
DE10255142B420080103
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 102 55 142 B4 2008.01.03

(12) Patentschrift

(21) Aktenzeichen: 102 55 142.1
(22) Anmeldetag: 26.11.2002
(43) Offenlegungstag: 09.10.2003
(45) Veröffentlichungstag

der Patenterteilung: 03.01.2008

(51) Int Cl.8: H04L 12/56 (2006.01)
H04L 29/14 (2006.01)
H04L 12/26 (2006.01)

Innerhalb von drei Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Ein-
spruch erhoben werden. Der Einspruch ist schriftlich zu erklären und zu begründen. Innerhalb der Einspruchsfrist ist eine
Einspruchsgebühr in Höhe von 200 Euro zu entrichten(§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 2
Patentkostengesetz).

(54) Bezeichnung: Diagnose von Datenpaketübertragungs-Fehlern unter Verwendung von Einschränkungen

(57) Hauptanspruch: Verfahren zum Diagnostizieren von
Datenpaketübertragungs-Fehlern in einem getesteten Sys-
tem (SUT) (110), wobei das SUT Datenübertragungswege
definiert, durch die Datenpakete übertragen werden, wobei
das Verfahren folgende Schritte aufweist:
Identifizieren von zumindest einigen Abschnitten der Da-
tenübertragungswege das SUT, die Fehler in die Datenpa-
ketübertragung einbringen können;
Bereitstellen von Einschränkungen, die Datenpaketüber-
tragungs-Beziehungen von zumindest einigen der Ab-
schnitte der Datenübertragungswege, die identifiziert wur-
den, definiert;
Diagnostizieren des SUT im Hinblick auf die Einschränkun-
gen;
wobei ein Teststimulus, der als Eingabe für das Diagnosti-
zieren des SUT verwendet wird, ein Modell einer tatsächli-
chen Eingabe, die dem SUT während des Betriebes zuge-
führt wird, ist.

(30) Unionspriorität:
10/099335 14.03.2002 US

(73) Patentinhaber:
Agilent Technologies, Inc. (n.d.Ges.d. Staates
Delaware), Santa Clara, Calif., US

(74) Vertreter:
Schoppe, Zimmermann, Stöckeler & Zinkler, 82049
Pullach

(72) Erfinder:
Manley, Douglas R., Fort Collins, Col., US; Barford,
Lee A., San Jose, Calif., US

(56) Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:
US 58 08 919 A
U6 63 27 545 B1
1/27

DE 102 55 142 B4 2008.01.03
Beschreibung

[0001] Die vorliegende Erfindung bezieht sich allgemein auf eine Systemfehlerdiagnose. Speziell bezieht sich
die vorliegende Erfindung auf Systeme und Verfahren, die die Diagnose von Fehlern bei mehreren diskreten
Datenübertragungen zwischen Abschnitten eines Systems involvieren.

[0002] Verschiedene Systeme und Verfahren sind zum Diagnostizieren von Fehlern, die bei SUTs (SUT = sys-
tems under test = getestete Systeme) vorkommen, verwendet worden. Dazu sind beispielsweise eine manuelle
Diagnose, eine automatisierte Diagnose basierend auf einer testmodellbasierten Technologie, kundenspezifi-
schen Software und Fehlersimulation verwendet worden. Tendenziell weisen diese Techniken jedoch einen
oder mehrere festgestellte Nachteile auf, die deren Anwendbarkeit tendenziell einschränken können.

[0003] Im Hinblick auf die manuelle Diagnose ist diese Technik typischerweise eine wissensintensive Technik,
die ein hohes Niveau an Wissen bezüglich SUT und Testfolge erfordert. Der Erwerb derartigen Wissens durch
einen Operator kann zeitaufwendig und daher kostspielig sein. Zusätzlich sind Ergebnisse, die während einer
Diagnose erhalten werden, typischerweise dahingehend nicht wiederholbar, daß die Ergebnisse von Operator
zu Operator und/oder Standort zu Standort variieren können. Eine solche Technik kann auch gewissermaßen
fehleranfällig sein, da eine unsachgemäße Anwendung der Technik eine ungenaue Fehlerdiagnose zur Folge
haben kann.

