
(12) United States Patent 
Lee 

USOO88928O3B2 

US 8,892,803 B2 
Nov. 18, 2014 

(10) Patent No.: 
(45) Date of Patent: 

(54) INTERRUPT ON/OFF MANAGEMENT 
APPARATUS AND METHOD FOR 
MULT-CORE PROCESSOR 

(75) Inventor: Ju-Pyung Lee, Suwon-si (KR) 

(73) Assignee: Samsung Electronics Co., Ltd., 
Suwon-si (KR) 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 1102 days. 

(21) Appl. No.: 12/880,335 

(22) Filed: Sep. 13, 2010 

(65) Prior Publication Data 

US 2011 FOOT2180 A1 Mar. 24, 2011 

(30) Foreign Application Priority Data 

Sep. 23, 2009 (KR) ........................ 10-2009-OO90288 

(51) Int. Cl. 
G06F I3/24 

(52) U.S. Cl. 
CPC ...................................... G06F 13/24 (2013.01) 
USPC .......................................................... 710/262 

(58) Field of Classification Search 
USPC .......... 710/260, 262, 266, 269: 718/100, 102, 

718/103, 108 
See application file for complete search history. 

(2006.01) 

(56) References Cited 

U.S. PATENT DOCUMENTS 

5.321,825 A * 6/1994 Song ............................. T11 163 
5,515,538 A * 5/1996 Kleiman . 710,260 
5,995,745. A * 1 1/1999 Yodaiken . ... 703.26 
6,061,709 A * 5/2000 Bronte ... 718,103 
6,516,403 B1* 2/2003 Koyanagi ...................... T12/2O3 

7,093,147 B2 * 8/2006 Farkas et al. .................. T13,320 
7,350,006 B2 3/2008 Yasue et al. 
7,434.224 B2 * 10/2008 Lescouet et al. .............. T18, 108 
7,493,436 B2 2/2009 Blackmore et al. 
7,503,039 B2 * 3/2009 Inoue et al. ................... 717,154 
7,543,306 B2 6/2009 Gaur 
7,716.407 B2* 5/2010 Almasi et al. .. ... 710,260 
7.917,910 B2 * 3/2011 Cavallo ....... ... 718, 108 
7.996,595 B2* 8/2011 Wolfe ............ ... T10,265 
7.996,843 B2 * 8/2011 Van Der Veen ... 718, 104 

2001/0054.055 A1 12/2001 Bollella ........................ TO9,102 
2004/01 11593 A1 6/2004 Arimilli et al. 

(Continued) 

FOREIGN PATENT DOCUMENTS 

KR 10-2004-0049255 6, 2004 

OTHER PUBLICATIONS 

Steve Brosky, "Shielded CPUs: Real-Time Performance in Standard 
Linux.” Linux Journal, May 1, 2004, pp. 1-4. 

(Continued) 

Primary Examiner — Khanh Dang 
(74) Attorney, Agent, or Firm — NSIP Law 

(57) ABSTRACT 

Provided are an interrupt on/off management apparatus and 
method for a multi-core processor having a plurality of cen 
tral processing unit (CPU) cores. The interrupt on/off man 
agement apparatus manages the multi-core processor Such 
that at least one of two or more CPU cores included in a target 
CPU set can execute an urgent interrupt. For example, the 
interrupt on/off management apparatus controls the move 
ment of each CPU core from a critical section to a non-critical 
section such that at least one of the CPU cores is located in the 
non-critical section. The critical section may include an inter 
rupt-disabled section or a kernel non-preemptible section, 
and the non-critical section may include an interrupt-enabled 
section or include both of the interrupt-enabled section and a 
kernel preemptible section. 

19 Claims, 9 Drawing Sheets 

DETERMINATION 
UNIT(4a) 

CONTROL 
UNIT(4b) 

TARGET 
CNT ANT 
WYAVN 

UNIT(4c) 

    

  



US 8,892,803 B2 
Page 2 

(56) References Cited 2010/0287556 A1* 11/2010 Munz. ............................ T18, 102 
2011/0106995 A1* 5/2011 Gopalakrishnan et al. ... 710/269 

U.S. PATENT DOCUMENTS 2011/0271142 A1* 11/2011 Zimmer et al. ................. T14? 10 
2011/0302589 A1* 12/2011 Aussagues et al. ........... T18, 104 

2005, OO15764 A1 1/2005 Gaur 
2007/0130569 A1* 6/2007 Heffley et al. ............ T18, 108 OTHER PUBLICATIONS 
2007/0204268 A1* 8/2007 Drepper ........................ T18, 102 
2007/0226795 A1* 9, 2007 Conti et al. ..................... 726/22 Lee et al., “Delayed Locking Technique for Improving Real-Time 
2008/0072009 A1 3f2008 Kim .............................. T11 206 Performance of Embedded Linux by Prediction of Timer Interrupt” 
2008. O104296 A1 5/2008 Blackmore et al. In Proceedings of the 11th IEEE RealTime on Embedded Technology 
2008. O115138 A1 5, 2008 Nachimuthu et al. 
2008/O126652 A1 5, 2008 Vembu et al. and Applications Symposium, 2005, IEEE Computer Society, pp. 
2008/0155542 A1* 6/2008 Maigne et al. ................ T18, 100 1-10. 
2009.0089470 A1 4, 2009 Ven 
2009/0248934 A1* 10, 2009 Geet al. ........................ T10.261 * cited by examiner 

  



U.S. Patent Nov. 18, 2014 Sheet 1 of 9 US 8,892,803 B2 

2a 2b 2c 2n 

U 1 T 

Interrupt Interrupt 
Dispatcher n/Off Manager 

Urgent Interrupt 

FIG.1B 

DETERMINATION 
UNIT(4a) 

TARGET 

UNIT(4c) 
CONTROL 
UNIT(4b) 

INTERRUPT : 
DELIVERY UNIT 

(4d) 

  

  

  

  

  

  

  



U.S. Patent Nov. 18, 2014 Sheet 2 of 9 US 8,892,803 B2 

FIG.2A 

Target CPU Set 
-------------------------------------------- - 

d 

FIG2B 

Target CPU Set 
-------------------- - 

P2 Ps cr's 



U.S. Patent Nov. 18, 2014 Sheet 3 of 9 US 8,892,803 B2 

FIG.3 

Critical section Non-critical section 

Urgent Interrupt 

  



U.S. Patent Nov. 18, 2014 Sheet 4 of 9 US 8,892,803 B2 

Interrupt 
handler 

process 
Swith 

Urgent Wake up 
Interrupt RT task 

Interrupt process 
handler Swith 

Urgent Wake up 
Interrupt RT task 

  

  



U.S. Patent Nov. 18, 2014 Sheet 5 Of 9 US 8,892,803 B2 

FIG.7 

LOCK INTERRUPT ON/OFF INFORMATION 
W ENFIRSTCPUINTENDS TOENTER 

INTERRUPT-DISABLED SECTION 

bitmap(other cpu) 
is set? 

Set bitmap(my cpu) 

103 
UNLOCK INTERRUPT ON/OFF 

INFORMATION TO ALLOW FIRST CPU TO 
ENTER INTERRUPT-DISABLED SECTION 

104 
END 

FIG.8 

SEED 
LEAVE INTERRUPT-DISABLED SECTION 

clear bitmap(my cpu) 

N112 
END 

  

    

  

    

    

  

  



U.S. Patent Nov. 18, 2014 Sheet 6 of 9 US 8,892,803 B2 

FIG.9 

LOCK INTERRUPT ON/OFF INFORMATION 
WHEN SECOND CPU INTENDS TO ENTER 
INTERRUPT-DISABLED SECTION OR 
KERNEL NON-PREEMPTIBLE SECTION 

121 

bitmap(my cpu) is Set? 122 

2 3 1-4----, -, saf -4-1. - - - -a - Y - D1 LIIlap Oule pu) ISS 

Set bitmap(my cpu) 124 

UNLOCK INTERRUPT ON/OFF INFORMATION 
TO ALLOW SECOND CPU TO ENTER 125 
INTERRUPT-DISABLED SECTION OR 
KERNEL NON-PREEMPTIBLE SECTION 

END 

  

  



U.S. Patent Nov. 18, 2014 Sheet 7 Of 9 US 8,892,803 B2 

FIG.10A 

Interrupt is 
disabled? 

Clear bitmap(my cpu) 133 

132 

FIG. 1 OB 

Exit interrupt 
disabled section 131 

132 Preemption is 
disabled? 

Clear bitmap(my cpu) 133 

  

  



U.S. Patent Nov. 18, 2014 Sheet 8 of 9 US 8,892,803 B2 

FIG 11 

bitmap CPU3 CPU4 

0000 

About to 
OOO enter 

exit 

About to 
enter 

DI 

exit 

  



U.S. Patent Nov. 18, 2014 Sheet 9 Of 9 US 8,892,803 B2 

FIG. 12 

FIG.13 

(I) (II) (III) (IV) 

  



US 8,892,803 B2 
1. 

