A transparent performance apparatus allows a wide variety of acrobatic performances to be performed, while also providing an unobstructed view of a performer. The apparatus may comprise a circular transparent body having an opening therein. The body may be sized to accommodate at least the height of a performer such that the performer may position him or herself within the opening of the body. The transparency of the body allows an unobstructed view of the performer. An outer surface may be curved to allow the apparatus to be more easily moved on a stage or other surface. In addition, the inner surface formed by the opening may be curved to allow a performer to control the motion of the apparatus during a performance.
TRANSPARENT PERFORMANCE APPARATUS

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The invention relates generally to performance apparatus, and in particular to a transparent performance apparatus usable for acrobatic performances.

[0003] 2. Related Art

[0004] Acrobatic performances are highly entertaining and enjoyed by many. There are a seemingly endless variety of acrobatic performances. For instance, some acrobatic performances are performed only with a performer’s body, such as by tumbling and the like. Other acrobatic performances utilize a prop or accessory such as to highlight or accentuate a performer’s movements.

[0005] Yet another type of acrobatic performance utilizes performance apparatus, which a performer may move or otherwise manipulate during a performance. The apparatus thus becomes a part of the performance itself.

[0006] From the discussion that follows, it will become apparent that the present invention addresses the deficiencies associated with the prior art while providing numerous additional advantages and benefits not contemplated or possible with prior art constructions.

SUMMARY OF THE INVENTION

[0007] A transparent performance apparatus is disclosed herein. The transparent performance apparatus provides a transparent structure through which various acrobatic or other performances may occur. The transparency of the transparent performance apparatus provides an unobstructed view of a performer. The transparent performance apparatus can thus be used in highly entertaining and unique performances.

[0008] The transparent performance apparatus may have a variety of configurations. For example, in one exemplary embodiment, the transparent performance apparatus may comprise a transparent circular body having a centered opening therein, a concave inner surface formed by the opening in the transparent circular body, and a convex outer surface at the peripheral edge of the transparent circular body. The concave inner surface may be curved laterally from a first side to a second side of the transparent circular body, and the convex outer surface may be curved laterally from the first side to the second side of the transparent circular body. The centered opening will typically be large enough to accept a performer therein.

[0009] A portion of the outer surface and/or inner surface may be polished smooth to help ensure transparency. The transparent performance apparatus may comprise one or more treads attached to the outer surface to provide traction. The one or more treads may be attached at the first side and the second side of the transparent circular body. The transparent circular body may be a solid structure formed from a transparent material. In addition, the transparent circular body may have a uniform thickness.

[0010] In another exemplary embodiment, the transparent performance apparatus may comprise a closed circular band consisting of a solid transparent material configured to accept a performer therein. A first curved surface may be on the inside of the transparent ring, and a second curved surface on the outside of the transparent ring. The closed circular band may have a cross sectional width that is larger than its cross sectional thickness. The first curved surface may be concave or convex. Likewise, the second curved surface may be concave or convex. A tread may be at a peripheral edge of the closed circular band.

[0011] Various methods relating to the transparent performance apparatus are disclosed herein as well. In one exemplary embodiment, a method of forming a transparent performance apparatus may comprise bending a plurality of planar transparent sections into a first curve, forming a second curve that is perpendicular to the first curve into the plurality of planar transparent sections, arranging the plurality of planar transparent sections such that their second curves are parallel, and attaching the plurality of planar transparent sections together to form a closed band. The second curve of the plurality of planar transparent sections may extend laterally from a first side to a second side of the closed band. These second curves may be used to curve an outer periphery of the closed band to outward. The inside or outside surface of the closed band may be polished smooth to help ensure transparency of the transparent performance apparatus. Also, a tread may be applied at the outside surface of the closed band.

[0012] Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within the scope of the invention, and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.

