Title: METHOD FOR PROCESSING HIDES OR LEATHER, TANNING AGENTS AND METHOD FOR MANUFACTURING SAME

Title: PROCEDE DE TRAITEMENT DE PEAUX OU CUIRS, AGENTS DE TANNAGE ET PROCEDE DE FABRICATION

Abstract

A method for processing tawny or tannery articles such as hides and leather whereby loosening of the fibers and internal fat distribution are effected in order to increase the hides' surface area and homogenize their thickness. According to the method, the hides or leather are contacted, during the manufacturing process, with methanesulphonate CH₃SO₃⁻ ions. In particular, this step may be carried out during the pickling and/or tanning and/or dyeing processes, especially by means of methanesulphonic acid optionally combined with another acid. Said method substantially improves product quality, particularly by allowing a cost-efficient enhancement of inferior quality hides.

Abrégé

L'invention concerne un procédé de traitement d'articles de ménagerie ou tannerie tels que peaux et cuirs en vue de réaliser un effet de relâchement des fibres et une répartition interne des graisses conduisant à une augmentation de surface des peaux et à une homogénéisation de leur épaisseur. Ce procédé consiste à mettre les peaux ou cuirs, au cours de la fabrication, au contact d'ions méthanesulfonate CH₃SO₃⁻. Cette mise au contact peut notamment être effectuée, lors des opérations de pickling, et/ou lors des opérations de tannage, et/ou lors des opérations de teinture, en particulier en utilisant l'acide méthanesulfonique, éventuellement combiné à un autre acide. Le procédé de l'invention permet d'améliorer de façon considérable les qualités des produits ; il permet en particulier de valoriser des peaux de qualité inférieure dans de bonnes conditions de rentabilité.

* Voir au verso
+ DESIGNATIONS DE “SU”

Toute désignation de “SU” produit ses effets dans la Fédération de Russie. On ignore encore si une telle désignation produit ses effets dans les autres États de l’ancienne Union soviétique.

UNIQUEMENT À TITRE D’INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Autriche</td>
<td>FI</td>
<td>Finlande</td>
<td>FR</td>
<td>France</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
<td>GB</td>
<td>Royaume-Uni</td>
<td>GN</td>
<td>Guinée</td>
<td>GR</td>
<td>Grèce</td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
<td>HU</td>
<td>Hongrie</td>
<td>IT</td>
<td>Italie</td>
<td>JP</td>
<td>Japon</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>JP</td>
<td>Japon</td>
<td>KR</td>
<td>République de Corée</td>
<td>KP</td>
<td>République populaire démocratique de Corée</td>
</tr>
<tr>
<td>BF</td>
<td>Bénin</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>LS</td>
<td>Sri Lanka</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>LUX</td>
<td>Luxembourg</td>
<td>MG</td>
<td>Madagascar</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BJ</td>
<td>Brésil</td>
<td>NO</td>
<td>Norvège</td>
<td>MN</td>
<td>Mongolie</td>
<td>MR</td>
<td>Mauritanie</td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
<td>NL</td>
<td>Pays-Bas</td>
<td>MZ</td>
<td>Mozambique</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>RO</td>
<td>Roumanie</td>
<td>SD</td>
<td>Soudan</td>
<td>SO</td>
<td>Soudan</td>
</tr>
<tr>
<td>CP</td>
<td>République Centroafricaine</td>
<td>SE</td>
<td>Soudan</td>
<td>SN</td>
<td>Sénégal</td>
<td>SU+</td>
<td>Union soviétique</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>TD</td>
<td>Tchad</td>
<td>TG</td>
<td>Togo</td>
<td>US</td>
<td>États-Unis d’Amérique</td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
<td>US</td>
<td>États-Unis d’Amérique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Tchécoslovaquie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROCEDE DE TRAITEMENT DE PEAUX OU CUIRS,
AGENTS DE TANNAGE ET PROCEDE DE FABRICATION

L'invention concerne un procédé de traitement
d'articles de médisserie ou tannerie constitués de tissus
collagéniques tels que peaux ou cuirs, en vue de réaliser un
effet de relâchement des fibres des tissus et de répartition
interne des graisses, conduisant à une augmentation de surface
des peaux et à une homogénéisation de leur épaisseur, et
egalement à une amélioration des qualités de surface des
articles (toucher, aspect, régularité,...) et de leur
souplesse.

De nombreuses études ont été menées pour
tenter d'améliorer les procédés de fabrication du cuir,
généralement dans le but de limiter les rejets d'effluents
polluants ; ces études ont visé à améliorer certaines étapes
de fabrication telles que picklage, tannage, teinture ou
opérations de finissage. Certains procédés existants peuvent
conduire à une certaine amélioration des cuirs obtenus
(qualités de surface), mais cette amélioration est
insuffisante, surtout lorsque les peaux de départ sont des
peaux de qualité dite inférieure ou ayant souffert (par
exemple parce qu'ayant subi un délainage à l'échauffe...).