INTERRUPT ONAOFF MANAGEMENT 
APPARATUS AND METHOD FOR 
MULT-CORE PROCESSOR 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application claims the benefit under 35 U.S.C. S 119 
(a) of Korean Patent Application No. 10-2009-0090288, filed 
on Sep. 23, 2009, the entire disclosure of which is incorpo 
rated herein by reference for all purposes. 

BACKGROUND 

1. Field 
The following description relates to interrupt handling, for 

example, interrupt handling in a multi-core processor. 
2. Description of the Related Art 
A critical section exclusively executed for synchronization 

may exist at multiple locations in an operating system. For 
example, the term 'exclusively denotes that a central pro 
cessing unit (CPU) executes a corresponding process regard 
less of other conditions. Therefore, when an interrupt signal is 
generated in the critical section, it is not processed or pro 
cessing thereof is delayed; regardless of importance or 
urgency. 

In an operating system of a computer, a critical section may 
be implemented as an interrupt-disabled section, a kernel 
non-preemptible section, or a combination of the two. The 
interrupt-disabled section is a section in which an interrupt is 
not processed since an interrupt handler is not executed. The 
kernel non-preemptible section is a section in which kernel 
preemption is not possible since a process Switch or a context 
switch does not occur even if the interrupt handler is 
executed. In addition to the interrupt-disabled section and the 
kernel non-preemptible section, the time required to process 
an interrupt signal may also be considered as a critical section 
in a broad sense. This is because a CPU processing a specified 
interrupt may not process other interrupts until processing of 
the specified interrupt is finished. 
A critical section, such as the interrupt-disabled section 

and/or the kernel non-preemptible section, prevents a prob 
lem with synchronization, which may result from interrupt 
handling, in an operating system. Therefore, the critical sec 
tion exists in an operating system of a computer. However, the 
critical section causes delay in the execution of an urgent 
interrupt which wakes up a real-time process that should be 
processed quickly. Even in a multi-core system, delay in the 
processing of an urgent interrupt due to the critical section 
tends to be unavoidable. To prevent delay in the processing of 
an urgent interrupt, various techniques have been suggested, 
Such as a lock breaking technique, a dual kernel technique, a 
shielded CPU technique, and a delayed locking technique. 

SUMMARY 

In one general aspect, there is provided a multi-core pro 
cessor and a multi-core computing system including an inter 
rupt on/off apparatus guaranteeing the processing of an 
urgent interrupt or reducing or minimizing a delay in the 
processing of the urgent interrupt. Accordingly, real-time per 
formance of a general-use operating system that runs on a 
multi-core system may be improved and thus being Suitable 
for use in, for example, a high-performance real-time operat 
ing System. 

In another general aspect, there is provided an interrupt 
on/off management apparatus and method and a multi-core 

10 

15 

25 

30 

35 

40 

45 

55 

60 

65 

2 
computing system including the interrupt on/off apparatus, 
the interrupt on/off apparatus and method enabling one or 
more urgent interrupts, which is/are to be processed quickly, 
to be processed within a minimum time delay without being 
affected by an interrupt-disabled section or a kernel non 
preemptible section. 

In another general aspect, there is provided an interrupt 
on/off management apparatus for a multi-core processor 
comprising n (c.2) central processing unit (CPU) cores, the 
apparatus including a determination unit configured to deter 
mine whether each of m (2smsn) CPU cores included in a 
target CPU set among then CPU cores is located in a critical 
section or a non-critical section, and a control unit configured 
to control the m CPU cores such that one or more of the m 
CPU cores are located in the non-critical section, based on the 
determination result of the determination unit. 
The control unit may control entry of a first CPU core, 

which is located in the non-critical section among them CPU 
cores, into the critical section. 

In response to the determination unit determining that all of 
(m-1) CPU cores excluding the first CPU core among the m 
CPU cores are located in the critical section, the control unit 
may prevent the first CPU core from entering the critical 
section. 
The control unit may control entry of the first CPU core 

into the critical section in response to an execution time of the 
critical section being longer than a predetermined period of 
time. 
The critical section may include an interrupt-disabled sec 

tion, and the non-critical section may include an interrupt 
enabled section. 
The critical section may include any one of an interrupt 

disabled section and a kernel non-preemptible section, and 
the non-critical section may include an interrupt-enabled sec 
tion and a kernel preemptible section. 
The determination unit may determine whether each of the 

m CPU cores included in the target CPU set is located in the 
critical section or the non-critical section based on interrupt 
on/off information indicating a section in which each of them 
CPU cores included in the target CPU set is located. 
The apparatus may further include a target designation unit 

configured to designate a type and/or number of CPU cores 
included in the target CPU set among then CPU cores. 
The apparatus may further include an interrupt delivery 

unit configured to deliver an urgent interrupt to any one of the 
CPU cores located in the non-critical section or broadcast the 
urgent interrupt to all of the m CPU cores included in the 
target CPU set, based on the determination result of the deter 
mination unit. 
The urgent interrupt may include a local timer interrupt, 

and the interrupt delivery unit may deliver information so as 
to execute the local timer interrupt between them CPU cores 
included in the target CPU set. 
The interrupt delivery unit may deliver the urgent interrupt 

or controls an interrupt dispatcher, which is separate from the 
interrupt delivery unit, to deliver the urgent interrupt. 
The mand n may be integers equal to or greater than three, 

and the control unit may control them CPU cores such that at 
least two of them CPU cores included in the target CPU set 
are located in the non-critical section. 

In another general aspect, there is provided an interrupt 
on/off management method for a multi-core processor com 
prising n (>2) CPU cores, the method including determining 
whether each of m (2smsn) CPU cores included in a target 
CPU set among then CPU cores is located in a critical section 
or a non-critical section, and controlling the m CPU cores 



US 8,892,803 B2 
3 

such that at least one of the m CPU cores is located in the 
non-critical section, based on the determination. 
The critical section may include an interrupt-disabled sec 

tion, and the non-critical section may include an interrupt 
enabled section, and the controlling of them CPU cores may 
include controlling a first CPU core, which is located in the 
interrupt-enabled section among the mCPU cores, to enter 
into the interrupt-disabled section. 
The method may further include locking state information 

of them CPU cores included in the target CPU set before the 
determining of whether each of the m (2smsn) CPU cores 
included in the target CPU set among the n CPU cores is 
located in the critical section or the non-critical section, 
wherein in response to the determination that all of the (m-1) 
CPU cores are located in the interrupt-disabled section, the 
first CPU core may be prevented from entering the interrupt 
disabled section during the controlling of them CPU cores, 
and the determining of whether each of the m (2smsn) CPU 
cores included in the target CPU set among then CPU cores 
is located in the critical section or the non-critical section may 
be repeated. 

The method may further include locking state information 
of them CPU cores included in the target CPU set before the 
determining of whether each of the m (2smsn) CPU cores 
included in the target CPU set among the n CPU cores is 
located in the critical section or the non-critical section, and 
unlocking the state information of them CPU cores to allow 
the first CPU core to enter the interrupt-disabled section in 
response to the determination that at least one of the (m-1) 
CPU cores is located in the interrupt-enabled section. 
The critical section may include any one of an interrupt 

disabled section and a kernel non-preemptible section, and 
the non-critical section may include an interrupt-enabled sec 
tion and a kernel preemptible section, and the controlling of 
the mCPU cores may include controlling a first CPU core, 
which is located in the non-critical section among them CPU 
cores, to enter into the critical section. 
The method may further include locking state information 

of them CPU cores included in the target CPU set before the 
determining of whether each of the m (2smsn) CPU cores 
included in the target CPU set among the n CPU cores is 
located in the critical section or the non-critical section, deter 
mining whether the first CPU core is located in the critical 
section or the non-critical section before the determining of 
whether each of the m (2smsn) CPU cores included in the 
target CPU set among then CPU cores is located in the critical 
section or the non-critical section, and unlocking the state 
information of them CPU cores to allow the first CPU core to 
enter the interrupt-enabled section or the kernel preemptible 
section in response to the determination that the first CPU 
core is located in the critical section. 
The method may further include, before the determining of 

whether each of the m (2smsn) CPU cores included in the 
target CPU set among then CPU cores is located in the critical 
section or the non-critical section, locking State information 
of the m CPU cores included in the target CPU set, and 
determining whether the first CPU core is located in the 
critical section or the non-critical section. Wherein the deter 
mining of whether each of the m (2smsn) CPU cores 
included in the target CPU set among the n CPU cores is 
located in the critical section or the non-critical section may 
be performed in response to the determination that the first 
CPU core is located in the critical section, and in response to 
the determination that all of the (m-1) CPU cores are located 
in the critical section, the first CPU core may be prevented 
from entering the interrupt-disabled section or the kernel 
non-preemptible section, and the determining of whether 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
each of the m (2smsn) CPU cores included in the target CPU 
set among then CPU cores is located in the critical section or 
the non-critical section may be repeated. 
The method may further include locking state information 

of them CPU cores included in the target CPU set, determin 
ing whether the first CPU core is located in the critical section 
or the non-critical section, wherein the determining of 
whether each of the m (2smsn) CPU cores included in the 
target CPU set among then CPU cores is located in the critical 
section or the non-critical section may include determining 
whether each of the m (2smsn) CPU cores included in the 
target CPU set among then CPU cores is located in the critical 
section or the non-critical section in response to the determi 
nation that the first CPU core is located in the critical section, 
and unlocking the state information of the m CPU cores to 
allow the first CPU core to enter the interrupt-disabled section 
or the kernel non-preemptible section in response to the deter 
mination that at least one of the (m-1) CPU cores is located in 
the non-critical section. 

