

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2014221415 B2

(54) Title
Methods for processing alloys

(51) International Patent Classification(s)
C21D 8/00 (2006.01) **C22C 38/46** (2006.01)
C21D 11/00 (2006.01) **C22C 38/48** (2006.01)
C22C 38/00 (2006.01) **C22C 38/50** (2006.01)
C22C 38/42 (2006.01) **C22C 38/52** (2006.01)
C22C 38/44 (2006.01) **C22C 38/58** (2006.01)

(21) Application No: **2014221415** (22) Date of Filing: **2014.02.03**

(87) WIPO No: **WO14/133718**

(30) Priority Data

(31) Number (32) Date (33) Country
13/777,066 **2013.02.26** **US**

(43) Publication Date: **2014.09.04**
(44) Accepted Journal Date: **2018.08.23**

(71) Applicant(s)
ATI Properties LLC

(72) Inventor(s)
Forbes Jones, Robin M.;McDevitt, Erin T.

(74) Agent / Attorney
K&L Gates, Level 25 South Tower 525 Collins Street, Melbourne, VIC, 3000, AU

(56) Related Art
KR 920004946 B1
EP 1717330 A1
US 2006/0110614 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2014/133718 A1

(43) International Publication Date

4 September 2014 (04.09.2014)

(51) International Patent Classification:

C21D 8/00 (2006.01) *C22C 38/46* (2006.01)
C21D 11/00 (2006.01) *C22C 38/48* (2006.01)
C22C 38/00 (2006.01) *C22C 38/50* (2006.01)
C22C 38/42 (2006.01) *C22C 38/52* (2006.01)
C22C 38/44 (2006.01) *C22C 38/58* (2006.01)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2014/014405

(22) International Filing Date:

3 February 2014 (03.02.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

13/777,066 26 February 2013 (26.02.2013) US

(71) Applicant: ATI PROPERTIES, INC. [US/US]; 1600 N.E. Old Salem Road, Albany, Oregon 97321 (US).

(72) Inventors: FORBES JONES, Robin M.; 11700 Gullane Court, Charlotte, North Carolina 28277 (US). MCDEVITT, Erin T.; 2021 Crismark Drive, Indian Trail, North Carolina 28079 (US).

(74) Agents: GROSSELIN, John E., III et al.; 1000 Six PPG Place, Pittsburgh, Pennsylvania 15222 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

WO 2014/133718 A1

(54) Title: METHODS FOR PROCESSING ALLOYS

(57) Abstract: A method of processing a workpiece to inhibit precipitation of intermetallic compounds includes at least one of thermomechanically processing and cooling a workpiece including an austenitic alloy. During the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time.

TITLE

METHODS FOR PROCESSING ALLOYS

INVENTORS

5

Robin M. Forbes Jones

Erin T. McDevitt

BACKGROUND OF THE TECHNOLOGY

FIELD OF THE TECHNOLOGY

10 [0001] The present disclosure relates to methods of alloys. The present methods may find application in, for example, and without limitation, the chemical, mining, oil, and gas industries.

DESCRIPTION OF THE BACKGROUND OF THE TECHNOLOGY

15 [0002] Metal alloy parts used in chemical processing facilities may be in contact with highly corrosive and/or erosive compounds under demanding conditions. These conditions may subject metal alloy parts to high stresses and aggressively promote corrosion and erosion, for example. If it is necessary to replace damaged, worn, or corroded metallic parts of chemical processing equipment, it may be necessary to suspend facility operations for a period of time.

20 Therefore, extending the useful service life of metal alloy parts used in chemical processing facilities can reduce product cost. Service life may be extended, for example, by improving mechanical properties and/or corrosion resistance of the alloys.

25 [0003] Similarly, in oil and gas drilling operations, drill string components may degrade due to mechanical, chemical, and/or environmental conditions. The drill string components may be subject to impact, abrasion, friction, heat, wear, erosion, corrosion, and/or deposits. Conventional alloys may suffer from one or more limitations that impact their utility as drill string components. For example, conventional materials may lack sufficient mechanical properties (for example, yield strength, tensile strength, and/or fatigue strength), possess insufficient corrosion

resistance (for example, pitting resistance and/or stress corrosion cracking), or lack necessary non-magnetic properties. Also, the properties of conventional alloys may limit the possible size and shape of the drill string components made from the alloys. These limitations may reduce the useful life of the components, complicating and increasing the cost of oil and gas drilling.

[0004] High strength non-magnetic stainless steels often contain intermetallic precipitates that decrease the corrosion resistance of the alloys. Galvanic corrosion cells that develop between the intermetallic precipitates and the base alloy can significantly decrease the corrosion resistance of high strength non-magnetic stainless steel alloys used in oil and gas drilling operations.

[0005] The broad chemical composition of one high strength non-magnetic austenitic stainless steel intended for exploration and production drilling applications in the oil and gas industry is disclosed in co-pending U.S. Patent Application Serial No. 13/331,135, filed on December 20, 2011, which is incorporated by reference

5 herein in its entirety. It was discovered that the microstructures of forged workpieces of certain of the steels described in the '135 application can include intermetallic precipitates. It is believed that the intermetallic precipitates are σ -phase precipitates, comprised of Fe-Cr-Ni intermetallic compounds. The σ -phase precipitates may impair the corrosion resistance of the stainless steels disclosed in the '135 0 application, which may adversely affect the suitability of the steels for use in certain aggressive drilling environments.

SUMMARY

[0006] In one aspect, the present disclosure provides a method of processing a workpiece to inhibit precipitation of intermetallic compounds, the 25 method comprising:

at least one of thermomechanically working and cooling a workpiece including an austenitic alloy, wherein during the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature 30 of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time;

wherein the austenitic alloy comprises, in weight percentages based on total alloy weight, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 25.43 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron; up to 0.05 phosphorus; up to 0.05 sulfur; 20 to 60 iron; and incidental impurities;

wherein the calculated sigma solvus temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1155.8 - (760.4) \cdot (\text{nickel/iron}) + (1409) \cdot (\text{chromium/iron}) + (2391.6) \cdot (\text{molybdenum/iron}) - (288.9) \cdot (\text{manganese/iron}) - (634.8) \cdot (\text{cobalt/iron}) + (107.8) \cdot (\text{tungsten/iron})$;

wherein the cooling temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1290.7 - (604.2) \cdot (\text{nickel/iron}) + (829.6) \cdot (\text{chromium/iron}) + (1899.6) \cdot (\text{molybdenum/iron}) - (635.5) \cdot (\text{cobalt/iron}) + (1251.3) \cdot (\text{tungsten/iron})$; and

wherein the critical cooling time is a function of the composition of the austenitic alloy in weight percentages and, in minutes, is equal to $\log_{10} 2.948 + (3.631) \cdot (\text{nickel/iron}) - (4.846) \cdot (\text{chromium/iron}) - (11.157) \cdot (\text{molybdenum/iron}) + (3.457) \cdot (\text{cobalt/iron}) - (6.74) \cdot (\text{tungsten/iron})$, and wherein the critical cooling time is in a range of 10 minutes to 30 minutes.

[0006a] In another aspect, the present disclosure provides a method of processing an austenitic alloy workpiece to inhibit precipitation of intermetallic compounds, the method comprising:

forging the workpiece;

cooling the forged workpiece; and

optionally, annealing the cooled workpiece;

wherein the austenitic alloy comprises, in weight percentages based on total alloy weight, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 25.43 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05

boron; up to 0.05 phosphorus, up to 0.05 sulfur, 20 to 60 iron, and incidental impurities;

wherein during forging the workpiece and cooling the forged workpiece the austenitic alloy cools through a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time;

wherein the calculated sigma solvus temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1155.8 - (760.4 \cdot (\text{nickel/iron}) + (1409 \cdot (\text{chromium/iron}) + (2391.6 \cdot (\text{molybdenum/iron}) - (288.9 \cdot (\text{manganese/iron}) - (634.8 \cdot (\text{cobalt/iron}) + (107.8 \cdot (\text{tungsten/iron}))$;

wherein the cooling temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1290.7 - (604.2 \cdot (\text{nickel/iron}) + (829.6 \cdot (\text{chromium/iron}) + (1899.6 \cdot (\text{molybdenum/iron}) - (635.5 \cdot (\text{cobalt/iron}) + (1251.3 \cdot (\text{tungsten/iron}))$; and

wherein the critical cooling time is a function of the composition of the austenitic alloy in weight percentages and, in minutes, is equal to $\log_{10} 2.948 + (3.631 \cdot (\text{nickel/iron}) - (4.846 \cdot (\text{chromium/iron}) - (11.157 \cdot (\text{molybdenum/iron}) + (3.457 \cdot (\text{cobalt/iron}) - (6.74 \cdot (\text{tungsten/iron}))$, and wherein the critical cooling time is in a range of 10 minutes to 30 minutes.

[0006b] According to another non-limiting aspect of the present disclosure, a method of processing a workpiece to inhibit precipitation of intermetallic compounds comprises at least one of thermomechanically working and cooling a workpiece including an austenitic alloy. During the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time period no greater than a critical cooling time. The calculated sigma solvus temperature is a function of the composition of the austenitic alloy in

weight percentages and is equal to $1155.8 - (760.4) \cdot (\text{nickel/iron}) + (1409) \cdot (\text{chromium/iron}) + (2391.6) \cdot (\text{molybdenum/iron}) - (288.9) \cdot (\text{manganese/iron}) - (634.8) \cdot (\text{cobalt/iron}) + (107.8) \cdot (\text{tungsten/iron})$. The cooling temperature is a function of the composition of the austenitic alloy in weight percentages and is equal to

5 $1290.7 - (604.2) \cdot (\text{nickel/iron}) + (829.6) \cdot (\text{chromium/iron}) + (1899.6) \cdot (\text{molybdenum/iron}) - (635.5) \cdot (\text{cobalt/iron}) + (1251.3) \cdot (\text{tungsten/iron})$. The critical cooling time is a function of the composition of the austenitic alloy in weight percentages and is equal to $\log_{10} 2.948 + (3.631) \cdot (\text{nickel/iron}) - (4.846) \cdot (\text{chromium/iron}) - (11.157) \cdot (\text{molybdenum/iron}) + (3.457) \cdot (\text{cobalt/iron}) - (6.74) \cdot (\text{tungsten/iron})$.

10

[0007] In certain non-limiting embodiments of the method, thermomechanically working the workpiece comprises forging the workpiece. Such forging may comprise, for example, at least one of roll forging, swaging, cogging, open-die forging, impression-die forging, press forging, automatic hot forging, radial forging, and upset forging. In certain non-limiting embodiments of the method, the critical cooling time is in a range of 10 minutes to 30 minutes, greater than 10 minutes, or greater than 30 minutes.

[0008] In certain non-limiting embodiments of the method, after at least one of thermomechanically working and cooling the workpiece, the workpiece is heated to an annealing temperature that is at least as great as the calculated sigma solvus temperature, and holding the workpiece at the annealing temperature for a period of time sufficient to anneal the workpiece. As the workpiece cools from the annealing temperature, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than the calculated sigma solvus temperature down to the cooling temperature for a time no greater than the critical cooling time.

[0009] According to another non-limiting aspect of the present disclosure, a method of processing an austenitic alloy workpiece to inhibit precipitation of intermetallic compounds comprises forging the workpiece, cooling the forged workpiece, and, optionally, annealing the cooled workpiece. During forging the workpiece and cooling the forged workpiece, the austenitic alloy cools through a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no

greater than a critical cooling time. The calculated sigma solvus temperature is a function of the composition of the austenitic alloy in weight percentages and is equal to $1155.8 - (760.4) \cdot (\text{nickel/iron}) + (1409) \cdot (\text{chromium/iron}) + (2391.6) \cdot (\text{molybdenum/iron}) - (288.9) \cdot (\text{manganese/iron}) - (634.8) \cdot (\text{cobalt/iron}) + (107.8) \cdot (\text{tungsten/iron})$. The cooling temperature is a function of the composition of the austenitic alloy in weight percentages and is equal to $1290.7 - (604.2) \cdot (\text{nickel/iron}) + (829.6) \cdot (\text{chromium/iron}) + (1899.6) \cdot (\text{molybdenum/iron}) - (635.5) \cdot (\text{cobalt/iron}) + (1251.3) \cdot (\text{tungsten/iron})$. The critical cooling time is a function of the composition of the austenitic alloy in weight percentages and is equal to $\log_{10} 2.948 + (3.631) \cdot (\text{nickel/iron}) - (4.846) \cdot (\text{chromium/iron}) - (11.157) \cdot (\text{molybdenum/iron}) + (3.457) \cdot (\text{cobalt/iron}) - (6.74) \cdot (\text{tungsten/iron})$. In certain non-limiting embodiments, forging the workpiece comprises at least one of roll forging, swaging, cogging, open-die forging, impression-die forging, press forging, automatic hot forging, radial forging, and upset forging.

[0010] In certain non-limiting embodiments of the method, forging the workpiece occurs entirely at temperatures greater than the calculated sigma solvus temperature. In certain other non-limiting embodiments of the method, forging the workpiece occurs through the calculated sigma solvus temperature. In certain non-limiting embodiments of the method, the critical cooling time is in a range of 10 minutes to 30 minutes, greater than 10 minutes, greater than 30 minutes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The features and advantages of apparatus and methods described herein may be better understood by reference to the accompanying drawings in which:

[0012] FIG. 1 is a micrograph showing deleterious intermetallic precipitates in the microstructure at the mid radius of a radial forged workpiece of a non-magnetic austenitic alloy;

[0013] FIG. 2 is an isothermal transformation curve or TTT curve predicting the kinetics for 0.1 weight percent σ -phase intermetallic precipitation in an alloy;

[0014] FIG. 3 is a plot showing calculated center-of-workpiece temperature, calculated center temperature, calculated surface temperature, and actual temperatures derived from the radial forging of experimental workpieces of austenitic alloys according to methods of the present disclosure;

5 **[0015]** FIG. 4 is a TTT curve, with associated forming and cooling temperatures and times, according to embodiments of the present disclosure;

[0016] FIG. 5 is a schematic illustration of a non-limiting embodiment of a process according to the present disclosure for producing forms of specific diameter of a high strength non-magnetic steel useful for exploration and 10 production drilling applications in the oil and gas industry;

[0017] FIG. 6 is a TTT diagram for an embodiment of an alloy having a relatively short critical cooling time as calculated according to an embodiment of the present disclosure;

15 **[0018]** FIG. 7 is a micrograph of a center region of an as-forged 9-inch diameter workpiece produced using an actual cooling time greater than the calculated critical cooling time required to avoid intermetallic precipitation of sigma phase according to the present disclosure;

20 **[0019]** FIG. 8 is a TTT diagram for an embodiment of an alloy having a relatively long critical cooling time as calculated according to an embodiment of the present disclosure;

[0020] FIG. 9 is a micrograph showing the microstructure of the mid-radius of an as-forged 9-inch diameter workpiece using an actual cooling time less than the calculated critical cooling time to avoid intermetallic precipitation of sigma phase according to the present disclosure;

25 **[0021]** FIG. 10 is a plot of temperature versus distance from the back wall of a gradient furnace for heat treatments used in Example 3 of the present disclosure;

30 **[0022]** FIG. 11 is a TTT diagram plotting sampling temperature gradients (horizontal lines) and critical cooling times (vertical lines) used in Example 3 of the present disclosure;

[0023] FIG. 12 is a figure superimposing microstructures from samples held for 12 minutes at various temperatures on a TTT diagram for Example 3 of the present disclosure;

5 **[0024]** FIG. 13 is a figure superimposing microstructures for samples held at 1080°F for various times on a TTT diagram for Example 3 of the present disclosure;

10 **[0025]** FIG. 14A is a micrograph showing the microstructure of a surface region of an alloy of Example 4 of the present disclosure that was annealed and cooled within the calculated critical cooling time according to the present disclosure and is devoid of sigma phase precipitates;

[0026] FIG. 14B is a micrograph showing the microstructure at a center region of an alloy of Example 4 of the present disclosure that was annealed but did not cool within the calculated critical cooling time according to the present disclosure and exhibits sigma phase precipitates;

15 **[0027]** FIG. 15A is a micrograph showing the microstructure of a surface region of an alloy of Example 5 of the present disclosure that was forged and cooled within the calculated critical cooling time according to the present disclosure and is devoid of sigma phase precipitates;

20 **[0028]** FIG. 15B is a micrograph showing the microstructure at a center region of an alloy of Example 5 of the present disclosure that was forged and cooled within the calculated critical cooling time according to the present disclosure and is devoid of sigma phase precipitates;

25 **[0029]** FIG. 16A is a micrograph showing the microstructure at a mid-radius of an alloy of Example 6 of the present disclosure that was forged and cooled for a time that exceeded the calculated critical cooling time according to the present disclosure and exhibits sigma phase precipitates at the grain boundaries;

30 **[0030]** FIG. 16B is a micrograph showing the microstructure at a mid-radius of an alloy of Example 6 of the present disclosure that was forged and cooled for a time within the calculated critical cooling time according to the present disclosure and does not exhibit sigma phase precipitates at the grain boundaries;

[0031] FIG. 17A is a micrograph showing the microstructure of a surface region of an alloy of Example 7 of the present disclosure that was forged and cooled for a time within the calculated critical cooling time according to the present disclosure and then warm worked without exhibiting sigma phase precipitates at 5 the grain boundaries; and

[0032] FIG. 17B is a micrograph showing the microstructure of a center region of an alloy of Example 7 of the present disclosure that was forged and cooled for a time within the calculated critical cooling time according to the present disclosure and then warm worked without exhibiting sigma phase precipitates at 10 the grain boundaries.