Actuellement, la fabrication de cuirs de qualité satisfaisante
à partir de certaines peaux de qualité inférieure impose un
surcoût très important (dû à l'addition de produits, à la
durée du cycle accru et à la multiplicité des opérations) qui
limite l'intérêt des traitements supplémentaires de sorte que
ces peaux demeurent généralement cantonnées à la fabrication
de produits bas de gamme.

De plus, les agents de traitement existants
qui conduisent à une certaine amélioration des cuirs sont
en général spécifiques à telle ou telle opération (par exemple
acide acétique et adjuvant pour le picklage des peaux,
produits cationique/anionique ou tensio-actifs pour la
nourriture des cuirs...) et ne peuvent être utilisés à un
autre stade de la fabrication.

Le problème de l'amélioration des qualités de
surface et de souplesse du cuir est donc mal résolu à l'heure
actuelle, ce qui s'explique par la nature très spécifique des peaux qui sont constituées de tissus collagéniques très sensibles à l'hydrolyse et aux agents bactériens : la plupart des agents entraîne une dégradation de ces tissus et le nombre de produits chimiques compatibles est très limité. De plus, aucun de ces agents ne permet d'homogénéiser de façon sensible l'épaisseur des peaux et d'obtenir une augmentation significative de leur superficie.

préférentiellement entre 20 et 30 carbones, qui présentent des propriétés émulsifiantes.

La fonction de tensio-actif de ces composés sulfonés à longue chaîne carbonée est bien connue et leurs propriétés émulsifiantes permettent une pénétration des graisses qu'ils véhiculent, à l'intérieur des peaux : ils réalisent ainsi un remplissage des peaux, qui conduit à une certaine amélioration de leur qualité de souplesse et de toucher. Cette opération impliquant un apport externe de matière grasse dans la peau est désignée par "opération de nourriture". Toutefois, ces produits et leur matière grasse sont définitivement fixés sur et dans la peau : cet apport modifie la structure du cuir et lui fait perdre une partie de ses propriétés originelles. De plus, ces produits ne corrigent pas les irrégularités d'épaisseur de la peau, puisque les graisses propres de celle-ci, dont la répartition hétérogène est la cause desdites irrégularités d'épaisseur, ne sont pas affectées. En outre, la superficie de la peau demeure inchangée. Il est à noter que certains sulfonates à longues chaînes sont utilisés comme tannin synthétique mais apportent une coloration brune des cuirs lors du tannage (Chemical Abstracts, vol. 93, n° 8, août 1980, pages 107-108, abrégé n° 73793r, Columbus, Ohio, US ; L.V. TELENKOVA : "New synthetic tanning agent", & KOZH.-OBUVN. PROM-ST. 1980, 22(4), 34-6).

Un des défauts essentiels des peaux réside dans les irrégularités d'épaisseur qu'elles présentent : actuellement, aucun procédé de traitement n'est apte à permettre d'obtenir une uniformité d'épaisseur des peaux et d'en augmenter la surface, tout en préservant leur intégrité. Il est important de souligner que la plupart des peaux sont vendues à la surface et qu'un gain sensible de superficie, associé à une épaisseur plus uniforme, représente un avantage industriel considérable.

La présente invention se propose de fournir un nouveau procédé de traitement de peaux ou cuirs constitués de tissus collagéniques en vue d'en homogénéiser l'épaisseur et d'en augmenter la surface, tout en préservant leur intégrité.
Un objectif de l'invention est d'obtenir ce résultat sans apport d'un produit externe dans la structure collagénique, en particulier sans apport de matière grasse.

Un autre objectif est d'améliorer concomitamment les qualités de surface des peaux (toucher, aspect) et leur souplesse, et ce, de façon plus prononcée que les procédés connus.

Un autre objectif est de fournir un procédé de coût compatible avec une valorisation des peaux de qualité inférieure dans de bonnes conditions de rentabilité.

Un autre objectif est de fournir un procédé susceptible d'être mis en oeuvre à différents stades de la fabrication du cuir (notamment aux stades qui impliquent un abaissement du pH).

A cet effet, le procédé conforme à l'invention pour traiter des articles de méchisserie et tannerie constitués de tissus collagéniques tels que peaux et cuirs, consiste à mettre les peaux ou cuirs au contact d'acide méthanesulfonique CH₃SO₃H ou d'ions méthanesulfonate CH₃SO₃⁻ en milieu acide. Les peaux peuvent en particulier être mises au contact d'acide méthanesulfonique en milieu aqueux ou milieu mixte eau/solvant organique. (Par la suite, on désignera par "milieu mixte" un milieu contenant un ou des solvants organiques et de l'eau, même si cette dernière reste en proportion très minoritaire). D'après les expérimentations effectuées, la quantité minimale d'acide méthanesulfonique ou d'ions méthanesulfonate en milieu acide nécessaire pour conduire à un résultat sensible est de l'ordre de 0,05 mole par kg de peaux ou cuirs secs. (Par un poids de "peaux sèches", l'on vise le poids des peaux au début du traitement, déduction faite du poids d'eau liée).