Other features and aspects will be apparent from the fol 
lowing detailed description, the drawings, and the claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A is a block diagram illustrating an example of a 
multi-core computing system. 

FIG. 1B is a block diagram illustrating an interrupt on/off 
manager shown in FIG. 1A. 

FIGS. 2A and 2B are diagrams illustrating examples of 
target central processing unit (CPU) sets formed in a multi 
core computing system including four CPU cores. 

FIG.3 is a block diagram illustrating an example of a target 
CPU set that includes four CPU cores, each being located in 
a critical section or a non-critical section. 

FIG. 4 is a diagram for explaining a case where an urgent 
interrupt is delivered to a CPU core located in an interrupt 
disabled section. 

FIG. 5 is a diagram for explaining a case where an urgent 
interrupt is delivered to a CPU core located in a kernel non 
preemptible section. 

FIG. 6 is a diagram for explaining a case where an urgent 
interrupt is delivered to a CPU core located in an interrupt 
enabled section and a kernel preemptible section. 

FIG. 7 is a flowchart illustrating a process of controlling the 
movement of a CPU core from an interrupt-enabled section to 
an interrupt-disabled section. 

FIG. 8 is a flowchart illustrating a process in which a CPU 
core moves from the interrupt-disabled section to the inter 
rupt-enabled section. 

FIG.9 is a flowchart illustrating a process of controlling the 
entry of a CPU core into the interrupt-disabled section or the 
kernel non-preemptible section. 

FIGS. 10A and 10B are flowcharts illustrating a process in 
which a CPU core enters the interrupt-enabled section and the 
kernel non-preemptible section, respectively. 

FIG. 11 is a diagram illustrating an example of an interrupt 
on/offmanagement method for a multi-core processor, based 
on the flowchart of FIG. 7. 

FIG. 12 is a diagram illustrating an example interrupt 
broadcasting when an urgent interrupt is a local timer inter 
rupt. 

FIG. 13 is a diagram illustrating four scenarios that may 
occur when an urgent interrupt is delivered using interrupt 
broadcasting. 

Throughout the drawings and the detailed description, 
unless otherwise described, the same drawing reference 
numerals will be understood to refer to the same elements, 



US 8,892,803 B2 
5 

features, and structures. The relative size and depiction of 
these elements may be exaggerated for clarity, illustration, 
and convenience. 

DETAILED DESCRIPTION 

The following description is provided to assist the reader in 
gaining a comprehensive understanding of the methods, 
apparatuses, and/or systems described herein. Accordingly, 
various changes, modifications, and equivalents of the meth 
ods, apparatuses, and/or systems described herein will be 
Suggested to those of ordinary skill in the art. Also, descrip 
tions of well-known functions and constructions may be 
omitted for increased clarity and conciseness. 

FIG. 1A shows an example of a multi-core computing 
system. FIG. 1B shows an example of an interrupt on/off 
manager 4 shown in FIG. 1A. The interrupt on/offmanager 4 
may also be referred to as the interrupt on/off management 
apparatus. 

Referring to FIG. 1A, the multi-core computing system 
includes n (c.2) central processing unit (CPU) cores 2a 
through 2n and the interrupt on/off manager 4 of the n CPU 
cores 2a through 2n. Referring to FIG. 1B, the interrupt on/off 
manager 4 includes a determination unit 4a, a control unit 4b. 
a target designation unit 4c, and an interrupt delivery unit 4d. 
The target designation unit 4c and the interrupt delivery unit 
4d may be optional components. 
The multi-core computing system includes two or more 

CPU cores 2a through 2n. All of then CPU cores 2a through 
2n may run on a single operating system. That is, the multi 
core computing system may not necessarily be a system in 
which a plurality of operating system kernels run together. 
The multi-core computing system may be a general system in 
which a single operating system kernel runs. In addition, a 
real-time process or an important interrupt may not necessar 
ily be executed by a specified CPU core but may be executed 
by one or more other CPU cores (for example, all CPU cores 
included in target CPU set which will be described later). 
Hereinafter, an interrupt, which wakes up a real-time process 
that is given priority over other processes currently being 
executed by the multi-core computing system, may be 
referred to as an urgent interrupt. 
Of then CPU cores 2a through 2n, m (2smsn) CPU cores 

are included in a target CPU set. A target CPU set refers to 
a group of CPU cores whose movement from a non-critical 
section to a critical section is controlled by the interrupton/off 
manager 4, for example, the control unit 4b of the interrupt 
on/off manager 4. The target CPU set may include all or part 
of then CPU cores 2a through 2n, but at least two CPU cores. 
FIGS. 2A and 2B show examples of target CPU sets that can 
be formed in a multi-core computing system including four 
(n=4) CPU cores. A target CPU set provided in FIG. 2A 
includes all of the four CPU cores (m=4), and a target CPU set 
provided in FIG. 2B includes two of the four CPU cores 
(m=2). 
The number and/or type of CPU cores included in a target 

CPU set may be predetermined in the multi-core computing 
system or may be determined by the interrupt on/offmanager 
4. In the latter case, the interrupt on/off manager 4, for 
example, the control unit 4b or the target designation unit 4c 
may determine the number and/or type of CPU cores, which 
are included in a target CPU set, the determination being 
performed arbitrarily or based on external inputs. The number 
and/or type of CPU cores included in a target CPU set may 
vary. Also, the control unit 4b or the target designation unit 4c 
of the interrupt on/off manager 4 may adjust the number 
and/or type of CPU cores included in a target CPU set in 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
response to a request (for example, a request for joining to a 
target CPU set or a request for leaving the target CPU set) 
from each CPU core. 

Each of mCPU cores included in a target CPU set may 
repeatedly enter or leave the critical section (an interrupt 
disabled section DI and/or a kernel non-preemptible section 
NP). In this case, the control unit 4b of the interrupt on/off 
manager 4 controls them CPU cores such that at least one of 
them CPU cores is located in the non-critical section and that 
the other CPU cores are located in the critical section. 
Whether a CPU core is located in the critical section or the 
non-critical section may be determined by whether the CPU 
core is located in the interrupt-disabled section DI or an 
interrupt-enabled section EN. In this case, when a CPU core 
is located in the interrupt-disabled section DI, it may be 
determined to be in the critical section. When the CPU core is 
located in the interrupt-enabled section EN, it may be deter 
mined to be in the non-critical section. 

In addition to whether a CPU core is located in the inter 
rupt-disabled section DI or the interrupt-enabled section 
EN, whether the CPU core is located in the kernel non 
preemptible section NP or a kernel preemptible section P 
may be taken into consideration in determining whether the 
CPU core is located in the critical section or the non-critical 
section. In this case, when a CPU core is located in the 
interrupt-disabled section DI or the kernel non-preemptible 
section NP, it may be determined to be in the critical section. 
When the CPU core is located in the interrupt-enabled section 
EN and the kernel preemptible section P, it may be deter 
mined to be in the non-critical section. 

FIG.3 shows an example of a target CPU set that includes 
first through fourth CPU cores, CPU1 through CPU4, each 
being located in the critical section or the non-critical section. 
To determine whether each of the first through fourth CPU 
cores, CPU1 through CPU4, in FIG.3 is located in the critical 
section or the non-critical section, whether each of the first 
through fourth CPU cores, CPU1 through CPU4, is located in 
the kernel preemptible section P or the kernel non-preempt 
ible section NP has been taken into consideration, in addi 
tion to whether each of the first through fourth CPU cores, 
CPU1 through CPU4, is located in the interrupt-enabled sec 
tion EN or the interrupt-disabled section DI. Referring to 
FIG. 3, the first through third CPU cores, CPU1 through 
CPU3, are located in the critical section since they are located 
in the interrupt-disabled section DI or the kernel non-pre 
emptible section NP. In contrast, the fourth CPU core CPU4 
is located in the non-critical section since it is located in both 
of the interrupt-enabled section EN and the kernel preempt 
ible section P. 