[0033] The reader will appreciate the foregoing details, as well as others, upon considering the following detailed description of certain non-limiting embodiments according to the present disclosure.

15 DETAILED DESCRIPTION OF CERTAIN NON-LIMITING EMBODIMENTS

[0034] It is to be understood that certain descriptions of the embodiments described herein have been simplified to illustrate only those elements, features, and aspects that are relevant to a clear understanding of the disclosed embodiments, while eliminating, for purposes of clarity, other elements, features, and aspects.

20 Persons having ordinary skill in the art, upon considering the present description of the disclosed embodiments, will recognize that other elements and/or features may be desirable in a particular implementation or application of the disclosed embodiments. However, because such other elements and/or features may be readily ascertained and implemented by persons having ordinary skill in the art upon 25 considering the present description of the disclosed embodiments, and are therefore not necessary for a complete understanding of the disclosed embodiments, a description of such elements and/or features is not provided herein. As such, it is to be understood that the description set forth herein is merely exemplary and 30 illustrative of the disclosed embodiments and is not intended to limit the scope of the invention as defined solely by the claims.

[0035] Also, any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of "1 to 10" is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited herein is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicants reserve the right to amend the present disclosure, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently disclosed herein such that amending to expressly recite any such sub-ranges would comply with the requirements of 35 U.S.C. § 112, first paragraph, and 35 U.S.C. § 132(a).

[0036] The grammatical articles "one", "a", "an", and "the", as used herein, are intended to include "at least one" or "one or more", unless otherwise indicated. Thus, the articles are used herein to refer to one or more than one (*i.e.*, to at least one) of the grammatical objects of the article. By way of example, "a component" means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments.

[0037] All percentages and ratios are calculated based on the total weight of the alloy composition, unless otherwise indicated.

[0038] Any patent, publication, or other disclosure material that is said to be incorporated, in whole or in part, by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

[0039] The present disclosure includes descriptions of various embodiments. It is to be understood that all embodiments described herein are exemplary, illustrative, and non-limiting. Thus, the invention is not limited by the description of the various exemplary, illustrative, and non-limiting embodiments.

5 Rather, the invention is defined solely by the claims, which may be amended to recite any features expressly or inherently described in or otherwise expressly or inherently supported by the present disclosure.

[0040] As used herein, the terms "forming", "forging", and "radial forging" refer to forms of thermomechanical processing ("TMP"), which also may be referred 10 to herein as "thermomechanical working". Thermomechanical working is defined herein as generally covering a variety of metal forming processes combining controlled thermal and deformation treatments to obtain synergistic effects, such as improvement in strength, without loss of toughness. This definition of thermomechanical working is consistent with the meaning ascribed in, for example,

15 ASM Materials Engineering Dictionary, J.R. Davis, ed., ASM International (1992), p. 480.

[0041] Conventional alloys used in chemical processing, mining, and/or oil and gas applications may lack an optimal level of corrosion resistance and/or an optimal level of one or more mechanical properties. Various embodiments of the

20 alloys processed as discussed herein may have certain advantages over conventional alloys, including, but not limited to, improved corrosion resistance and/or mechanical properties. Certain embodiments of alloys processed as described herein may exhibit one or more improved mechanical properties without any reduction in corrosion resistance, for example. Certain embodiments may 25 exhibit improved impact properties, weldability, resistance to corrosion fatigue, galling resistance, and/or hydrogen embrittlement resistance relative to certain conventional alloys.

[0042] In various embodiments, alloys processed as described herein may exhibit enhanced corrosion resistance and/or advantageous mechanical properties

30 suitable for use in demanding applications. Without wishing to be bound to any particular theory, it is believed that certain of the alloys processed as described herein may exhibit higher tensile strength, for example, due to an improved response

to strain hardening from deformation, while also retaining high corrosion resistance.

Strain hardening or cold working may be used to harden materials that do not generally respond well to heat treatment. A person skilled in the art, however, will appreciate that the exact nature of the cold worked structure may depend on the

5 material, applied strain, strain rate, and/or temperature of the deformation. Without wishing to be bound to any particular theory, it is believed that strain hardening an alloy having the composition described herein may more efficiently produce an alloy exhibiting improved corrosion resistance and/or mechanical properties than certain conventional alloys.

10 [0043] In certain non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises, consists essentially of, or consists of, chromium, cobalt, copper, iron, manganese, molybdenum, nickel, carbon, nitrogen, tungsten, and incidental impurities. In certain non-limiting embodiments, the austenitic alloy may, but need not, include 15 one or more of aluminum, silicon, titanium, boron, phosphorus, sulfur, niobium, tantalum, ruthenium, vanadium, and zirconium, either as trace elements or as incidental impurities.

[0044] Also, according to various non-limiting embodiments, the composition of an austenitic alloy processed by a method of the present disclosure 20 comprises, consists essentially of, or consists of, in weight percentages based on total alloy weight, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.

25 [0045] In addition, according to various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises, consists essentially of, or consists of, in weight percentages based on total alloy weight, up to 0.05 carbon, 1.0 to 9.0 manganese, 0.1 to 1.0 silicon, 18.0 to 26.0 chromium, 19.0 to 37.0 nickel, 3.0 to 7.0 molybdenum, 0.4 to 2.5 30 copper, 0.1 to 0.55 nitrogen, 0.2 to 3.0 tungsten, 0.8 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of niobium and tantalum no greater than 0.3, up to

0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.

[0046] Also, according to various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure may comprise, consist essentially of, or consist of, in weight percentages based on total alloy weight, up to 0.05 carbon, 2.0 to 8.0 manganese, 0.1 to 0.5 silicon, 19.0 to 25.0 chromium, 20.0 to 35.0 nickel, 3.0 to 6.5 molybdenum, 0.5 to 2.0 copper, 0.2 to 0.5 nitrogen, 0.3 to 2.5 tungsten, 1.0 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of niobium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.

[0047] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises carbon in any of the following weight percentage ranges: up to 2.0; up to 0.8; up to 0.2; up to 0.08; up to 0.05; up to 0.03; 0.005 to 2.0; 0.01 to 2.0; 0.01 to 1.0; 0.01 to 0.8; 0.01 to 0.08; 0.01 to 0.05; and 0.005 to 0.01.

[0048] In various non-limiting embodiments, the composition of an alloy according to the present disclosure may comprise manganese in any of the following weight percentage ranges: up to 20.0; up to 10.0; 1.0 to 20.0; 1.0 to 10; 1.0 to 9.0; 2.0 to 8.0; 2.0 to 7.0; 2.0 to 6.0; 3.5 to 6.5; and 4.0 to 6.0.

[0049] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises silicon in any of the following weight percentage ranges: up to 1.0; 0.1 to 1.0; 0.5 to 1.0; and 0.1 to 0.5.

[0050] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises chromium in any of the following weight percentage ranges: 14.0 to 28.0; 16.0 to 25.0; 18.0 to 26; 19.0 to 25.0; 20.0 to 24.0; 20.0 to 22.0; 21.0 to 23.0; and 17.0 to 21.0.

[0051] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises nickel in any of the following weight percentage ranges: 15.0 to 38.0; 19.0 to 37.0; 20.0 to 35.0; and 21.0 to 32.0.

5 **[0052]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises molybdenum in any of the following weight percentage ranges: 2.0 to 9.0; 3.0 to 7.0; 3.0 to 6.5; 5.5 to 6.5; and 6.0 to 6.5.

10 **[0053]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises copper in any of the following weight percentage ranges: 0.1 to 3.0; 0.4 to 2.5; 0.5 to 2.0; and 1.0 to 1.5.

15 **[0054]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises nitrogen in any of the following weight percentage ranges: 0.08 to 0.9; 0.08 to 0.3; 0.1 to 0.55; 0.2 to 0.5; and 0.2 to 0.3. In certain embodiments, nitrogen in the austenitic alloy may be limited to 0.35 weight percent or 0.3 weight percent to address its limited solubility in the alloy.

20 **[0055]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises tungsten in any of the following weight percentage ranges: 0.1 to 5.0; 0.1 to 1.0; 0.2 to 3.0; 0.2 to 0.8; and 0.3 to 2.5.

25 **[0056]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises cobalt in any of the following weight percentage ranges: up to 5.0; 0.5 to 5.0; 0.5 to 1.0; 0.8 to 3.5; 1.0 to 4.0; 1.0 to 3.5; and 1.0 to 3.0. In certain embodiments, cobalt unexpectedly improved mechanical properties of the alloy. For example, in certain embodiments of the alloy, additions of cobalt may provide up to a 20% increase in toughness, up to a 20% increase in elongation, and/or improved corrosion resistance. Without wishing to be bound to any particular theory, it is believed that replacing iron with cobalt may increase the resistance to deleterious sigma phase

precipitation in the alloy after hot working relative to non-cobalt bearing variants which exhibited higher levels of sigma phase at the grain boundaries after hot working.

5 [0057] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises a cobalt/tungsten weight percentage ratio of from 2:1 to 5:1, or from 2:1 to 4:1. In certain embodiments, for example, the cobalt/tungsten weight percentage ratio may be about 4:1. The use of cobalt and tungsten may impart improved solid solution strengthening to the alloy.

10 [0058] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises titanium in any of the following weight percentage ranges: up to 1.0; up to 0.6; up to 0.1; up to 0.01; 0.005 to 1.0; and 0.1 to 0.6.

15 [0059] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises zirconium in any of the following weight percentage ranges: up to 1.0; up to 0.6; up to 0.1; up to 0.01; 0.005 to 1.0; and 0.1 to 0.6.

20 [0060] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises niobium and/or tantalum in any of the following weight percentage ranges: up to 1.0; up to 0.5; up to 0.3; 0.01 to 1.0; 0.01 to 0.5; 0.01 to 0.1; and 0.1 to 0.5.

25 [0061] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises a combined weight percentage of niobium and tantalum in any of the following ranges: up to 1.0; up to 0.5; up to 0.3; 0.01 to 1.0; 0.01 to 0.5; 0.01 to 0.1; and 0.1 to 0.5.

[0062] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises vanadium in any of the following weight percentage ranges: up to 1.0; up to 0.5; up to 0.2; 0.01 to 1.0; 0.01 to 0.5; 0.05 to 0.2; and 0.1 to 0.5.

[0063] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises aluminum in any of the following weight percentage ranges: up to 1.0; up to 0.5; up to 0.1; up to 0.01; 0.01 to 1.0; 0.1 to 0.5; and 0.05 to 0.1.

5 **[0064]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises boron in any of the following weight percentage ranges: up to 0.05; up to 0.01; up to 0.008; up to 0.001; up to 0.0005.

10 **[0065]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises phosphorus in any of the following weight percentage ranges: up to 0.05; up to 0.025; up to 0.01; and up to 0.005.

15 **[0066]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises sulfur in any of the following weight percentage ranges: up to 0.05; up to 0.025; up to 0.01; and up to 0.005.

20 **[0067]** In various non-limiting embodiments, the balance of the composition of an austenitic alloy according to the present disclosure may comprise, consist essentially of, or consist of iron and incidental impurities. In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises iron in any of the following weight percentage ranges: up to 60; up to 50; 20 to 60; 20 to 50; 20 to 45; 35 to 45; 30 to 50; 40 to 60; 40 to 50; 40 to 45; and 50 to 60.

25 **[0068]** In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises one or more trace elements. As used herein, "trace elements" refers to elements that may be present in the alloy as a result of the composition of the raw materials and/or the melting method employed and which are present in concentrations that do not significantly negatively affect important properties of the alloy, as those properties are generally described herein. Trace elements may include, for example, one or more of titanium, zirconium, niobium, tantalum, vanadium, aluminum, and boron in

any of the concentrations described herein. In certain non-limiting embodiments, trace elements may not be present in alloys according to the present disclosure. As is known in the art, in producing alloys, trace elements typically may be largely or wholly eliminated by selection of particular starting materials and/or use of particular processing techniques. In various non-limiting embodiments, the composition of an austenitic alloy according to the present disclosure may comprise a total concentration of trace elements in any of the following weight percentage ranges: up to 5.0; up to 1.0; up to 0.5; up to 0.1; 0.1 to 5.0; 0.1 to 1.0; and 0.1 to 0.5.

[0069] In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises a total concentration of incidental impurities in any of the following weight percentage ranges: up to 5.0; up to 1.0; up to 0.5; up to 0.1; 0.1 to 5.0; 0.1 to 1.0; and 0.1 to 0.5. As generally used herein, the term "incidental impurities" refers to elements present in the alloy in minor concentrations. Such elements may include one or more of bismuth, calcium, cerium, lanthanum, lead, oxygen, phosphorus, ruthenium, silver, selenium, sulfur, tellurium, tin, and zirconium. In various non-limiting embodiments, individual incidental impurities in the composition of an austenitic alloy processed according to the present disclosure do not exceed the following maximum weight percentages: 0.0005 bismuth; 0.1 calcium; 0.1 cerium; 0.1 lanthanum; 0.001 lead; 0.01 tin, 0.01 oxygen; 0.5 ruthenium; 0.0005 silver; 0.0005 selenium; and 0.0005 tellurium. In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure, the combined weight percentage of cerium, lanthanum, and calcium present in the alloy (if any is present) may be up to 0.1. In various non-limiting embodiments, the combined weight percentage of cerium and/or lanthanum present in the composition of an austenitic alloy may be up to 0.1. Other elements that may be present as incidental impurities in the composition of austenitic alloys processed as described herein will be apparent to those having ordinary skill in the art. In various non-limiting embodiments, the composition of an austenitic alloy processed by a method according to the present disclosure comprises a total concentration of trace elements and incidental impurities in any of the following weight percentage ranges: up to 10.0; up to 5.0; up to 1.0; up to 0.5; up to 0.1; 0.1 to 10.0; 0.1 to 5.0; 0.1 to 1.0; and 0.1 to 0.5.

[0070] In various non-limiting embodiments, an austenitic alloy processed according to a method of the present disclosure may be non-magnetic. This characteristic may facilitate use of the alloy in applications in which non-magnetic properties are important. Such applications include, for example, certain oil and gas 5 drill string component applications. Certain non-limiting embodiments of the austenitic alloy processed as described herein may be characterized by a magnetic permeability value (μ_r) within a particular range. In various non-limiting embodiments, the magnetic permeability value of an alloy processed according to the present disclosure may be less than 1.01, less than 1.005, and/or less than 10 1.001. In various embodiments, the alloy may be substantially free from ferrite.

[0071] In various non-limiting embodiments, an austenitic alloy processed by a method according to the present disclosure may be characterized by a pitting resistance equivalence number (PREN) within a particular range. As is understood, the PREN ascribes a relative value to an alloy's expected resistance to 15 pitting corrosion in a chloride-containing environment. Generally, alloys having a higher PREN are expected to have better corrosion resistance than alloys having a lower PREN. One particular PREN calculation provides a PREN_{16} value using the following formula, wherein the percentages are weight percentages based on total alloy weight:

20
$$\text{PREN}_{16} = \% \text{Cr} + 3.3(\% \text{Mo}) + 16(\% \text{N}) + 1.65(\% \text{W})$$

In various non-limiting embodiments, an alloy processed using a method according to the present disclosure may have a PREN_{16} value in any of the following ranges: up to 60; up to 58; greater than 30; greater than 40; greater than 45; greater than 48; 30 to 60; 30 to 58; 30 to 50; 40 to 60; 40 to 58; 40 to 50; and 48 to 51. Without 25 wishing to be bound to any particular theory, it is believed that a higher PREN_{16} value may indicate a higher likelihood that the alloy will exhibit sufficient corrosion resistance in environments such as, for example, in highly corrosive environments, that may exist in, for example, chemical processing equipment and the down-hole environment to which a drill string is subjected in oil and gas drilling applications. 30 Aggressively corrosive environments may subject an alloy to, for example, alkaline compounds, acidified chloride solutions, acidified sulfide solutions, peroxides, and/or CO_2 , along with extreme temperatures.

