REMOTE CONTROL FOR VIDEO MEDIA SERVERS

Inventors: Robert Osann, JR., Cupertino, CA (US); Joseph A. Zott, Menlo Park, CA (US); Samuel W. Beal, Mountainview, CA (US)

Appl. No.: 13/371,419
Filed: Feb. 11, 2012

Publication Classification

Int. Cl. G06F 15/16 (2006.01)
U.S. Cl. 709/203

ABSTRACT

Systems and methods are described for remote control of a media server computer from a controller device, typically a laptop computer, where remote operation of the media server, including the selection of videos and other digital media may be performed from the controller while normal TV programming (cable, satellite, or broadcast) is viewed on the TV. Other embodiments describe background operations performed on the controller device, the media server, or both, such that new videos may be located on the web or locally on the LAN while a current video is playing on the media server and viewed on the TV. Methods are also described for more reliably establishing network connections between the controller and media server, and systems and methods are described for implementing a multi-video display on the media server where videos to be played on the media server are played on and selected by a controller device.

Laptop Chooses Web Video while family watches Cable

- Laptop remotely operates Media Server to browse Internet and Server
- User locates videos online or on Server while family watches regular TV
- User switches video input on TV when it is time to watch Web videos
Prior Art Paradigm: Browse Internet on TV

Family/TV Room

Home Office

Internet Connection

Wired Connection

Wireless Connection

Figure 1
Prior Art Paradigm: Wireless Media Player

Family/TV Room

Home Office

204

203

202 Wireless Media Player

201

Internet Connection

Media Server

Wired Connection

Wireless Connection

Figure 2
Prior Art Paradigm: Windows Media Center Remote

Family/TV Room

303

301 Media Center PC

302

Home Office

Internet Connection

Wired Connection

Wireless Connection

Figure 3
Laptop Chooses Web Video while family watches Cable

- Laptop remotely operates Media Server to browse Internet and Server
- User locates videos online or on Server while family watches regular TV
- User switches video input on TV when it is time to watch Web videos
Laptop Chooses Web Video while family watches Cable

Family/TV Room

Home Office

Internet Connection

501

Wired Connection

Wireless Connection

Figure 5
Laptop locates Web Video while family watches Cable program

Step 1

Step 2

Step 3

Figure 6

Wired Connection

Wireless Connection
Laptop locates next Web Video while family watches current Web video

Step 1

Step 2

Step 3

Figure 7

--- Wired Connection

--- Wireless Connection
Background Operation by TV video input selection:
Remote control of process displayed on Server but not yet seen on TV

801 TV currently plays video from source other than Media Server.

802 User opens a Remote Control (RC) window on controller device (not viewed on TV).

803 User locates a video on the Web or on the Media Server/LAN to be played on Media Server/TV. This locating step is only visible on controller/laptop computer.

804 User switches video input on TV to receive video from Media Server.

805 User causes the video to be played on the Media Server.

Figure 8
Background operation by passing link:
Local window on controller locates video source, passes link to remote control (RC) window on controller device

901 User opens a Remote Control (RC) window on controller device and invokes a first video which is displayed on Server/TV.

902 User opens a local window on controller device and locates a link to a second video. The operation in this second window is performed locally on controller computer (not Remote Control).

903 User copies (to the clipboard) the address (link) where the second video information in the local window has been located.

904 User completes viewing first video on TV.

905 User activates RC window on controller device, pastes link into address bar, and causes the RC window to display the previously located second video information.

906 User causes the second video to be played on the Server/TV.
Background Operation:
Remote control of process not displayed on server

1001 User opens a first Remote Control (RC) window on controller device and invokes a first video which is played on Media Server/TV.

1002 Without disturbing first video displayed on Media Server/TV, user opens a second RC window on controller device, and locates a second video. The operation in this second window, although being executed on the Media Server, is not displayed on the Media Server/TV.

1003 User causes the second RC window to be displayed on the Media Server, replacing the previous displayed (first video) information.

1004 User causes the second video to be played on the Media Server.

Figure 10
Background Operation:
Remote control of process not displayed on server, with video buffering added

1101
User opens a first Remote Control (RC) window on controller device and invokes a first video to be played on Server/TV.

1102
Without disturbing video displayed on Media Server/TV, user opens a second RC window on controller device, and locates a second video. The operation in this second window, although being executed on the Media Server, is not displayed on the Media Server.

1103
User activates a streaming video control in second RC window and second video proceeds to stream and buffer video even though it is not yet displayed on Media Server.

1104
User causes the second RC window to be displayed on the Server, replacing the previous displayed information.

1105
User causes the second video to be played on the Server.
Activity Clone:
Process run on Controller is cloned on Media Server (Delayed or Realtime)

User opens a first Activity Master browser window on controller device and locates a first video. All Activity (both user and browser response) in this window is recorded. This may be done without disturbing a previously chosen video currently playing on Media Server/TV.

Upon initiation by user, recorded activity on controller is cloned on the Media Server, so that if enabled by controller, video streams from the Internet to both the Server and controller device simultaneously. Potentially, a multicast could be used to do this using wireless spectrum more efficiently. If user wishes to open a second Activity Master browser window, video stream to controller may optionally or automatically be suppressed when the first Activity Master window on controller device is not the active window.

