A surgical retrieval apparatus includes a specimen retrieval bag including a rim movable from a collapsed configuration when positioned within a delivery tube to an automatically expanded configuration when advanced from the delivery tube. The rim is configured to receive a tissue specimen when the rim is in the expanded configuration. The retrieval bag defines a proximal portion with respect to the incision and a distal portion with respect to the incision. A specimen retrieval system further includes a delivery tube defining a longitudinal axis and includes the surgical retrieval apparatus contained therein that is configured to be inserted through a first opening in a patient’s skin. The delivery tube defines an internal volume extending from a proximal end to a distal end of the delivery tube. The surgical retrieval apparatus is separable from the delivery tube.
SURGICAL RETRIEVAL APPARATUS
CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND

[0002] 1. Technical Field

[0003] The present disclosure relates to a surgical containment apparatus. More particularly, the present disclosure relates to a specimen retrieval apparatus for use in minimally invasive surgical procedures.

[0004] 2. Background of Related Art

[0005] In minimally invasive surgical procedures operations are carried out within the body by using elongated instruments inserted through small entrance openings in the body. The initial opening in the body tissue to allow passage of instruments to the interior of the body may be a natural passageway of the body, or it can be created by a tissue piercing instrument such as trocar, or created by a small incision into which a cannula is inserted.

[0006] Because the tubes, instrumentation, and any required punctures or incisions are relatively small, the surgery is less invasive as compared to conventional surgical procedures in which the surgeon is required to cut open large areas of body tissue. Therefore, minimally invasive surgery minimizes trauma to the patient and reduces patient recovery time and hospital costs.

[0007] Minimally invasive procedures may be used for partial or total removal of body tissue or organs from the interior of the body, e.g. nephrectomy, cholecystectomy, lobectomy and other procedures including thoracic, laparoscopic and endoscopic procedures. During such procedures, it is common that a cyst, tumor, or other affected tissue or organ needs to be removed via the access opening in the skin, or through a cannula. Various types of entrapment devices have been disclosed to facilitate this procedure. In many procedures where cancers or tumors are removed, removal of the specimen in an enclosed environment is highly desirable to prevent seeding of cancer cells.

[0008] In minimally invasive thoracic surgery, access to the thoracic cavity is limited as well as maneuverability within the cavity as the access port is placed between the confined space between a patient’s ribs. Such procedures, commonly referred to as video assisted thorascopic surgery (VATS), aim to reduce patient recovery time by accessing the thoracic cavity through the natural intercostal space without spreading the ribs as in open procedures. This restricted access can sometimes cause problems when removing large specimens. Moreover, in such procedures, e.g. thorascopic wedge resection and lobectomy, it is often necessary to remove a portion of the lung and retrieve it relatively intact for pathology. It is also important that the specimen be sufficiently contained to prevent seeding of cancer cells during manipulation and removal.

[0009] In designing such specimen retrieval instrumentation, a balance must be struck between the need to provide a retrieval apparatus with a strong enough containment bag to prevent tearing or rupture while providing sufficient rigidity to enable manipulation and removal. Another balance which needs to be achieved is to provide sufficient maneuverability while reducing tissue trauma, e.g. damaging lung tissue, during manipulation and removal. Additionally, the instrumentation on one hand should be able to be inserted through a small access incision or port while on the other hand be able to accommodate a wide range of patient sizes and be able to easily remove large specimens and minimize risk of seeding.

[0010] It would therefore be advantageous to provide a specimen retrieval device for minimally invasive surgical procedures with increased maneuverability and which minimizes trauma to surrounding tissue and which successfully achieves the balance of competing factors enumerated above.

SUMMARY

[0011] The present disclosure is directed to a surgical retrieval apparatus. The present disclosure provides in one aspect a method of retrieving a tissue specimen comprising:

[0012] a) inserting a surgical retrieval apparatus through an opening in a patient’s skin, the surgical retrieval apparatus including:

[0013] a support member, and

[0014] a retrieval bag extending from the support member and having an opening to receive the tissue specimen;

[0015] b) placing a net over the tissue specimen; and

[0016] c) removing the net and retrieval bag from the patient’s body to remove the tissue specimen.