[0004] Viele Formen einer testmodellbasierten Diagnose, obgleich dieselben für das Diagnostizieren von sta-
tischen Fehlern als angemessen erachtet werden, erweisen sich tendenziell als zur Verwendung beim Diag-
nostizieren von zeitweise auftretenden Fehlern unwirksam. Ein statischer Fehler ist ein Fehler, der während
eines gesamten Tests vorliegt und typischerweise alle Datenübertragungen während des Tests beeinträchtigt,
wohingegen ein zeitweise auftretender Fehler typischerweise nur einen Teil der Datenübertragungen beein-
trächtigt. Im Vergleich zum Verfolgen eines speziellen Abschnitts und/oder einer Komponente des Testwegs
verfolgen testmodellbasierte Techniken tendenziell einen gesamten Testweg, wenn ein Fehler in bezug auf die-
sen Testweg diagnostiziert wird. Zusätzlich erfordert die testmodellbasierte Diagnose typischerweise die Ent-
wicklung eines detaillierten Modells der Tests für ein System. Ein Beispiel von testmodellbasierten Systemen
ist in der US-Patentanmeldung 5,808,919 A offenbart.

[0005] Kundenspezifische Software wird ebenfalls zum Diagnostizieren von Systemen verwendet. Leider ist
die kundenspezifische Software typischerweise geschrieben, um nur ein spezifisches System zu diagnostizie-
ren. Dieser Lösungsansatz ist tendenziell aufwendig und daher in seiner Implementierung kostspielig.

[0006] Wie ebenfalls bekannt ist, können bei einer Systemdiagnose Fehlersimulatoren verwendet werden.
Die Fehlersimulatoren arbeiten typischerweise durch Erzeugen eines Fehlerwörterbuchs. Die Fehlersimulation
erfordert jedoch typischerweise eine große Menge an Modellierzeit und relativ umfangreiche Ausführungszei-
ten, speziell wenn komplexe Schaltungen durch das SUT genutzt werden. Dies ist darin begründet, daß die
Simulation typischerweise eine Bit-um-Bit-Analyse des SUT-Betriebs involviert. Aufgrund dessen gilt eine Feh-
lersimulation für die Verwendung bei komplexen, handelsüblichen Anwendungen typischerweise als unprak-
tisch. Zusätzlich ist eine Fehlersimulation nichtexistent oder gilt anderweitig als zur Diagnose von zeitweise
auftretenden Ausfällen unpraktikabel.

[0007] Anhand des vorstehenden wird darauf hingewiesen, daß ein Bedarf an verbesserten Systemen und
Verfahren besteht, die die oben erwähnten und/oder andere festgestellte Nachteile des Stands der Technik an-
gehen.

[0008] US 6,327,545 B1 offenbart ein System zum Testen einer Schaltung. Um die Komplexität des Tests zu
reduzieren, kann die Schaltung in Gruppen von Komponenten, sogenannte Cluster, unterteilt werden, die ge-
trennt voneinander getestet werden. Zum Testen werden die Cluster weiter unterteilt, bis hinab auf die zu tes-
tenden Knoten. Diese können mit speziell optimierten Teststimuli getestet werden, die in Bezug auf Testdurch-
satz oder Testabdeckung optimiert sind.

[0009] Es ist eine Aufgabe der vorliegenden Erfindung, Systeme und Verfahren zur Diagnose von Datenpa-
ketübertragungs-Fehlern unter Verwendung von Einschränkungen zu schaffen.

[0010] Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 sowie ein System gemäß den Ansprüchen
13, 20 oder 22 gelöst.
2/27

DE 102 55 142 B4 2008.01.03
[0011] Die vorliegende Erfindung bezieht sich auf die Diagnose von Fehlern in Datenpaketübertragungen ei-
nes SUT. Typischerweise verwendet die Erfindung Einschränkungen, um Datenpaketübertragungs-Beziehun-
gen aus verschiedenen Abschnitten des SUT zu definieren. Diese Einschränkungen können dann im Hinblick
auf die Testergebnisse, die vom SUT erhalten werden, ausgewertet werden.