[0072] In various non-limiting embodiments, an austenitic alloy processed by a method according to the present disclosure may be characterized by a coefficient of sensitivity to avoid precipitations value (CP) within a particular range. The concept of a CP value is described in, for example, U.S. Patent No. 5,494,636, 5 entitled "Austenitic Stainless Steel Having High Properties". In general, the CP value is a relative indication of the kinetics of precipitation of intermetallic phases in an alloy. A CP value may be calculated using the following formula, wherein the percentages are weight percentages based on total alloy weight:

$$CP = 20(\%Cr) + 0.3(\%Ni) + 30(\%Mo) + 5(\%W) + 10(\%Mn) + 50(\%C) - 200(\%N)$$

10 Without wishing to be bound to any particular theory, it is believed that alloys having a CP value less than 710 will exhibit advantageous austenite stability which helps to minimize HAZ (heat affected zone) sensitization from intermetallic phases during welding. In various non-limiting embodiments, an alloy processed as described herein may have a CP in any of the following ranges: up to 800; up to 15 750; less than 750; up to 710; less than 710; up to 680; and 660-750.

[0073] In various non-limiting embodiments, an austenitic alloy according to the present disclosure may be characterized by a Critical Pitting Temperature (CPT) and/or a Critical Crevice Corrosion Temperature (CCCT) within particular ranges. In certain applications, CPT and CCCT values may more accurately indicate corrosion 20 resistance of an alloy than the alloy's PREN value. CPT and CCCT may be measured according to ASTM G48-11, entitled "Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution". In various non-limiting embodiments, the CPT of an alloy processed according to the present disclosure may be at least 45°C, or more 25 preferably is at least 50°C, and the CCCT may be at least 25°C, or more preferably is at least 30°C.

[0074] In various non-limiting embodiments, an austenitic alloy processed by a method according to the present disclosure may be characterized by a Chloride Stress Corrosion Cracking Resistance (SCC) value within a particular range. The 30 concept of an SCC value is described in, for example, A. J. Sedricks, Corrosion of Stainless Steels (J. Wiley and Sons 1979). In various non-limiting embodiments, the SCC value of an alloy according to the present disclosure may be determined for

particular applications according to one or more of the following: ASTM G30-97 (2009), entitled "Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens"; ASTM G36-94 (2006), entitled "Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium

5 Chloride Solution"; ASTM G39-99 (2011), "Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens"; ASTM G49-85 (2011), "Standard Practice for Preparation and Use of Direct Tension Stress-Corrosion Test Specimens"; and ASTM G123-00 (2011), "Standard Test Method for Evaluating Stress-Corrosion Cracking of Stainless Alloys with Different Nickel Content in Boiling
10 Acidified Sodium Chloride Solution." In various non-limiting embodiments, the SCC value of an alloy processed according to the present disclosure is high enough to indicate that the alloy can suitably withstand boiling acidified sodium chloride solution for 1000 hours without experiencing unacceptable stress corrosion cracking, pursuant to evaluation under ASTM G123-00 (2011).

15 [0075] It was discovered that the microstructures of forged workpieces of alloy compositions described above may contain deleterious intermetallic precipitates. It is believed that the intermetallic precipitates likely are sigma phase precipitates, *i.e.*, $(\text{Fe}, \text{Ni})_3(\text{Cr}, \text{Mo})_2$ compounds. Intermetallic precipitates may impair corrosion resistance of the alloys and negatively impact their suitability for
20 service in oil and gas drilling and other aggressive environments. FIG. 1 shows an example of deleterious intermetallic precipitates 12 in the microstructure 10 at the mid radius of a radial forged workpiece. The chemical composition of the alloy shown in FIG. 1 falls within alloy compositions listed herein and consisted of, in weight percentages based on total alloy weight: 26.0397 iron; 33.94 nickel; 22.88
25 chromium; 6.35 molybdenum; 4.5 manganese; 3.35 cobalt; 1.06 tungsten; 1.15 copper; 0.01 niobium; 0.26 silicon; 0.04 vanadium; 0.019 carbon; 0.0386 nitrogen; 0.015 phosphorus; 0.0004 sulfur; and incidental impurities.

30 [0076] If intermetallic precipitates are confined to an alloy surface, surface grinding can be used to remove the deleterious layer containing the intermetallic precipitates, with concomitant reduction in product yield and increase in product cost. In some alloy compositions, however, the deleterious intermetallic precipitates may extend significantly into or throughout the cross-section of a radial

forged workpiece, in which case the workpiece may be wholly unsuitable in the as-radial forged condition for applications subjecting the alloy to, for example, highly corrosive conditions. An option for removing deleterious intermetallic precipitates from the microstructure is to solution treat the radial forged workpiece prior to a

5 cooling temperature radial forging operation. This, however, adds an additional processing step and increases cost and cycle time. Additionally, the time it takes to cool the workpiece from the annealing temperature is dependent on the diameter of the workpiece, and it should be sufficiently rapid to prevent the formation of the deleterious intermetallic precipitates.

10 [0077] Without intending to be bound to any particular theory, it is believed that the intermetallic precipitates principally form because the precipitation kinetics are sufficiently rapid to permit precipitation to occur during the time taken to forge the workpiece. FIG. 2 is an isothermal transformation curve 20, also known as a "TTT diagram" or "TTT curve", which predicts the kinetics for 0.1 weight percent

15 σ -phase (sigma phase) intermetallic precipitation in the alloy having the composition described above for FIG. 1. It will be seen from FIG. 2 that intermetallic precipitation occurs most rapidly, *i.e.*, in the shortest time, at the apex 22 or "nose" of the "C" curve that comprises the isothermal transformation curve 20.

20 [0078] FIG. 3 is a graph showing a combination 30 of a calculated center-of-workpiece temperature 32, calculated mid-radius temperature 34, calculated surface temperature 36, and actual temperatures from the radial forging of experimental workpieces of austenitic alloys having the chemical compositions listed in Table 1. These compositions fall within the scope of alloy compositions

25 described above in the present detailed description. The workpieces had a diameter of approximately 10 inches, and the actual temperatures were measured using optical pyrometers. The temperature of the nose of the TTT diagram is represented as line 38. Table 1 also shows the PREN₁₆ values for the listed alloy compositions.

Table 1				
Element	Heat 45FJ	Heat 47FJ	Heat 48FJ	Heat 49FJ
C	0.007	0.010	0.018	0.010
Mn	4.47	4.50	4.51	4.55
Cr	20.91	22.26	22.91	21.32
Mo	4.76	6.01	6.35	5.41
Co	2.05	2.60	3.38	2.01
Fe	40.67	32.37	26.20	39.57
Nb	0.01	0.01	0.01	0.01
Ni	25.35	30.07	34.10	25.22
W	0.64	0.84	1.07	0.64
N	0.072	0.390	0.385	0.393
PREN ₁₆	44	50	52	47

[0079] It may be observed from FIG. 3 that the actual surface temperature of the workpieces during radial forging is close to the temperature at which the 5 kinetics of intermetallic precipitation are most rapid, thereby strongly promoting precipitation of the deleterious intermetallic compounds.

[0080] Using the thermodynamic modeling software JMatPro, available from Sente Software Ltd., Surrey, United Kingdom, relationships were determined between the content of specific elements in certain alloys described herein and (1) 10 the time to the apex of the isothermal transformation curve and (2) the temperature in the apex area of the isothermal transformation curve. It was determined that adjusting the levels of various elements in the alloys can change the time to the apex of the isothermal transformation curve and thereby permit thermomechanical processing to take place without the formation of the deleterious intermetallic 15 precipitates. Examples of the thermomechanical processing that may be applied include, but are not limited to, radial forging and press forging.

[0081] Accordingly, a non-limiting aspect of the present disclosure is directed to a quantitative relationship discovered between the chemical

composition of a high strength, non-magnetic austenitic steel and the maximum allowable time for processing the alloy as it cools between a specific temperature range so as to avoid formation of deleterious intermetallic precipitates within the alloy. FIG. 4 is a TTT curve 48, showing a calculated sigma solvus temperature 42, a cooling temperature 44, and a critical cooling time 50, and also illustrates a relationship 40 according to the present disclosure defining the maximum time or critical cooling time 50 allowable for processing the alloy as it cools within a specific temperature range to avoid precipitation of deleterious intermetallics.

[0082] The relationship 40 illustrated in FIG. 4 may be described using three equations. Equation 1 defines the calculated sigma solvus temperature, represented in Fig. 4 by line 42.

Equation 1

$$\begin{aligned} \text{Calculated Sigma Solvus Temperature } (\text{°F}) = & 1155.8 - [(760.4) \cdot (\% \text{nickel} / \% \text{iron})] + \\ & [(1409) \cdot (\% \text{chromium} / \% \text{iron})] + [(2391.6) \cdot (\% \text{molybdenum} / \% \text{iron})] - \\ & [(288.9) \cdot (\% \text{manganese} / \% \text{iron})] - [(634.8) \cdot (\% \text{cobalt} / \% \text{iron})] + \\ & [(107.8) \cdot (\% \text{tungsten} / \% \text{iron})]. \end{aligned}$$

When austenitic steels according to the present disclosure are at or above the calculated sigma solvus temperature according to Equation 1, the deleterious intermetallic precipitates have not formed in the alloys.

[0083] In a non-limiting embodiment the workpiece is thermomechanically processed at a temperature in a thermomechanical processing temperature range. The temperature range is from a temperature just below the calculated sigma solvus temperature 42 of the austenitic alloy to a cooling temperature 44 of the austenitic alloy. Equation 2 is used to calculate the cooling temperature 44 in degrees Fahrenheit as a function of the chemical composition of the austenitic steel alloy. Referring to FIG. 4, the cooling temperature 44 calculated according to Equation 2 is intended to predict the temperature of the apex 46 of the isothermal transformation curve 48 of the alloy.

Equation 2

$$\text{Cooling Temperature } (\text{°F}) = 1290.7 - [(604.2) \cdot (\% \text{nickel} / \% \text{iron})] + [(829.6) \cdot (\% \text{chromium} / \% \text{iron})] + [(1899.6) \cdot (\% \text{molybdenum} / \% \text{iron})] - [(635.5) \cdot (\% \text{cobalt} / \% \text{iron})] + [(1251.3) \cdot (\% \text{tungsten} / \% \text{iron})].$$

5

[0084] Equation 3 is an equation that predicts the time in \log_{10} minutes at which the apex 46 of the isothermal transformation curve 48 for the particular alloy occurs.

Equation 3

10 Critical Cooling Time (\log_{10} in minutes) = $2.948 + [(3.631) \cdot (\% \text{nickel} / \% \text{iron})] - [(4.846) \cdot (\% \text{chromium} / \% \text{iron})] - [(11.157) \cdot (\% \text{molybdenum} / \% \text{iron})] + [(3.457) \cdot (\% \text{cobalt} / \% \text{iron})] - [(6.74) \cdot (\% \text{tungsten} / \% \text{iron})].$

15 **[0085]** Referring to FIG. 4, the time at which the apex 46 of the isothermal transformation curve 48 occurs is represented by arrow 50. The time calculated by Equation 3 and represented by arrow 50 in FIG. 4 is referred to herein as the "critical cooling time". If the time during which the alloy cools in temperature range that spans a temperature just below the calculated sigma solvus temperature 42 to the cooling temperature 44 is longer than the critical cooling time 50, deleterious 20 intermetallic precipitates may form. The intermetallic precipitates may render the alloy or product unsuitable for its intended use because of galvanic corrosion cells established between the intermetallic precipitates and the base alloy. More generally, to prevent formation of deleterious intermetallic precipitates, the time to thermomechanically process the alloy in a temperature range spanning a 25 temperature just less than the calculated sigma solvus temperature 42 down to the cooling temperature 44 should be no greater than the critical cooling time 50.

[0086] In a non-limiting embodiment, the workpiece is allowed to cool from a temperature just below the calculated sigma solvus temperature 42 to the cooling temperature 44 within a time no longer than the critical cooling time 50. It will be 30 recognized that the workpiece can be allowed to cool during thermomechanical

processing of the workpiece. For example, and not to be limiting, a workpiece may be heated to a temperature in a thermomechanical processing temperature range and subsequently thermomechanically processed using a forging process. As the workpiece is thermomechanically processed, the workpiece may cool to a degree.

- 5 In a non-limiting embodiment, allowing the workpiece to cool comprises the natural cooling that may occur during thermomechanical processing. According to an aspect of the present disclosure, it is only required that the time that the workpiece spends in a cooling temperature range spanning a temperature just below the calculated sigma solvus temperature 42 to the cooling temperature 44, is no
- 10 greater than the critical cooling time 50.

[0087] According to certain non-limiting embodiments, a critical cooling time that is practical for forging, radial forging, or other thermomechanical processing of an austenitic alloy workpiece according to the present disclosure is within a range of 10 minutes to 30 minutes. Certain other non-limiting embodiments include a critical cooling time of greater than 10 minutes, or greater than 30 minutes. It will be recognized that according to methods of the present disclosure, the critical cooling time calculated according to Equation 3 based on the chemical composition of the alloy is the maximum allowable time to thermomechanically process and/or cool in a temperature range spanning a temperature just less than the calculated sigma solvus temperature (calculated by Equation 1 above) down to the cooling temperature (calculated by Equation 2 above).

[0088] The calculated sigma solvus temperature calculated by Equation 1 and the cooling temperature calculated by Equation 2 define end points of the temperature range over which the cooling time requirement, or, as referred to herein, 25 the critical cooling time, is important. The time during which the alloy is hot worked at or above the calculated sigma solvus temperature calculated according to Equation 1 is unimportant to the present method because elements forming the deleterious intermetallic precipitates addressed herein remain in solution when the alloy is at or above the calculated sigma solvus temperature. Instead, only the time 30 during which the workpiece is within the range of temperatures spanning a temperature just less than the calculated sigma solvus temperature (calculated using Equation 1) to the cooling temperature (calculated using Equation 2), which is

referred to herein as the cooling temperature range, is significant for preventing deleterious intermetallic σ -phase precipitation. In order to prevent the formation of deleterious σ -phase intermetallic particles, the actual time that the workpiece spends in the calculated cooling temperature range must be no greater than the critical

5 cooling time as calculated in Equation 3.

[0089] Also, the time during which the workpiece is at a temperature below the cooling temperature calculated according to Equation 2 is unimportant to the present method because below the cooling temperature, the rates of diffusion of the elements comprising the deleterious intermetallic precipitates are low enough to

10 inhibit substantial formation of the precipitates. The total time it takes to work the alloy at a temperature less than the calculated sigma solvus temperature according to Equation 1 and then cool the alloy to the cooling temperature according to

Equation 2, *i.e.*, the time during which the alloy is in the temperature range bounded by (i) a temperature just less than the calculated sigma solvus temperature and (ii)

15 the cooling temperature, must be no greater than the critical cooling time according to Equation 3.

[0090] Table 2 shows the calculated sigma solvus temperatures calculated using Equation 1, the cooling temperatures calculated from Equation 2, and the critical cooling times calculated from Equation 3 for the three alloys having the

20 compositions in Table 1.

Table 2

	Heat 45FJ	Heat 47FJ	Heat 48FJ	Heat 49FJ
Calculated sigma solvus temperature (°F)	1624	1774	1851	1694
Cooling temperature (°F)	1561	1634	1659	1600
Critical cooling time (min)	30.4	10.5	8.0	15.6

[0091] According to a non-limiting aspect of the present disclosure, thermomechanically working a workpiece according to methods of the present disclosure comprises forging the workpiece. For the thermomechanical process of

forging, the thermomechanical working temperature and the thermomechanical working temperature range according to the present disclosure may be referred to as the forging temperature and the forging temperature range, respectively.

[0092] According to another certain aspect of the present disclosure, 5 thermomechanically working a workpiece according to methods of the present disclosure may comprise radial forging the workpiece. For the thermomechanical process of radial forging, the thermomechanical processing temperature range according to the present disclosure may be referred to as the radial forging temperature range.

10 [0093] In a non-limiting embodiment of a method according to the present disclosure, the step of thermomechanically working or processing the workpiece comprises or consists of forging the alloy. Forging may include, but is not limited to any of the following types of forging: roll forging, swaging, cogging, open-die forging, closed-die forging, isothermal forging, impression-die forging, press 15 forging, automatic hot forging, radial forging, and upset forging. In a specific embodiment, forming comprises or consists of radial forging.