Cloned activity may be initially recorded and delayed as described above, or alternately, activity in an Activity Master window on controller device may be cloned in realtime so that activity on Media Server/TV is substantially identical to that observed on controller device.

Figure 12
When required player/codec is not available on Media Server, transcoding is performed automatically on intermediary Website.
Figure 4

PCs locate Media Server via Website-based Access Controller

- **Local PC (1401)** within the home
- **Media Server (1402)** connected to LAN (1403)
- **Access Controller Function**
- **Website**
- **Remote PC (1409)**
- **Names and IP Addresses of allowed computers** (1408)
- **Remote PC Name and IP Address Info** (1409)
- **Media Server Name and IP Address Info** (1407)

Connections:
- LAN (1403) to Local PC (1401)
- Media Server (1402) to Access Controller Function
- Internet (1404) to Access Controller Function
- Website
- Remote PC (1409) to Remote PC Name and IP Address Info
- Media Server Name and IP Address Info (1407) to Access Controller Function

Figure 14
PCs locate Media Server via Website-based Access Controller

1501 PC and Media Server computers send their computer names, IP addresses, and other environment information to access controller website

1502 Access controller uniquely identifies each computer according to IP addresses corresponding to the specific LAN or private network and the specific computer itself

1503 Access controller sends the computer names and IP addresses for all computers on the LAN or private network to each computer.

1504 Controller PC establishes link with media server, addressing media server by its unique IP address within the LAN

Figure 15
PCs locate Media Server via Internet-based Access Controller

Figure 6
PCs locate Media Server via Intra-LAN Broadcast

Within the Home

Figure 17
Multi-window remote control

Link passed from local window on controller to chosen window on media server

Figure 20
REMOTE CONTROL FOR VIDEO MEDIA SERVERS

CLAIM OF PRIORITY AND STATEMENT OF CROSS REFERENCE

This application is a Continuation of U.S. application Ser. No. 12/069,877 filed on Feb. 12, 2008 and entitled “REMOTE CONTROL FOR VIDEO MEDIA SERVERS,” by inventors Robert Osann, Jr. and Samuel W. Beal; and U.S. Provisional Application Ser. No. 60/001,671, filed on Feb. 13, 2007, and entitled “REMOTE CONTROL FOR VIDEO MEDIA SERVERS,” by inventors Robert Osann, Jr. and Samuel W. Beal; and U.S. Provisional Application Ser. No. 61/003,363, filed on Nov. 16, 2007, and entitled “MEDIA PLAYLIST MANAGEMENT AND VIEWING REMOTE CONTROL,” by inventors Joseph A. Zott, Samuel W. Beal, and Robert Osann, Jr.; all of said applications commonly assigned with the present application and incorporated herein by reference. This application also claims priority to and cross references U.S. patent application Ser. No. 12/291,968, filed on Nov. 14, 2008, and entitled “MEDIA PLAYLIST MANAGEMENT AND VIEWING REMOTE CONTROL,” by inventors Joseph A. Zott, Samuel W. Beal, and Robert Osann, Jr., which is commonly assigned and incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

This invention relates to video media server computers, and in particular, methods for controlling media servers used by consumers in their home for viewing videos that are either streamed from the web or previously downloaded and stored on a media server or elsewhere on their LAN. For the purpose of this specification, a “media server” may be any form of computer system that includes all of the following: a processor, a video compression capability, a video output display capability, and a network connection capability. Video media servers may include, without limitation, any of desktop computers, laptop computers, small form-factor PCs, Wireless Media Players, media extenders, video set-top boxes, game boxes, or DVRs (Digital Video Recorders), including any of said functionalities incorporated within a TV.

BACKGROUND

Today, videos which may be downloaded or streamed from the web are becoming ever more available at an explosive rate. However, it seems that those providing these videos still expect the consumer to watch them on their PC as no suitable technology or methodology is being supplied to enable easy and convenient watching of these videos on the primary family entertainment TV.
throughout the industry has been, and continues to be, that operation by a simple hand-held remote device is required for the remotely-controlled operation of any TV-related component. In spite of this, there is a growing trend for TV viewers to indulge in “multi-tasking” whereby they surf the web on their laptop computer while sitting on the couch with the family watching conventional (cable, satellite, or broadcast) TV programming. The present invention understands the unique opportunity supported by this trend and offers viewers the capability to use their laptop computer to control the play of video media, including web videos, on their TV, and to do so such that web media is located without disturbing their family’s normal TV viewing.

[0010] It is known in the art to remotely control one or more computers by performing operations in a remote control window on a different computer. This functionality is primarily used by IT professionals for maintaining and updating large numbers of computers in an office environment, many of these remotely controlled computers being located in remote offices requiring accessing via the Internet. Programs supporting this kind of functionality include Microsoft’s “Remote Desktop” and a program generically known in the industry as VNC. However, remote control of a computer by another computer has not been offered for the home environment to enable the unique controlling and viewing scenarios that are described herein.

SUMMARY

[0011] This invention describes systems and methods for remote controlling a media server computer from a controller or client device—most commonly a laptop computer. Methods are described where the media server is directly remotely controlled by a laptop computer as one example of a controller device. Optionally, a link to a web video may be located in a local window on the controller device while a current web video is playing on the media server, this link being passed by remote control to a media server for display on a TV, thereby replacing the current web video.