FIG. 4 illustrates a case where an urgent interrupt is deliv 
ered to a CPU core, such as the first and second CPU cores 
CPU1 and CPU2 shown in FIG. 3, located in the interrupt 
disabled section DI. Referring to FIG. 4, an urgent interrupt 
signal arriving at a CPU core located in the interrupt-disabled 
section DI cannot be immediately processed by the CPU 
core. Accordingly, the processing of the urgent interrupt sig 
nal is delayed until it becomes possible. When the CPU core 
enters the interrupt-enabled section EN, that is, after the 
urgent interrupt signal is delayed for a period of time from its 
generation, an interrupt handler is executed. 

FIG. 5 illustrates a case where an urgent interrupt is deliv 
ered to a CPU core, such as the first and third CPU cores 
CPU1 and CPU3 shown in FIG. 3, located in the kernel 
non-preemptible section NP. In the kernel non-preemptible 
section NP, even ifa real-time process (also, referred to as a 



US 8,892,803 B2 
7 

real-time task) is woken up by an urgent interrupt, a context 
Switch or a process Switch for Switching to the real-time 
process is not allowed. 

Referring to FIG. 5, when an urgent interrupt arrives at the 
interrupt-enabled section EN, an interrupt handler for the 
urgent interrupt can be immediately executed. However, 
when an urgent interrupt arrives at the kernel non-preempt 
ible section NP, the process switch (or the context switch) to 
a high-priority, real-time process woken up by the interrupt 
handler is delayed until the kernel non-preemptible section 
NP ends and kernel preemption becomes possible. Accord 
ingly, preemption of a high-priority, real-time process for 
executing the urgent interrupt is delayed until the kernel pre 
emptible section P starts, as illustrated in FIG. 5. 

FIG. 6 illustrates a case where an urgent interrupt is deliv 
ered to a CPU core, such as the fourth CPU core CPU4 shown 
in FIG. 3, located in the interrupt-enabled section EN and 
the kernel preemptible section P. In the case of FIG. 6, 
execution of an interrupt handler and the process Switch (to a 
real-time process) can be immediately performed. That is, an 
urgent interrupt can be immediately processed by the CPU 
core located in the interrupt-enabled section EN and the 
kernel preemptible section P. Thus, the urgent interrupt can 
not only be processed, but also a period of time for which the 
processing of the urgent interrupt is delayed can be reduced or 
minimized. 

Referring back to FIGS. 1A and 1B, using interrupt on/off 
information indicating whether each of CPU cores included 
in a target CPU set is currently located in the critical section 
or the non-critical section, the interrupt on/off manager 4 
manages the CPU cores in the target CPU set such that one or 
more of the CPU cores are located in the non-critical section. 
That is, one or more of the CPU cores included in the target 
CPU set may be placed in a section in which an urgent 
interrupt can be executed (for example, the non-critical sec 
tion) as shown in FIG. 6, and an urgent interrupt may be 
delivered to the CPU cores in this section. Accordingly, the 
urgent interrupt and a real-time process woke up by the urgent 
interrupt can be quickly (or within a minimum time delay) 
processed without being affected by the interrupt-disabled 
section DI and/or the kernel non-preemptible section NP. 
When the multi-core computing system is to Support 

execution of two urgent interrupts, the control unit 4b of the 
interrupt on/off manager 4 may control the CPU cores 
included in the target CPU set such that one or more of the 
CPU cores are located in the non-critical section. In this case, 
the multi-core computing system includes three or more CPU 
cores, and the target CPU set also includes three or more CPU 
cores. A case where CPU cores are controlled to execute two 
urgent interrupts is simply a quantitative expansion of a case 
where CPU cores are controlled to execute one urgent inter 
rupt, and thus further description thereof will be omitted for 
conciseness. 
The interrupt on/off manager 4 may be software included 

in the Source code of an operating system or may be imple 
mented using hardware. When the interrupt on/offmanager 4 
is hardware, modification of the Source code of the operating 
system may not be needed. In this case, a CPU core intending 
to enter the interrupt-disabled section DI or the kernel non 
preemptible section NP through the operating system may 
request the interrupt on/off manager 4 implemented as hard 
ware to allow its entry into the interrupt-disabled section DI 
or the kernel non-preemptible section NP. Accordingly, 
based on the interrupt on/off information, the hardware (for 
example, the interrupt on/off manager 4) may immediately 
allow the CPU core to enter the interrupt-disabled section 
DI or the kernel non-preemptible section NP, thereby pre 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
venting the CPU core to process an interrupt, or allowing the 
CPU core to enter the interrupt-disabled section DI or the 
kernel non-preemptible section NP after a predetermined 
delay time. 
The interrupt on/offmanager 4 may use the interrupt on/off 

information to control CPU cores included in a target CPU 
set. The interrupt on/off information may be information 
indicating whether each of the CPU cores included in the 
target CPU set is currently located in the critical section or the 
non-critical section. The term interrupt on/off information 
has been arbitrarily chosen, and other terms may be used to 
refer to the same. The interrupt on/off information may be 
represented by an interrupt disable bit. In this case, when a 
CPU core is located in the critical section (the interrupt 
disabled section DI or the kernel non-preemptible section 
NP), the interrupt on/off information for the CPU core may 
be set to 1. When the CPU core is located in the non-critical 
section (the interrupt-enabled section EN and the kernel 
preemptible section P), the interrupt on/off information for 
the CPU core may be set to 0. As another example, the 
interrupt on/off information may be represented by an inter 
rupt enable bit. In this case, the values 0 and 1 may be 
reversed from the previous case. Thus, for conciseness, the 
case where the interrupt on/off information is represented by 
the interrupt enable bit will not be further described. 
The interrupt on/off information for all CPU cores 

included in a target CPU set may be represented by a bitmap 
and stored accordingly in a predetermined storage device (for 
example, a shared memory of the multi-core computing sys 
tem). For example, if four CPU cores are included in a target 
CPU set, the interrupt on/off information for the four CPU 
cores may use a 4-bit bitmap to indicate whether each of the 
CPU cores is currently located in the critical section or the 
non-critical section. Here, a bit at each bit position in the 4-bit 
bitmap indicates a CPU core included in the target CPU set. 
For example, bits from most significant to least significant 
may sequentially and respectively indicate a fourth CPU core, 
a third CPU core, a second CPU core, and a first CPU core. 
The interrupt on/off information may be updated when the 

current state of at least one of CPU cores included in a target 
CPU set changes. In another example, the interrupt on/off 
information may be periodically updated regardless of 
whether the current state of at least one of the CPU cores 
included in the target CPU set changes. The interrupt on/off 
information may be changed directly by a CPU core whose 
current state has changed and/or by the interrupt on/offman 
ager 4 (for example, the control unit 4b). When the interrupt 
on/off information needs to be updated, the interrupt on/off 
manager 4 may synchronize the interrupt on/off information 
with the current state of each CPU core through information 
exchange with each CPU core. 
The interrupt on/off manager 4 may also manage target 

CPU set information. For example, the target designation unit 
4c of the interrupt on/off manager 4 may manage the target 
CPU set information. As described above, the target designa 
tion unit 4c of the interrupt on/off manager 4 may determine 
the type and/or number of CPU cores included in a target CPU 
set among all CPU cores included in the multi-core comput 
ing system. In another example, each CPU core may join or 
leave a target CPU set through information exchange (for 
example, a request for joining to a target CPU set or a request 
for leaving the target CPU set) with the interrupt on/offman 
ager 4 (for example, the target designation unit 4c). Informa 
tion about inclusion or exclusion of each CPU core in/from a 
target CPU set may refer to the target CPU set information 
and may be implemented by a target CPU bit or the like. This 



US 8,892,803 B2 

information may be stored in the interrupt on/offmanager 4 or 
the shared memory and may be managed accordingly. 

The control unit 4b of the interrupt on/off manager 4 may 
control movement of CPU cores, which are included in a 
target CPU set, from the non-critical section to the critical 
section, so that at least one of the CPU cores is located in the 
non-critical section. In this case, the control unit 4b of the 
interrupt on/off manager 4 may control entry of the CPU 
cores into all the critical sections or parts of the critical sec 
tions which are selected based on a predetermined standard. 

In the former case, the control unit 4b of the interrupt on/off 
manager 4 may itself control the CPU cores entry into the all 
critical sections. In the latter case, the control unit 4b of the 
interrupt on/off manager 3 may control the CPU cores entry 
into the particular critical sections. For example, when the 
execution time of the interrupt-disabled section DI or the 
kernel non-preemptible section NP is short (that is, when the 
execution time is shorter than a predetermined period of 
time), the control unit 4b may allow a CPU core to enter the 
critical section. However, when the execution time of the 
interrupt-disabled section DI or the kernel non-preemptible 
section NP is longer than the predetermined period of time, 
the control unit 4b may control entry of the CPU core into the 
critical section. If the interrupt on/off manager 4 controls 
entry of CPU cores, which are included in a target CPU set, 
into the particular critical sections, there may be fewer cases 
where a CPU core attempting to enter the interrupt-disabled 
section DI or the kernel non-preemptible section NP has to 
wait until it is allowed to enter the interrupt-disabled section 
DI or the kernel non-preemptible section NP than when the 
interrupt on/off manager 4 controls entry of the CPU cores 
into all the critical sections. Accordingly, utilization of the 
CPU cores included in the target CPU set can be improved. 
The following description is based on a case where the inter 
rupt on/offmanager 4 controls entry of CPU cores into all the 
critical sections. However, it is understood that similar 
description can be applied to a case where the interrupt on/off 
manager 4 controls entry of CPU cores into the particular 
critical sections. 