L'invention est née de l'observation fortuite d'un phénomène inattendu et remarquable : lorsque des peaux ou cuirs sont mis en contact avec l'acide méthanesulfonique ou les ions méthanesulfonate en milieu acide, quel que soit le stade de la fabrication où cette mise en contact est pratiquée, l'on constate un effet de relâchement des fibres des tissus collagéniques et de répartition interne des graisses propres : l'épaisseur des peaux est rendue plus
uniforme, cependant que la surface de celles-ci est notablement augmentée (de 5 % environ). L'acide méthanesulfonique ou les ions méthanesulfonate se retrouvent en quasi-totalité en fin de traitement dans le bain, de sorte qu'aucun apport n'a été effectué dans la peau. Le mécanisme d'action est difficile à expliquer à l'heure actuelle : il semble que les ions méthanesulfonate se fixent temporairement sur les graisses propres de la peau pour en accroître la mobilité et permettre une migration des graisses des parties les plus épaisses de la peau (donc les plus grasses) pour produire un effet d'étalonnage, conduisant à une augmentation de la surface et une homogénéisation de l'épaisseur ; cette fixation se détruit ensuite pour des raisons mal connues et le méthanesulfonate repasse dans le bain où il est récupéré. La quantité totale d'acide méthanesulfonique ou d'ions méthanesulfonate est préférentiellement comprise entre 0,1 et 2 moles par kg de peaux sèches : cette quantité reste donc très faible par rapport à la quantité de graisse propre des peaux, de sorte que les actions ci-dessus évoquées sont de type catalytique.

Il convient de souligner que l'acide méthanesulfonique ou les ions méthanesulfonate contiennent un seul carbone et ne sont pas des tensio-actifs : ils ont des propriétés totalement différentes de celles des sulfonates à longue chaîne utilisés pour nourrir les peaux grâce aux matières grasses qu'ils apportent à celles-ci. Les effets sur les peaux du procédé de l'invention sont très différents de ceux d'une opération de nourriture puisque, dans le cas de l'invention, le composé est quasi-totalement récupéré et n'est pas fixé définitivement dans ou sur la peau : il agit sur les graisses propres de celle-ci et préserve l'intégrité des peaux sans apport externe de matière dans leur texture, ce qui n'est pas le cas des tensio-actifs sus-visés. Les ions méthanesulfonate se rapprochent davantage, de par leur structure chimique et leurs propriétés connues, des ions sulfate ; ces derniers sont utilisés depuis longtemps dans les opérations de tannage des peaux et cuirs sans conduire aux résultats fournis par les ions visés par l'invention (à savoir : action sur les graisses propres de la peau conduisant
à une homogénéisation d'épaisseur et à une augmentation de surface).

L'acide méthanesulfonique qui conduit en milieu aqueux aux ions méthanesulfonate est un acide organique fort, bien connu en soi. Le brevet US-2 297 722 en décrit un procédé de fabrication. Il est actuellement utilisé essentiellement comme substituant de l'acide fluoroborique dans les bains de galvanoplastie, comme agent de piégeage des métaux lourds dans les dérivés pétroliers, comme inhibiteur de corrosion à l'égard des alliages de magnésium, ou comme catalyseur de certaines réactions (estérification, alkylation, polymérisation d'oléfines...).

Par ailleurs, les essais ont également permis de constater que le procédé de l'invention permettait d'obtenir une amélioration reproductible, très significative de l'état de surface des peaux et de leur souplesse. De plus, tous les méthanesulfonates métalliques étant très solubles dans l'eau, le procédé de l'invention évite tout risque de précipitation de sels insolubles (sulfate de calcium par exemple) susceptibles de se déposer sur ou dans les peaux au cours du cycle de fabrication et de provoquer une dégradation de leurs qualités de surface ou de souplesse.

De plus, on a pu constater que l'ensemble des résultats sus-évoqués fournis par les ions méthanesulfonate se produisaient quel que soit le stade de fabrication où ils étaient introduits.

Le cycle de fabrication du cuir à partir de peaux brutes comprend généralement une opération de picklage consistant à acidifier ces peaux. La mise en contact des peaux brutes ou en tripes avec les ions méthanesulfonate peut être effectuée lors de cette opération de picklage en utilisant l'acide méthanesulfonique éventuellement combiné à un autre acide (notamment acide sulfurique).

Le cycle de fabrication comprend également une opération de tannage. La mise au contact peut être effectuée lors de cette opération en introduisant les ions méthanesulfonate dans le bain de tannage. L'agent de tannage de ce bain peut être de tout type connu, minéral, végétal et/ou synthétique et le bain contient alors un mélange de cet
agent et d'acide méthanesulfonique ou de sel de cet acide.

Il est également possible d'effectuer un tannage au chrome avec un agent spécifique constitué par du méthanesulfonate de chrome en milieu aqueux ou mixte. Ce composé libère à la fois les ions métalliques assurant le tannage et les ions méthanesulfonate conduisant aux résultats précités.