[0012] In other embodiments of this invention, methods are described where operations are performed in the background on the media server under remote control such that new videos may be located on the web or locally on the LAN while a current video is playing on the media server, again all operation being controlled from a remote controller device.

[0013] Another object of this invention is to provide transcoding functionality on the web such that a web video having a compression format not supported by a user’s media server may be transcoded to provide a supported format.

[0014] Another object of this invention is to provide methods for establishing connections between controller devices and media servers on the LAN within a home in order to overcome the problems normally associated with establishing such connections.

[0015] Another object of this invention is to provide a multi-video display on a media server and TV, where the location and selection of videos is performed under remote control of a controller device.

[0016] Although the embodiments described herein often refer to media server PCs being controlled by laptop computers or PCs, it should be understood that the media server could be any computing device that meets the requirements described earlier under Field Of The Invention, and the reference to a “PC” does not preclude other personal computer types such as Macs or Linux-based computers. Also, the controller devices being described may be any form of laptop computer, PC or Mac, or may instead be other forms of wireless computing devices such as tablet PCs, PDAs, or wireless-enabled PDA-phones or smart phones.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 shows a prior art paradigm where the output of a media server is connected to a TV set for its display, and the media server is controlled by a wireless or wired keyboard and mouse.

[0018] FIG. 2 shows a prior art paradigm where the output of a Wireless Media Player is connected to a TV set for display, and the Wireless Media Player is controlled from a handheld remote device.

[0019] FIG. 3 shows a prior art paradigm where the output of a Media Center PC is connected to a TV set for display, and the Media Center PC is controlled from a handheld remote device.

[0020] FIG. 4 shows an overview of the present invention where the user locates video sources using a laptop computer, remotely controlling a media server connected to a TV set in order to display videos streamed or downloaded from the video sources on the TV.

[0021] FIG. 5 shows for the scenario of FIG. 4 how the laptop computer controls the media server by way of a wireless LAN.

[0022] FIG. 6 shows a step-by-step process wherein a video source is located using a laptop computer for remote control of a media server while the TV set continues to play conventional satellite or cable programming, and when the user is ready, the located video source is then displayed on the TV by the media server.

[0023] FIG. 7 shows a step-by-step process where a first video source is currently displayed on the TV by a media server while a second video source is located using the controller laptop computer in conjunction with the media server.

[0024] FIG. 8 shows a flow chart for the process described in FIG. 6.

[0025] FIG. 9 shows a flow chart for a variation on the scenario of FIG. 8 wherein a second video source is located using a local browser window on the controller device, and the web address (URL) link for the second video source is passed to the media server by pasting it into the address bar in the remote control window on the laptop controller device.

[0026] FIG. 10 shows a flow chart for the process described in FIG. 7.

[0027] FIG. 11 shows a flow chart for an enhanced version of the process described in FIG. 10 wherein a second video stream is buffered while a first video is being displayed.

[0028] FIG. 12 shows a flow chart for an alternate paradigm wherein the activity for video search and play in a local browser window on a controller device is cloned such that the same activity may be replicated on a media server connected to a TV.

[0029] FIG. 13 describes a system and method for enabling a non-supported video stream to be played on a media server by transcoding that video stream on an intermediary website.

[0030] FIG. 14 describes a system and method for enabling different computers on a network to reliably locate each other by absolute IP address at any point in time.

[0031] FIG. 15 shows a flow chart for the process described in FIG. 14.
FIG. 16 shows another view of the system described in FIG. 14, with emphasis on IP addresses assigned to different devices on the LANs.

FIG. 17 shows a diagram describing an alternate method of IP address discovery on a LAN whereby the media server broadcasts its IP address to other devices on the LAN.

FIG. 18 shows an overview of a multi-window, multi-view display on a media server and TV whereby videos to be chosen for display on the media server also appear on a controller device and are selected for viewing on the media server and TV by remote control from the controller device.

FIG. 19 shows two different methods for remotely controlling the multi-window, multi-view display of FIG. 18, one method involving direct remote control of the media server and its display, and the other method involving remote control of a hidden active window on the media server which may, a later point in time, replace a displayed window on the media server display.

FIG. 20 shows another method for remotely controlling the multi-window, multi-view display of FIG. 18, whereby a link to a web video is located in a local window on the controller device, this link being passed to a window on the media server by way of a remote control connection on the LAN.

FIG. 21 shows an overview of a multi-window, multi-view display on a media server and TV similar to FIG. 18, whereby videos chosen for display on the media server appear as a subset of a larger number of videos that are displayed on a controller device.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 4 shows a general view of this invention where the user is locating a video residing either on the web, on media server 401, or on the user’s LAN, and accomplishes this by remotely controlling the media server from a window on their laptop (controller) computer 402. Notice that while the user is locating new video material to be played on the media server, the TV 403 may be playing TV programming from some other video source, such as cable or satellite TV, a DVD player, a DVR player, etc.

FIG. 5 shows the flow of information for the scenario of FIG. 4 where a wireless router 501 or access point is located somewhere in the home, frequently in a home office. Thus, although the laptop computer 502 is controlling the media server 503, information is flowing between the two devices by way of wireless network 504. Although this type of connectivity, known as infrastructure mode when one refers to WiFi scenarios, is shown here, it should be understood that a form of ad hoc communication could be utilized where the laptop computer 502 connects directly to the Media Server 503 via a direct wireless connection.