FIG. 7 shows an example process in which the control unit 
4b of the interrupt on/offmanager 4 controls the movement of 
a CPU core from the non-critical section to the critical sec 
tion. With respect to the process of FIG. 7, a CPU core is 
located in the interrupt-disabled section DI as the critical 
section and is located in the interrupt-enabled section EN as 
the non-critical section. 

Referring to FIG.7, when any one (for example, a first CPU 
core) of mCPU cores included in a target CPU set intends to 
enter the interrupt-disabled section DI, the interrupt on/off 
manager 4 locks interrupt on/off information (bitmap) for all 
of them CPU cores (operation 101). This is to prevent prob 
lems with synchronization of the interrupt on/off information 
(bitmap) resulting from an update of the interrupt on/off 
information (bitmap) simultaneously by two different CPU 
cores. When intending to enter the interrupt-disabled section 
DI, the first CPU core may lock the interrupt on/off infor 
mation on its own or by exchanging signals with the interrupt 
on/off manager 4. Then, the first CPU core may perform an 
operation 102 which will be described later. By communicat 
ing with the first CPU core, the interrupt on/offmanager 4 can 
identify the intent of the first CPU core to enter the interrupt 
disabled section DI. 
The determination unit 4a of the interrupt on/off manager 

4 determines whether all of (m-1) CPU cores (other cpu) 
excluding the first CPU core among the m CPU cores 
included in the target CPU set are located in the interrupt 
disabled section DI (operation 102). Here, the determina 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
tion unit 4a may use the locked interrupt on/off information. 
For example, if the interrupt on/off information is represented 
by a bitmap of interrupt disable bits, the determination unit 4a 
may determine whether all of the interrupt disable bits corre 
sponding respectively to the (m-1) CPU cores (other cpu) 
excluding the first CPU core have been set to 1. When 
determining that all of the (m-1) CPU cores are located in the 
interrupt-disabled section DI, that is, when all of the inter 
rupt disable bits in the bitmap are 1, the control unit 4b of the 
interrupt on/off manager 4 does not allow the first CPU core 
to enter the interrupt-disabled section DI. Then, the deter 
mination unit 4a of the interrupt on/offmanager 4 repeats the 
operation 102. The determination unit 4a may repeat the 
operation 102 periodically or at a predetermined time and/or 
a predetermined number of times. 

If the control unit 4b allows the first CPU core to enter the 
interrupt-disabled section DI even when all of the (m-1) 
CPU cores are located in the interrupt-disabled section DI. 
all of them CPU cores included in the target CPU set may be 
in the interrupt-disabled section. In this case, an urgent inter 
rupt cannot be processed. Therefore, in the example provided, 
the determination unit 4a repeats the operation 102 to prevent 
a situation in which all of the m CPU cores included in the 
target CPU set are in the interrupt-disabled section DI. The 
determination unit 4a repeats the operation 102 until at least 
one of the (m-1) CPU cores moves from the interrupt-dis 
abled section DI to the interrupt-enabled section EN”. After 
identifying that at least one of the (m-1) CPU cores is located 
in the interrupt-enabled section EN, the control unit 4b of 
the interrupt on/off manager 4 allows the first CPU core to 
enter the interrupt-disabled section DI. 

In other words, when it is determined in the operation 102 
that at least one of the (m-1) CPU cores is located in the 
interrupt-enabled section EN, that is, when at least one of 
the interrupt disable bits in the bitmap is 0, the control unit 
4b of the interrupt on/offmanager 4 allows the first CPU core 
to enter the interrupt-disabled section DI. This is because 
even if the first CPU core enters the interrupt-disabled section 
DI, at least one urgent interrupt can be processed when at 
least one of the (m-1) CPU cores is located in the interrupt 
enabled Section EN. 

Accordingly, the interrupt on/off manager 4 or the first 
CPU core sets the interrupt on/off information for the first 
CPU core to the interrupt-disabled section DI (operation 
103). That is, an interrupt disable bit (my cpu) corresponding 
to the first CPU core in the bitmap is set to 1. Then, the 
control unit 4b of the interrupt on/offmanager 4 unlocks the 
interrupt on/off information, thereby allowing the first CPU 
core to enter the interrupt-disabled section DI (operation 
104). That is, the first CPU core unlocks the interrupt on/off 
information and then enters the interrupt-disabled section 
DI. 
In the example provided, it is not necessary for the control 

unit 4b of the interrupt on/offmanager 4 to control the move 
mentofa CPU core from the critical section to the non-critical 
section. However, this does not exclude the fact that the 
interrupt on/off manager 4 can control the movement of a 
CPU core from the critical section to the non-critical section, 
as apparent from the disclosure herein. Even if the interrupt 
on/off manager 4 does not control the movement of a CPU 
core from the critical section to the non-critical section, as the 
cases may be, it may need to know which CPU core moves 
from the critical section to the non-critical section. 

FIG. 8 shows an example process in which a CPU core 
moves from the critical section to the non-critical section. 
With respect to the process of FIG. 8, a CPU core is located in 
the interrupt-disabled section DI which is the critical section 



US 8,892,803 B2 
11 

and a CPU core is located in the interrupt-enabled section 
EN' which is the non-critical section. Referring to FIG. 8, 
when a first CPU located in the interrupt-disabled section 
DI intends to enter the interrupt-enabled section EN, it can 
enter the interrupt-enabled section EN without any restric 
tions (operation 111). Accordingly, the first CPU core or the 
interrupt on/off manager 4 sets interrupt on/off information 
for the first CPU core (that is, an interrupt disable bit (my 
cpu) corresponding to the first CPU core in a bitmap) to 0 

(operation 112). In the latter case where the subject of the 
operation 112 is the interrupt on/off manager 4, the interrupt 
on/offmanager 4 may unlock the interrupt on/off information 
for the first CPU core by exchanging signals with the first 
CPU core. 

FIG.9 shows another example process in which the control 
unit 4b of the interrupt on/off manager 4 controls the move 
ment of a CPU core from the non-critical section to the critical 
section. With respect to the process of FIG. 9, a CPU core is 
located in the interrupt-disabled section DI or the kernel 
non-preemptible section NP as the critical section and is 
located in both of the interrupt-enabled section EN and the 
kernel preemptible section P as the non-critical section. 

Referring to FIG. 9, when any one (for example, a second 
CPU core) of mCPU cores included in a target CPU set 
intends to enter the interrupt-disabled section DI or the 
kernel non-preemptible section NP, the interrupt on/off 
manager 4 or the second CPU core locks interrupt on/off 
information (bitmap) for all of them CPU cores (operation 
121). This is to prevent a problem with synchronization of the 
interrupt on/off information (bitmap) resulting from simulta 
neous updating of the interrupt on/off information (bitmap) 
by two different CPU cores. When intending to enter the 
interrupt-disabled section DI or the kernel non-preemptible 
section NP, the second CPU core may lock the interrupt 
on/off information by exchanging signals with the interrupt 
on/offmanager 4. Then, the second CPU core may performan 
operation 122 which will be described later. By communicat 
ing with the second CPU core, the interrupt on/offmanager 4 
can identify the intent of the second CPU core to enter the 
interrupt-disabled section DI or the kernel non-preemptible 
Section NP. 
The determination unit 4a of the interrupt on/off manager 

4 checks the current state of the second CPU core based on the 
interrupt on/off information and determines whether the sec 
ond CPU core is located in the critical section (the kernel 
non-preemptible section NP or the interrupt-disabled sec 
tion DI) (operation 122). Operation 122 may be performed 
by the second CPU core, for example, and not by the interrupt 
on/off manager 4. In this case, the second CPU core deter 
mines whether it is currently in the critical section based on 
the interrupt on/off information. 
When it is determined that the interrupt on/off information 

for the second CPU core has been set, the interrupt on/off 
information (bitmap) for all of them CPU cores, which was 
locked in the operation 121, is unlocked so that the second 
CPU core can enter the kernel non-preemptible section NP 
or the interrupt-disabled section DI (operation 125). If it is 
determined that the interrupt on/off information for the sec 
ond CPU core has been set, then the second CPU core has 
already entered the kernel non-preemptible section NP and 
is attempting to enter the interrupt-disabled section DI or 
has already entered the interrupt-disabled section DI and is 
attempting to enter the kernel non-preemptible section NP. 
Therefore, since the second CPU core has already entered the 
critical section, that is, the interrupt-disabled section DI or 
the kernel non-preemptible section NP, the control unit 4b 
of the interrupt on/off manager 4 may allow the second CPU 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
core to enter the kernel non-preemptible section NP or the 
interrupt-disabled section DI. 
On the other hand, when it is determined that the interrupt 

on/off information for the second CPU core has not been set, 
the determination unit 4a of the interrupt on/off manager 4 
determines whether any of (m-1) CPU cores (other cpu) 
excluding the second CPU core among the m CPU cores 
included in the target CPU set is located in the interrupt 
disabled section DI or the kernel non-preemptible section 
NP based on the stored interrupt on/off information (opera 
tion 123). For example, if the interrupt on/off information is 
represented by a bitmap of interrupt disable bits, the determi 
nation unit 4a may determine whether any of the interrupt 
disable bits corresponding respectively to the (m-1) CPU 
cores (other cpu) excluding the second CPU core has been 
set to 1. When determining that all of the (m-1) CPU cores 
are located in the interrupt-disabled section DI or the kernel 
non-preemptible section NP, that is, when all of the inter 
rupt disable bits in the bitmap are 1, the control unit 4b of the 
interrupt on/off manager 4 does not allow the second CPU 
core to enter the interrupt-disabled section DI or the kernel 
non-preemptible section NP. Then, the determination unit 
4a of the interrupt on/offmanager 4 repeats the operation 123. 

