 22OOOOO
kSutherland 11 OOOOO 17OOOOO 20OOOOO 140OOOO 140OOOO
SStricker 1SOOOOO 23OOOOO 26OOOOO 190OOOO 190OOOO
foouples 190OOOO 28OOOOO 33OOOOO 23OOOOO 23 OOOOO
S8ile:S 190OOOO 28OOOOO 33OOOOO 23OOOOO 23 OOOOO
Xcarter 17OOOOO 2SOOOOO 29OOOOO 21 OOOOO 21 OOOOO

FIG. 5 illustrates an embodiment of a screen shot 500 of a
specific example of virtual workbook 205 (FIG. 2) that the
system 300 (FIG. 3) can generate and process in accordance
with the invention. Using the network browser module 350
(FIG.3) (e.g., a web browser) on a client device 320 (FIG.3),
a manager (e.g., Harvey Mackay 505) can log in to the appli
cation server 305 (FIG. 3) and request a summary report 510,
including a table portion 512. The manager typically specifies
the period of interest 515, or, in one embodiment, the period
defaults to the current year. A virtual workbook 205 imple
ments the report 510. A virtual workbook 205 selects a par
ticular concrete workbook 105'based on rules associated with
the definition of the virtual workbook. The rules are based on
the parameters of interest, in this case, the manager 505 and
the period 515 for which the report is requested. The rules can
also utilize globally available information, such as the iden
tity of the user who is logged in, the current date, and the like.
The application server 305 processes the rules defining the
virtual workbook and selects a particular concrete workbook,
for example, RegMgr Monthly Summary. The concrete
workbook is then instantiated by the calculation server 310
and the print area, or an alternatively specified output range,
of the specified worksheet within the workbook is rendered
as, for example, HTML and returned to the network browser

Jan. 10, 2013

350. The system 300 can also render this returned data in
many different formats besides the standard HTML. To allow
the user to organize this returned data by user preference, the
system 300 can make this data interactive.
0112 For example, as illustrated in FIG. 5 the summary
report 510 includes a table portion 512 representing a data
range, similar to the data range of table 425 (FIG. 4) described
above. The system 300 renders a data range in different output
formats (e.g., HTML) in Such a way as to provide partial
interactivity. Table portion 512 illustrates an example of an
HTML rendering of a data range that is interactive. The
creator of a spreadsheet containing a data range (e.g., table
425) is not necessarily the same person who might view an
instantiation of the spreadsheet (e.g., table portion 512)
through a network browser 350. Using system 300, the cre
ator of the spreadsheet can define the data range 512 to have
certain interactive features when a user views that data range
512. These interactive features allow some operations on the
data, but not necessarily all of the operations available to the
creator of the data range, since the creator is working through
a different interface, for example the interface shown in FIG.
4
0113 For example, the system 300 can allow sorting of
columns of the data range 512 when rendered in a network
browser 350, for example by clicking with a mouse, using
keystrokes and/or other user input. This allows the viewer of
the information to sort the table in ascending or descending
order based on the alpha/numeric entries of a selected col
umn. As another example, the rows of a data range might be
grouped in a hierarchy, for example, a geographical hierarchy
of continents, countries and States or provinces. The creator
can define the data range so that the system 300 allows a user
to interactively expand and collapse the hierarchy using, for
example, mouse clicks, keystrokes and/or other user input.
0114. To instantiate the RegMgr Monthly Summary
workbook, the calculation server 310 binds the workbook
parameters to their corresponding values (e.g. "person’ to
“Harvey Mackay” and period to “2002). Then the calcula
tion server 310 evaluates all formulas in the workbook to
ensure they are up to date. In one embodiment, the system300
implements the workbook parameters 110' as named quanti
ties within the workbook and workbook formulas can refer to
these names directly. As illustrated, a user can also change
parameter values using the pull-down menus 525a and 525b.
In response to changing the parameter values and clicking on
the “GO button 530, the system 300 will re-evaluate the
virtual workbook 205, selecting a concrete workbook 105",
which may be the same as the prior concrete workbook (Reg
Mgr. Monthly Summary) or may be different. The concrete
workbook is then instantiated and rendered as described
above using the changed parameter values.
0.115. It is also possible to access system quantities
through interfaces other than by requesting reports through a
web browser 350. For example, the system 300 allows expo
sure to quantities via web services 330. One web service 330
can be defined, for example, to return a matrix of monthly
commission payments for a particular year for a certain set of
people, based on the person's role and the territory structure
of the company. An invocation of this web service 330 might
return all commission payments for 2002 for Territory Man
agers in North America.
0116. A number of embodiments of the invention have
been described. Nevertheless, it will be understood that vari
ous modifications may be made without departing from the