FIG. 6 shows a more detailed step-by-step example of how one remote control scenario of this invention might be implemented. In FIG. 6, step 1 shows a football game received from, for instance, a conventional cable or satellite TV programming source being shown on the TV 601. Simultaneously, the user chooses a video file or stream to be played next on the media server 602, controlling the media server from their laptop controller device 603 to make this choice, and viewing some portion of the media server desktop screen solely by way of a remote control window on controller device 603. Although the Media Server is actually running the software that enables choosing the video material that will be streamed from the web or played from a file, this operation is only initially visible through the laptop 603 acting as a remote controller device and remote viewer. The remote control window displays a fully functional recreation of at least a portion of the media server desktop screen, with all links and search control text boxes accessible to the user thus providing the user with operational control of the media server functionality that is visible to them through the active screen image appearing in the remote control window. Thus, the functionality available within the remote control window may include the entire desktop image of the media server screen, a portion of the desktop image, or a single window (either an active window or a hidden active window) from within the media server’s desktop screen, or running in background mode on the media server as will be described later.

In step 2 of FIG. 6, the user has switched the source input on their TV 601 to allow viewing of the video output from the media server 602 and thus the information previously seen only remotely on the display of laptop controller device 603 is now viewed on the TV display 601. Step 3 shows the operation after the user has initiated viewing of the video on the media server 602. Notice that on their laptop remote controller device 603 they can see both the remote control window where the video is being played, and also other windows such as the web browser window shown, where they may now perform other operations either related or unrelated to the location and viewing of videos and other media.

A media server as described herein is in a form of computer—be it a PC, a set-top box, or a game box, etc. It could even be an upgraded DVD player with more computer capability, or a DVR with expanded functionality. It may or may not have a disk for local data storage. A media server has a processor and some form of operating system. As such, the operating system may be multi-tasking and/or multi-processing. In a typical PC today with an operating system like Microsoft Windows, the operating system is both multi-processing and multi-tasking, however even though multiple processes may be running simultaneously, the user interface only allows interaction with one process at a time. Alternately per this invention, there may be multiple active windows on the media server that the user may interact with simultaneously—one that is user accessible in the normal way, and other “hidden active windows” that may be interacted with simultaneously by offering a second user interface that is operated via a remote control window on a controller device.

FIG. 7 shows additional functionality described for this invention that enables a second video to be located for the media server under control of a second remote control window on the laptop while a first video is being played by the media server on the TV. In other words, the second process (implemented as a “hidden active window”) runs as a background process on the media server while its user interface is visible on the controller device. Here in step 1, a first video is being played on the media server 701 and displayed on the TV 702. The user opens an additional remote control window on their laptop 703 to browse the web for another source of video, in this instance a site called YouTube.com. The second remote control window controls a process on the media server that runs in the background on the media server. Since this second process is not visible on the media server screen, the process is herein referred to as a “hidden active window” on the media server. In step 2, the user has chosen a particular video on youtube.com that they wish to view and in step 3, they cause the YouTube window to transition from
background mode to foreground mode and be displayed on the TV 702, at which time they can open a third remote control window and proceed again in background mode to locate another video source either on YouTube.com or other sources on the web, or stored on media server 701 or elsewhere on their LAN.

Fig. 8 through 12 show flow diagrams describing the processes just described in the previous figures, as well as additional scenarios not yet described.

Fig. 8 shows the process described in Fig. 6. In step 801, the TV currently plays a video source other than the media server while the user opens a remote control window (step 802) on their controller device (laptop computer), this window actually running on the media server but initially displayed only on the remote controller device. In step 803, the user locates a video on the web or on the server/LAN to be played next, and after switching (step 804) the video input control for the TV to accept material from the media server, this video material previously chosen on the media server under remote control by the laptop is now displayed (step 805) on the TV.

Fig. 9 is similar to scenario of Fig. 8 except that while a first video is displayed (step 901) on the TV by the media server (under remote control from the laptop), the user opens (step 902) an additional local window on the controller device (not a remote control window) and, in this local window, locates another video source. The user then copies (step 903) the web address or link for this second video source to the clipboard on their laptop computer (controller device) and, after viewing of the first video is complete (step 904), subsequently pastes that link (step 905) into the address bar of the browser shown in their original remote control window—enabling the browser running on the media server to point to this second video source which is subsequently activated and played (step 906) on the media server and displayed on the TV.

Fig. 10 describes the scenario previously shown in Fig. 7 where the user opens a second remote control window (step 1002) on their laptop while a video previously chosen from a first remote control window (step 1001) is currently playing on the Media Server and TV. The process running on the media server controlled by this second remote control window is displayed on the laptop computer in the second remote control window (step 1002) but not displayed on the media server/TV even though it is actually running there, hence referred to as a “hidden active window”. In other words, the second process runs as a background process on the media server while its user interface is visible on the controller device. At some point in time, the user subsequently causes the second remote control window contents, or a video located at a link displayed within the second remote control window, to be displayed (step 1004) on the media server thus replacing the previously displayed first video with the second video, the second video now appearing on the media server video output and TV display.

Fig. 11 shows an enhancement to the scenario of Fig. 10. Steps 1101 and 1102 are the same as steps 1001 and steps 1002. Then, in step 1103, the video located in the second remote control window and running on the server is activated to start the streaming/buffering process, the process being automatically paused when 100% buffering is reached. Thus, when the user switches from the first video being displayed on the media server/TV to the second video (step 1104), the stream for the second video will already be buffered and play can begin (step 1105) with no delay.