If the control unit 4b allows the second CPU core to enter 
the interrupt-disabled section DI or the kernel non-preempt 
ible section NP even when all of the (m-1) CPU cores are 
located in the interrupt-disabled section DI or the kernel 
non-preemptible section NP, all of the m CPU cores 
included in the target CPU set are in the interrupt-disabled 
section DI or the kernel non-preemptible section NP. In 
this case, none of them CPU cores included in the target CPU 
set can process an urgent interrupt. Therefore, in the example 
provided, the operation 123 is repeated to prevent a situation 
in which all of them CPU cores included in the target CPU set 
are in the interrupt-disabled section DI or the kernel non 
preemptible section NP. Operation 123 may be repeated 
until at least one of the (m-1) CPU cores enters the interrupt 
enabled section EN and the kernel preemptible section P. 
Then, the interrupt on/off manager 4 allows the second CPU 
core to enter the interrupt-disabled section DI or the kernel 
non-preemptible section NP. 

For example, when it is determined in the operation 123 
that at least one of the (m-1) CPU cores is located in the 
interrupt-enabled section EN and the kernel preemptible 
section P, that is, when at least one of the interrupt disable 
bits in the bitmap is 0 the control unit 4b of the interrupt 
on/off manager 4 allows the second CPU core to enter the 
interrupt-disabled section DI or the kernel non-preemptible 
section NP. This is because even if the second CPU core 
enters the interrupt-disabled section DI or the kernel non 
preemptible section NP, at least one urgent interrupt can be 
processed when at least one of the (m-1) CPU cores is located 
in the interrupt-enabled section EN or the kernel preempt 
ible section P. 

Accordingly, the interrupt on/off manager 4 sets the inter 
rupt on/off information for the second CPU core to the inter 
rupt-disabled section DI or the kernel non-preemptible sec 
tion NP (operation 124). That is, an interrupt disable bit 
(my cpu) corresponding to the second CPU core in the bit 
map is set to 1. Operation 124 may also be performed by the 
second CPU core. Next, the control unit 4b of the interrupt 
on/off manager 4 unlocks the interrupt on/off information, 
thereby allowing the second CPU core to enter the kernel 
non-preemptible section NP or the interrupt-disabled sec 
tion DI (operation 125). That is, the second CPU core 



US 8,892,803 B2 
13 

unlocks the interrupt on/off information and then enters the 
kernel non-preemptible section NP or the interrupt-disabled 
Section DI. 

In the example provided, it is not necessary for the control 
unit 4b of the interrupt on/offmanager 4 to control movement 
of a CPU core from the critical section to the non-critical 
section. However, this does not exclude the fact that the 
interrupt on/off manager 4 can control the movement of a 
CPU core from the critical section to the non-critical section, 
as apparent from the disclosure herein. Even if the interrupt 
on/off manager 4 does not control the movement of a CPU 
core from the critical section to the non-critical section, as the 
cases may be, it may need to know which CPU core moves 
from the critical section to the non-critical section. 

FIGS. 10A and 10B show an example process in which a 
CPU core moves from the critical section to the non-critical 
section. FIG. 10A shows a case where a CPU core moves 
from the kernel non-preemptible section NP to the kernel 
preemptible section P, and FIG. 10B shows a case where a 
CPU core moves from the interrupt-disabled section DI to 
the interrupt-enabled section EN. 

Referring to FIGS. 10A and 10B, when a second CPU core 
located in the kernel non-preemptible section NP or the 
interrupt-disabled section DI intends to enter the kernel 
preemptible section P or the interrupt-enabled section EN. 
it can enter the kernel preemptible section P or the interrupt 
enabled section EN without restrictions (operation 131 and 
operation 131'). The second CPU core or the determination 
unit 4a of the interrupt on/offmanager 4 determines whether 
the second CPU core is located in the interrupt-enabled sec 
tion EN or the kernel preemptible section P' (operation 132 
and operation 132). When it is determined that the second 
CPU core is located in the interrupt-enabled section EN or 
the kernel preemptible section P, the second CPU core or 
the interrupt on/off manager 4 sets interrupt on/off informa 
tion for the second CPU core (that is, an interrupt disable bit 
(bitmap (my cpu)) corresponding to the second CPU core in 
a bitmap) to 0 (operation 133 and operation 133"). In the 
latter case where the subject of the operation 133 and opera 
tion 133' is the interrupt on/offmanager 4, the interrupt on/off 
manager 4 may unlock the interrupton/off information for the 
second CPU core by exchanging signals with the second CPU 
COC. 

FIG. 11 shows an example interrupt on/off management 
method for a multi-core processor, based on, for example, the 
flowchart of FIG. 7. With respect to the method of FIG. 11, 
two (for example, a third CPU core CPU3 and a fourth CPU 
core CPU4) of four CPU cores included in a multi-core com 
puting system are included in a target CPU set. Initially, 
interrupt on/off information (bitmap) represented by interrupt 
disable bits is set to 0000, and the interrupt disable bits, from 
most significant to least significant, sequentially and respec 
tively indicate the fourth CPU core CPU4, the third CPU core 
CPU3, a second CPU core CPU2, and a first CPU core CPU1. 
While the example of FIG. 11 will be described using each 
CPU core as the instigator of action, this does not exclude the 
fact that the interrupt on/off manager 4 can control all or part 
of each CPU core's action, as apparent from the disclosure 
herein. 

Referring to FIG. 11, when intending to enter the interrupt 
disabled section “DI, the third CPU core CPU3 checks an 
interrupt disable bit, which corresponds to the other CPU core 
(for example, the fourth CPU core CPU4) in the target CPU 
set, in the bitmap. In FIG. 11, since the interrupt disable bit 
corresponding to the fourth CPU core CPU4 is 0, the third 
CPU core CPU3 sets its interrupt disable bit to “1,” thereby 
setting the bitmap to 0100. Accordingly, the third CPU core 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
CPU3 enters the interrupt-disabled section DI. When 
intending to leave the interrupt-disabled section DI, the 
third CPU core CPU3 changes its interrupt disable bit to 0. 
thereby setting the bitmap to "0000. And, the third CPU core 
CPU3 enters the interrupt-enabled section EN. 
When the fourth CPU core CPU4 intends to enter the 

interrupt-disabled section DI, it checks the interrupt disable 
bit corresponding to the other CPU core (for example, the 
third CPU core CPU3) in the bitmap. Since the interrupt 
disable bit corresponding to the third CPU core CPU3 is 0. 
the fourth CPU core CPU4 sets its interrupt disable bit to “1,” 
thereby setting the bitmap to 1000. Accordingly, the fourth 
CPU core CPU4 enters the interrupt-disabled section DI. 
When intending to enter the interrupt-disabled section DI 
while the fourth CPU core CPU4 is in the interrupt-disabled 
section “DI, the third CPU core CPU3 checks the interrupt 
disable bit corresponding to the other CPU core (for example, 
the fourth CPU core CPU3) in the bitmap. 

Since the interrupt disable bit corresponding to the fourth 
CPU core CPU4 has been set to 1, the third CPU core CPU3 
waits until the interrupt disable bit corresponding to the fourth 
CPU core CPU4 becomes 0, that is, until the fourth CPU 
core CPU4 enters the interrupt-enabled section EN. When 
intending to enter the interrupt-enabled section EN, the 
fourth CPU core CPU4 changes its interrupt disable bit to 0. 
thereby setting the bitmap to "0000. And, the fourth CPU core 
CPU4 leaves the interrupt-disabled section DI. Thereafter, 
the third CPU core CPU3 changes its interrupt disable bit to 
1. thereby setting the bitmap to 0100. As such, the third 
CPU core CPU3 enters the interrupt-disabled section DI. As 
illustrated in the example method, a situation in which all 
CPU cores included in a target CPU set being located in the 
interrupt-disabled section DI can be prevented. 