US 2013/0013994 A1

spirit and scope of the invention. For example, processing can
be distributed in many different configurations, additional
parameters can be defined and additional types of computa
tions can be modeled. Accordingly, other embodiments are
within the scope of the following claims.

1. A method for utilizing a spreadsheet, the method com
prising:

defining a parameter associated with the spreadsheet; and
generating a data query based at least in part on the param

eter.

2. The method of claim 1, further comprising:
generating an output based at least in part on the results of

the data query.
3. A method for utilizing a spreadsheet, the method com

prising:
defining a template within the spreadsheet; and
generating an output based at least in part on the template.
4. The method of claim 3, further comprising:
generating a data query based at least in part on a parameter

associated with the spreadsheet.
5. The method of claim3 wherein one or more cells within

the template contain formulas.
6. The method of claim 5 wherein the formulas are written

in spreadsheet formula language.
7. The method of claim 3 wherein generating an output

further comprises:
replicating one or more cells within the template.
8. The method of claim 7 wherein replicating one or more

cells further comprises:
preserving relative cell references.
9. The method of claim 7 wherein replicating one or more

cells further comprises:
replicating formatting of the template cells.
10. The method of claim 7 wherein replicating a cell further

comprises:
associating values from a data query with the one or more

replicated cells by using column names in formulas
within the one or more replicated cells; and

performing calculations using the associated values.
11. The method of claim 10, further comprising:
performing special processing on the output when the data

query returns no associated values.
12. The method of claim 10, further comprising:
automatically sorting the output based at least in part on the

associated values of the one or more cells in the output.
13. The method of claim 3, further comprising:
associating a formula language name with the output.
14. The method of claim 3, further comprising:
automatically updating the output when a change is

detected.
15. The method of claim 14, wherein the change comprises

a change to:
i) template cell formulas
ii) template cell formatting
iii) template cell values, or
iv) data query parameters.
16. A method for utilizing a spreadsheet, the method com

prising:
defining an output range within the spreadsheet;
rendering the output range; and
allowing a user to modify the rendered output range.
17. The method of claim 16, further comprising:
rendering the output range using HTML.

Jan. 10, 2013

18. The method of claim 16, wherein allowing a user to
modify the rendered output range further comprises:

allowing the user to Sort columns within the output range
using a user input.

19. The method of claim 16, wherein allowing a user to
modify the rendered output range further comprises:

allowing a user to interactively expand and collapse a hier
archy using a user input.

20. A system for utilizing a spreadsheet, the system com
prising:
means for defining a parameter associated with the spread

sheet; and
means for generating a data query based at least in part on

the parameter.
21. A system for facilitating the functional use of a spread

sheet embodying a computational model created using a
spreadsheet application program for non-programmer users
that when opened with said spreadsheet application program
visually presents a non-programmer spreadsheet interface
with at least one two-dimensional grid of cells each of which
can contain data values or formulas that can refer to and be
calculated dependent on other cells with relative referencing,
which cells can access external data sources when so opened
and which model can be modified by direct user modification
of cell contents when so opened, the system comprising:

a computer programmed to provide a design-time program
environment comprising a non-programmer interface
adapted to:
define a parameter external to the spreadsheet when the

spreadsheet is run as a programmatic function in a
run-time program environment wherein a run-time
caller of a parameterized workbook including the
spreadsheet cannot modify cell values except through
the parameter; and

associate the parameter with the spreadsheet to define
the parameterized workbook wherein the parameter
applies to the spreadsheet as a whole, thereby allow
ing any formula in the spreadsheet to reference the
parameter when the spreadsheet is run at run time and
allowing a formula that refers to an external data
Source to query that source based on a parameter value
received at run time.