[0017] The method preferably further comprises the step of introducing the net into the retrieval bag. This step in a preferred embodiment occurs before the step of placing the net over the tissue specimen.

[0018] In a preferred embodiment, the net is introduced into the retrieval bag by a grasper with the net positioned on a shaft of the grasper. The method can include the step of unrolling the net from a shaft of the grasper.

[0019] The method may further include the step of advancing a second grasper through a second opening in the patient’s skin into the retrieval bag and grasping the net with the second grasper.

[0020] In a preferred embodiment, the retrieval bag is positioned within a body cavity with an opening of the bag facing transversely with respect to the incision. A second grasper can be inserted through the transversely positioned opening.

[0021] The net preferably has a diameter less than the diameter of the tissue specimen to grip the tissue sample and maintain its position during removal.

[0022] In some embodiments, the step of inserting the surgical apparatus includes the step of inserting the apparatus into the thoracic cavity.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] Embodiments of the presently disclosed specimen retrieval apparatus are described hereinbelow with reference to the drawings wherein:

[0024] FIG. 1 is a perspective view of the retrieval bag of the specimen retrieval apparatus of the present disclosure in the collapsed insertion position within a delivery tube and shown outside the body cavity;
FIG. 2 is a perspective view of the delivery tube and specimen retrieval apparatus of the present disclosure being inserted through an incision into the body cavity;

FIG. 3 is a perspective view of the retrieval bag being advanced by the user through the delivery tube;

FIG. 4 is a perspective view illustrating the user grasping the proximal portion of the retrieval bag after removal of the delivery tube;

FIG. 5 is a perspective view illustrating a grasper with a net positioned thereon being inserted through the retrieval bag to grasp the tissue specimen and place it in the retrieval bag;

FIG. 6 is a perspective view illustrating a second grasper being inserted through a port extending through a second incision to unroll the net over the tissue specimen;

FIG. 7 is a perspective view illustrating the user grasping the proximal portion of the net to begin to pull the net through the incision; and

FIG. 8 is a perspective view illustrating the bag and net being pulled through the incision.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Embodiments of the present disclosure will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term distal refers to the portion of the instrument which is further from the user while the term proximal refers to that portion of the instrument which is closer to the user.

The surgical retrieval apparatus disclosed herein may find use in any procedure where access to the interior of the body is limited to a relatively small incision, with or without the use of a cannula, as in minimally invasive procedures. The devices herein may find particular use in minimally invasive thoracic surgery where access to the thoracic cavity is through a space located between adjacent ribs known as the intercostal space.

FIGS. 1-4, a surgical retrieval apparatus 100 is illustrated. Surgical retrieval apparatus is preferably configured and dimensioned for use in minimally invasive surgical procedures (e.g., thoracic, laparoscopic, endoscopic procedures). Surgical retrieval apparatus 100 includes an elongated supporting member or rim 110 and a retrieval bag 130 supported by the rim 110. As seen in the open configuration of FIG. 4, the rim 110 has a substantially oval shape and is of sufficient size so that a first portion, i.e., distal portion 115, is positioned within the body cavity C while a second portion, i.e., proximal portion 114, is positioned external to the cavity C. Similarly, the bag 130 is of a sufficient size to receive a tissue specimen in a first portion within the body cavity C while a second portion extends outside the body cavity C to be grasped by the user. The rim 110 can be composed of shape memory material with a shape memorized expanded position. Alternatively, it can be composed of other materials which enable collapse/compression of the rim for insertion and expansion for placement within the body cavity, such as materials exhibiting spring-like characteristics.

The retrieval bag 130 is shown in FIG. 4 in the open position. Once inserted inside the cavity C, expansion of the rim 110 expands the opening 132 of bag 130 due to the attachment of the bag 130 to the rim 110. Opening 132 of bag 130 is oriented transverse to an insertion axis (transverse to a longitudinal axis of the incision) so that it is angled toward the tissue specimen S. That is, the opening 132 faces the tissue specimen S. The closed opposite end of the bag is designated by reference numeral 134. The bag is preferably of sufficient size that it may be partially or fully inserted, depending on the size of the cavity. Additionally, being of a size that the rim extends outside the cavity to be grasped by the user, the user can always insert or retract the bag however much bag is introduced.