[0014] FIG. 1A is a perspective view of an exemplary transparent performance apparatus;

[0015] FIG. 1B is a side view of an exemplary transparent performance apparatus;

[0016] FIG. 1C is a front view of an exemplary transparent performance apparatus;

[0017] FIG. 2 is a cross sectional view of an exemplary transparent performance apparatus;

[0018] FIG. 3A is a perspective view of an exemplary transparent performance apparatus;

[0019] FIG. 3B is a perspective view of an exemplary transparent performance apparatus;

[0020] FIG. 4A is a side view of an exemplary transparent performance apparatus;

[0021] FIG. 4B is a side view of an exemplary transparent performance apparatus;

[0022] FIG. 5A illustrates an exemplary transparent performance apparatus used in a first performance;

[0023] FIG. 5B illustrates an exemplary transparent performance apparatus used in a first performance;

[0024] FIG. 5C illustrates an exemplary transparent performance apparatus used in a first performance;

[0025] FIG. 5D illustrates an exemplary transparent performance apparatus used in a first performance;

[0026] FIG. 5E illustrates an exemplary transparent performance apparatus used in a first performance;

[0027] FIG. 5F illustrates an exemplary transparent performance apparatus used in a first performance.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0028] In the following description, numerous specific details are set forth in order to provide a more thorough description of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.

[0029] As its name implies, the transparent acrobatic performance apparatus herein permits a user to perform a wide variety of performances while being completely visible. Unlike traditional performance apparatus, the transparent performance apparatus herein does not comprise opaque elements, which would detract from the user’s performance. For example and as will be discussed below, with the transparent performance apparatus, no bars or other structures would block viewing of a performance. In traditional performance apparatus, these structures are constructed from rigid materials selected for their strength, such as metal or wood. Though strong, these materials are also opaque and thus block the view of at least some of a performance.

[0030] The transparent performance apparatus will now be described with regard to FIG. 1A. FIG. 1A is a perspective view of the transparent performance apparatus 104. As can be seen the transparent performance apparatus 104 may comprise a transparent body 120 having an opening 108 configured to accept at least a portion of a performer’s body. In other words, a performer may insert his or her entire body into the transparent performance apparatus, or various portions thereof, such as the performer’s arms, legs, torso, pelvis, head, and the like.

[0031] The wall of the opening 108 forms an inner surface 112 of the transparent performance apparatus 104, while the outer periphery forms an outer surface 116 of the transparent performance apparatus. As will be described further below, a performance may engage either or both the inner and outer surfaces 112, 116 during a performance.

[0032] In one or more embodiments, the body 120 of the transparent performance apparatus 104 may be circular in shape, such as shown in FIG. 1A. This allows a performer to move the transparent performance apparatus 104, such as by rolling the transparent performance apparatus. As shown in FIG. 1A, the transparent performance apparatus 104 is a circle, however, it is contemplated that the transparent performance apparatus may be various circular, semi-circular, or oval shapes.

[0033] As can be seen, the shape of the opening 108 may correspond to the shape of the body 120. For instance, in the embodiment of FIG. 1A, both the body 120 and its opening 108 are matching circles. In the embodiment of FIG. 1A, the opening 108 is centered in the body 120. In this manner, if a performer were to roll the transparent performance apparatus 104 from within the opening 108, the transparent performance apparatus would roll in a uniform manner. It is contemplated however, that the opening 108 need not be centered in all embodiments. In such embodiments, the opening 108 may appear to “wobble” when the transparent performance apparatus 104 is rolled.

[0034] It is also contemplated that the shape of the opening 108 need not match the peripheral shape of the body 120. For example, the opening 108 may be an oval (or other shape), while the body 120 is shaped as a circle.

[0035] FIGS. 1B-1C respectively illustrate side and front views of the transparent performance apparatus 104. In one or more embodiments, the transparent performance apparatus 104 may be symmetrical from front to back and side to side. In such embodiments, a front view would also depict the back of the transparent performance apparatus. Likewise, a side view of a symmetrical embodiment would depict both sides of the transparent performance apparatus 104.