22. A system for functionally utilizing a spreadsheet
embodying a computational model created using a spread
sheet application program for non-programmer users that
when opened with said spreadsheet application program visu
ally presents a non-programmer spreadsheet interface with at
least one two-dimensional grid of cells each of which can
contain data values or formulas that can refer to and be cal
culated dependent on other cells with relative referencing,
which cells can access external data sources when so opened,
and which model can be modified by direct user modification
of cell contents when so opened, the system comprising:

a computer programmed to provide a run-time program
environment,
wherein said spreadsheet can be called as part of a

parameterized workbook to be executed as an auto
mated programmatic function where the only allowed
input to the function from the caller is through a
parameter previously associated with the spreadsheet
to define the parameterized workbook, and

wherein said function receives a value for the parameter
at run time, computes cell values in the spreadsheet
that are dependent, directly or indirectly, on the

US 2013/0013994 A1

parameter, including a query to an external data
Source, which query is based on said received param
eter value, and renders an output to the run-time caller
based on the computed cell values.

23. Computer-readable media for facilitating the func
tional use of a spreadsheet embodying a computational model
created using a spreadsheet application program for non
programmer users that when opened with said spreadsheet
application program visually presents a non-programmer
spreadsheet interface with at least one two-dimensional grid
of cells each of which can contain data values or formulas that
can refer to and be calculated dependent on other cells with
relative referencing, which cells can access external data
Sources when so opened, and which model can be modified by
direct user modification of cell contents when so opened, said
media containing instructions to program a computer pro
gram to:

provide a design-time program environment comprising
said non-programmer spreadsheet interface and a non
programmer interface adapted to:
define a parameter external to the spreadsheet when the

spreadsheet is run as a programmatic function in a
run-time program environment wherein a run-time
caller of a parameterized workbook including the
spreadsheet can not modify cell values except through
the parameter, and

associate the parameter with the spreadsheet to define
the parameterized workbook wherein the parameter
applies to the spreadsheet as a whole, thereby allow
ing any formula in the spreadsheet to reference the
parameter when the spreadsheet is run at run time.

24. Computer-readable media for functionally utilizing a
spreadsheet embodying a computational model created using
a spreadsheet application program for non-programmer users
that when opened with said spreadsheet application program
visually presents a non-programmer spreadsheet interface
with at least one two-dimensional grid of cells each of which
can contain data values or formulas that can refer to and be
calculated dependent on other cells with relative referencing,
which cells can access external data sources when so opened,
and which model can be modified by direct user modification
of cell contents when so opened, said media containing
instructions to program a computer program to:

provide a run-time program environment wherein said
spreadsheet can be called to be executed as an automated
programmatic function where the only allowed input to
the function from the caller is through a parameter pre
viously associated with the spreadsheet to define a
parameterized workbook, and

wherein said function receives a value for the parameter at
run time, computes cell values in the spreadsheet that are
dependent, directly or indirectly, on the parameter, and
renders an output to the run-time caller based on the
computed cell values.

25. A system for utilizing a spreadsheet embodying a com
putational model created using a spreadsheet application pro
gram for non-programmer users that when opened with said
spreadsheet application program visually presents a non-pro
grammer spreadsheet interface with at least one two-dimen
sional grid of cells each of which can contain data values or
formulas that can refer to and be calculated dependent on
other cells with relative referencing, which cells can access
external data sources when so opened, and which model can

Jan. 10, 2013

be modified by direct user modification of cell contents when
so opened, the system comprising:

a computer programmed to provide a design-time program
environment comprising said non-programmer spread
sheet interface and a non-programmer interface adapted
tO:

define a parameter external to the spreadsheet when the
spreadsheet is run as a programmatic function in a
run-time program environment wherein a run-time
caller of a parameterized workbook including the
spreadsheet cannot modify cell values except through
the parameter; and

associate the parameter with the spreadsheet to define
the parameterized workbook wherein the parameter
applies to the spreadsheet as a whole, thereby allow
ing any formula in the spreadsheet to reference the
parameter when the spreadsheet is run at run time.

26. The system of claim 25 further comprising:
a computer programmed to provide a run-time program

environment wherein the parameterized workbook can
be called and the spreadsheet run as a programmatic
function where the only input to the function from the
caller is through the parameter and wherein said func
tion receives a value for the parameter at run time, com
putes cell values in the spreadsheet that are dependent,
directly or indirectly, on the parameter, and renders an
output to the run-time caller based on the computed cell
values.