[0012] Bei einigen Ausführungsbeispielen wird ein Datenflußmodell verwendet, um jene Abschnitte eines
SUT zu identifizieren, die Datenpaketübertragungs-Fehler einführen können. Einschränkungen werden dann
entwickelt, um die Datenpaketübertragungs-Beziehungen aus den identifizierten Abschnitten zu definieren.
Daher, wenn dem SUT entsprechende Testergebnisse empfangen werden und ein Datenpaketübertra-
gungs-Fehler erfaßt wird, können die Einschränkungen im Hinblick auf die Testergebnisse unter Verwendung
des Datenflußmodells ausgewertet werden, um Komponenten und/oder Teilkomponenten des SUT, die die Da-
tenpaketübertragungs-Fehler erzeugt haben könnten, zu identifizieren und/oder auszuschließen.

[0013] Verschiedene Techniken können zum Bestimmen einer Diagnose verwendet werden. Beispielsweise
kann eine lineare Programmierung, wie z. B. eine Integer-Programmierung, eine regelbasierte Kantenklassifi-
zierung und/oder eine flußereignisbasierte Kantenklassifikation verwendet werden.

[0014] Bei einigen Ausführungsbeispielen können jene Abschnitte eines SUT, die Daten, z. B. Datenpakete,
zählen können und/oder eine Operation im Hinblick auf die Daten ausführen können, ebenfalls identifiziert wer-
den. Zum Beispiel könnte eine solche Operation ein Reproduzieren (Bussing), Aufteilen, Kombinieren, Fallen-
lassen und/oder Routen (Schalten) von Daten umfassen.

[0015] Diesbezüglich können die Ausführungsbeispiele der Erfindung als Verfahren zum Diagnostizieren von
Datenpaketübertragungs-Fehlern in einem SUT ausgelegt werden. Speziell umfaßt ein solches Verfahren fol-
gende Schritte: ein Identifizieren von zumindest einigen Abschnitten der Datenübertragungswege des SUT, die
Fehler bei einer Datenpaketübertragung einführen kann; ein Bereitstellen von Einschränkungen, die Datenpa-
ketübertragungs-Beziehungen von zumindest einigen der Abschnitte der Datenübertragungswege definieren,
und ein Diagnostizieren des SUT im Hinblick auf die Einschränkungen.

[0016] Ausführungsbeispiele der Erfindung können auch als Systeme zum Diagnostizieren von Datenpaket-
übertragungs-Fehlern in einem SUT ausgelegt werden. Ein solches System umfaßt ein Datenflußmodell und
eine Schlußfolgerungsmaschine. Das Datenflußmodell stellt Datenübertragungsfähigkeiten des SUT dar. Die
Schlußfolgerungsmaschine ist angepaßt, um Testergebnisse entsprechend des SUT in Relation zum Daten-
flußmodell auszuwerten.

[0017] Ein weiteres System zum Diagnostizieren von Fehlern umfaßt eine Einrichtung zum Empfangen von
Testergebnissen entsprechend den Übertragungen von Datenpaketen durch zumindest einige Abschnitte der
Datenübertragungswege des SUT und eine Einrichtung zum Diagnostizieren des SUT im Hinblick auf die Ein-
schränkungen, die die Datenpaketübertragungs-Beziehungen von zumindest einigen der Abschnitte der Da-
tenübertragungswege des SUT definieren.

[0018] Noch weitere Ausführungsbeispiele der Erfindung können als Diagnosesysteme ausgelegt werden,
wobei zumindest einige von ihnen auf einem computerlesbaren Medium gespeichert sein können. Ein solches
Diagnosesystem umfaßt eine Logik, die konfiguriert ist, um zumindest einige Abschnitte der Datenübertra-
gungswege des SUT zu identifizieren, die zum Einbringen von Fehlern in die Datenpaketübertragung fähig
sind; eine Logik, die konfiguriert ist, um Einschränkungen zu liefern, die Datenpaketübertragungs-Beziehungen
von zumindest einigen der Abschnitte der Datenübertragungswege zu definieren; und eine Logik, die konfigu-
riert ist, um das SUT im Hinblick auf die Einschränkungen zu diagnostizieren.