[0036] Referring to FIG. 1C, it can be seen that the body 120 spans the entire width of the transparent performance apparatus 104. Typically, the body 120 will be a solid structure, with no openings or gaps other than the opening 108 described above. This gives the transparent performance apparatus 104 an increased mass for performances. This is unlike traditional performance apparatus, which typically are lightweight open structures consisting of rigid bars or members attached to one another. The increased mass causes the transparent performance apparatus 104 to exhibit distinct characteristics as it moves. For instance, the increased mass allows different performances to be performed since the mass of the transparent performance apparatus 104 causes it to continue moving once it starts moving.

[0037] FIG. 2 provides a cross sectional view of the body 120 of the transparent performance apparatus 104. As can be seen, at least the outer surface 116 of the transparent performance apparatus 104 may be curved. This is beneficial in that it reduces surface contact between the body 120 and the stage (or other surface) upon which the transparent performance apparatus 104 is placed for use. As a result, a performer may more easily move (e.g., roll) the transparent performance apparatus 104, even if the transparent performance apparatus has an increased mass. As shown, the outer surface 116 has a convex shape, however it is contemplated that the outer surface may be concave in some embodiments. In concave embodiments, the outer edges of the outer surface 116 may contact the stage rather than a middle or central portion of the outer surface.

[0038] It is contemplated that the inner surface 112, outer surface 116, or both may be smooth to facilitate light transmission through the surfaces (and thus the body 120 as well). Removing surface imperfections creates a polished smooth surface that helps ensure the transparency of the transparent performance apparatus 104. It is noted that if the inner and outer surfaces 112,116 should become worn (such as from use) they may be resurfaced to restore any loss in transparency. For example, the inner and outer surfaces 112,116 may be polished to a smooth finish when worn or as otherwise desired.

[0039] In one or more embodiments, the transparent performance apparatus’ body 120 may comprise a rigid transparent material (such as described above). It is contemplated that a portion of the outer surface 116 or portion thereof may have a texture formed therein so as to give the transparent performance apparatus 104 some traction as it is moved. This is beneficial in preventing the transparent performance apparatus 104 from sliding laterally out from the performer as it is rolled, especially where the outer surface 116 of the transparent performance apparatus is curved. It is noted that instead of or in addition to a texture, a transparent tread may be applied to the body 120 to give the transparent performance apparatus this traction. The tread 312 may be preferred in some embodiments, since texturing may reduce the ability for light to pass through the body 120. FIGS. 3A-3D illustrate exemplary
locations 304 on the outer surface where texturing 308 or a tread 312 may be applied to the body 120.

[0040] It will be understood that various embodiments of the transparent performance apparatus may utilize texturing 308, applied tread 312, or both, but that neither would be required in all embodiments. Typically, texturing 308 or tread 312 will be transparent or translucent at the very least. In embodiments including tread 312, the tread may be secured to the body 120 in various ways. For example, the tread 312 may be secured by various fasteners and/or adhesives. In some embodiments, the tread 312 may be shaped to attachably engage a portion of the body 120. For example, the tread 312 may surround a portion of the body 120 (e.g., the tread may comprise a channel to accept a portion of the body), or the tread may be inserted into a groove or the like provided in the body to secure the tread. In some embodiments, the tread 312 may be a planer structure adhered on one side to the body 120. For example, the tread 312 may be an elongated planer band adhered or otherwise bonded on one side to the body 120.

[0041] In embodiments with texturing 308, it is contemplated that the texture could be cut or otherwise formed into the outer surface 116 of the body. Alternatively, a transparent or translucent coating may be applied to the outer surface 116 to produce the texture 318. The texture 308 or tread 312 may be a clear rubber or elastic/flexible plastic material to provide traction.

[0042] Referring back to FIG. 2, it can be seen that the transparent performance apparatus may also have a curved inner surface 112. The curve of the inner surface 112 may, but need not, match that of the outer surface 116. It is contemplated that the inner surface 112 need not be curved in some embodiments. However, one benefit of the curved inner surface 112 is that it allows a performer to better control the transparent performance apparatus 104 from within the opening 108. This is because a curved inner surface 112 allows a performer to apply force to the transparent performance apparatus 104 at various angles, thus controlling the motion of the transparent performance apparatus.