27. A method for utilizing parametrically a spreadsheet
embodying a computational model created using a spread
sheet application program for non-programmer users that
when opened with said spreadsheet application program visu
ally presents at least one two-dimensional grid of cells each of
which can contain data values or formulas that can refer to and
be calculated dependent on other cells with relative referenc
ing, which cells can access external data Sources when So
opened and which model can be modified by direct user
modification of cell contents when so opened, the method
comprising:

defining a parameter external to the spreadsheet when the
spreadsheet is run parametrically in a run-time program
environment wherein a run-time caller of the spread
sheet can not modify cell values except through the
parameters;

associating the parameter with the spreadsheet at design
time of the spreadsheet in a design-time non-program
mer program environment allowing said model creation
and modification by said direct user modification of cell
contents to define a parameterized workbook, wherein
the parameter applies to the spreadsheet as a whole,
thereby allowing any formula in the spreadsheet to ref
erence the parameter when the spreadsheet is run para
metrically;

receiving a value for the parameter at run time;
computing cell values in the spreadsheet that are depen

dent, directly or indirectly, on the parameter, and
in this rendering an output to the run-time caller based on

the computed cell values.
28. A method for utilizing a spreadsheet embodying a

computational model created using a spreadsheet application
program for non-programmer users that when opened with
said spreadsheet application program visually presents a non
programmer spreadsheet user interface of at least one two
dimensional grid of cells each of which can contain data

US 2013/0013994 A1

values or formulas that can refer to and be calculated depen
dent on other cells with relative referencing, which cells can
access external data sources when so opened and which
model can be modified by direct user modification of cell
contents when so opened, the method comprising:

at design time in a design-time non-programmer program
environment allowing said model creation and modifi
cation by said direct user modification of cell contents
through said non-programmer spreadsheet program user
interface by
defining a parameter external to the spreadsheet when

the spreadsheet is run as a programmatic function in a
run-time program environment wherein a run-time
caller of the spreadsheet can not modify cell values
except through the parameter, and

associating the parameter with the spreadsheet to define
a parameterized workbook to be called at run time and
the spreadsheet run as an automated programmatic
function where the only input to the function from a
caller is through the parameter and wherein the
parameter applies to the spreadsheet as a whole,
thereby allowing any formula in the spreadsheet to
reference the parameter when the spreadsheet is run in
the run-time program environment and wherein said
non-programmer user interface allows the defining
and associating to be performed by the design-time
user without code programming.

29. The method of claim 28 further comprising:
at run time in said run-time program environment,

receiving a value for the parameter from the caller to
instantiate the parameterized workbook, wherein the
parameter takes on the received value,

computing cell values in the spreadsheet that are depen
dent, directly or indirectly, on the received parameter
value, and

rendering an output to the caller from the run-time
instantiation of the parameterized workbook based on
the computed cell values.

Jan. 10, 2013

30. A method for utilizing a conventional spreadsheet
embodying a computational model created using a spread
sheet application program for non-programmer users that
when opened with said spreadsheet application program visu
ally presents a non-programmer spreadsheet interface with at
least one two-dimensional grid of cells each of which can
contain data values or formulas that can refer to and be cal
culated dependent on other cells with relative referencing,
which cells can access external data sources when so opened,
and which model can be modified by direct user modification
of cell contents when so opened, the method comprising:

at design time in which a user has full access to the spread
sheet in a conventional spreadsheet program user inter
face,
defining a parameter external to the spreadsheet whose

value is to be supplied externally to the spreadsheet at
run time, and

associating the parameter with the spreadsheet to define
a parameterized workbook to be called at run time as
an automated programmatic function where the only
input to the function from a caller is through the
parameter value and wherein the parameter applies to
the spreadsheet as a whole,

thereby allowing any formula in the spreadsheet to ref
erence the parameter and wherein a user interface
allows the defining and associating to be performed
by the user without code programming; and

at run time in which a caller does not use a conventional
spreadsheet program user interface,
receiving a value for the parameter from the caller to

instantiate the parameterized workbook, wherein the
parameter takes on the received value,

computing cell values in the spreadsheet that are depen
dent, directly or indirectly, on the received parameter
value, and

rendering an output to the caller from the run time
instantiation of the parameterized workbook based on
the computed cell values.

k k k k k