Le cycle de fabrication des cuirs comprend également une opération de teinture, la mise au contact du colorant étant généralement assurée à pH proche de la neutralité et la fixation de celui-ci à pH inférieur. La mise au contact des ions méthanesulfonate peut être effectuée lors de cette opération en utilisant l'acide méthanesulfonique éventuellement combiné à un autre acide organique (notamment acide formique ou acide acétique).

Le cas échéant, les peaux peuvent être mises au contact avec les ions méthanesulfonate à plusieurs reprises et notamment aux trois stades de fabrication précités : picklage, tannage et teinture. Ce mode de mise en œuvre conduit notamment à l'avantage pratique suivant : pour obtenir une qualité donnée, la concentration en ions méthanesulfonate est plus faible à chaque opération (par rapport à une mise en contact unique), ce qui évite une trop forte diminution du pH, qui pourrait être préjudiciable à la qualité des peaux.

D'après les essais effectués, la quantité optimale totale des ions méthanesulfonate, qu'il y a lieu de mettre au contact des peaux en une ou plusieurs fois au cours du cycle de fabrication pour obtenir une amélioration prononcée de leurs qualités sans gaspillage de produit, semble devoir être comprise, comme déjà indiqué, entre 0,1 et 2,0 moles par kg de peaux ou cuirs secs.

L'invention s'étend, en tant que tels, aux produits utilisés pour la mise en œuvre du procédé défini précédemment : agent de tannage des peaux ou cuirs contenant des ions méthanesulfonate, agent de tannage à base de méthanesulfonate de chrome.

Il est à noter que la fabrication d'un méthanesulfonate métallique est connue en soi. La publication "R.C. PAUL et al, Indian Journ. of Chem., vol. 12, Août 74,
pages 825-826" décrit en particulier un procédé de fabrication à partir d'acide méthanesulfonique qui consiste à faire réagir cet acide sur un chlorure métallique à 170° C et sous vide poussé. Toutefois, ces conditions sévères obèrent le prix du produit obtenu, d'autant que celui-ci est ensuite difficile à isoler.

La présente invention vise également un nouveau procédé de fabrication de méthanesulfonate de chrome permettant d'obtenir ce composé à un coût considérablement réduit.

Ce procédé consiste à faire réagir l'acide méthanesulfonique sur un sel de baryum, puis à faire réagir le méthanesulfonate de baryum obtenu avec du sulfate de chrome et à éliminer par filtration le précipité afin d'isoler le méthanesulfonate de chrome en solution. Ce procédé peut être mis en oeuvre à température ambiante et à la pression atmosphérique. En précipitant, le sulfate de baryum déplace l'équilibre et conduit au méthanesulfonate de chrome sans précaution particulière.

L'invention est illustrée dans les exemples de mise en oeuvre qui suivent.

Exemple 1 : Utilisation de méthanesulfonate de chrome pour le tannage de peaux

a) Fabrication du méthanesulfonate de chrome

Le procédé de fabrication nécessite deux étapes :

- préparation de méthanesulfonate de baryum :
 A une solution de 200 g d'hydroxyde de baryum octohydraté dissous dans 280 ml d'eau permutée, on additionne 170 ml d'acide méthanesulfonique à 70 %, goutte à goutte. Après 1 h 30 d'agitation à 55° C, l'eau est évaporée sous vide jusqu'à précipitation du méthanesulfonate de baryum, qui est isolé sous forme de cristaux blancs par une succession de filtrations et de lavages à l'alcool éthyllique.

- fabrication du méthanesulfonate de chrome :
 A une solution de 110 g de sulfate de chrome dissous dans 350 ml d'eau permutée, on additionne 176 g de méthanesulfonate de baryum, obtenu lors de la première étape. Après 30 minutes d'agitation à température
ambiante, le précipité de sulfate de baryum formé est éliminé
par centrifugation (1 h à 4000 tr/min.)

La teneur en chrome de la solution de
méthanesulfonate de chrome ainsi préparée est déterminée par
absorption atomique : 35 g Cr/l.

Cette solution peut être utilisée directement
en tannage ou bien le sel de chrome peut être isolé sous forme
cristallisée par précipitation à l'acétone.

b) Tannage

Les quantités de produits ajoutés sont
exprimées en pourcentage pondéral du poids des peaux picklées.

Quatre peaux (2800 g) d'agneaux de Nouvelle-
Zélande humides, dégraissées et picklées sont placées dans
250 % de bain de saumure à 8° Baumé (88,24 g/l de NaCl)
pendant 15 minutes.

1728 ml de solution de méthanesulfonate de
chrome obtenue précédemment, soit 60,5 g de Cr, est introduite
en une fois (quantité d'ions CH₃ SO₃⁻ égale à 3,56 moles
rapportée à 1 kg de peaux sèches). Après une heure
d'agitation, on basifie progressivement en ajoutant 1 % de
forme de sodium, puis 4 % d'hydrogénocarbonate de sodium
toutes les heures pendant 4 heures. Le pH de fin de tannage
est de 3,9.