[0043] Like the outer surface 116, the inner surface 112 may have a texture, tread, or the like to increase traction within the opening 108 of the transparent performance apparatus 104. Typically, this will be used to allow the performer to more securely engage the inner surface 112 of the transparent performance apparatus 104. However, increased traction at the inner surface 112 will not be required in all embodiments because a performer may not need or desire it.

[0044] The transparent performance apparatus 104 may be constructed in various ways. For example, the transparent performance apparatus 104 may be constructed in portions or subassemblies that are attached together to form a completed apparatus. In one embodiment for instance, the transparent performance apparatus 104 may be formed with individual semicircular subsections that are adhered, bonded, welded, or otherwise attached together. These curved subsections may be formed in various ways. For example, a subsection may be bent or otherwise formed into a curve.

[0045] It is noted that the connection between subsections will typically be transparent so as to preserve the overall transparency of the transparent performance apparatus 104. In another embodiment, the transparent performance apparatus 104 may be formed or molded from a transparent material in one piece. Any desired texturing or tread may be applied to the subsections before assembly or to the assembled transparent performance apparatus 104. FIGS. 4A-4B illustrate exemplary transparent performance apparatus with their subassemblies 404 delineated by broken lines. It is noted that the subassemblies 404 may have a variety of different shapes, in addition to those provided for illustration purposes in FIGS. 4A-4B.

[0046] The transparent performance apparatus 104 provides a number of advantages during a performance. For example, the transparent performance apparatus 104 may be presented such that it is not readily visible during the performance (e.g., lighting could be adjusted to make the apparatus not readily visible). In such case, a performer would appear to float or fly as he or she performs. In addition, the transparent performance apparatus 104 could be highlighted during a performance. For example, the transparent performance apparatus may be lit to highlight its light transmitting/reflecting characteristics. To illustrate, light of various color may be bounced off of or transmitted through the transparent performance apparatus 104 and onto the performer and adjacent stage elements. A number of unique shadow effects could also be generated with the translucent performance apparatus 104. Unlike traditional opaque apparatus, only a performer's shadow could be made readily visible during a performance.

[0047] As discussed above, the transparent performance apparatus may be used in a variety of performances. Some exemplary performances utilizing the transparent performance apparatus 104 will now be described with regard to FIGS. 5A-5F. As will become apparent from the following, the transparent performance apparatus 104 may be rotated horizontally, vertically, or both during a performance. FIGS. 5A-5B illustrate performances with horizontal rotation, FIGS. 5C-5E illustrate performances with vertical rotation, and FIG. 5F illustrates a performance where the transparent performance apparatus may be rotated in both directions.

[0048] Referring to FIG. 5A, it can be seen that a performer 504 may hold himself or herself across the opening 108 of the transparent performance apparatus 104 as the apparatus is rotating horizontally. It is contemplated that the performer 504 may first spin the transparent performance apparatus 104 in this direction before positioning him or herself within the opening 108. Alternatively, another performer may rotate the transparent performance apparatus 104. Since the transparent performance apparatus 104 is not readily visible, the performer 504 may appear to be spinning in mid air during this performance.

[0049] Referring to FIG. 5B, it can be seen that a performer 504 may spin the transparent performance apparatus 104 horizontally while standing within the opening 108 of the apparatus. The performer 504 may rotate the transparent performance apparatus 104 with his or her hands and feet. For example, a walking motion with the performer's feet, a twisting motion with the performer's hands, or both may be used to rotate the transparent performance apparatus 104.

[0050] FIG. 5C illustrates an exemplary performance where the transparent performance apparatus 104 is rotated vertically by the weight of the performer 504. For instance, as shown, the performer 504 engages the transparent performance apparatus at an elevated location. As gravity pulls the performer 504 downward the transparent performance apparatus 104 is rotated. As can be seen from 5C, the performer 504 may hang onto the transparent apparatus 104 to cause begin this rotation. It is contemplated that the performer 504 may remain at this location of the transparent performance apparatus 104, by continuously grasping and pulling the
transparent performance apparatus downward. In this manner, a number of rotations may be accomplished as desired by the performer 504.