[0019] Es ist klar, daß die Ausführungsbeispiele der Erfindung Merkmale und/oder Vorteile neben oder an-
stelle jener, die oben aufgeführt sind, aufweisen können. Zusätzlich werden einem Fachmann nach einer Un-
tersuchung der nachstehenden Zeichnungen und ausführlichen Beschreibung weitere Systeme, Verfahren,
Merkmale und/oder Vorteile der vorliegenden Erfindung offenbar. Solche zusätzlichen Systeme, Verfahren,
Merkmale und/oder Vorteile sollen innerhalb dieser Beschreibung umfaßt sein, sich innerhalb des Schutzbe-
reichs der vorliegenden Erfindung befinden und durch die beigefügten Ansprüche geschützt sein.

[0020] Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend
auf die beiliegenden Zeichnungen, die nicht als maßstabsgerecht zu verstehen sind, näher erläutert. Es zei-
gen:
3/27

DE 102 55 142 B4 2008.01.03
[0021] Fig. 1 ein schematisches Diagramm, das ein Ausführungsbeispiel eines Systems der vorliegenden Er-
findung darstellt, das ein Ausführungsbeispiel eines Diagnosesystems umfaßt, das verwendet wird, um ein ge-
testetes System zu testen,

[0022] Fig. 2 ein Flußdiagramm, das eine Funktionalität eines Ausführungsbeispiels des Diagnosesystems
der vorliegenden Erfindung darstellt,

[0023] Fig. 3 ein computer- oder prozessorbasiertes System, das zum Implementieren eines Ausführungs-
beispiels des Diagnosesystems der vorliegenden Erfindung verwendet werden kann,

[0024] Fig. 4 ein Flußdiagramm, das eine Funktionalität des Ausführungsbeispiels des Diagnosesystems von
Fig. 4 darstellt,

[0025] Fig. 5 einen gerichteten Graphen, der ein Ausführungsbeispiel eines Datenflußmodells darstellt, das
durch ein Diagnosesystem der vorliegenden Erfindung verwendet werden kann,

[0026] Fig. 6 ein Blockdiagramm, das ein repräsentatives getestetes System darstellt,

[0027] Fig. 7 einen gerichteten Graphen, der ein Ausführungsbeispiel eines Datenflußmodells darstellt, das
durch ein Diagnosesystem der vorliegenden Erfindung verwendet werden kann, um das SUT von Fig. 6 zu di-
agnostizieren,

[0028] Fig. 8 einen weiteren gerichteten Graphen, der ein Ausführungsbeispiel eines Datenflußmodells dar-
stellt, das durch ein Diagnosesystem der vorliegenden Erfindung verwendet werden kann, um das SUT von
Fig. 6 zu diagnostizieren.

[0029] Wie hierin ausführlicher beschrieben ist, ermöglichen die Systeme und Verfahren der vorliegenden Er-
findung potentiell die Fehlerdiagnose von getesteten Systemen, die der Datenübertragung zugeordnet sind.
Speziell können die Einschränkungen, die die Beziehungen zwischen den verschiedenen Abschnitten von Da-
tenübertragungswegen eines SUT darstellen, verwendet werden, um Fehlerkandidaten- oder Abschnitte des
SUT, die möglicherweise für die erfaßten Fehler verantwortlich sind, abzuleiten und/oder auszuschließen. Die
Einschränkungen, die Datenflußfunktionalität des SUT definieren, können verwendet werden, um Regeln
und/oder Gleichungen abzuleiten, die z. B. beschreiben, wie Daten durch das SUT fließen sollen. Typischer-
weise wird ein Datenflußmodell, das das fehlerfreie Datenpaketübertragungs-Verhalten des SUT darstellt, ver-
wendet. Bei einem solchen Ausführungsbeispiel kann das SUT unter Verwendung des Datenflußmodells und
einer zugeordneten Schlußfolgerungsmaschine diagnostiziert werden. Bei einigen Ausführungsbeispielen
können die diagnostizierten Fehler im SUT mit Geschwindigkeit und/oder zeitweise auftreten.