[0094] According to a non-limiting aspect of the present disclosure, a workpiece may be annealed after steps of thermomechanical working and cooling according to the present disclosure. Annealing comprises heating the workpiece to 20 a temperature that is equal to or greater than the calculated sigma solvus temperature according to Equation 1, and holding the workpiece at the temperature for period of time. The annealed workpiece is then cooled. Cooling the annealed workpiece in the temperature range spanning a temperature just below the calculated sigma solvus temperature (calculated according to Equation 1) and the 25 cooling temperature calculated according to Equation 2 must be completed within the critical cooling time calculated according to Equation 3 in order to prevent precipitation of the deleterious intermetallic phase. In a non-limiting embodiment the alloy is annealed at a temperature in a range of 1900°F to 2300°F, and the alloy is held at the annealing temperature for 10 minutes to 1500 minutes.

30 [0095] It will be recognized that the methods of processing an austenitic alloy workpiece to inhibit precipitation of intermetallic compounds according to the

present disclosure apply to any and all of the alloys having chemical compositions described in the present disclosure.

[0096] FIG. 5 is a schematic diagram of a process 60 which is a non-limiting embodiment of a method according to the present disclosure. Process 60 may be used to manufacture high strength non-magnetic steel product forms having diameters useful for exploration and production drilling applications in the oil and gas industry. The material is melted to a 20-inch diameter ingot (62) using a combination of argon oxygen decarburization and electroslag remelting (AOD/ESR). AOD and ESR are techniques known to those having ordinary skill and, therefore, are not further described herein. The 20-inch diameter ingot is radial forged to 14-inch diameter (64), reheated, and radial forged to approximately 9-inch diameter (66). The 9-inch diameter ingot is then allowed to cool (not shown in FIG. 5). The final step in the process 60 is a low temperature radial forge operation reducing the diameter to approximately 7.25-inch diameter (68). The 7.25-inch diameter rod may be multiple cut (70) for polishing, testing, and/or subsequent processing.

[0097] In the scheme shown in FIG. 5, the steps that pertain to the method of the present disclosure are the step of radial forging the workpiece from approximately 14-inch diameter (64) to approximately 9-inch diameter (66), and the subsequent or concurrent step during which the radial forged workpiece cools (not shown in FIG. 5). Referring to FIG. 4, all regions (*i.e.*, the entire workpiece cross-section) of the radial forged approximately 9-inch diameter workpiece should cool from a temperature just below the calculated sigma solvus temperature 42 to the cooling temperature 44 in a time no greater than the calculated critical cooling time 50. It will be recognized that in certain non-limiting embodiments according to the present disclosure, all or some amount of cooling to the cooling temperature 44 can occur while the workpiece is simultaneously being thermomechanically worked or forged, and the cooling of the workpiece need not occur entirely as a step separate from the thermomechanical working or forging step.

[0098] During a direct radial forging operation, the most rapid cooling occurs at the surface of the workpiece, and the surface region may end up being processed at or below the cooling temperature 44 as described previously. To

prevent the precipitation of the deleterious intermetallic precipitate, the cooling time of the surface region should conform to the constraint of the critical cooling time 50 calculated from the alloy composition using Equation 3.

[0099] In a non-limiting embodiment, it is possible to shorten the available

5 cooling window by adding an additional process step aimed at eliminating the intermetallic precipitate from the as-forged workpiece. The additional process step may be a heat treatment adapted to dissolve the intermetallic precipitate in the as-forged workpiece at temperatures greater than the calculated sigma solvus temperature 42. However, any time taken for the surface, mid-radius, and center of 10 the workpiece to cool after the heat treatment must be within the critical cooling time calculated according to Equation 3. The cooling rate after the additional heat treatment process step is partially dependent on the diameter of the workpiece, with the center of the workpiece cooling at the slowest rate. The greater the diameter of the workpiece, the slower the cooling rate of the center of the 15 workpiece. In any case, cooling between a temperature just below the calculated sigma solvus temperature and the calculated cooling temperature should be no longer than the critical cooling time of Equation 3.

[0100] An unexpected observation during the development of the present

invention was that nitrogen had a significant influence on the available time for 20 processing in that the nitrogen suppressed precipitation of the deleterious intermetallics and thereby permitted longer critical cooling times without formation of the deleterious intermetallics. Nitrogen, however, is not included in Equations 1-3 of the present disclosure because in a non-limiting embodiment, nitrogen is added to the austenitic alloys processed according to the present methods at the 25 element's solubility limit, which will be relatively constant over the range of chemical compositions for the austenitic alloys described herein.

[0101] After thermomechanically working an austenitic alloy and cooling

according to the methods herein and the constraints of Equations 1-3, the processed alloy may be fabricated into or included in various articles of manufacture. The 30 articles of manufacture may include, but are not limited to, parts and components for use in the chemical, petrochemical, mining, oil, gas, paper products, food processing, pharmaceutical, and/or water service industries. Non-limiting examples

of specific articles of manufacture that may include alloys processed by methods according to the present disclosure include: a pipe; a sheet; a plate; a bar; a rod; a forging; a tank; a pipeline component; piping, condensers, and heat exchangers intended for use with chemicals, gas, crude oil, seawater, service water, and/or

5 corrosive fluids (e.g., alkaline compounds, acidified chloride solutions, acidified sulfide solutions, and/or peroxides); filter washers, vats, and press rolls in pulp bleaching plants; service water piping systems for nuclear power plants and power plant flue gas scrubber environments; components for process systems for offshore oil and gas platforms; gas well components, including tubes, valves, hangers,

10 landing nipples, tool joints, and packers; turbine engine components; desalination components and pumps; tall oil distillation columns and packing; articles for marine environments, such as, for example, transformer cases; valves; shafting; flanges; reactors; collectors; separators; exchangers; pumps; compressors; fasteners; flexible connectors; bellows; chimney liners; flue liners; and certain drill string components

15 such as, for example, stabilizers, rotary steerable drilling components, drill collars, integral blade stabilizers, stabilizer mandrels, drilling and measurement tubulars, measurements-while-drilling housings, logging-while-drilling housings, non-magnetic drill collars, non-magnetic drill pipe, integral blade non-magnetic stabilizers, non-magnetic flex collars, and compressive service drill pipe.

20 [0102] In connection with the methods according to the present disclosure, the austenitic alloys having the compositions described in the present disclosure may be provided by any suitable conventional technique known in the art for producing alloys. Such techniques include, for example, melt practices and powder metallurgy practices. Non-limiting examples of conventional melt practices include,

25 without limitation, practices utilizing consumable melting techniques (e.g., vacuum arc remelting (VAR) and ESR, non-consumable melting techniques (e.g., plasma cold hearth melting and electron beam cold hearth melting), and a combination of two or more of these techniques. As known in the art, certain powdered metallurgy practices for preparing an alloy generally involve producing alloy powders by the

30 following steps: AOD, vacuum oxygen decarburization (VOD), or vacuum induction melting (VIM) ingredients to provide a melt having the desired composition; atomizing the melt using conventional atomization techniques to provide an alloy powder; and pressing and sintering all or a portion of the alloy powder. In one

conventional atomization technique, a stream of the melt is contacted with the spinning blade of an atomizer, which breaks up the stream into small droplets. The droplets may be rapidly solidified in a vacuum or inert gas atmosphere, providing small solid alloy particles.

5 [0103] After thermomechanically working and cooling a workpiece according to the constraints of Equations 1-3 of the present disclosure, the austenitic alloys described herein may have improved corrosion resistance and/or mechanical properties relative to conventional alloys. After thermomechanically working and cooling a workpiece according to the constraints of Equations 1-3 of the present disclosure, non-limiting embodiments of the alloys described herein may have 10 ultimate tensile strength, yield strength, percent elongation, and/or hardness greater, comparable to, or better than DATALLOY 2[®] alloy (UNS unassigned) and/or AL-6XN[®] alloy (UNS N08367), which are available from Allegheny Technologies Incorporated, Pittsburgh, Pennsylvania USA. Also, after thermomechanically 15 processing and allowing the workpiece to cool according to the constraints of Equations 1-3 of the present disclosure, the alloys described herein may have PREN, CP, CPT, CCCT, and/or SCC values comparable to or better than DATALLOY 2[®] alloy and/or AL-6XN[®] alloy. In addition, after thermomechanically processing and allowing the workpiece to cool according to the constraints of 20 Equations 1-3 of the present disclosure, the alloys described herein may have improved fatigue strength, microstructural stability, toughness, thermal cracking resistance, pitting corrosion, galvanic corrosion, SCC, machinability, and/or galling resistance relative to DATALLOY 2[®] alloy and/or AL-6XN[®] alloy. DATALLOY 2[®] alloy is a Cr-Mn-N stainless steel having the following nominal composition, in weight 25 percentages: 0.03 carbon; 0.30 silicon; 15.1 manganese; 15.3 chromium; 2.1 molybdenum; 2.3 nickel; 0.4 nitrogen; balance iron and impurities. AL-6XN[®] alloy is a superaustenitic stainless steel having the following typical composition, in weight percentages: 0.02 carbon; 0.40 manganese; 0.020 phosphorus; 0.001 sulfur; 20.5 chromium; 24.0 nickel; 6.2 molybdenum; 0.22 nitrogen; 0.2 copper; balance iron and 30 impurities.

[0104] In certain non-limiting embodiments, after thermomechanically working and cooling a workpiece according to the constraints of Equations 1-3 of the

present disclosure, the alloys described herein may exhibit, at room temperature, ultimate tensile strength of at least 110 ksi, yield strength of at least 50 ksi, and/or percent elongation of at least 15%. In various other non-limiting embodiments, after forming, forging, or radial forging and cooling according to the present disclosure, the

5 alloys described herein may exhibit, in an annealed state and at room temperature, ultimate tensile strength in the range of 90 ksi to 150 ksi, yield strength in the range of 50 ksi to 120 ksi, and/or percent elongation in the range of 20% to 65%.

[0105] The examples that follow are intended to further describe certain non-limiting embodiments, without restricting the scope of the present disclosure.

10 Persons having ordinary skill in the art will appreciate that variations of the following examples are possible within the scope of the invention, which is defined solely by the claims.

EXAMPLE 1

[0106] FIG. 6 shows an example of a TTT diagram 80 for an alloy that has a relatively short allowable critical cooling time as calculated using Equation 3 of the present disclosure. The chemical composition of the alloy that is the subject of FIG. 6 includes, in weight percentages: 26.04 iron; 33.94 nickel; 22.88 chromium; 6.35 molybdenum; 4.5 manganese; 3.35 cobalt; 1.06 tungsten; 1.15 copper; 0.01 niobium; 0.26 silicon; 0.04 vanadium; 0.019 carbon; 0.386 nitrogen; 0.015 phosphorus; and 0.0004 sulfur. For this alloy composition, the calculated sigma solvus temperature 82 calculated according to Equation 1 of the present disclosure is about 1859°F; the cooling temperature 84 calculated according to Equation 2 of the present disclosure is about 1665°F; and the critical cooling time 86 calculated according to Equation 3 of the present disclosure is about 7.5 minutes. According to the present disclosure, in order to prevent precipitation of the deleterious intermetallic phase, the workpiece must be thermomechanically processed and allowed to cool when within the temperature range just less than 1859°F (*i.e.*, the calculated sigma solvus temperature calculated by Equation 1) down to 1665°F (*i.e.*, the cooling temperature calculated according to Equation 2) for no longer than 7.5 minutes (*i.e.*, the critical cooling time calculated according to Equation 3).

[0107] FIG. 7 shows microstructures of the center of an as-forged 9-inch diameter workpiece having the composition of Heat 48FJ as disclosed in Table 1. The 9-inch workpiece was made as follows. A 20-inch diameter electroslag remelted (ESR) ingot was homogenized at 2225°F, reheated to 2150°F, hot worked on a radial forge to an approximately 14-inch workpiece, and air cooled. The 14 inch workpiece was reheated to 2200°F and hot worked on a radial forge to about a 9-inch diameter workpiece, followed by water quenching. The relevant actual cooling time, *i.e.*, the time to forge and then cool within the temperature range just below the 1859°F calculated sigma solvus temperature calculated by Equation 1 down to the 1665°F cooling temperature calculated by Equation 2, was greater than the 7.5 minute critical cooling time calculated by Equation 3 allowable to avoid intermetallic precipitation of sigma phase. As predicted from Equations 1-3, the micrograph of FIG. 7 shows that the microstructure of the as-forged 9-inch diameter workpiece contained deleterious intermetallic precipitates, most probably sigma, at the grain boundaries.

EXAMPLE 2

[0108] FIG. 8 shows an example of a TTT diagram 90 for an alloy that has a longer critical cooling time calculated using Equation 3 than the alloy of FIG. 6. The chemical composition of the alloy of FIG. 8 comprises, in weight percentages: 20 39.78 iron; 25.43 nickel; 20.91 chromium; 4.78 molybdenum; 4.47 manganese; 2.06 cobalt; 0.64 tungsten; 1.27 copper; 0.01 niobium; 0.24 silicon; 0.04 vanadium; 0.0070 carbon; 0.37 nitrogen; 0.015 phosphorus; and 0.0004 sulfur. The calculated sigma solvus temperature 92 for the alloy calculated according to Equation 1 is about 1634°F; the cooling temperature 94 calculated according to Equation 2 is about 1556°F; and the critical cooling time 96 calculated according to Equation 3 disclosure is about 28.3 minutes. According the method of the present disclosure, in order to prevent precipitation of the deleterious intermetallic phase within the alloy, the alloy must be formed and cooled when in the temperature range spanning a temperature just below the calculated sigma solvus temperature 30 (1634°F) down to the calculated cooling temperature (1556°F) for a time no greater than the calculated critical cooling time (28.3 minutes).

[0109] FIG. 9 shows the microstructure of the mid radius of an as-forged 9-inch diameter workpiece of the alloy. The workpiece was made as follows. An approximately 20-inch diameter ESR ingot of the alloy was homogenized at 2225°F, hot worked on a radial forge to about a 14-inch diameter workpiece, and 5 air cooled. The cooled workpiece was reheated to 2200°F and hot worked on a radial forge to about a 10-inch diameter workpiece, followed by water quenching. The relevant actual cooling time, *i.e.*, the time for forging and cooling while in the temperature range spanning a temperature just below the calculated sigma solvus temperature calculated according to Equation 1 (1634°F) down to the cooling 10 temperature calculated according to Equation 2 (1556°F), was less than the critical cooling time calculated according to Equation 3 (28.3 minutes) allowed to avoid intermetallic precipitation of sigma phase. As predicted from Equations 1-3, the micrograph of FIG. 9 shows that the microstructure of the as-forged 9-inch diameter workpiece did not contain deleterious intermetallic sigma phase 15 precipitates at the grain boundaries. The darkened areas at the grain boundaries are attributed to metallographic etching artifacts and do not represent grain boundary precipitates.

EXAMPLE 3

[0110] Samples of the non-magnetic austenitic alloy of heat number 49FJ 20 (see Table 1) were provided. The alloy had a calculated sigma solvus temperature calculated according to Equation 1 of 1694°F. The alloy's cooling temperature calculated according to Equation 2 was 1600°F. The time to the nose of the C curve the TTT diagram (*i.e.*, the critical cooling time) calculated according to Equation 3 was 15.6 minutes. The alloy samples were annealed at 1950°F for 0.5 25 hours. The annealed samples were placed in a gradient furnace with the back wall of the furnace at approximately 1600°F, the front wall of the furnace at approximately 1000°F, and a gradient of intermediate temperatures within the furnace between the front and back wall. The temperature gradient in the furnace is reflected in the plot depicted in FIG. 10. The samples were placed at locations 30 within the furnace so as to be subjected to temperatures of 1080°F, 1200°F, 1300°F, 1400°F, 1500°F, or 1550°F, and were heated for 12 minutes, 50 minutes,

10 hours, or 20 hours. The microstructure of each sample was evaluated at the particular heating temperature applied to the sample.

[0111] FIG. 11 is a TTT diagram with the heating temperature gradients (horizontal lines) and the actual cooling times (vertical lines) that were used in these experiments. FIG. 12 superimposes microstructures from samples held for 12 minutes at various temperatures on the TTT diagram. FIG. 13 superimposes microstructures from samples held at 1080°F for various times on the TTT diagram. In general, the results confirm the accuracy of the TTT diagrams in that precipitation of the intermetallic phase addressed herein occurred at approximately the temperatures and times defined by the TTT diagram.