On retire les peaux du bain de tannage et on
les laisse au repos pendant 48 heures (peaux étendues empilées
les unes sur les autres).

Les peaux tannées obtenues font l'objet d'une
analyse visuelle : le chrome est uniformément réparti et
fixé ; les peaux ont une température de rétraction supérieure
à 100° C, ce qui caractérise une bonne qualité de tannage.

Ces peaux subissent ensuite une procédure
traditionnelle de nourriture, teinture et séchage.

Ces cuirs finis ont été appréciés par un
panel de professionnels du cuir et caractérisés ainsi : très
bon tannage, très bonne souplesse, excellent toucher soyeux
légèrement cireux. Ces qualités étaient significativement
meilleures que celles de peaux analogues traitées dans les
mêmes conditions, mais avec du sulfate de chrome.

Exemple 2 : Utilisation de l'acide méthane-
sulfonique pour le picklage de peaux

Les quantités de produits ajoutés sont données en pourcentage pondéral du poids des peaux en tripes.

6 peaux d'agneaux de Nouvelle-Zélande (qualité inférieure) dégraissées, humides, sont divisées en deux parties de façon longitudinale afin de mieux apprécier les améliorations de qualité apportées par l'invention.

a) 6 demi-peaux sont picklées de façon traditionnelle (50 % de bain de saumure à 8° Baumé (88,24 g/l de NaCl) et 2 % d'acide formique) et tannées de façon classique, après une nuit d'agitation dans le bain de picklage.

b) 6 demi-peaux sont picklées selon l'invention, c'est-à-dire par addition de 1 % d'acide méthanesulfonique à 70 % en deux fois pendant une heure, puis de 1,5 % d'acide formique en trois fois durant 1 heure 30 (quantité d'ions CH₃ SO³⁻ égale à 0,36 mole rapportée à 1 kg de peaux sèches).

Après une nuit d'agitation dans le bain de picklage, ces peaux sont tannées de façon classique.
Après 48 heures de repos, les deux lots de peaux a) et b) sont nourris, puis teints de façon classique.
Les cuirs ainsi finis ont été appréciés par un panel de professionnels qui les a classés en deux catégories:
- la première (a) correspondant au lot picklé à l'acide formique présente les caractéristiques habituelles de peaux tannées au chrome : bonne résistance thermique et à la déchirure, bonne souplesse, mais qualités de surface très moyennes. L'épaisseur des peaux dans la partie la plus grasse (collet) est d'environ 4 mm et dans la partie la moins grasse (flancs) d'environ 2 mm.
- la seconde (b) correspondant au lot traité à l'acide méthanesulfonique présente ces mêmes caractéristiques de résistance thermique et à la déchirure, accompagnées d'une souplesse accrue, d'une sensation de "plein" et d'un toucher particulièrement soyeux du côté fleur comme du côté chair. On constate une uniformisation de l'épaisseur des peaux qui passe à environ 3 mm pour le collet.
et à 2,5 mm pour les flancs.

Ceci s'explique par le fait que le taux de matières grasses qui est en moyenne, pour ces peaux, de 8,3 % (par rapport au poids sec) dans le collet et de 6,5 % (par rapport au poids sec) dans les flancs, passe à 6,75 % dans le collet et reste à 6,5 % dans les flancs.

Les opérations mécaniques de "ponçage" pour égaliser l'épaisseur sont alors éliminées et les qualités de résistance intrinsèque du cuir sont conservées.

De plus, une passe industrielle d'une tonne de peaux (100 douzaines) a permis de quantifier l'augmentation de surface. En effet, une passe de référence mesure environ 8000 pied² (environ 743 m²). Une passe traitée à l'acide méthanesulfonique mesure environ 8400 pied² (environ 780 m²), soit une augmentation considérable de surface de 5 %.

Exemple 3 : Addition d'acide méthanesulfonique lors du tannage

Les quantités de produits ajoutés sont exprimées en pourcentage pondéral du poids des peaux picklées.

2 peaux d'agneaux de pays (très bonne qualité) et 2 peaux de Nouvelle-Zélande (qualité moyenne) dégraissées et picklées (3600 g) sont placées dans 100 % de bain de saumure à 8° Baumé (88,24 g/l de NaCl), auquel on ajoute 2,5 % d'acide méthanesulfonique à 70 % en cinq fois en une heure (quantité d'ions CH₃ SO₃⁻ égale à 0,52 mole rapportée à 1 kg de peaux sèches).

On ajoute ensuite au bain 8 % de sulfate de chrome (basicité 33°, teneur en chrome : 26 %) opération qui est suivie de l'addition, après une heure, de 1 % de formiate de sodium, puis de 4 % d'hydrogénocarbonate de sodium en quatre fois en trois heures ; le pH de fin de tannage est de 4,1. Toujours dans le bain de tannage, les peaux sont chauffées pendant une heure à 50° C.