Fig. 12 shows a different paradigm to those in previous figures and is hereinafter called an “Activity Master” paradigm. Here, the window running on the laptop computer is not a conventional remote control window as described previously herein, but instead is a local browser window running on the controller (laptop) device. However, this local window is special in that all user input activity that occurs in this “Activity Master” window on the laptop is recorded or monitored (step 1201). This recorded or monitored activity is then transferred through a wireless link to the media server and can be played back at a later point in time to replicate the previous activity on the laptop where video material was located and/or played. This method can also be used to simultaneously play video material on both the controller laptop and media server under control of the Activity Master window on the laptop per step 1202, with video material streaming from the Web to both the laptop and media server simultaneously. A multicast methodology can be used to perform this which would make more efficient use of available wireless network bandwidth. Thus, this scenario of cloning activity on the server which originates on the laptop in an Activity Master window, can either happen in a delayed mode where activity from the Activity Master window is replicated on the Media Server at a later time, or alternately this activity can be replicated in realtime effectively making operation of the Activity Master on the laptop and the Media Server simultaneous. An Activity Master Window on the controller may also be used to control a hidden active window on the media server. As such, a second Activity Master Window can be used for locating a second video without disturbing a first video that is playing on the media server as a result of user activity initiated via a first Activity Master Window.

There are times when the media player software/codec required to play a particular video is not available on a particular media server. This can happen for a variety of reasons including scenarios including where the codecs on the media server are soft-coded and out of date, or the codecs in the media server are hard-coded in some manner and simply not capable of decoding a particular media compression format. When an application program running on the media server detects that the particular player software or codec is not available on the TV server, it could prompt the user that additional software needs to be installed (assuming a codec is soft coded). However, having to install software in order to view a particular video is not always desirable, and a better user experience can be delivered by automatically transcoding the particular video prior to delivery to the media server.

As shown in Fig. 13, controller PC 1301 directs media server 1302 by way of remote-control link 1303 to play a particular video that is to be streamed from content website 1305 on the Internet. If media server 1302 does not have the capability to decode the particular video stream because it is in a non-supported compression format (not supported by the codecs in the media player), media server 1302 sends a message to server support website function 1304. The (un-supported) video stream 1307 coming from video content site 1305 is then delivered through the Internet first to server support website function 1304 where it is transcoded on-the-fly by transcoding function 1306. The (now supported) video stream 1308 is then delivered through the Internet to the user’s media server 1302, without the user having to do any additional software or codec installations. Media server 1302
may now play video stream 1308 since video stream 1308 is in a format supported by a resident codec on media server 1302.

[0052] It is a generally recognized fact in the industry that on a LAN (local area network), individual computers are able to establish an Internet connection with significantly greater ease than they establish a connection with each other. The problem has worsened in recent years as more security features have been added to personal computers. For the majority of homes which have multiple computers connected through a wireless router to the Internet, while each computer is able to access the Internet, these computers never access each other. The process of establishing a network connection is not intuitive to the average user—especially since the task is performed so seldom. Even when and where the user is proficient enough to attempt this task using tools such as Microsoft’s “Map Network Drive” command on the Tools menu, the operation is frequently unsuccessful. This may happen for a variety of reasons, some of which include inconsistencies in how different PCs and different operating system variations respond to packet broadcasts, and also the issue of workgroup designations. It is not always apparent to the user which workgroup a particular PC belongs to, or should belong to. Worse, if a PC like a laptop is used in multiple locations (e.g., both at work and at home), a workgroup name may be established for their computer by the IT department at their office, and when this same laptop is brought home for use in a home network where a different workgroup name has been established, it becomes difficult or impossible for the typical user to establish network connections with other PCs at home. Additionally, the network facility within many Microsoft operating systems is server oriented and when a PC is added to the network there may be confusion among the different computers on the LAN relative to “which PC is the server”, depending on the sequence of PCs joining the network and which PCs are active at the particular time. There may be additional reasons why network connections are so difficult to establish in the home including issues involving the WINS function and NetBIOS, but regardless, it is generally acknowledged that PCs connect much more readily with the Internet than they do with each other on a LAN.

[0053] For an application such as a controller PC remotely controlling a media server via a LAN connection, the controller PC must be able to uniquely address the media server. It turns out that on most Microsoft operating systems, referring to the media server by its computer name tends to only be successful when a network connection has previously been established by way of Microsoft’s “Map Network Drive” command on the Tools menu. If this has not previously been done, referring to the media server according to its computer name will often not produce the desired connection, and one must rely on the absolute IP address of the media server. Unfortunately, in most homes, IP addresses are a result of a DHCP server which assigns dynamic IP addresses. This means that when either the media server or the router/gateway is rebooted, either intentionally or due to a power outage, the media server may end up having a different IP address as a result. Thus using absolute IP addresses can be unreliable from day to day. In addition, the average user is not accustomed to running the “ipconfig” command from the command line prompt on a PC in order to determine the new IP address when it changes. Further, a media server residing in an entertainment center cabinet should really be a “headless” PC, having no keyboard, and should reinitialize upon rebooting with no intervention from the user.