EXAMPLE 4

[0112] A 20-inch diameter ESR ingot having the chemistry of Heat 48FJ was provided. The alloy had a calculated sigma solvus temperature calculated using Equation 1 of 1851°F. The cooling temperature calculated according to Equation 2 was 1659°F. The time to the nose of the C curve the TTT diagram (*i.e.*, the critical cooling time) calculated according to Equation 3 was 8.0 minutes. The ESR ingot was homogenized at 2225°F, reheated to 2225°F and hot worked on a radial forge to approximately a 14-inch diameter workpiece, and then air cooled. The cooled 14-inch diameter workpiece was reheated to 2225°F and hot worked on a radial forge to approximately a 10-inch diameter workpiece, followed by water quenching. Optical temperature measurements during the radial forging operation indicated that the temperature at the surface was approximately 1778°F, and as the radial forged workpiece was entering the water quenching tank, the surface temperature was about 1778°F. The radial forged and water quenched workpiece was annealed at 2150°F and then water quenched.

[0113] FIG. 14A shows the microstructure at the surface of the annealed radial forged workpiece. FIG. 14B shows the microstructure at the center of the annealed radial forged workpiece. The 2150°F annealing step solutionizes the sigma phase that was formed during the radial forging operation. The calculated critical cooling time of 8.0 minutes, however, is insufficient to prevent sigma phase formation at the center of the ingot as the ingot cools from a temperature just below

the 1851°F calculated sigma solvus temperature to the 1659°F calculated cooling temperature during the water quenching operation. The photomicrograph of FIG. 14A shows that the surface cooled sufficiently rapidly to avoid sigma phase precipitation, but the micrograph of FIG. 14B shows that cooling at the center of the 5 ingot occurred slowly enough to permit precipitation of sigma phase. The center of the ingot cooled from the calculated sigma solvus temperature calculated by Equation 1 to the cooling temperature calculated by Equation 2 in a time period greater than the critical cooling time calculated by Equation 3.

EXAMPLE 5

10 [0114] A 20-inch diameter ESR ingot having the chemistry of Heat 45FJ was provided. The alloy had a calculated sigma solvus temperature calculated using Equation 1 of 1624°F. The cooling temperature calculated according to Equation 2 was 1561°F. The time to the nose of the C curve the TTT diagram (*i.e.*, the critical cooling time) was 30.4 minutes. The ESR ingot was homogenized at 15 2225°F, reheated to 2225°F and hot worked on a radial forge to approximately a 14 inch diameter workpiece, and then air cooled. The workpiece was reheated to 2225°F and hot worked on a radial forge to approximately a 10-inch diameter workpiece, followed by water quenching. Optical temperature measurements during the radial forging operation indicated that the workpiece surface temperature 20 was approximately 1886°F, and as the radial forged workpiece was entering the water quenching tank, the surface temperature was about 1790°F.

25 [0115] FIG. 15A shows the microstructure at the surface of the radial forged and water quenched workpiece. FIG. 15B shows the microstructure at the center of the radial forged and water quenched workpiece. The microstructures shown in both FIG. 15A and FIG. 15B are devoid of sigma precipitation. This confirms that the actual time to cool from a temperature just below the calculated sigma solvus temperature of 1624°F down to the calculated cooling temperature of 1561°F was sufficiently quick (*i.e.*, was less than 30.4 minutes) to avoid precipitation of sigma phase at both the surface and the center of the radial forged 30 and water quenched workpiece.

EXAMPLE 6

[0116] A 20-inch diameter ESR ingot having the chemistry of Heat 48FJ was provided. The Heat 48FJ alloy had a calculated sigma solvus temperature calculated using Equation 1 of 1851°F. The cooling temperature calculated

5 according to Equation 2 was 1659°F. The time to the nose of the C curve of the TTT diagram (*i.e.*, the critical cooling time) calculated according to Equation 3 was 8.0 minutes. A second 20-inch diameter ESR ingot, having the chemistry of Heat 49FJ, was provided. The Heat 49FJ alloy had a calculated sigma solvus temperature calculated using Equation 1 of 1694°F. The cooling temperature calculated according to Equation 2 was 1600°F. The time to the nose of the C 10 curve of the TTT diagram (*i.e.*, the critical cooling time) calculated according to Equation 3 was 15.6 minutes.

[0117] Both ingots were homogenized at 2225°F. The homogenized ingots were reheated to 2225°F and hot worked on a radial forge to approximately 15 14-inch diameter workpieces, followed by air cooling. Both cooled workpieces were reheated to 2225°F and hot worked on a radial forge to approximately 10-inch diameter workpieces, followed by water quenching.

[0118] Optical temperature measurements during the radial forging 20 operation of the Heat 48FJ ingot indicated that the temperature at the surface was approximately 1877°F, and entering the water quenching tank, the surface temperature was about 1778°F. FIG. 16A shows the center microstructure of the alloy, which included sigma phase precipitates at the grain boundary.

[0119] Optical temperature measurements during the radial forging 25 operation of the Heat 49FJ ingot indicated that the temperature at the surface was approximately 1848°F, and entering the water quenching tank the surface temperature was about 1757°F. FIG. 16B shows the center microstructure of the alloy, which is devoid of sigma phase precipitates. Dark regions at the grain boundaries in the micrograph of FIG. 16B are attributed to metallographic etching artifacts.

30 **[0120]** These results demonstrate that even when processed under essentially identical conditions, the workpiece with the shorter critical cooling time

as calculated by Equation 3 (Heat 48FJ) developed sigma phase at its center, whereas the workpiece with the longer critical cooling time (Heat 49FJ) as calculated by Equation 3 did not develop sigma phase precipitates at its center.

EXAMPLE 7

5 [0121] A 20-inch diameter ESR ingot having the chemistry of Heat 49FJ was provided. The Heat 49FJ alloy had a calculated sigma solvus temperature calculated using Equation 1 of 1694°F. The cooling temperature calculated according to Equation 2 was 1600°F. The time to the nose of the C curve of the TTT diagram (*i.e.*, the critical cooling time) calculated according to Equation 3 was

10 15.6 minutes. The ingot was homogenized at 2225°F, reheated to 2225°F and hot worked on a radial forge to approximately a 14-inch diameter workpiece, and then air cooled. The air cooled workpiece was reheated to 2150°F and hot worked on a radial forge to approximately a 9-inch diameter workpiece, followed by water quenching. Optical temperature measurements during the radial forging operation

15 indicated that the temperature at the surface was approximately 1800°F, and as the radial forged workpiece was entering the water quenching tank, the surface temperature was about 1700°F. The forged and water quenched workpiece was then reheated to 1025°F and warm worked on a radial forged to approximately a 7.25-inch diameter workpiece, followed by air cooling.

20 [0122] The microstructure of the surface of the 7.25-inch diameter workpiece is shown in FIG. 17A, and the microstructure of the center of the 7.25-inch diameter workpiece is shown in FIG. 17B. The micrographs show that there was no sigma phase at either the surface or the center of the workpiece. In this example, the workpiece having the chemistry of Heat 49FJ was processed through

25 the relevant temperature range, *i.e.*, the temperature range bounded by a temperature just below the calculated sigma solvus temperature and down to the calculated cooling temperature, in less than the calculated critical cooling time, thereby avoiding precipitation of sigma phase.

30 [0123] It will be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects that would be apparent to those of ordinary skill in the art and that, therefore,

would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although only a limited number of embodiments of the present invention are necessarily described herein, one of ordinary skill in the art will, upon considering the foregoing description, recognize

5 that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.

CLAIMS

1. A method of processing a workpiece to inhibit precipitation of intermetallic compounds, the method comprising:

at least one of thermomechanically working and cooling a workpiece including an austenitic alloy, wherein during the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time;

wherein the austenitic alloy comprises, in weight percentages based on total alloy weight, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 25.43 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron; up to 0.05 phosphorus; up to 0.05 sulfur; 20 to 60 iron; and incidental impurities;

wherein the calculated sigma solvus temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1155.8 - (760.4) \cdot (\text{nickel/iron}) + (1409) \cdot (\text{chromium/iron}) + (2391.6) \cdot (\text{molybdenum/iron}) - (288.9) \cdot (\text{manganese/iron}) - (634.8) \cdot (\text{cobalt/iron}) + (107.8) \cdot (\text{tungsten/iron})$;

wherein the cooling temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1290.7 - (604.2) \cdot (\text{nickel/iron}) + (829.6) \cdot (\text{chromium/iron}) + (1899.6) \cdot (\text{molybdenum/iron}) - (635.5) \cdot (\text{cobalt/iron}) + (1251.3) \cdot (\text{tungsten/iron})$; and

wherein the critical cooling time is a function of the composition of the austenitic alloy in weight percentages and, in minutes, is equal to $\log_{10} 2.948 + (3.631) \cdot (\text{nickel/iron}) - (4.846) \cdot (\text{chromium/iron}) - (11.157) \cdot (\text{molybdenum/iron}) + (3.457) \cdot (\text{cobalt/iron}) - (6.74) \cdot (\text{tungsten/iron})$, and wherein the critical cooling time is in a range of 10 minutes to 30 minutes.

2. The method of claim 1, wherein thermomechanically working the workpiece comprises forging the workpiece.

3. The method of claim 2, wherein forging the workpiece comprises at least one of roll forging, swaging, cogging, open-die forging, impression-die forging, press forging, automatic hot forging, radial forging, and upset forging.

4. The method of claim 1, wherein thermomechanically working the workpiece comprises radial forging the workpiece.

5. The method of claim 1, further comprising, after at least one of thermomechanically working and cooling the workpiece:

heating the workpiece to an annealing temperature that is at least as great as the calculated sigma solvus temperature, and holding the workpiece at the annealing temperature for period of time sufficient to anneal the workpiece;

wherein as the workpiece cools from the annealing temperature, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than the calculated sigma solvus temperature down to the cooling temperature for a time no greater than the critical cooling time.

6. The method of claim 1, wherein the austenitic alloy comprises a combined weight percentage of niobium and tantalum no greater than 0.3.

7. The method of claim 1, wherein the austenitic alloy comprises up to 0.2 weight percent vanadium.

8. The method of claim 1, wherein the austenitic alloy comprises up to 0.1 weight percent aluminum.

9. The method of claim 1, wherein the austenitic alloy comprises a combined weight percentage of cerium and lanthanum no greater than 0.1.

10. The method of claim 1, wherein the austenitic alloy comprises up to 0.5 weight percent ruthenium.

11. The method of claim 1, wherein the austenitic alloy comprises up to 0.6 weight percent zirconium.

12. The method of claim 1, wherein the austenitic alloy comprises a cobalt/tungsten weight percentage ratio from 2:1 to 4:1.

13. The method of claim 1, wherein the austenitic alloy has a PREN₁₆ value of greater than 40, wherein the PREN₁₆ value is determined by the equation:

$$\text{PREN}_{16} = \% \text{Cr} + 3.3(\% \text{Mo}) + 16(\% \text{N}) + 1.65(\% \text{W}),$$

wherein the percentages are weight percentages.

14. The method of claim 1, wherein the austenitic alloy has a PREN₁₆ value in the range of 40 to 60, wherein the PREN₁₆ value is determined by the equation:

$$\text{PREN}_{16} = \% \text{Cr} + 3.3(\% \text{Mo}) + 16(\% \text{N}) + 1.65(\% \text{W}),$$

wherein the percentages are weight percentages.

15. The method of claim 1, wherein the austenitic alloy is non-magnetic.
16. The method of claim 1, wherein the austenitic alloy has a magnetic permeability value less than 1.01.
17. The method of claim 1, wherein the austenitic alloy has an ultimate tensile strength of at least 110 ksi, a yield strength of at least 50 ksi, and a percent elongation of at least 15%.
18. The method of claim 1, wherein the austenitic alloy has an ultimate tensile strength in the range of 90 ksi to 150 ksi, a yield strength in the range of 50 ksi to 120 ksi, and a percent elongation in the range of 20% to 65%.
19. The method of claim 1, wherein the austenitic alloy has an ultimate tensile strength in the range of 100 ksi to 240 ksi, a yield strength in the range of 110 ksi to 220 ksi, and a percent elongation in the range of 15% to 30%.
20. The method of claim 1, wherein the austenitic alloy has a critical pitting temperature of at least 45°C.
21. The method of claim 1, wherein the austenitic alloy comprises, in weight percentages based on total alloy weight: up to 0.05 carbon; 1.0 to 9.0 manganese; 0.1 to 1.0 silicon; 18.0 to 26.0 chromium; 19.0 to 25.43 nickel; 3.0 to 7.0 molybdenum; 0.4 to 2.5 copper; 0.1 to 0.55 nitrogen; 0.2 to 3.0 tungsten; 0.8 to 3.5 cobalt; up to 0.6 titanium; a combined weight percentage of niobium and tantalum no greater than 0.3; up to 0.2 vanadium; up to 0.1 aluminum; up to 0.05 boron; up to 0.05 phosphorus; up to 0.05 sulfur; 20 to 50 iron; and incidental impurities.
22. The method of claim 21, wherein the austenitic alloy comprises 2.0 to 8.0 weight percent manganese.
23. The method of claim 21, wherein the austenitic alloy comprises 19.0 to 25.0 weight percent chromium.
24. The method of claim 21, wherein the austenitic alloy comprises 20.0 to 25.43 weight percent nickel.

25. The method of claim 21, wherein the austenitic alloy comprises 3.0 to 6.5 weight percent molybdenum.
26. The method of claim 21, wherein the austenitic alloy comprises 0.5 to 2.0 weight percent copper.
27. The method of claim 21, wherein the austenitic alloy comprises 0.3 to 2.5 weight percent tungsten.
28. The method of claim 21, wherein the austenitic alloy comprises 1.0 to 3.5 weight percent cobalt.
29. The method of claim 21, wherein the austenitic alloy comprises 0.2 to 0.5 weight percent nitrogen.
30. The method of claim 1, wherein the austenitic alloy comprises, in weight percentages based on total alloy weight: up to 0.05 carbon; 2.0 to 8.0 manganese; 0.1 to 0.5 silicon; 19.0 to 25.0 chromium; 20.0 to 25.43 nickel; 3.0 to 6.5 molybdenum; 0.5 to 2.0 copper; 0.2 to 0.5 nitrogen; 0.3 to 2.5 tungsten; 1.0 to 3.5 cobalt; up to 0.6 titanium; a combined weight percentage of niobium and tantalum no greater than 0.3; up to 0.2 vanadium; up to 0.1 aluminum; up to 0.05 boron; up to 0.05 phosphorus; up to 0.05 sulfur; 20 to 50 iron; trace elements; and incidental impurities.
31. The method of claim 30, wherein the austenitic alloy comprises 2.0 to 6.0 weight percent manganese.
32. The method of claim 30, wherein the austenitic alloy comprises 20.0 to 22.0 weight percent chromium.
33. The method of claim 30, wherein the austenitic alloy comprises 6.0 to 6.5 weight percent molybdenum.
34. The method of claim 30, wherein the austenitic alloy comprises 40 to 45 weight percent iron.
35. A method of processing an austenitic alloy workpiece to inhibit precipitation of intermetallic compounds, the method comprising:
 - forging the workpiece;
 - cooling the forged workpiece; and

optionally, annealing the cooled workpiece;

wherein the austenitic alloy comprises, in weight percentages based on total alloy weight, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 25.43 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron; up to 0.05 phosphorus, up to 0.05 sulfur, 20 to 60 iron, and incidental impurities;

wherein during forging the workpiece and cooling the forged workpiece the austenitic alloy cools through a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time;

wherein the calculated sigma solvus temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1155.8 - (760.4) \cdot (\text{nickel/iron}) + (1409) \cdot (\text{chromium/iron}) + (2391.6) \cdot (\text{molybdenum/iron}) - (288.9) \cdot (\text{manganese/iron}) - (634.8) \cdot (\text{cobalt/iron}) + (107.8) \cdot (\text{tungsten/iron})$;

wherein the cooling temperature is a function of the composition of the austenitic alloy in weight percentages and, in Fahrenheit degrees, is equal to $1290.7 - (604.2) \cdot (\text{nickel/iron}) + (829.6) \cdot (\text{chromium/iron}) + (1899.6) \cdot (\text{molybdenum/iron}) - (635.5) \cdot (\text{cobalt/iron}) + (1251.3) \cdot (\text{tungsten/iron})$; and

wherein the critical cooling time is a function of the composition of the austenitic alloy in weight percentages and, in minutes, is equal to $\log_{10} 2.948 + (3.631) \cdot (\text{nickel/iron}) - (4.846) \cdot (\text{chromium/iron}) - (11.157) \cdot (\text{molybdenum/iron}) + (3.457) \cdot (\text{cobalt/iron}) - (6.74) \cdot (\text{tungsten/iron})$, and wherein the critical cooling time is in a range of 10 minutes to 30 minutes.

36. The method of claim 35, wherein forging the workpiece occurs entirely at temperatures greater than the calculated sigma solvus temperature.

37. The method of claim 35, wherein forging the workpiece occurs through the calculated sigma solvus temperature.

38. The method of claim 35, wherein forging the workpiece comprises at least one of roll forging, swaging, cogging, open-die forging, impression-die forging, press forging, automatic hot forging, radial forging, and upset forging.