Après 48 heures de repos, elles sont nourries, teintes et séchées. Les cuirs obtenus font l'objet d'une analyse visuelle : le colorant est uniformément réparti, de même que le chrome comme en témoigne une température de rétraction supérieure à 100° C.
Leurs qualités sont alors évaluées par un panel de professionnels : très bonne souplesse, beaucoup de plein et excellent toucher soyeux, légèrement cireux.

Il est à noter qu'après traitement avec ce procédé, on ne fait quasiment plus la différence (souplesse, toucher) entre des peaux de qualités initiales très différentes, ce qui est un résultat remarquable et met en lumière l'intérêt considérable du procédé de l'invention pour traiter et valoriser des peaux bas de gamme.

De plus, quelles que soient les peaux, on observe une homogénéisation de leur épaisseur, donc un aplatissement du collet, partie la plus grasse, et une nette augmentation de leur superficie (par rapport à des peaux traitées de façon classique).

Exemple 4 : Utilisation d'acide méthanesulfonique lors de la teinture de peaux tannées

Les quantités de produits ajoutés sont données en pourcentage pondéral du poids des peaux tannées sèches.

À 2 peaux tannées, nourries et séchées, placées dans 100 % d'eau à 55 °C, sont additionnées 4 % de nourriture anionique-cationique.

Après une heure d'agitation, 6 % de colorant acide brun sont introduits. La fixation du colorant se fait, une heure plus tard, par acidification par 2 % d'acide formique et 2 % d'acide méthanesulfonique à 70 % en 2 fois en 2 heures (0,14 mole par kg de peaux tannées sèches).

Les peaux teintes sont alors mises au vent et séchées.

L'évaluation de leurs qualités par un panel de professionnels donne les mêmes résultats que dans les exemples précédents : très bonne souplesse, excellent toucher, soyeux légèrement cireux. Un essai comparatif pratiqué en l'absence d'acide méthanesulfonique (4 % d'acide formique) conduit à des qualités de souplesse et toucher inférieures.

Exemple 5 : Utilisation d'acide méthanesulfonique en fin de tannage végétal

Les quantités de produits ajoutés sont données en pourcentage pondéral du poids des peaux picklées.
3 peaux (2000 g) d'agneaux dégraissées et picklées sont placées dans 200 % de bain de saumure à 8° Baumé (88,24 g/l de NaCl).

Après dépicklage, (ajustement du pH à une valeur comprise entre 5,5 et 6), les peaux sont placées dans un bain d'eau (250 %) auquel sont additionnés 30 % d'extrait de québracho en 3 fois en 2 heures. Les peaux sont laissées dans le bain sous agitation pendant une nuit, puis rinçées, blanchies et nourries.

Pour une peau, le blanchiment et la nourriture sont effectués de façon classique : elle est placée dans un bain de 200 % d'eau à 50° C auquel on ajoute 1 % d'acide oxalique, puis 3 % de thiosulfate de sodium, et enfin 3 % de nourriture.

Les deux autres peaux subissent le même traitement complété par l'addition de 1 % d'acide méthanesulfonique à 70 % en deux fois, après action de l'acide oxalique (0,21 mole d'ion CH₃SO₃⁻ par kg de peaux sèches).

Les trois peaux sèches ont une température de rétraction de 80-85° C, caractéristique d'un bon tannage végétal et sont, comme précédemment, soumises à l'appréciation de professionnels.

Les deux peaux traitées à l'acide méthanesulfonique présentent une plus grande souplesse et surtout un toucher particulièrement soyeux, par rapport à la peau traitée de façon classique.

Exemple 6 : Utilisation successive d'acide méthanesulfonique lors du picklage et lors de la teinture

Des peaux d'agneaux en tripes sont picklées par l'acide méthanesulfonique selon l'exemple 2, tannées au chrome de façon traditionnelle, puis teintes avec fixation du colorant par l'acide méthanesulfonique selon l'exemple 4.

Le panel de professionnels consulté a jugé ces peaux comme étant encore plus souples et comme ayant un toucher encore plus soyeux que les peaux traitées à l'acide méthanesulfonique lors d'une seule étape (picklage ou teinture).

De même que dans l'exemple 2, on mesure une augmentation de surface de l'ordre de 5 %, accompagnée d'une
homogénéisation du taux de matières grasses et donc de l'épaisseur.

Exemple 7: Utilisation de méthanesulfonate de chrome en milieu mixte

Les quantités de produits ajoutés sont exprimées en pourcentage pondéral par rapport au poids des peaux picklées.

Deux peaux (1000 g) d'agneaux dégraissées et 10 picklées sont placées dans 400 % de bain de saumure à 8° Baumé (soit 88,24 g/l de NaCl) pendant une heure ; par essorage, l'humidité des peaux est ramenée à 200 % d'eau par rapport au poids sec.

Ces peaux sont alors placées dans un bain de 250 % de trichloro-1,1,2 trifluoro-1,2,2 éthane auquel on additionne 308 ml de la solution de méthanesulfonate de chrome décrite dans l'exemple 1 (soit 10,8 g Cr) (quantité d'ions CH₃ SO₃⁻ égale à 1,78 mole rapportée à 1 kg de peaux sèches ; quantité globale d'eau égale à 3000 g rapportée à 1 kg de 20 peaux sèches).