Referring back to FIGS. 1A and 1B, the multi-core com 
puting system may further include an interrupt dispatcher 6. 
When an interrupt occurs in the multi-core computing sys 
tem, the interrupt dispatcher 6 delivers the interrupt to some 
of the n (>2) CPU cores 2a through 2n. In the example 
provided, the interrupt dispatcher 6 may deliver an urgent 
interrupt to any one of them CPU cores included in the target 
CPU set among the n CPU cores 2a through 2n or may 
broadcast the urgent interrupt to all of them CPU cores. 
When an urgent interrupt occurs, the interrupt delivery unit 

4d of the interrupt on/offmanager 4 may control the interrupt 
dispatcher 6 to deliver the urgent interrupt only to a CPU core 
located in the non-critical section. In this case, the interrupt 
dispatcher 6 may be a block (hardware or software) separate 
from the interrupt on/off manager 4. In another example, the 
interrupt dispatcher 6 may be a block included in the interrupt 
on/off manager 4. In this case, the interrupt delivery unit 4d 
may function as an interrupt dispatcher. 
An interrupt dispatch table may be used to deliver an 

important interrupt to a CPU core located in the non-critical 
section, among CPU cores included in a target CPU set. The 
interrupt dispatch table may contain information about which 
interrupt should be processed by which CPU core. The inter 
rupt dispatch table may be the same as the interrupt on/off 
information described above. For example, whenever each 
CPU core moves between the critical section and the non 
critical section, each CPU core (or the interrupt on/off man 
ager 4) may modify the interrupt dispatch table. Using the 
interrupt dispatch table, the interrupt on/off manager 4 may 
control an urgent interrupt to be delivered to a CPU core 
located in the non-critical section. 
When only one of CPU cores included in a target CPU set 

is located in the non-critical section, the interrupt on/offman 
ager 4 may deliver an urgent interrupt only to the CPU core 



US 8,892,803 B2 
15 

located in the non-critical section. When two or more of the 
CPU cores included in the target CPU set are located in the 
non-critical section, the interrupt on/offmanager 4 may select 
one of the CPU cores located in the non-critical section by 
using a predetermined algorithm and deliver the urgent inter 
rupt only to the selected CPU core. The predetermined algo 
rithm is not limited to a particular algorithm. For example, the 
urgent interrupt may be delivered to a CPU core which is 
executing a lowest-priority process, a CPU core which has the 
lowest load, or a CPU core which has executed a correspond 
ing process before. 
The interrupt on/off manager 4 may also control the inter 

rupt dispatcher 6 to simultaneously broadcast the urgent inter 
rupt to two or more CPU cores. In this case, the interrupt 
dispatcher 6 is configured to Support interrupt broadcasting. 
Of the CPU cores which receive the broadcast urgent inter 
rupt, a CPU core located in the non-critical section (the inter 
rupt-enabled section EN or the interrupt-enabled section 
EN and the kernel preemptible section P) may process the 
urgent interrupt, and the other CPU cores may ignore the 
urgent interrupt. In Such case, the interrupt on/off manager 4 
controls CPU cores included in a target CPU set such that 
only one of the CPU cores is located in the non-critical sec 
tion. When two or more of the CPU cores included in the 
target CPU set are located in the non-critical section, the 
interrupt on/off manager 4 may select one of the CPU cores 
based on priority and control the selected CPU core to process 
the urgent interrupt. 

FIG. 12 illustrates an example of interrupt broadcasting 
when an urgent interrupt is a local timer interrupt. Each CPU 
core included in a multi-core computing system may have its 
own local timer interrupt, and the local timer interrupt may 
cause each CPU core to wake up a particular process at a 
particular time. When applying interrupt broadcasting to the 
local timer interrupt, each local timer interrupt may be deliv 
ered only to a corresponding CPU core. Thus, a local timer 
interrupt for a particular CPU core may not be delivered to 
other CPU cores in the interrupt-enabled section TV/kernel 
preemptible section P. This may present a problem since the 
local timer interrupt is frequently used in Scheduling of real 
time processes. 

Accordingly, when an urgent interrupt is a local timer 
interrupt, the interrupt on/off manager 4 delivers the urgent 
interrupt to all CPU cores included in a target CPU set by 
using the interrupt broadcasting described above. When set 
ting an important local timer interrupt for any one of CPU 
cores included in a target CPU set, the interrupt on/offman 
ager 4 also sets the local timer interrupt for the other CPU 
cores included in the target CPU set, so that the same interrupt 
occurs at the same time at all CPU cores in the target CPU set. 

Referring to FIG. 12, a third CPU core CPU3 and a fourth 
CPU core CPU4are included in a target CPU set. In this case, 
when an important local timer interrupt is set for the third 
CPU core CPU3, the fourth CPU core CPU4 is also set so that 
the same interrupt can occur at the same time for the fourth 
CPU core CPU4 (see region 'A' in FIG. 12). Similarly, when 
an important local timer interrupt is set for the fourth CPU 
core CPU4, the third CPU core CPU3 is also set so that the 
same interrupt can occur at the same time for the third CPU 
core CPU3 (see region B in FIG. 12). In this way, a local 
timer interrupt for a particular CPU core can be broadcast to 
other CPU cores. In the above example, one of the third and 
fourth CPU cores CPU3 and CPU4, which is located in the 
non-critical section, processes the local timer interrupt. 

To process a local timer interrupt, CPU cores included in a 
target CPU set may exchange information. For example, the 
CPU cores may exchange information about the time when a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
local timer interrupt of each CPU core occurred or informa 
tion about a function that must be executed by each local timer 
interrupt. The CPU cores may exchange information with 
each other directly or through the interrupt on/offmanager 4. 

FIG. 13 illustrates four scenarios that may occur when an 
urgent interrupt is broadcast to, for example, two CPU cores 
(for example, a third CPU core CPU3 and a fourth CPU core 
CPU4) included in a target CPU set. In FIG. 13 example, the 
critical section includes the interrupt-disabled section DI. 
and the non-critical section includes the interrupt-enabled 
section EN. However, it is understood that the description of 
FIG. 13 can also be applied to a case where the critical section 
includes the interrupt-disabled-section DI and the kernel 
non-preemptible section NP, and the non-critical section 
includes the interrupt-enabled section EN and the kernel 
preemptible section P. 

Referring to (I) of FIG. 13, if an urgent interrupt occurs 
when the third and fourth CPU cores CPU3 and CPU4 are 
located in the interrupt-enabled section EN, they can imme 
diately process the urgent interrupt. Therefore, a period of 
time for which the processing of the urgent interrupt is 
delayed can be reduced or minimized Referring to (II) of FIG. 
13, an urgent interrupt may occur when the third CPU core 
CPU3 is located in the interrupt-enabled section EN” while 
the fourth CPU core CPU4 is located in the interrupt-disabled 
section DI. In this case, while the fourth CPU core CPU4 
cannot immediately process the urgent interrupt, the third 
CPU core CPU3 can immediately process the urgent inter 
rupt. Therefore, a period of time for which the processing of 
the urgent interrupt is delayed can be reduced or minimized. 
Referring to (III) of FIG. 13, an urgent interrupt may occur 
when the third CPU core CPU3 is located in the interrupt 
disabled section DI while the fourth CPU core CPU4 is 
located in the interrupt-enabled section EN. In this case, 
while the third CPU core CPU3 cannot immediately process 
the urgent interrupt, the fourth CPU core CPU4 can immedi 
ately process the urgent interrupt. Therefore, a period of time 
for which the processing of the urgent interrupt is delayed can 
be reduced or minimized. 
As in the example provided, if CPU cores included in a 

target CPU set are controlled such that at least one of the CPU 
cores is located in the interrupt-enabled section EN, even 
when the interrupt dispatcher 6 broadcasts an urgent interrupt 
to all CPU cores, a period of time for which the processing of 
the urgent interrupt is delayed can be reduced or minimized. 
On the other hand, referring to (IV) of FIG. 13, if an urgent 
interrupt occurs when both of the third and fourth CPU cores 
CPU3 and CPU4 are located in the interrupt-disabled section 
DI, the urgent interrupt cannot be processed by the third and 
fourth CPU cores CPU3 and CPU4. Therefore, a delay in the 
processing of the urgent interrupt may be unavoidable. 
As described above, if CPU cores included in a target CPU 

set are controlled such that at least one (or two) of the CPU 
cores is located in the non-critical section (the interrupt 
enabled section EN or the interrupt-enabled section EN 
and the kernel preemptible section P), a delay in processing 
of an urgent interrupt (Such as a real-time process) can be 
prevented or reduced or minimized. While the interrupt on/off 
manager 4 and the multi-core computing system including 
the same have been described above with reference to FIGS. 
1A and 1B, it is understood to be only a non-limiting example. 
The processes, functions, methods and/or Software 

described above may be recorded, stored, or fixed in one or 
more computer-readable storage media that includes program 
instructions to be implemented by a computer to cause a 
processor to execute or perform the program instructions. The 
media may also include, alone or in combination with the 