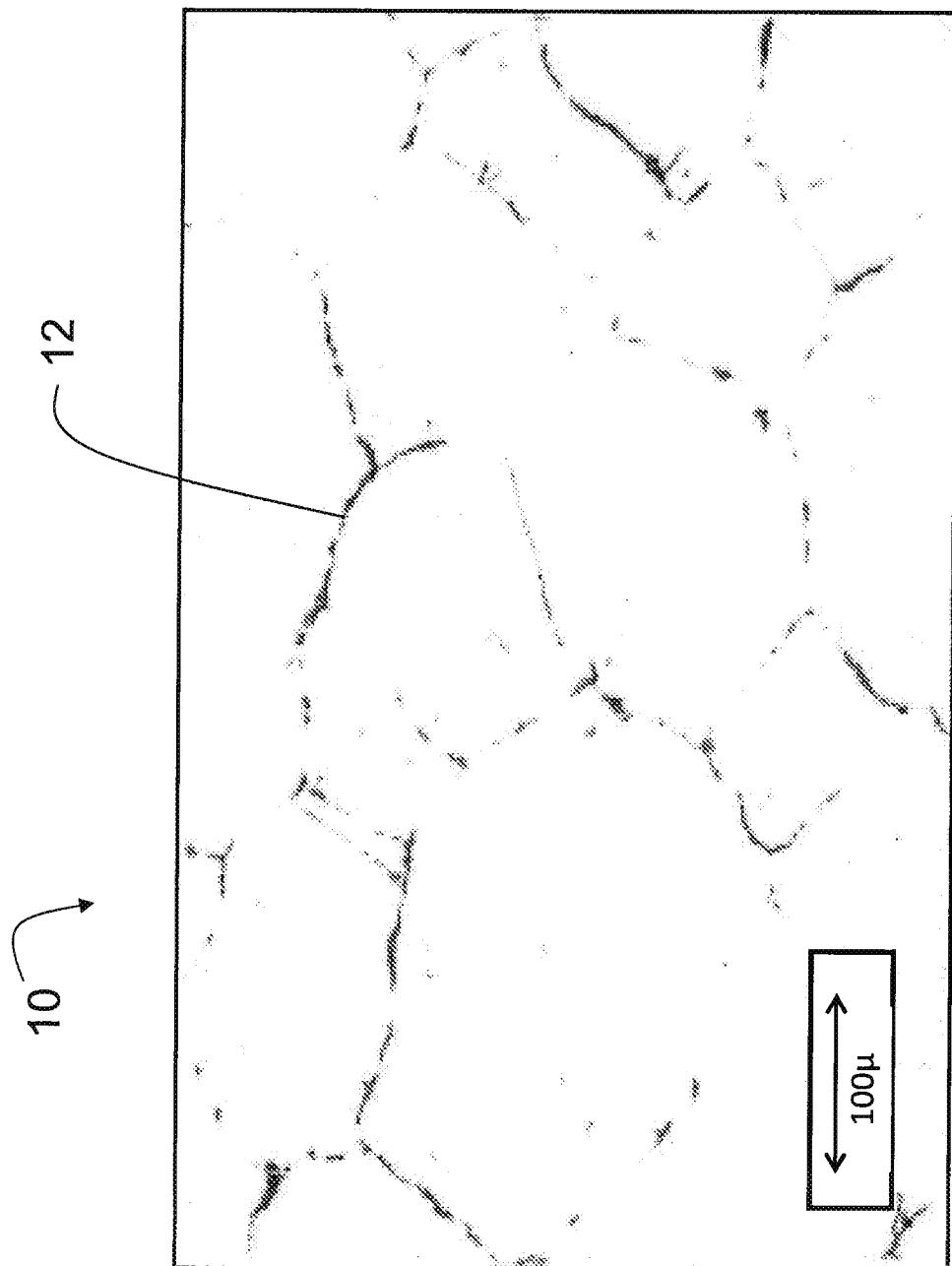


FIG. 1
Prior Art

2/17

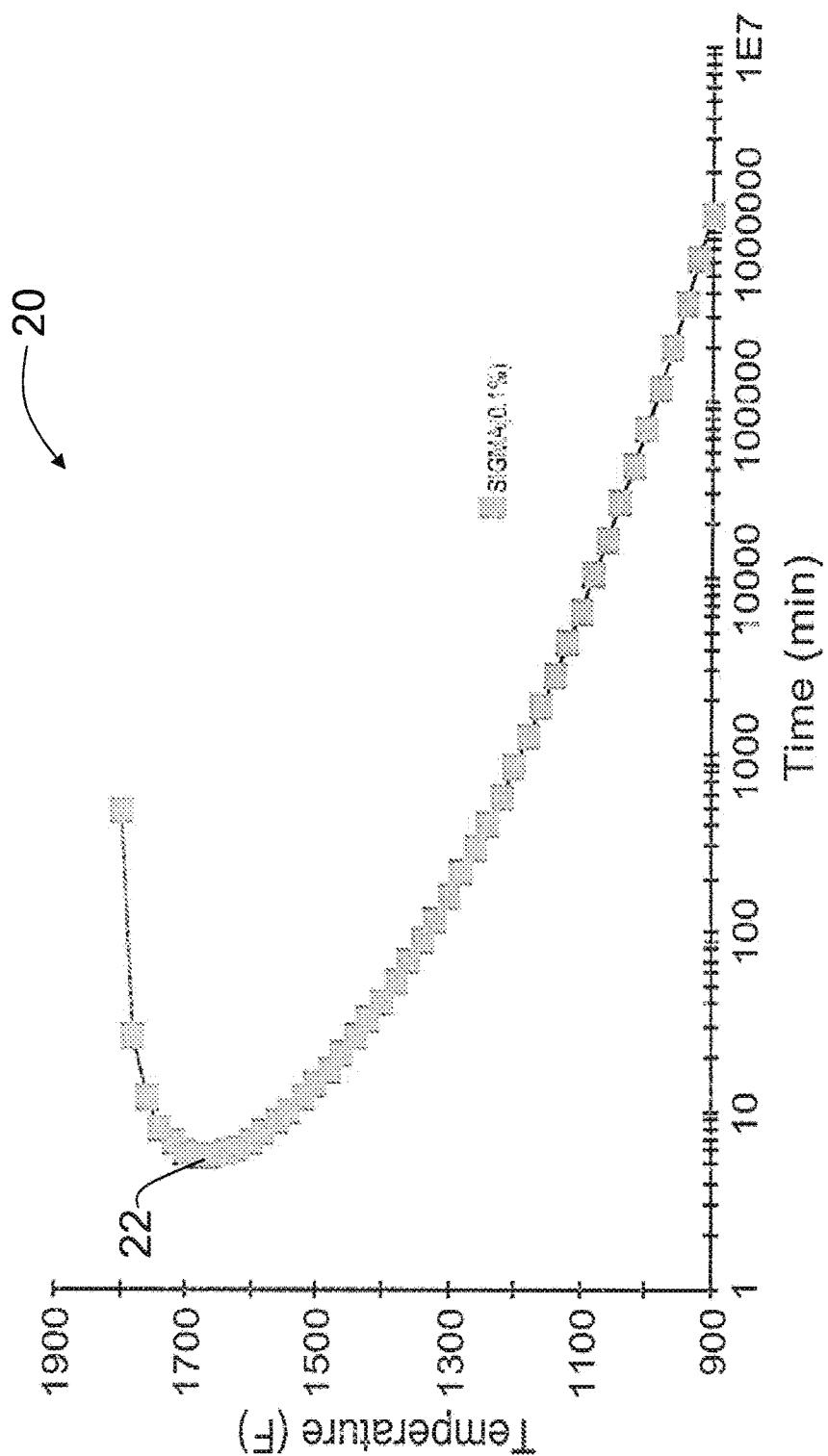
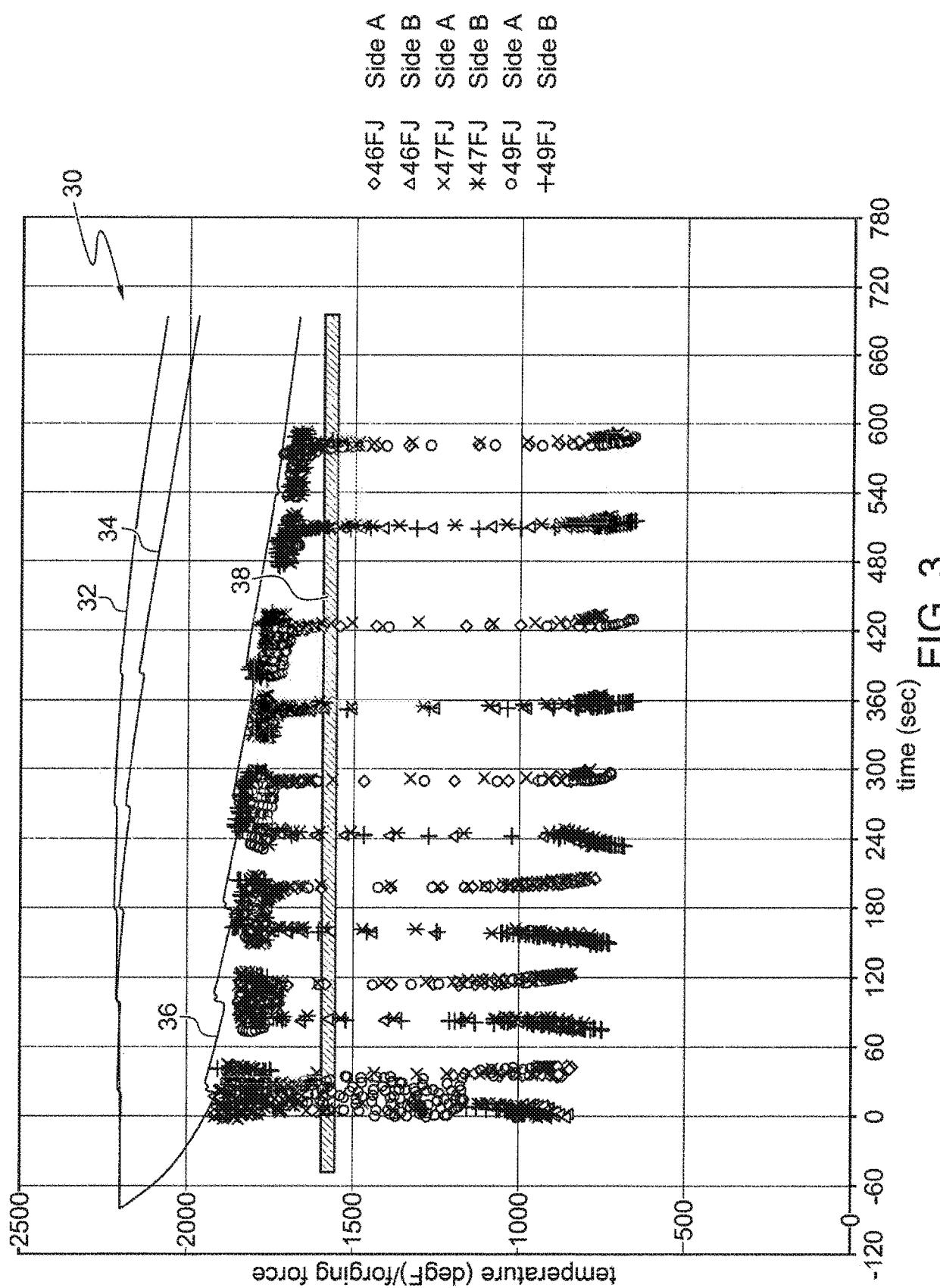