[0054] It is therefore important to have a reliable means for one PC to locate another PC on the same LAN and automatically establish a connection. Information flow for a solution to this problem is shown in FIG. 14. Here, local (controller) PC 1401 and media server 1402 reside on LAN 1403 in a user’s home. Both local PC 1401 and media server 1402 send information regarding their identity and local environment (together referred to as “environment information” hereinafter) via the Internet to the access controller function 1404 residing on access control website 1405. The controller PC 1401 sends computer name and IP address information 1406, along with other environment information, while the media server sends similar environment information including computer name and IP address information 1407. Access controller function 1404 then analyzes this information and returns computer names and IP address information 1408 of all computers available for connection on the user’s network to all computers on the user’s network, be it a conventional LAN, a VPN (virtual private network), or a private network of any kind. Normally this functionality may be used within a LAN according to the media server remote control functionality of the present invention, however it may also be used for a remotely located PC such as PC 1409, although identifying a remote PC for inclusion in a user’s network environment requires a different analysis by access controller function 1404 than for those PCs that reside on the LAN.

[0055] The flowchart of FIG. 15 describes the process represented by the system and information flow of FIG. 14. In step 1501, the PC and media server computers send their computer names, IP addresses, and any other required environment information to the access controller website for processing. As part of the environment information that is sent, a variety of status and service discovery information may also be sent. In step 1502, the access controller uniquely identifies each computer according to the information supplied and determines that the computers in fact belong to the same network and should be allowed to talk. Optionally, software running on the PCs and media server involved may also provide additional forms of environment information to the access controller which uniquely identify the particular user or the user’s organization, and also may identify a particular network belonging to a user or organization. In step 1503, the access controller sends the appropriate computer names and IP addresses to all computers in the network to enable connections between computers. Finally in step 1504, the controller PC may establish its link with the media server by using the unique IP address within the LAN or private network for the media server, that address having been supplied by the access controller.

[0056] This process is repeated at regular intervals such that any changes in IP addresses as a result of dynamic address assignment by a DHCP server will not affect the connectivity within the system as perceived by the user. The chosen interval may vary with the system and the user, and the interval may be as short as seconds or milliseconds or as long as minutes. While the functionality of FIGS. 14 and 15 is described with regard to the present invention where a media server is remotely controlled by another computer, the functionality of FIGS. 14 and 15 can also be used for establishing connectivity between multiple computers in any network—LAN or WAN—physical or virtual.
Computer and network status as well as service discovery information may also be sent as part of the environment information, and may include:

- Host discovery
- Name resolution

Protocols:

- DNS
- Dynamic DNS
- Multicast DNS
- WINS
- NetBIOS over TCP/IP Name Resolution and WINS

Name types:

- Host names
- NetBIOS names

Service discovery:

- Apple Multicast DNS/DNS-SID
- Apple Bonjour
- Microsoft UPnP SSDP
- IETF Zeroconf

Interface Configuration

- Automatic Multicast Address Allocation

Name-to-Address Translation (and vice versa)

Service Delivery

Microsoft Function Discovery Provider Host

Windows Media Center Extender Service

Fig. 16 further describes how PCs and other controller devices on a LAN may locate a media server with assistance from an Internet-based access controller function, with particular detail shown here with regard to IP addresses. It is generally known in the art that a computer at one physical location may communicate via the Internet with a computer at another physical location in order to establish a VoIP (voice over Internet protocol) conversation. However, these functionalities focus on connections routed through the Internet and do not focus on the unique circumstances involved in establishing connections within a LAN. In fact, when attempting to make connections between two PCs on a LAN via an Internet-routed VoIP functionality, packets originating within the LAN will be routed via the external port on the gateway/router and thus will experience lower performance compared with being routed directly within the LAN based on the specific LAN characteristics. Internet-routed VoIP functionalities also fall short of automatically making decisions regarding allowable connections and automatically establishing those connections. In addition, these VoIP functionalities do not include service discovery information with regard to LAN connectivity, nor do they aid in or automatically conduct network configuration.