US 8,892,803 B2 
17 

program instructions, data files, data structures, and the like. 
The media and program instructions may be those specially 
designed and constructed, or they may be of the kind well 
known and available to those having skill in the computer 
Software arts. Examples of computer-readable media include 
magnetic media, such as hard disks, floppy disks, and mag 
netic tape; optical media such as CD ROM disks and DVDs: 
magneto-optical media, Such as optical disks; and hardware 
devices that are specially configured to store and perform 
program instructions, such as read-only memory (ROM), ran 
dom access memory (RAM), flash memory, and the like. 
Examples of program instructions include machine code, 
Such as produced by a compiler, and files containing higher 
level code that may be executed by the computer using an 
interpreter. The described hardware devices may be config 
ured to act as one or more Software modules in order to 
perform the operations and methods described above, or vice 
Versa. In addition, a computer-readable storage medium may 
be distributed among computer systems connected through a 
network and computer-readable codes or program instruc 
tions may be stored and executed in a decentralized manner. 
A number of examples have been described above. Never 

theless, it will be understood that various modifications may 
be made. For example, suitable results may be achieved if the 
described techniques are performed in a different order and/or 
if components in a described system, architecture, device, or 
circuit are combined in a different manner and/or replaced or 
Supplemented by other components or their equivalents. 
Accordingly, other implementations are within the scope of 
the following claims. 
What is claimed is: 
1. An interrupt on/off management apparatus for a multi 

core processor comprising n (c.2) central processing unit 
(CPU) cores, the apparatus comprising: 

a determination unit configured to determine whether one 
or more of m (2smsn) CPU cores included in a target 
CPU set among then CPU cores is located in a critical 
section or a non-critical section based on interrupt on/off 
information indicating a section in which each of them 
CPU cores is located; and 

a control unit configured to control them CPU cores such 
that one or more of them CPU cores are located in the 
non-critical section, based on the determination result of 
the determination unit, 

wherein the determination unit is operatively connected to 
the control unit. 

2. The apparatus of claim 1, wherein the control unit con 
trols entry of a first CPU core, which is located in the non 
critical section among the m CPU cores, into the critical 
section. 

3. The apparatus of claim 2, wherein in response to the 
determination unit determining that all of (m-1) CPU cores 
excluding the first CPU core among the m CPU cores are 
located in the critical section, the control unit prevents the first 
CPU core from entering the critical section. 

4. The apparatus of claim 2, wherein the control unit con 
trols entry of the first CPU core into the critical section in 
response to an execution time of the critical section being 
longer than a predetermined period of time. 

5. The apparatus of claim 1, wherein the critical section 
comprises an interrupt-disabled section, and the non-critical 
section comprises an interrupt-enabled section. 

6. The apparatus of claim 1, wherein the critical section 
comprises at least one of an interrupt-disabled section and a 
kernel non-preemptible section, and the non-critical section 
comprises at least one of an interrupt-enabled section and a 
kernel preemptible section. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
7. The apparatus of claim 1, further comprising a target 

designation unit configured to designate a type, a number, or 
the type and the number of CPU cores included in the target 
CPU set among then CPU cores. 

8. The apparatus of claim 1, further comprising an interrupt 
delivery unit configured to deliver an urgent interrupt to any 
one of the CPU cores located in the non-critical section or 
broadcast the urgent interrupt to all of the m CPU cores 
included in the target CPU set, based on the determination 
result of the determination unit. 

9. The apparatus of claim 8, wherein the urgent interrupt 
comprises a local timer interrupt, and the interrupt delivery 
unit delivers information so as to execute the local timer 
interrupt between them CPU cores included in the target CPU 
Set. 

10. The apparatus of claim 8, wherein the interrupt delivery 
unit delivers the urgent interrupt or controls an interrupt dis 
patcher, which is separate from the interrupt delivery unit, to 
deliver the urgent interrupt. 

11. The apparatus of claim 1, wherein mand n are integers 
equal to or greater than three, and the control unit controls the 
m CPU cores such that at least two of the m CPU cores 
included in the target CPU set are located in the non-critical 
section. 

12. An interrupt on/off management method for a multi 
core processor comprising n (2) CPU cores, the method 
comprising: 

determining whether one or more of m (2smsn) CPU cores 
included in a target CPU set among then CPU cores is 
located in a critical section or a non-critical section 
based on interrupt on/off information indicating a sec 
tion in which each of them CPU cores is located; and 

controlling them CPU cores such that at least one of them 
CPU cores is located in the non-critical section, based on 
the determination. 

13. The method of claim 12, wherein: 
the critical section comprises an interrupt-disabled section, 

and the non-critical section comprises an interrupt-en 
abled section, and 

the controlling of them CPU cores comprises controlling a 
first CPU core, which is located in the interrupt-enabled 
section among them CPU cores, to enter into the inter 
rupt-disabled section. 

14. The method of claim 13, further comprising: 
locking state information of them CPU cores included in 

the target CPU set before the determining of whether the 
one or more of them (2smsn) CPU cores included in the 
target CPU set among then CPU cores is located in the 
critical section or the non-critical section, 

wherein in response to the determination that all of the 
(m-1) CPU cores are located in the interrupt-disabled 
section, the first CPU core is prevented from entering the 
interrupt-disabled section during the controlling of the 
m CPU cores, and the determining of whether each of 
them (2smsn) CPU cores included in the target CPU set 
among then CPU cores is located in the critical section 
or the non-critical section is repeated. 

15. The method of claim 13, further comprising: 
locking state information of them CPU cores included in 

the target CPU set before the determining of whether the 
one or more of them (2smsn) CPU cores included in the 
target CPU set among then CPU cores is located in the 
critical section or the non-critical section; and 

unlocking the state information of the m CPU cores to 
allow the first CPU core to enter the interrupt-disabled 



US 8,892,803 B2 
19 

Section in response to the determination that at least one 
of the (m-1) CPU cores is located in the interrupt-en 
abled section. 

16. The method of claim 12, wherein: 
the critical section comprises at least one of an interrupt 

disabled section and a kernel non-preemptible section, 
and the non-critical section comprises at least one of an 
interrupt-enabled section and a kernel preemptible sec 
tion, and 

the controlling of them CPU cores comprises controlling a 
first CPU core, which is located in the non-critical sec 
tion among the mCPU cores, to enter into the critical 
section. 

17. The method of claim 16, further comprising: 
locking state information of them CPU cores included in 

the target CPU set before the determining of whether the 
one or more of the m (2smsn) CPU cores included in the 
target CPU set among then CPU cores is located in the 
critical section or the non-critical section; 

determining whether the first CPU core is located in the 
critical section or the non-critical section before the 
determining of whether the one or more of the m 
(2smsn) CPU cores included in the target CPU set 
among then CPU cores is located in the critical section 
or the non-critical section; and 

unlocking the state information of the m CPU cores to 
allow the first CPU core to enter the interrupt-enabled 
Section or the kernel preemptible section in response to 
the determination that the first CPU core is located in the 
critical section. 

18. The method of claim 16, further comprising, before the 
determining of whether each of the m (2smsn) CPU cores 
included in the target CPU set among the n CPU cores is 
located in the critical section or the non-critical section: 

locking state information of them CPU cores included in 
the target CPU set; and 

10 

15 

25 

30 

35 

20 
determining whether the first CPU core is located in the 

critical section or the non-critical section, 
wherein: 

the determining of whether the one or more of the m 
(2<msn) CPU cores included in the target CPU set 
among then CPU cores is located in the critical sec 
tion or the non-critical section is performed in 
response to the determination that the first CPU core 
is located in the critical section, and 

in response to the determination that all of the (m-1) 
CPU cores are located in the critical section, the first 
CPU core is prevented from entering the interrupt 
disabled section or the kernel non-preemptible sec 
tion, and the determining of whether the one or more 
of the m (2smsn) CPU cores included in the target 
CPU set among the n CPU cores is located in the 
critical section or the non-critical section is repeated. 

19. The method of claim 16, further comprising: 
locking state information of them CPU cores included in 

the target CPU set; 
determining whether the first CPU core is located in the 

critical section or the non-critical section, wherein the 
determining of whether the one or more of the m 
(2smsn) CPU cores included in the target CPU set 
among then CPU cores is located in the critical section 
or the non-critical section comprises determining 
whether the one or more of the m (2smsn) CPU cores 
included in the target CPU set among then CPU cores is 
located in the critical section or the non-critical section 
in response to the determination that the first CPU core 
is located in the critical section; and 

unlocking the state information of the m CPU cores to 
allow the first CPU core to enter the interrupt-disabled 
section or the kernel non-preemptible section in 
response to the determination that at least one of the 
(m-1) CPU cores is located in the non-critical section. 

ck ck ck ck *k 