FIG. 2

4/17

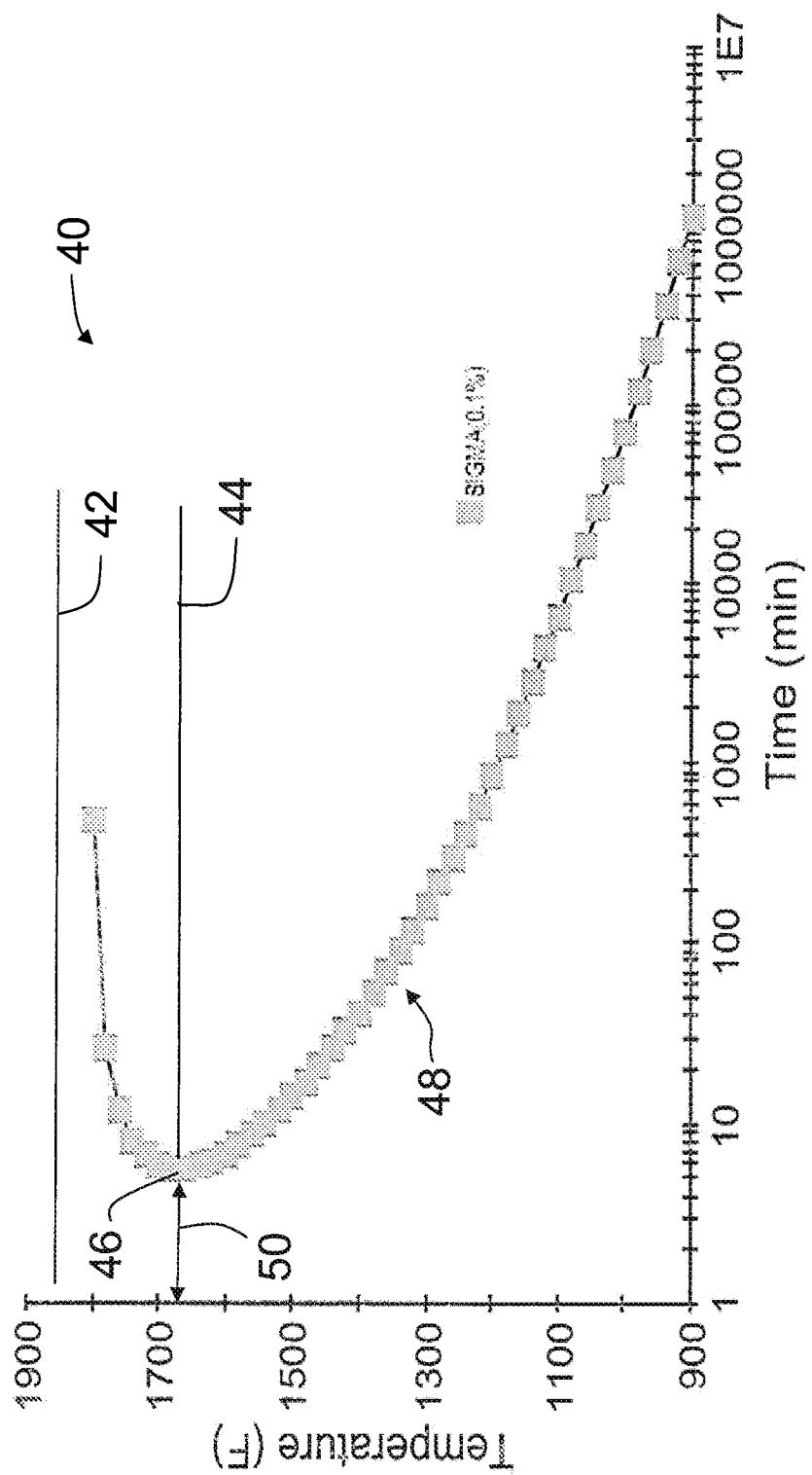


FIG. 4

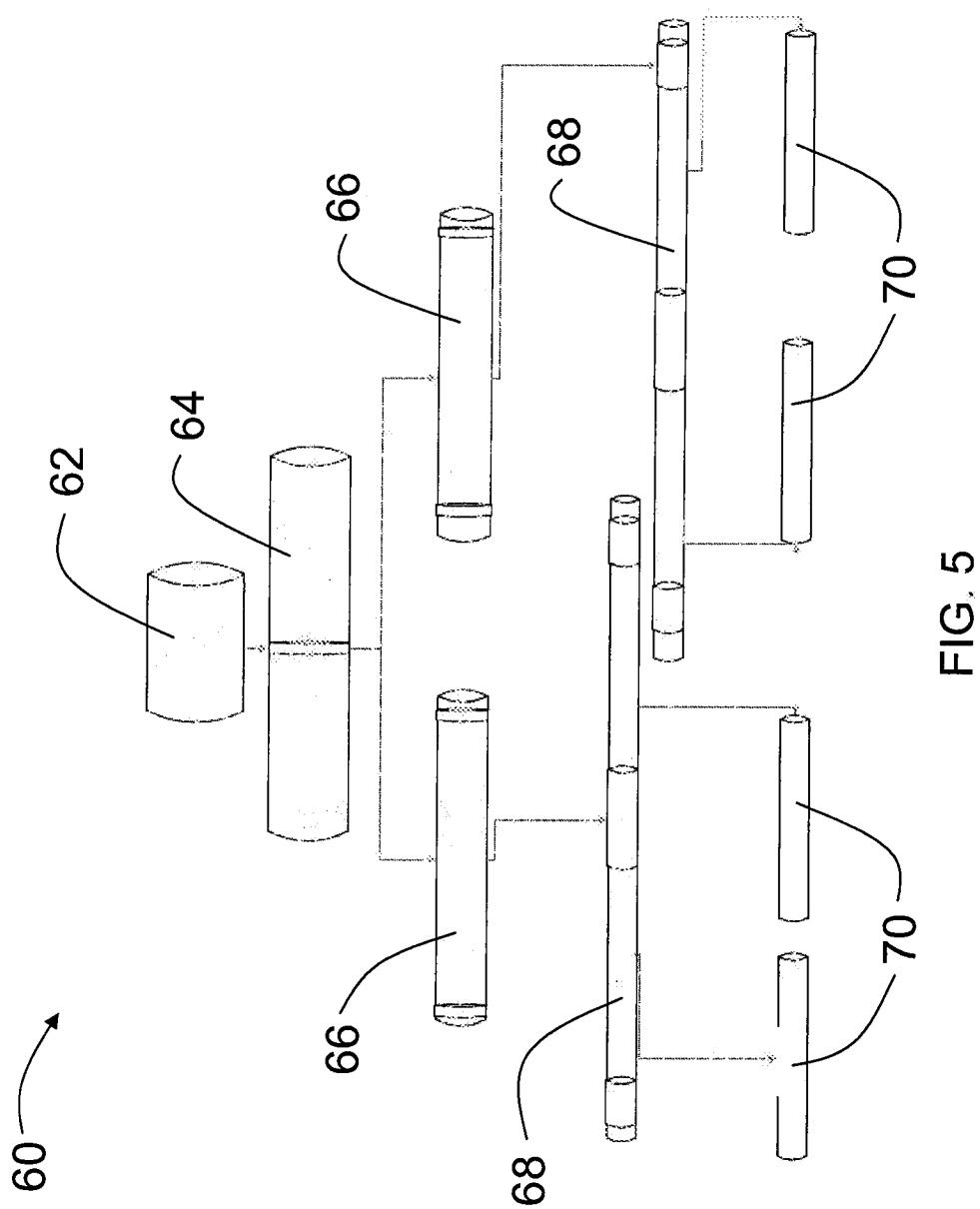


FIG. 5

6/17

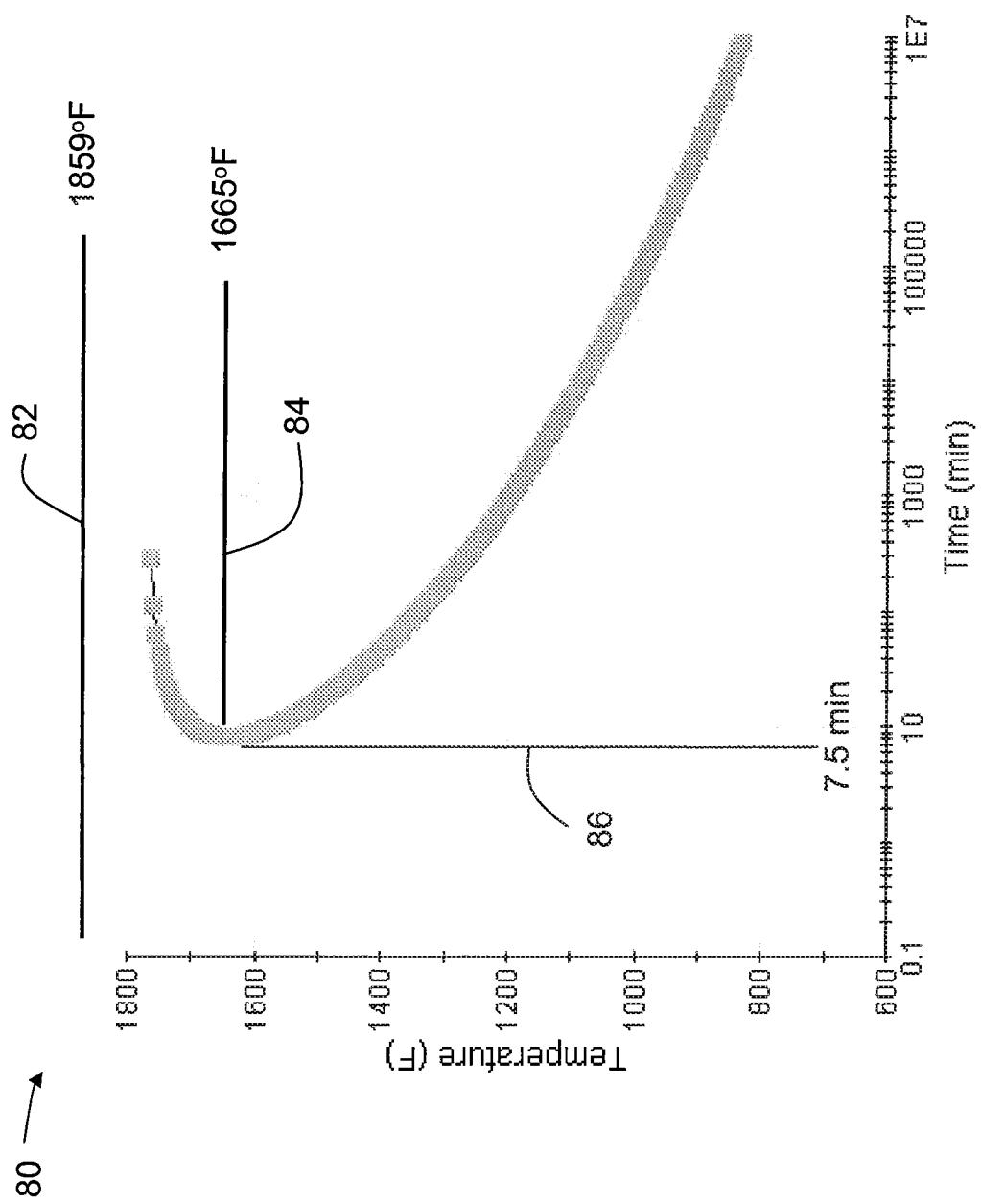


FIG. 6

FIG. 7
(prior art)