[0030] Unter Bezugnahme auf die Zeichnungen, bei denen identische Bezugszeichen entsprechende Kom-
ponenten in den verschiedenen Ansichten anzeigen, ist Fig. 1 ein schematisches Diagramm, das ein Ausfüh-
rungsbeispiel eines Systems 10 der vorliegenden Erfindung darstellt. Spezieller umfaßt das System ein Diag-
nosesystem 100, das mit einem SUT 110 kommuniziert. Das Diagnosesystem 100 umfaßt ein Datenflußmodell
120 und eine Schlußfolgerungsmaschine 130. Das Datenflußmodell 120 beschreibt die Flüsse von Daten, die
dem SUT zugeordnet sind, und die Schlußfolgerungsmaschine 130 interpretiert die Testergebnisse relativ zum
Datenflußmodell, wie später ausführlich beschrieben ist. Vorzugsweise umfaßt eine Ausgabediagnose des Di-
agnosesystems 100 einen Hinweis über Komponenten und/oder Teilkomponenten, deren Ausfall zu den beo-
bachteten Testergebnissen geführt haben könnte.

[0031] Bei einigen Ausführungsbeispielen kann das Diagnosesystem indirekt mit dem SUT kommunizieren.
Zum Beispiel könnte das SUT Informationen, z. B. Testergebnisse, an ein anderes System oder Programm lie-
fern, wobei die Informationen dann an das Diagnosesystem zur Analyse geliefert werden.

[0032] Ein Flußdiagramm, das die Funktionalität eines Ausführungsbeispiels des Systems von Fig. 10 der
vorliegenden Erfindung darstellt, ist in Fig. 2 gezeigt. Wie in Fig. 2 gezeigt ist, kann das System oder Verfahren
10 so ausgelegt werden, als ob es bei Block 210 beginnt, wo zumindest einige Abschnitte der Datenübertra-
gungswege eines SUT identifiziert werden. Spezieller können die identifizierten Abschnitte des SUT Fehler in
die Datenübertragung einbringen. Bei Block 220 werden Einschränkungen, die Datenpaketübertragungs-Be-
ziehungen von zumindest einigen der Abschnitte der Datenübertragungswege definieren, geliefert. Anschlie-
ßend, wie in Block 230 dargestellt ist, wird das SUT im Hinblick auf die Einschränkungen diagnostiziert.
4/27

DE 102 55 142 B4 2008.01.03
[0033] Die Diagnosesysteme 100 können in einer Software, Firmware, Hardware oder einer Kombination aus
denselben implementiert sein. Wenn das Diagnosesystem 100 in einer Hardware implementiert ist, kann es
mit einer beliebigen oder einer Kombination aus verschiedenen Technologien implementiert sein. Die nachste-
henden Technologien, die in der Technik hinreichend bekannt sind, können beispielsweise verwendet werden
als: diskrete logische Schaltungen mit logischen Gattern zum Implementieren von logischen Funktionen auf
Datensignale hin, eine ASIC (ASIC = application specific integrated circuit = anwendungsspezifische integrier-
te Schaltung) mit entsprechenden kombinatorischen logischen Gattern, ein PGA (PGA = programmable gate
array = programmierbares Gatterarray) und ein FPGA (FPGA = field programmable gate array = feldprogram-
mierbares Gatterarray).

[0034] Wenn das Diagnosesystem 100 in einer Software implementiert ist, kann es ein Programm sein, das
durch einen Computer oder eine prozessorbasierte Vorrichtung ausführbar ist. Ein Beispiel eines solchen
Computers oder einer prozessorbasierten Vorrichtung wird nun unter Bezugnahme auf das schematische Di-
agramm von Fig. 3 beschrieben.