Fig. 16 shows a wireless LAN 1601 within a home which connects a media server PC 1602 with local PCs 1603 and 1604 and a gateway/router 1605 which in turn, interfaces with the Internet 1606. Also present within the home is a wired LAN 1609 which connects gateway/router 1605 with local PC 1603. It is prevalent that the gateway/router in a home presents a single IP address to the Internet. In this case, gateway/router 1605 presents the IP address <263.65.3.172> to the Internet 1606. For homes, this IP address is typically a dynamic address and subject to change from time to time. In order to conserve IP addresses, gateway/routers used in most homes utilize an implementation called NAT (network address translation) that allows multiple local IP addresses to be utilized within the LAN while presenting only a single IP address to the Internet. Gateway/router 1605 keeps track of which device on the LAN is communicating with the Internet according to port numbers utilized in the communication. Within the LAN there are conventions for what IP address formats are used, and some of the most frequently utilized IP address notations begin with either "10" or "192". In the example of Fig. 16, all of the internal IP addresses within the home begin with "10". Gateway/router 1605 presents different IP addresses to the wireless LAN 1601 <10.0.0.1> and the wired LAN 1609 <10.0.0.254>. PC 1603 can choose to communicate with the gateway/router through either LAN available to it, and uses IP address <10.0.0.2> when communicating via wireless LAN 1601, and IP address <10.0.0.109> when communicating via wired LAN 1609. Typically, communications on the wired LAN are more desirable when this connection type is available, due to its superior speed compared with a wireless LAN connection. Note that while this example shows a wireless LAN and a wired LAN that are co-resident in a home connected to the Internet via a single gateway/router, a home may in fact contain multiple wireless LANs, again connected to a single gateway/router. When the multiple LANs, including any of wired and wireless LANs, are present in the home, the network can be configured such that the bandwidth involved in the remote control and display of videos is distributed over multiple LANs. Such a distribution may involve using one LAN which is in fact much slower than another LAN. However in spite of this fact, the overall performance of the networks in the home for the remote control, distribution, and display of video information according to this invention may in fact be maximized. Notice in this example that all IP addresses within the home take the form <10.0.0.xxx>. According to this invention, connection software on each device within the home that participates in the connection methodology described herein will include the local IP addresses associated with each device as part of the identity and environment information which is sent to access controller function 1607 located on website 1608 on the Internet 1606. Thus, access controller function 1607 will know that all devices communicating by way of IP address <263.65.3.172> are on the same LAN and send information indicating as much back to connection software running on each device on the LAN. Each local PC 1603 or 1604, could, if desired by the user, become a controller for media server 1602. Based on the identity information supplied by access controller function 1607, a local PC used as a controller device will have knowledge of the local IP address <10.0.0.101> for media server 1602. This controller device will then be able to directly address video server 1602 according to local IP address <10.0.0.101>, and thus establish a connection without totally relying on the operating system’s (often inadequate) network connection methodologies. With guidance from access controller function 1607, connection software on each device on the LAN may automatically configure connections between potential controller devices and potential media servers. These automatically established connections may be done either with or without explicit permission from the user depending upon the chosen implementation.

There may be times when web-based access controller function 1607 is not available to users within a LAN, due to a problem with website 1608 or some issue with the Internet or the user’s ISP in particular. It may therefore be desirable to have an alternative methodology applicable within the LAN for connections between the controller device and
media server. Such a methodology as shown in FIG. 17. Here, LAN 1701 connects media server 1702 with local PCs 1703 and 1704, either of these local PCs capable of becoming a controller device. According to one embodiment of this invention, media server 1702 will regularly broadcast its local IP address «10.0.0.101» to other devices on the LAN either by implementing a broadcast packet methodology, or by implementing a series of messages targeting individual IP addresses on the LAN. In this example «10.0.0.100>, «10.0.0.102» and «10.0.0.103» If the target devices on the LAN are able to properly receive the broadcast packet intended for them, they will then understand the local IP address for media server 1702 and be able to directly address the media server by this address in order to establish a direct connection for implementing remote control functionality per this invention.

[0084] FIGS. 18 through 21 address a media server remote control functionality that involves not one window and video displayed on the media server, but two or more. This functionality is especially useful for observing multifaceted events where multiple views are possible, and where one particular user or user family may wish to watch a different set of possible views than other families might. Examples of such applications involve racing events, where users may choose to view certain cars or certain places on the track, as well as Olympic-class sporting contests where a large number of events occur simultaneously and conventional TV coverage is very limited since only one event can be viewed at a time. With the advent of widescreen TVs the ability to watch more than one event more than one view of a particular event becomes possible, and if supported by functionality implementing a multiple view display and an appropriate selection and remote control capability, the user can at any time choose a particular event or view to fill the entire screen if desired.

[0085] FIG. 18 shows an overview of such a system where widescreen TV 1801 displays four different views of a racing event. TV 1801 acts as the display for media server 1802 which is remotely controlled from laptop computer controller device 1804. A display of possible views that a user may choose is shown on screen 1803 of controller device 1804.

[0086] FIG. 19 shows different methods for implementing such a multi-view, multi-window capability. Here the TV display 1901 driven by a media server shows four different views simultaneously in four windows. A controller device 1902 may remotely control the media server according to the embodiment of this invention per FIGS. 6 and 8, where the media server windows shown on display 1901 are directly manipulated according to user-initiated activity in remote control window 1903 on controller device 1902. Alternately, controller device 1904 may be used where remote control window 1905 is used to control a hidden active window 1906 on the media server in a manner similar to that described in FIGS. 7 and 10. Here, the user of controller device 1904 would use a hidden active window to locate additional views or videos they wish to watch as part of multi-view, multi-window display 1901, and when they have located material they wish to view, they initiate an action causing one window on display 1901. In this case the window labeled “Video 2,” to be replaced with the new material previously located using hidden active window 1906.

[0087] Note in FIG. 19 that the four video windows shown on media server display 1901 may represent four separate browser windows in some implementations. In such cases, it is desirable that a video being displayed fills each entire browser window. However, this is in contradiction with the implementation convention observed by the creators of most popular software media player programs such as Windows Media Player, Adobe Flash player, and others. All popular media player software programs have the ability to play a video in a portion of an active window. Additionally for some software media players, when the user requests “full screen,” they fill the entire computer screen with the video image. What is needed for the scenario of FIG. 19 is a “full screen” mode that fills the entire window with the videos, but not the entire computer screen. Accordingly, the disclosed embodiments of this invention shall also include the capability for a software media player to optionally fill an entire window with a video image rather than filling the entire computer screen.