Après une heure d'agitation, on basifie progressivement en ajoutant successivement 1 % de formiate de sodium, 4 % de phthalate de sodium et 3,5 % d'hydrogénocarbonate de sodium, en petites fractions sur 8 heures. Le pH de fin de tannage est de 4,3.

Il est à souligner que la teneur en chrome du bain résiduaire est nulle.

Après 48 heures de repos, les peaux sont nourries et séchées de façon traditionnelle.

Les peaux tannées sèches font l'objet d'une analyse visuelle : le chrome est uniformément réparti et fixé ; les peaux ont une température de rétraction supérieure à 100° C, caractéristique d'un bon tannage.

Elles sont ensuite appréciées par un panel de professionnels qui a souligné une fois de plus leur grande souplesse et leur très bon toucher soyeux.
REVENDICATIONS

1/- Procédé de traitement d'articles de médisserie ou tannerie constitués de tissus collagéniques tels que peaux et cuirs, en vue de réaliser un effet de relâchement des fibres des tissus et de répartition interne des graisses, conduisant à une augmentation de surface des peaux et à une homogénéisation de leur épaisseur, caractérisé en ce que l'on met les peaux ou cuirs au contact d'acide méthanesulfonique CH₃ SO₃H ou d'ions méthanesulfonate CH₃ SO₃⁻ en milieu acide, en quantité au moins égale à 0,05 mole par kg de peaux ou cuirs secs.

2/- Procédé selon la revendication 1, caractérisé en ce que l'on met les peaux ou cuirs au contact d'acide méthanesulfonique en milieu aqueux ou milieu mixte eau/solvant organique.

3/- Procédé selon la revendication 2 pour la fabrication de cuirs à partir de peaux brutes, dans lequel, au cours du cycle de fabrication, les peaux brutes sont soumises à une opération de picklage, caractérisé en ce que la mise en contact des peaux avec l'acide méthanesulfonique est effectuée lors de l'opération de picklage en utilisant, comme agent de picklage, ledit acide méthanesulfonique éventuellement combiné à un autre acide.

4/- Procédé selon l'une des revendications 1 ou 2 pour la fabrication de cuirs à partir de peaux, dans lequel, au cours du cycle de fabrication, les peaux sont soumises à une opération de tannage, caractérisé en ce que la mise en contact de l'acide méthanesulfonique ou des ions méthanesulfonate est combinée à l'opération de tannage, en introduisant lesdits ions dans le bain de tannage.

5/- Procédé de fabrication de cuirs selon la revendication 4, caractérisé en ce que l'on utilise un bain de tannage contenant un mélange, d'une part, d'au moins un agent de tannage minéral, végétal et/ou synthétique, d'autre part d'acide méthanesulfonique ou d'un sel de cet acide.

6/- Procédé de fabrication de cuirs selon la revendication 4, caractérisé en ce que l'on utilise un bain de tannage aqueux ou mixte contenant du méthanesulfonate de chrome.
7/ - Procédé selon l'une des revendications 1 ou 2 pour la fabrication de cuirs à partir de peaux tannées, dans lequel, au cours du cycle de fabrication, les peaux tannées sont soumises à une opération de teinture avec mise en contact du colorant à pH proche de la neutralité, puis fixation de celui-ci à pH inférieur, caractérisé en ce que la mise en contact de l'acide méthanesulfonique est effectuée lors de l'opération de teinture, en utilisant pour réduire le pH ledit acide méthanesulfonique éventuellement combiné à un autre acide.

8/ - Procédé de fabrication de cuirs selon les revendications 3, 4 et 7 prises ensemble, caractérisé en ce que les peaux sont mises au contact avec l'acide méthanesulfonique au moins à trois reprises : lors du picklage, lors du tannage dans le bain de tannage et lors de l'opération de teinture.

9/ - Procédé de fabrication de cuirs selon l'une des revendications 3 à 8, caractérisé en ce que les peaux sont mises au contact de l'acide méthanesulfonique de façon que la quantité totale de cet acide soit comprise entre 0,1 et 2,0 moles par kg de peaux sèches.

10/ - Additif de tannage caractérisé en ce qu'il contient de l'acide méthanesulfonique CH₃ SO₃ H ou des ions méthanesulfonate CH₃ SO₃⁻ en milieu acide.

11/ - Agent de tannage, caractérisé en ce qu'il est à base de méthanesulfonate de chrome.