In use, the rim 110 and retrieval bag 130 can be delivered in a collapsed (e.g., folded) configuration through a delivery device 10 such as the configuration shown in FIG. 1. As can be appreciated, by delivering the bag 130 in the collapsed configuration directly through a delivery tube 10 (without an external sleeve as part of the device positioned over the bag), the overall profile of the apparatus is minimized which enables a smaller diameter access port or delivery member to be utilized.

The steps in the method of use of the surgical apparatus will now be described. In addition to the retrieval apparatus 100 having the support member 110 and retrieval bag 130, a surgical grasper and a retrieval net are also utilized in the procedure. In one embodiment, the net can be composed of a polymer mesh, although other materials are also contemplated.

In the first step, delivery tube 10, containing the apparatus 100 in the collapsed or folded position, is placed through the incision I as shown in FIG. 2, with the proximal portion 12 of delivery tube 10 extending outside the incision I and body cavity C and the distal portion 14 extending into the body cavity C. Next, the apparatus 100 is advanced from the delivery tube 10 by the surgeon's finger(s) (FIG. 3) or alternatively by a pusher device pushing against a proximal portion 114 of rim 110 and/or bag 130. Once a portion of the rim 110 is advanced, e.g., distal portion 115, from the delivery tube 10, it automatically expands towards its normal larger configuration, thereby expanding bag 130. Once the apparatus 100 is partially advanced, the delivery tube 10 is withdrawn, enabling the remaining proximal portion 114 of the rim 110 and attached bag 130 to expand as it is free from the confines of the wall of the delivery tube 10. This expansion of the proximal portion 114 maintains this portion external of the incision I, as shown in FIG. 4, as its larger dimension cannot slide through the incision I. It is also held by the user. After withdrawal of the delivery tube 10, as can be appreciated, the rim 110 expands to thereby expand opening 132 of the bag 130 to present a large opening for the tissue specimen S. Note that the bag opening 132 is oriented toward the specimen. Also, in some embodiments the bag 130 can be oversized, so that it can be inserted to fill the cavity and the tissue sample S can simply be slid over the rim 110 into the bag 130 if desired.

In the next step of the procedure, a grasper 150 (FIG. 5) is inserted through the incision I within the retrieval bag 130. The grasper 150 has a pair of jaws 152, 154 extending from shaft 156 which are movable between open and closed positions to grasp the specimen S within cavity C and place it through the opening 132 into the bag 130. The grasper 150 can also be utilized to maneuver the bag 130 over the specimen S. The grasper 150 also includes a net 160 positioned about (external) its shaft 156. A portion 164 of the net 160 is everted. The net 160 has an elongated shape with a diameter smaller than the diameter of the tissue specimen S intended to be removed. In this manner, when the specimen S is placed
within the net 160, it is compressed which facilitates removal as will be discussed in detail below. The net can be composed of a polymeric material, although other materials are also contemplated. For example, it can be formed of a molded plastic.

[0040] After placement of the specimen S in the bag 130, a second grasper 180 is inserted through a port P extending through a second incision as shown in FIG. 6. The grasper 180 has a pair of movable jaws 182, 184 extending from shaft 186. The grasper jaws 182, 184 are inserted through the opening 132 in the bag 130 to grasp the net 160 on grasper 150 and maneuver the net 160 over the specimen S. More specifically, after the net 160 has been pushed down along shaft 156 of grasper 150 so it is positioned within the distal region of the bag 130, the jaws 182, 184 grasp the rolled (everted) portion of the net 160 and pull it over the specimen S. The grasper 180 preferably places the net 160 over the entire specimen S which tightly holds the specimen, and can compress the specimen S to maintain it in an elongated shape, and prevent it from slipping to the bottom of the net during removal. Thus, the net functions to grip the tissue specimen spreading the force needed to withdraw it over a large area, while also allowing the specimen to deform to the shape to the incision. The net preferably has a space at the distalmost end to distend to prevent the tissue specimen from reaching the bottom of the bag and balling up. Once retained by the net 160, grasper 150 is removed from incision I. The second grasper 180 can also be removed through the second incision at this time or removed after the specimen S is removed. Note that the net preferably draws the specimen up into it as it is placed over the specimen to hold it therein.