[0035] Im Hinblick auf die Hardwarearchitektur umfaßt der Computer 300 von Fig. 3 allgemein einen Prozes-
sor 302, einen Speicher 304 und eine oder mehrere I/O-Vorrichtungen (I/O = input/output = Eingabe/Ausgabe)
306 (oder Peripheriegeräte), die über eine lokale Schnittstelle 308 kommunikativ gekoppelt sind. Die lokale
Schnittstelle 308 kann z. B. ein oder mehrere Busse oder andere verdrahtete oder drahtlose Verbindungen
sein, wie in der Technik bekannt ist. Die lokale Schnittstelle 308 kann zusätzliche Elemente umfassen, die zur
Vereinfachung der Beschreibung ausgelassen worden sind. Diese zusätzlichen Elemente können beispiels-
weise Steuerungen, Puffer (Caches), Treiber, Repeater (Zwischenverstärker) und/oder Empfänger sein. Fer-
ner kann die lokale Schnittstelle Adreß-, Steuerungs- und/oder Datenverbindungen umfassen, um entspre-
chende Kommunikation unter den Komponenten des Computers 300 zu ermöglichen.

[0036] Der Prozessor 302 kann eine Hardwarevorrichtung sein, die konfiguriert ist, um eine Software auszu-
führen, die im Speicher 304 gespeichert ist. Der Prozessor 302 kann ein beliebiger kundenspezifisch gefertig-
ter oder im Handel erhältlicher Prozessor, eine CPU (CPU = central processing unit = zentrale Verarbeitungs-
einheit) oder ein Hilfsprozessor von verschiedenen Prozessoren sein. Zusätzlich kann der Prozessor beispiels-
weise ein halbleiterbasierter Mikroprozessor (in der Form eines Mikrochips) sein.

[0037] Der Speicher 304 kann eine beliebige Kombination aus flüchtigen Speicherelementen (z. B. ein Direkt-
zugriffsspeicher (RAM, wie DRAM, SRAM etc.)) und/oder nichtflüchtigen Speicherelementen (z. B. ein ROM,
Festplattenlaufwerk, Band, CDROM etc.) umfassen. Außerdem kann der Speicher 504 elektronische, magne-
tische, optische und andere Typen von Speicherungsmedien umfassen. Es ist zu beachten, daß der Speicher
304 eine verteilte Architektur aufweisen kann, wohingegen die verschiedenen Komponenten entfernt vonein-
ander angeordnet sind, jedoch durch einen Prozessor 302 zugreifbar sind.

[0038] Die Software im Speicher 304 kann ein oder mehrere separate Programme umfassen, von denen ein
jedes eine geordnete Auflistung von ausführbaren Anweisungen zum Implementieren von logischen Funktio-
nen aufweist. Die Software im Speicher 304 umfaßt das Diagnosesystem 100 und ein geeignetes O/S (O/S =
operating system = Betriebssystem) 310. Es ist zu beachten, daß das Diagnosesystem eine oder mehrere von
verschiedenen Funktionen wie ein Testen 100A, Modellieren 100B und ein Schlußfolgern 100C aufweisen
kann, die später beschrieben werden. Bei einigen Ausführungsbeispielen können eine oder mehrere dieser
Funktionen als separate Programme bereitgestellt sein. Das Betriebssystem 310 steuert die Ausführung von
anderen Computerprogrammen, wie das Diagnosesystem 100. Das Betriebssystem 310 kann auch einen Pla-
nungs-, Eingabe-Ausgabe-Steuerungs-, Datei- und Datenverwaltungs-, Speicherverwaltungs- und Kommuni-
kationssteuerungs- und verwandte Dienste liefern.

[0039] Die I/O-Vorrichtungen 306 können Eingabevorrichtungen wie z. B. ein Tastenfeld umfassen. Die
I/O-Vorrichtungen 306 können auch Ausgabevorrichtungen wie z. B. eine Anzeigevorrichtung umfassen. Die
I/O-Vorrichtungen 306 können ferner Vorrichtungen umfassen, die konfiguriert sind, um sowohl Eingänge als
auch Ausgänge, wie z. B. einen Kommunikationsport, zu kommunizieren.