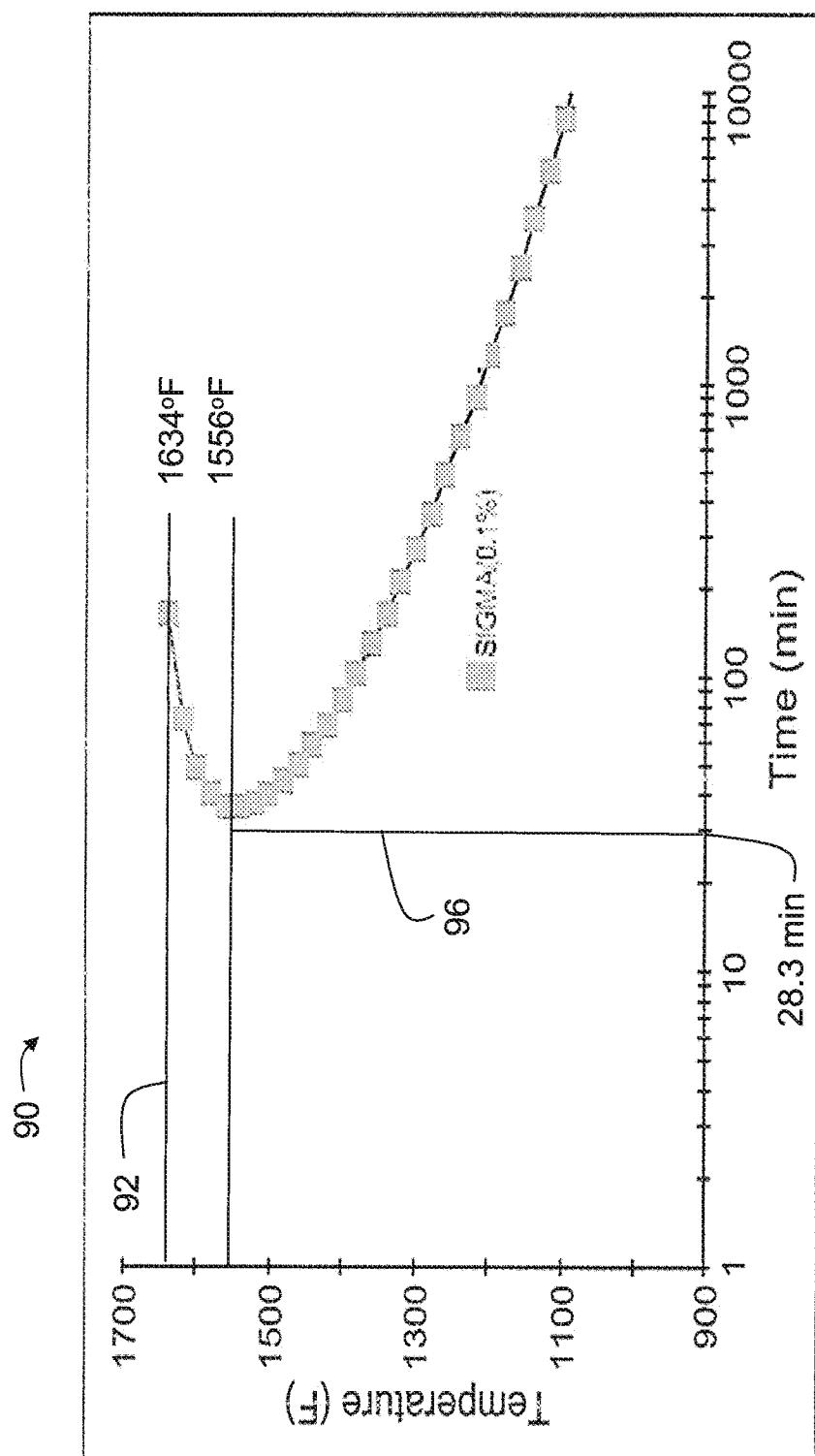


FIG. 8

9/17

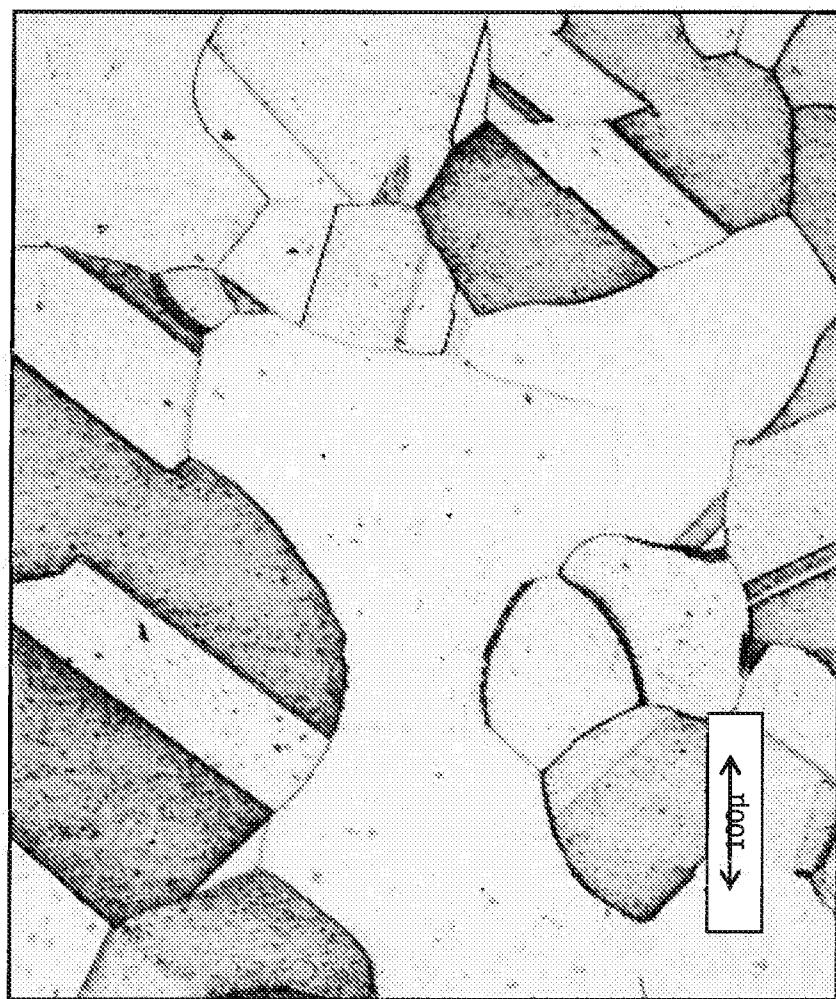


FIG. 9

10/17

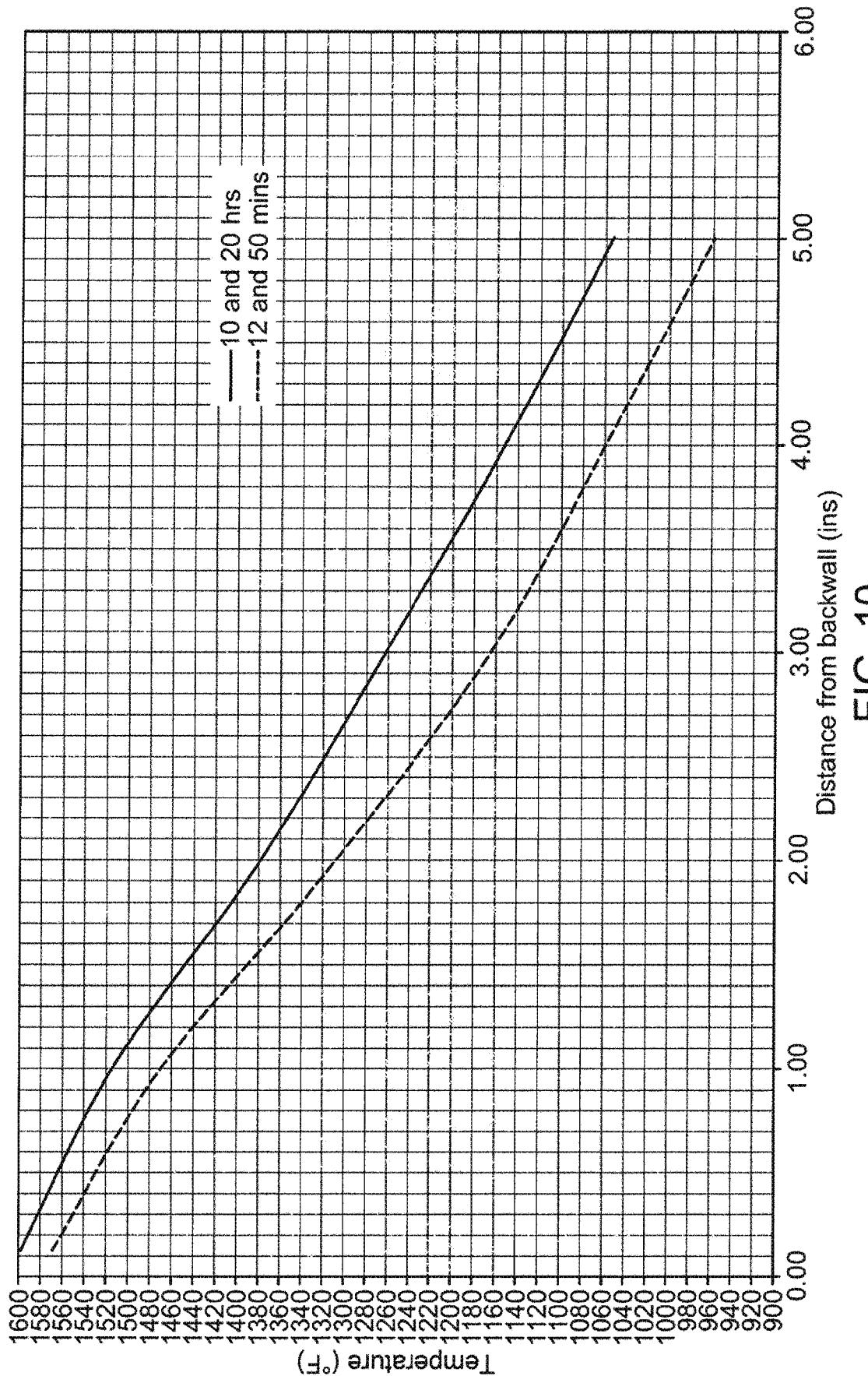


FIG. 10

11/17

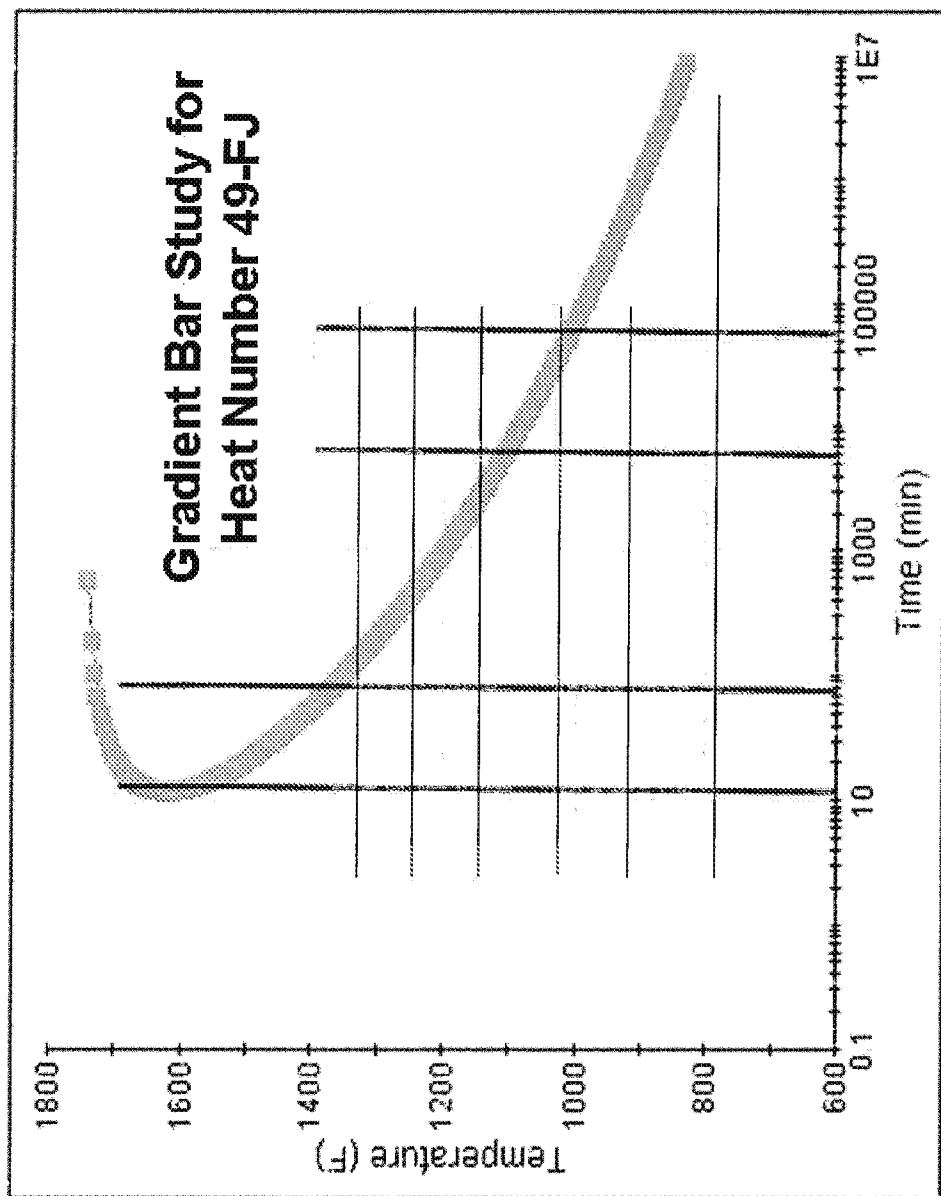


FIG. 11

12/17

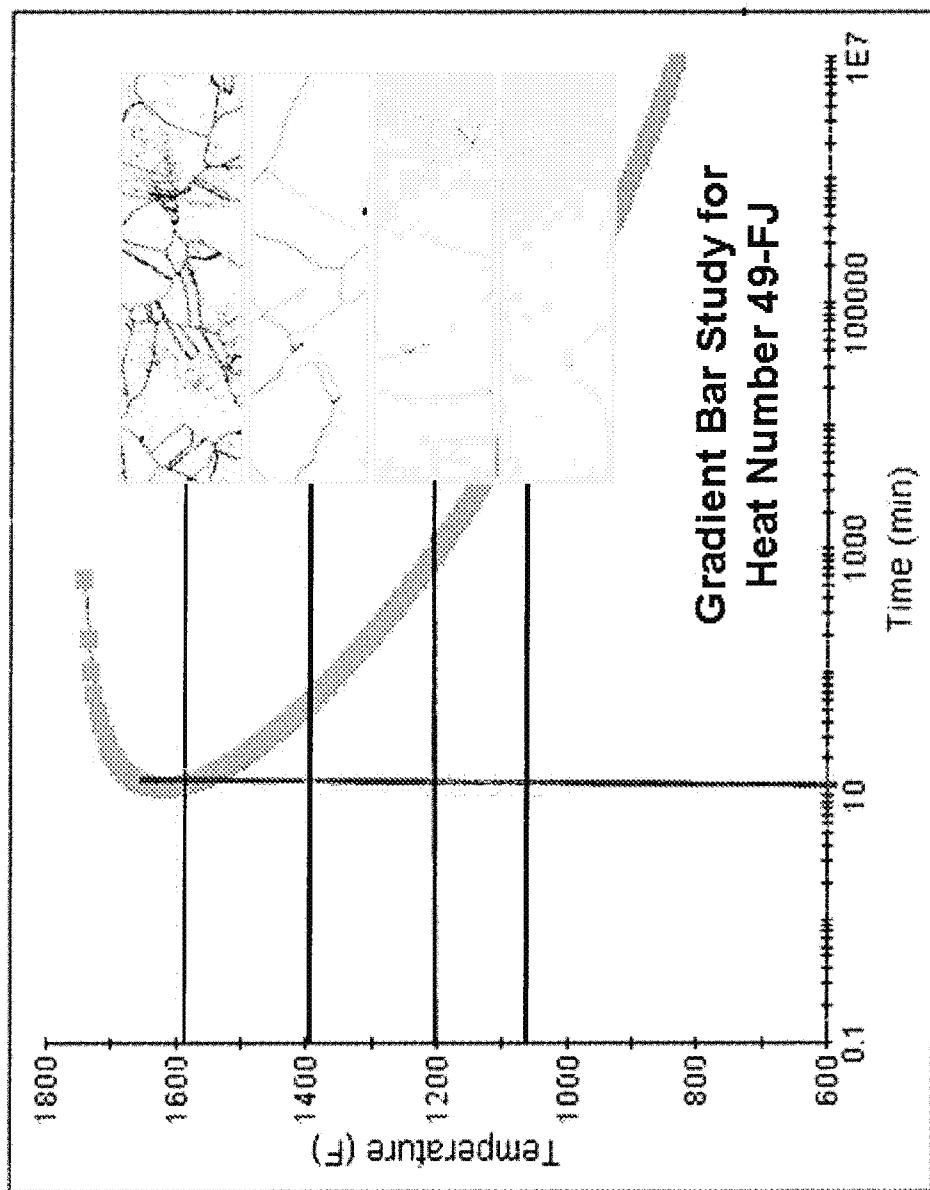
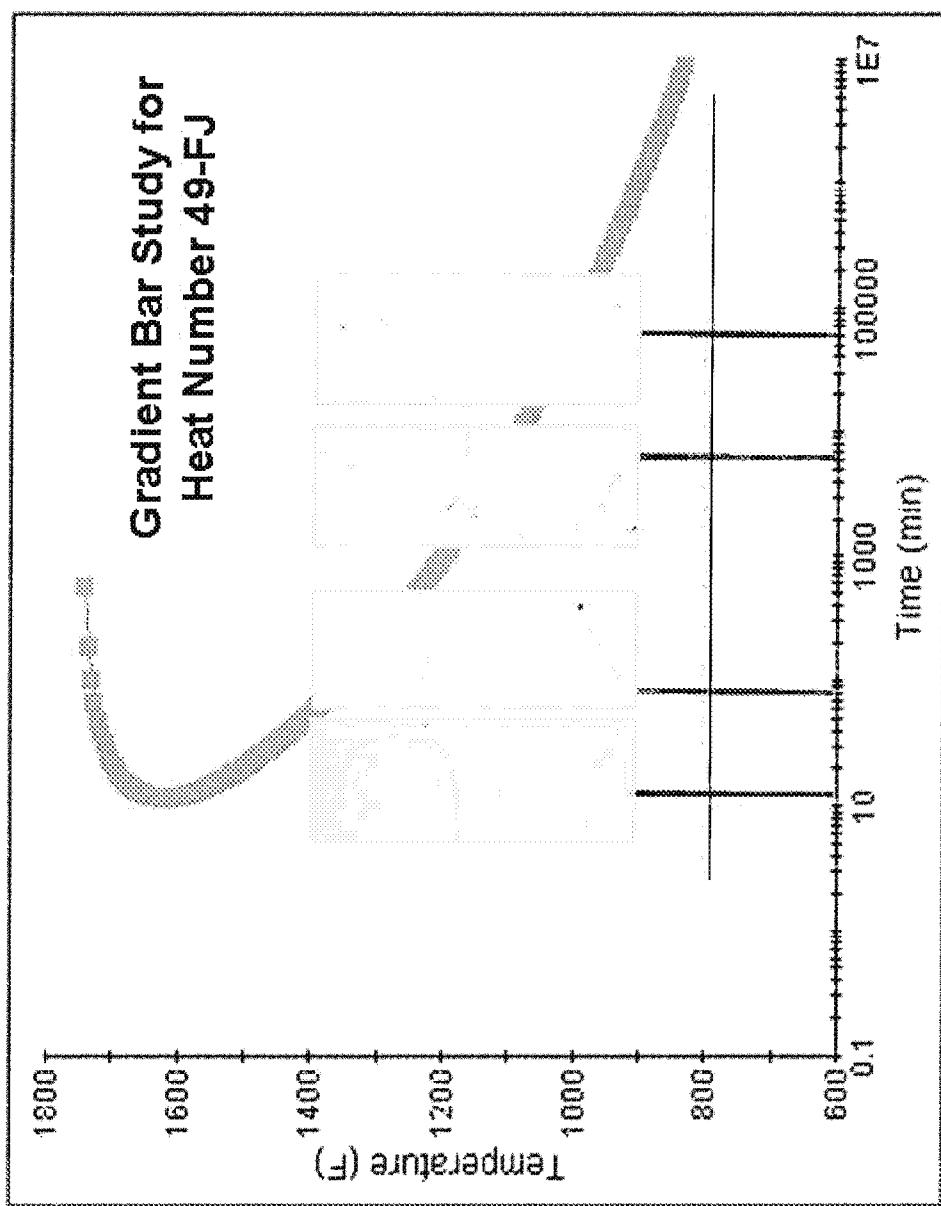
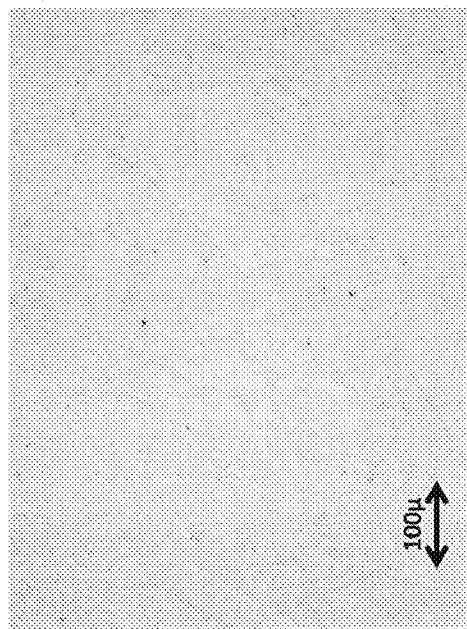


FIG. 12

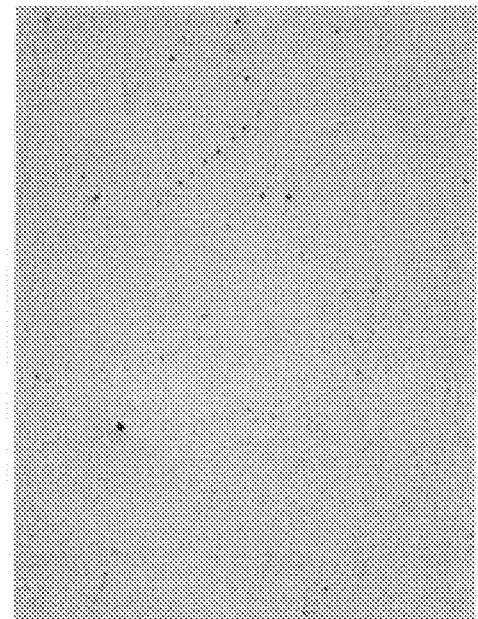
13/17



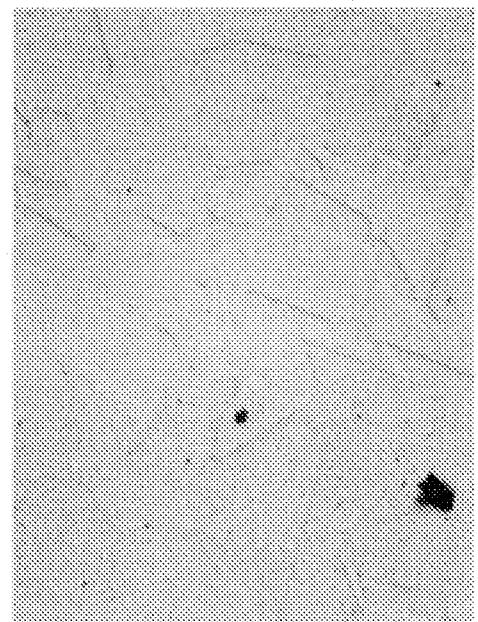

FIG. 13

14/17

LOCATION: T-1C R


FIG. 14B

LOCATION: T-1S R


FIG. 14A

15/17

LOCATION: T2C

FIG. 15B

LOCATION: T2S

FIG. 15A

16/17

FIG. 16B

FIG. 16A

17/17

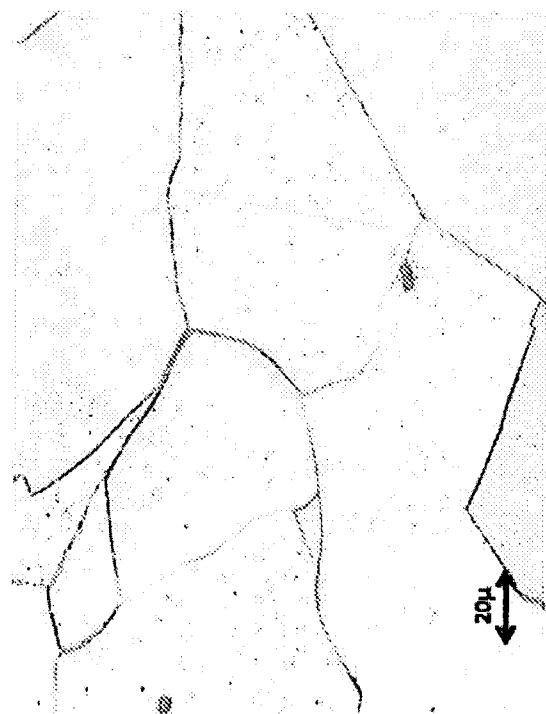


FIG. 17B

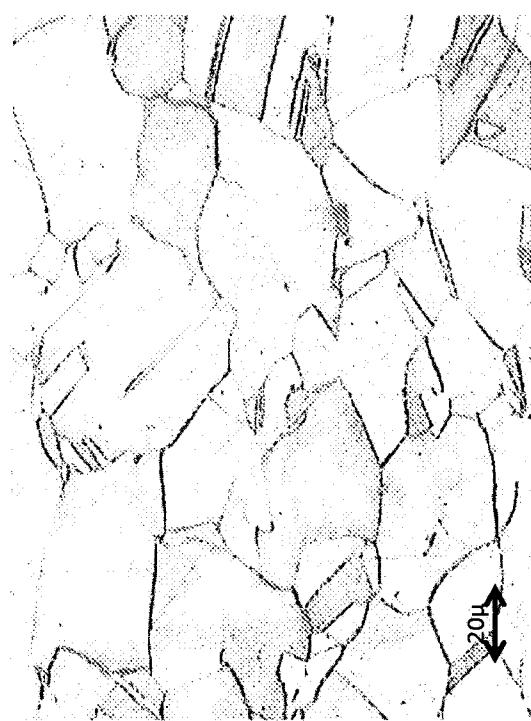


FIG. 17A