[0041] As shown in FIG. 7, once the specimen S is retained within net 160, the user grasps the proximal portion of the net 160 and retracts it toward the incision I. The net 160 can operate in a “Chinese finger” fashion so that applying a proximal retraction force on the net 160 elongates the net and applies additional compression force on the specimen S. Once the specimen S is firmly held within the net 160, the net 160 and bag 130 are grasped by the user and removed through the incision I as shown in FIG. 8. Note that for removal the distal portion 115 of the rim 110 can be rotated to change the orientation of the bag opening 132 so the opening 132 faces toward the incision I instead of facing transversely, thereby the closed end 134 of the bag 130 would support or protect the specimen during removal.

[0042] Note the specimen can be maintained such that its long axis is substantially parallel to the incision which reduces the force required for removal through the incision or port. Also, as can be appreciated, the orientation and shape of the specimen S is substantially maintained to facilitate not only removal but pathology. Moreover, any compression or stretching of the specimen prior to removal occurs inside the bag which minimizes the risk of seeding.

[0043] Note also that the tissue specimen bags before containment so the risk of seeding is minimized. Also, since the net is taking the load, not the retrieval bag, the bag can be made of a thinner and lighter weight material and can be made more transparent.

[0044] As can be appreciated, the patient’s body and cavity are shown schematically, it being understood that the surgical retrieval apparatus of the present disclosure can be used in the thoracic cavity, the abdominal cavity and other areas of the body for minimally invasive surgery.

[0045] A lubricious coating can be placed on the external surface of the specimen retrieval bags described herein to facilitate removal through the port or incision.

[0046] Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, the above description, disclosure, and figures should not be construed as limiting, but merely as exemplifications of particular embodiments. It is to be understood, therefore, that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the disclosure.

1. (canceled)

2. A specimen retrieval system comprising:
 a delivery tube defining a longitudinal axis and including a surgical retrieval apparatus contained therein configured to be inserted through a first opening in a patient’s skin, the delivery tube defining an internal volume extending from a proximal end to a distal end of the delivery tube, the surgical retrieval apparatus separable from the delivery tube;
 the surgical retrieval apparatus including:
 a support member, and
 a retrieval bag extending from the support member, the support member defining an opening configured to receive a tissue specimen into the retrieval bag, the support member and the retrieval bag defining a proximal end and a distal end, the proximal end and distal end of the support member and retrieval bag defining a major axis of the support member and defining a minor axis orthogonal to the major axis, wherein the support member and the retrieval bag are movable between a first collapsed configuration and a second expanded configuration,
 wherein when moved at least partially outside the delivery tube, the support member automatically expands at least a portion of the retrieval bag along the major axis and the minor axis towards the second expanded configuration maintaining the major axis and the minor axis, the configuration of the at least a portion of the opening of the support member and of the at least a portion of the retrieval bag being larger than a configuration of the at least a portion of the opening of the support member and of the at least a portion of the retrieval bag that remains inside the delivery tube to facilitate receiving the specimen into the retrieval bag.

3. The specimen retrieval system according to claim 2, further comprising a first grasper including a pair of jaws and a shaft, the shaft having a net positioned on an external surface thereof proximal to the pair of jaws.

4. The specimen retrieval system according to claim 3, wherein the net is positionable over the pair of jaws when the pair of jaws is in a closed configuration with the tissue specimen grasped therebetween.

5. The specimen retrieval system according to claim 3, wherein the net includes an everted distal end.

6. The specimen retrieval system according to claim 5, further including a second grasper configured to grasp the everted distal end of the net to facilitate placement of the net over the tissue specimen positioned within the retrieval bag.

7. The specimen retrieval system according to claim 2, wherein the support member defines a rim movable from a collapsed configuration when positioned within the delivery
tube to an at least partially expanded configuration when advanced from the delivery tube, the rim defines the opening of the support member that is configured to receive a tissue specimen when the rim is in the at least partially expanded configuration.

8. The specimen retrieval system according to claim 7, wherein the proximal portion of the retrieval bag facilitates maintaining at least a portion of the rim external of the incision in a patient’s skin when the rim is in the at least partially expanded configuration.

9. The specimen retrieval system according to claim 7, wherein the rim forms a flexible path in the expanded configuration, the flexible path extending from the proximal portion of the retrieval bag outside of the incision to the distal portion of the retrieval bag that is configured to extend into a body cavity accessible via the incision.