FIG. 5D illustrates another exemplary performance where the performance apparatus 104 is rotated vertically. As can be seen, the performer 504 may roll the transparent performance apparatus 104 by engaging an outer surface 116 of the transparent performance apparatus. For example, as shown in FIG. 5D, the performer is walking or running on the transparent performance apparatus 104. FIG. 5E illustrates a performance where the performer may roll the transparent performance apparatus 104 by engaging an inner surface 112 of the transparent performance apparatus. Namely, the performer may walk or run on the inner surface 112 of the transparent performance apparatus 104. FIG. 5F illustrates a performance where the transparent performance apparatus 104 rotates like a coin during a performance. Typically the performer will be inside the transparent performance apparatus 104 for such a performance.

While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. In addition, the various features, elements, and embodiments described herein may be claimed or combined in any combination or arrangement.

What is claimed is:

1. A transparent performance apparatus comprising:
 - a transparent circular body having a centered opening therein;
 - a concave inner surface formed by the opening in the transparent circular body, the concave inner surface being curved laterally from a first side to a second side of the transparent circular body; and
 - a convex outer surface at the peripheral edge of the transparent circular body, the convex outer surface being curved laterally from the first side to the second side of the transparent circular body;
 wherein the centered opening is large enough to accept a performer therein.

2. The transparent performance apparatus of claim 1, wherein the outer surface is polished smooth.

3. The transparent performance apparatus of claim 1, wherein the inner surface is polished smooth.

4. The transparent performance apparatus of claim 1 further comprising one or more treads attached to the outer surface to provide traction.

5. The transparent performance apparatus of claim 4, wherein the one or more treads are attached at the first side and the second side of the transparent circular body.

6. The transparent performance apparatus of claim 1, wherein the transparent circular body is a solid structure formed from a transparent material.

7. The transparent performance apparatus of claim 1, wherein the transparent circular body has a uniform thickness.

8. A transparent performance apparatus comprising:
 - a closed circular band configured to accept a performer therein, the closed circular band consisting of a solid transparent material;
 - a first curved surface on the inside of the transparent ring; and
 - a second curved surface on the outside of the transparent ring;
 wherein the closed circular band has a cross sectional width that is larger than its cross sectional thickness.

9. The transparent performance apparatus of claim 8, wherein the first curved surface is a concave lateral curve.

10. The transparent performance apparatus of claim 8, wherein the first curved surface is a convex lateral curve.

11. The transparent performance apparatus of claim 8, wherein the second curved surface is a concave lateral curve.

12. The transparent performance apparatus of claim 8, wherein the second curved surface is a convex lateral curve.

13. The transparent performance apparatus of claim 8, wherein the second curved surface is polished smooth.

14. The transparent performance apparatus of claim 8 further comprising a tread at a peripheral edge of the closed circular band.

15. A method of forming a transparent performance apparatus comprising:
 - bending a plurality of planar transparent sections into a first curve;
 - forming a second curve into the plurality of planar transparent sections, wherein the second curve is perpendicular to the first curve;
 - arranging the plurality of planar transparent sections such that their second curves are parallel; and
 - attaching the plurality of planar transparent sections together to form a closed band, wherein the second curve of the plurality of planar transparent sections extends latently from a first side to a second side of the closed band.

16. The method of claim 15 further comprising polishing an outside surface of the closed band to form a smooth outer surface.

17. The method of claim 15 further comprising polishing an inside surface of the closed band to form a smooth inner surface.

18. The method of claim 15 further comprising applying a tread at the outside surface of the closed band.

19. The method of claim 15, wherein the closed band has a circular shape.

20. The method of claim 15, wherein the second curves cause an outer periphery of the closed band to curve outward.

* * * * *