12/ - Procédé de fabrication d'un agent de tannage conforme à la revendication 11, caractérisé en ce qu'il consiste à faire réagir l'acide méthanesulfonique sur un sel de baryum, puis à faire réagir le méthanesulfonate de baryum obtenu avec du sulfate de chrome et à éliminer par filtration le précipité afin d'isoler le méthanesulfonate de chrome en solution.
INTERNATIONAL SEARCH REPORT

International Application No: PCT/FR91/00979

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)
According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>Int. Cl. 5</th>
<th>C14C 1/08, C14C 3/00, C14C 3/06, D06P 3/32, D06P 1/62</th>
</tr>
</thead>
</table>

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl. 5</td>
<td>C14C D06P</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Chemical Abstracts, Vol. 100, No.10 March 1984, (Columbus, Ohio, US), see page 109, abstract No. 70309q, & SU, A, 1057544 (DHUMAL TECHNOLOGICAL INSTITUTE OF LIGHT AND FOOD INDUSTRY) 30 November 1983 (cited in the application)</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>A</td>
<td>Chemical Abstracts, Vol.98, No.14, April 1983, (Columbus, Ohio, US), R. NOWAK: "Improving the lightfastness of dyed leathers by tawing agents", see page 105, abstract No. 109257p, & REV. TECH. IND. CUIR 1982, 74(11), 376-80 (cited in the application)</td>
<td>1, 7</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 * "A" documentation defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 * "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to person skilled in the art
 * "K" document member of the same patent family

IV. CERTIFICATION

<table>
<thead>
<tr>
<th>Date of the Actual Completion of the International Search</th>
<th>Date of Mailing of this International Search Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 March 1992 (27.03.92)</td>
<td>7 May 1992 (07.05.92)</td>
</tr>
</tbody>
</table>

International Searching Authority
European Patent Office

Signature of Authorized Officer
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR, A, 2249952 (FIRMA SCHILL & SEILACHER) 30 May 1975 (cited in the application)</td>
<td>1,5</td>
</tr>
</tbody>
</table>
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. FR 9100979
SA 54538

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 17/04/92. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GB-A- 1472267</td>
<td>04-05-77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 3927966</td>
<td>23-12-75</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
RAPPORT DE RECHERCHE INTERNATIONALE

I. CLASSEMENT DE L’INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous) :
Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB (Int.Cl.5)

<table>
<thead>
<tr>
<th>Int.Cl.5</th>
<th>C 14 C</th>
<th>1/08</th>
<th>C 14 C</th>
<th>3/00</th>
<th>C 14 C</th>
<th>3/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 06 P</td>
<td>3/32</td>
<td>D 06 P</td>
<td>1/62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. DOMAINE SUR LESQUELS LA RECHERCHE A PORTE

- Document minimal consultée
 - Système de classification
 - Int.Cl.5
 - Symboles de classification
 - C 14 C
 - D 06 P

- Documentation consultée autre que la documentation minimale dans la mesure
 ou de tels documents font partie des domaines sur lesquels la recherche a porté

III. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités avec indication, si nécessaire des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Chemical Abstracts, vol. 110, no. 6, 6 février 1986, (Columbus, Ohio, US), N.I. ABDULAEV et al.: "Chrome emulsion tanning using products containing water- and oil-soluble sulfonates", voir page 100, abrégé no. 40746u, & ITV. VYSSH. UCHEBN. ZAVED., TEKNOL. LEGK. PROM-STI. 1988, 31(5), 74-6 (citée dans la demande)</td>
<td>1,2,4,5</td>
</tr>
<tr>
<td>A</td>
<td>Chemical Abstracts, vol. 100, no. 10, mars 1984, (Columbus, Ohio, US), voir page 109, abrégé no. 70309q, & SU.A,1057544 (DZHAMBUL TECHNOLOGICAL INSTITUTE OF LIGHT AND FOOD INDUSTRY) 30 November 1983 (citée dans la demande)</td>
<td>1,2,4</td>
</tr>
</tbody>
</table>

* Catégories spéciales de documents cités:
 - A - document définissant l’état général de la technique, non considéré comme particulièrement pertinent
 - E - document antérieur, mais publié à la date de dépôt international ou après cette date
 - L - document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d’une autre citation ou pour une raison spéciale (indiquer si indiqué)
 - O - document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée : 27-03-1992
Date d’expédition du présent rapport de recherche internationale : 07.05.92

Administration chargée de la recherche internationale : OFFICE EUROPEEN DES BREVETS
Signature du responsable d’expédition : Els Vank
<table>
<thead>
<tr>
<th>Categorie</th>
<th>Identification des documents cités, avec indication, si nécessaire des passages pertinents</th>
<th>N° des références visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Chemical Abstracts, vol. 98, no. 14, avril 1983, (Columbus, Ohio, US), R. NOWAK: "Improving the lightfastness of dyed leathers by tawing agents", voir page 105, abrégé no. 109257p, & REV. TECH. IND. CUIR 1982, 74(11), 376-80 (citée dans la demande)</td>
<td>1,7</td>
</tr>
<tr>
<td>A</td>
<td>FR,A.2249952 (FIRMA SCHILL & SEILACHER) 30 mai 1975 (citée dans la demande)</td>
<td>1,5</td>
</tr>
</tbody>
</table>
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 17/04/92
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GB-A- 1472267</td>
<td>04-05-77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 3927966</td>
<td>23-12-75</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82