10. The specimen retrieval system according to claim 9, wherein the opening defined by the rim extends from the proximal portion of the retrieval bag to the distal portion of the retrieval bag and maintains the major axis and the minor axis to further define an internal volume of the retrieval bag without the presence of other structures.

11. The specimen retrieval system according to claim 10, wherein the retrieval bag defines an interior surface limiting the internal volume with respect to the opening, both a portion of the opening that is configured to extend distally into the body cavity accessible via the incision and the internal volume of the distal portion of the retrieval bag presenting an unobstructed path to receive the tissue specimen.

12. The specimen retrieval system according to claim 10, wherein the separation of the delivery tube from the retrieval bag enables the delivery tube to be removed from the body cavity through the incision prior to receipt of the tissue specimen in the internal volume of the retrieval bag.

13. The specimen retrieval system according to claim 10, wherein the distal portion of the retrieval bag that is configured to extend distally into the body cavity remains penetrating the incision following removal of the delivery tube from the body cavity through the incision.

14. The specimen retrieval system according to claim 3, wherein the net is advanceable along the external surface of the shaft of the first grasper for placement over the tissue specimen received within the retrieval bag.

15. The specimen retrieval system according to claim 3, wherein the net comprises at least one of a polymeric material and a molded plastic.

16. The specimen retrieval system according to claim 3, wherein the net comprises an elongated shape with a diameter smaller than a diameter of the tissue specimen intended to be removed.

17. The specimen retrieval system of claim 10, wherein the opening defines a distance between a proximal most point of the proximal portion of the retrieval bag and a distal most point of the distal portion of the retrieval bag, and wherein the distance has a mid-point between the proximal most point of the proximal portion of the retrieval bag and the distal most point of the distal portion of the retrieval bag, the opening extending from the proximal portion of the retrieval bag to the distal portion of the retrieval bag a distance greater than the distance from the proximal portion of the retrieval bag to the mid-point of the opening.

18. A surgical retrieval apparatus comprising: a specimen retrieval bag including a rim movably from a collapsed configuration when positioned within a delivery tube to an automatically expanded configuration when advanced from the delivery tube, the rim configured to receive a tissue specimen when the rim is in the expanded configuration, the retrieval bag defining a proximal portion with respect to the incision and a distal portion with respect to the incision.

19. The surgical retrieval apparatus according to claim 18, wherein the rim forms a flexible path in the expanded configuration, the flexible path extending from the proximal portion of the retrieval bag outside of the incision to the distal portion of the retrieval bag that is configured to extend into a body cavity accessible via the incision.

20. The surgical retrieval apparatus according to claim 18, wherein the rim defines a vertical opening in the retrieval bag, the vertical opening defined by the rim extending from the proximal portion of the retrieval bag to the distal portion of the retrieval bag further defining an internal volume of the retrieval bag without the presence of other structures.

21. The surgical retrieval apparatus according to claim 20, wherein the retrieval bag defines an interior surface limiting the internal volume with respect to the vertical opening, both a portion of the opening that is configured to extend distally into the body cavity accessible via the incision and the internal volume of the distal portion of the retrieval bag presenting an unobstructed path to receive the tissue specimen.

22. The surgical retrieval apparatus according to claim 19, further comprising a delivery tube insertable through an incision in a patient’s skin, the delivery tube defining an internal volume extending from a proximal end to a distal end of the delivery tube.

23. The surgical retrieval apparatus according to claim 22, wherein the delivery tube is configured to enable the delivery tube to be removed from the body cavity through the incision to prior to receipt of the tissue specimen in the internal volume of the retrieval bag.

24. The surgical retrieval apparatus according to claim 22, wherein the distal portion of the retrieval bag that is configured to extend distally into the body cavity remains penetrating the incision following removal of the delivery tube from the body cavity through the incision.

25. The surgical retrieval apparatus according to claim 18, wherein the proximal portion of the retrieval bag facilitates maintaining at least a portion of the rim external of the incision in a patient’s skin when the rim is in the expanded configuration.

26. The surgical retrieval apparatus according to claim 18, wherein the surgical retrieval apparatus is separable from the delivery tube.