[0088] Another variation on remotely controlling a multi-view, multi-window display is shown in FIG. 20 where display 2001 is controlled by controller device 2002. Here, local window 2003 is used to locate additional views or videos to be watched on multi-window display 2001. When the user locates material they wish to add using local browser window 2003, the address link for that material from local window 2003 is passed through network connection 2004 to the media server and as shown in FIG. 20, that material replaces the view or video previously shown labeled as “Video 2”. This functionality is similar to that for link passing between the controller and media server described with respect to FIG. 9. Thus, using any of the embodiments according to FIGS. 6, 7, 8, 9, and 10, a controller device may be used to locate additional views or videos the user wishes to watch as part of a multi-view, multi-window display on the media server and TV, with an additional view or video selected using the controller device replacing a view or video on the media server in response to an action supplied by the user.

[0089] Regardless of which method is implemented for remotely controlling a multi-window, multi-view display from a controller device, it is desirable to create the overall functionality shown in FIG. 21 utilizing one of these remote control methodologies. In FIG. 21, multi-window display 2101 shows four videos or views displayed simultaneously. Controller device 2102 presents the user with display 2103 having a larger number of views than are currently displayed on the media server and TV 2101. Virtually every sporting event has multiple cameras generating multiple feeds but typically only one feed is selected by the programming director for conventional TV broadcast. Via the Internet, a TV network can make multiple video feeds from different cameras available to the user who, according to this invention, observes them on the controller device. The user would observe display 2103 and select a subset of views to be displayed on media server and TV 2101. Hence, the choice of displaying the four particular views as shown in FIG. 21 would then be performed by remote control links 2104 which may be implemented by any of direct remote control, remote control of hidden active windows, or link passing from a local window on the controller device to the media server. Also, for any of the embodiments described herein for a multi-window, multi-view display on a media server, the user would optionally have the capability to select the contents of a single window or view to be displayed covering the entire TV screen in response to an action taken by the user by way of the controller device.

[0090] When a particular video is displayed simultaneously on both the controller and media server, it may be advantageous to utilize a multicast methodology to simultaneously stream the video to both the controller and media
Thus, the foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to one of ordinary skill in the relevant arts. For example, unless otherwise specified, steps preformed in the embodiments of the invention disclosed can be performed in alternate orders, certain steps can be omitted, and additional steps can be added. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.

What is claimed is:

1. A method for controlling a media server from a remote controller device via a LAN, comprising:

 receiving at an access control function located on a server on the Internet and not on the LAN, the IP address of the media server and network identification information for the LAN, both having been automatically sent from said media server;

 receiving at the access control function located on a server on the Internet and not on the LAN, the IP address of the remote controller device and network identification information for the LAN both having been automatically sent from said remote controller device;

 determining at said access control function that the media server and the remote controller device are on the same LAN;

 transmitting the IP address of the Media Server from the access control function to the remote controller device; and

 wherein media is selected to be played on the media server according to media control information transmitted from the remote controller device to the media server via the LAN.

2. The method of claim 1 further comprising:

 transmitting the IP address of the remote controller device from the access control function to the Media Server.

3. The method of claim 1 wherein no IP addresses need be entered manually by a user of the remote controller device or a user of the media server in order to establish communication between the remote controller device and the media server.

4. The method of claim 1 wherein the IP address of the media server is not discovered by communication between the media server and the remote controller device via the LAN.

5. The method of claim 1 wherein the IP address of the remote controller device is not discovered by communication between the media server and the remote controller device via the LAN.

6. A method for operating a media server to simultaneously play multiple videos on a TV display, comprising:

 receiving at the media server a first group of video selections as selected by a remote controller device;

 simultaneously playing on the TV display a plurality of videos corresponding to the first group of video selections;

 wherein the first group of video selections is a subset of a second group of videos;

 wherein a plurality of videos are played on the remote controller device corresponding to the second group of videos; and

 wherein the number of videos simultaneously played on the remote controller device is greater than the number of videos simultaneously played on the media server.

7. The method of claim 6 wherein the plurality of videos simultaneously played on the remote controller device are video feeds supplied by a TV network.

8. The method of claim 7 wherein the plurality of videos simultaneously played on the remote controller device relate to the same sporting event.

9. The method of claim 6 further comprising:

 selecting a subset of the plurality of videos simultaneously played on the remote controller device to be played on the media server;

10. The method of claim 6 further comprising:

 selecting a subset of the plurality of videos simultaneously played on the remote controller device to replace videos currently being played on the media server.

11. A method for operating a remote controller device to cause multiple videos to be simultaneously played on a TV, comprising:

 transmitting to a media server a first group of video selections as selected using the remote controller device, whereby a plurality of videos corresponding to the first group of video selections are simultaneously played on the TV display;

 wherein the first group of video selections corresponds to a subset of a second group of videos;

 wherein a plurality of videos are played on the remote controller device corresponding to the second group of videos; and

 wherein the number of videos simultaneously played on the remote controller device is greater than the number of videos simultaneously played on the media server.

12. The method of claim 11 wherein the plurality of videos played on the remote controller device are video feeds supplied by a TV network.

13. The method of claim 12 wherein the plurality of videos played on the remote controller device relate to the same sporting event.

14. The method of claim 11 further comprising:

 selecting a subset of the plurality of videos played on the remote controller device to be played on the media server;

15. The method of claim 11 further comprising:

 selecting a subset of the plurality of videos played on the remote controller device to replace videos currently being played on the media server.