[0040] Wenn der Computer 300 in Betrieb ist, ist der Prozessor 302 konfiguriert, um eine Software, die im
Speicher 304 gespeichert ist, auszuführen, um Daten an den oder vom Speicher 304 zu kommunizieren und
um allgemein die Operationen des Computers zu steuern. Das Diagnosesystem 100 und das Betriebssystem
310 werden im ganzen oder teilweise durch den Prozessor 302 gelesen, eventuell im Prozessor 302 gepuffert
und dann ausgeführt.
5/27

DE 102 55 142 B4 2008.01.03
[0041] Wenn das Diagnosesystem 100 in einer Software implementiert ist, wird darauf hingewiesen, daß das
Diagnosesystem auf einem beliebigen computerlesbaren Medium zur Verwendung durch oder in Verbindung
mit einem computerverwandten System oder Verfahren gespeichert sein kann. Im Zusammenhang mit diesem
Dokument ist das computerlesbare Medium eine elektronische, magnetische, optische oder andere physische
Vorrichtung oder Einrichtung, die ein Computerprogramm zur Verwendung durch oder in Verbindung mit einem
computerverwandten System oder Verfahren enthalten oder speichern kann. Das Diagnosesystem 100 kann
in einem beliebigen computerlesbaren Medium zur Verwendung durch oder in Verbindung mit einem Anwei-
sungsausführungs-System, -Vorrichtung oder -Gerät, wie einem computerbasierten System, einem prozesso-
renthaltenden System oder einem anderen System verkörpert sein, das die Anweisungen vom Anweisungs-
ausführungs-System, -Vorrichtung oder -Gerät holen und die Anweisungen ausführen kann.

[0042] Das hierin verwendete computerlesbare Medium kann eine beliebige Einrichtung sein, die ein Pro-
gramm zur Verwendung durch oder in Verbindung mit einem Anweisungsausführungs-System, -Vorrichtung
oder -Gerät speichern, kommunizieren, ausbreiten oder transportieren kann. Daher kann ein computerlesba-
res Medium beispielsweise ein elektronisches, magnetisches, optisches, elektromagnetisches, Infrarot- oder
Halbleiter-System, -Gerät, -Vorrichtung oder Ausbreitungsmedium sein, muß aber nicht auf dieselben be-
schränkt sein. Spezifischere Beispiele (eine unerschöpfliche Liste) eines computerlesbaren Mediums umfas-
sen folgende Medien: eine elektrische Verbindung (elektronisch) mit einem oder mehreren Drähten, eine trag-
bare Computerdiskette (magnetisch), einen Direktzugriffsspeicher (RAM) (elektronisch), einen Nur-Lese-Spei-
cher (ROM) (elektronisch), einen löschbaren programmierbaren Nur-Lese-Speicher (EPROM, EEPROM oder
Flash-Speicher) (elektronisch), eine optische Faser (optisch) und einen tragbaren Kompaktdisk-Nur-Le-
se-Speicher (CDROM) (optisch). Es ist zu beachten, daß das computerlesbare Medium sogar Papier oder ein
anderes geeignetes Medium sein könnte, auf das das Programm gedruckt ist, da das Programm über opti-
sches Abtasten des Papiers oder eines anderen Mediums elektronisch erfaßt, dann kompiliert, interpretiert
oder anderweitig nach Bedarf in einer geeigneten Weise verarbeitet und dann in einem Computerspeicher ge-
speichert werden könnte.

[0043] Es wird nun Bezug auf das Flußdiagramm von Fig. 4 genommen, das die Funktionalität eines reprä-
sentativen Ausführungsbeispiels des Diagnosesystems 100 darstellt. Diesbezüglich stellt jeder Block des Fluß-
diagramms ein Modulsegment- oder Abschnitt des Codes dar, der eine oder mehrere ausführbare Anweisun-
gen oder eine Logik zum Implementieren der spezifizierten logischen Funktionen aufweist. Es wird ebenfalls
darauf hingewiesen, daß bei einigen alternativen Implementierungen die in den verschiedenen Blöcken von
Fig. 4 oder einem beliebigen anderen der beigefügten Flußdiagramme angemerkten Funktionen außerhalb
der Reihenfolge auftreten können, in der sie dargestellt sind. Zum Beispiel können zwei in Fig. 4 in Folge ge-
zeigte Blöcke tatsächlich im wesentlichen gleichzeitig ausgeführt werden. Bei anderen Ausführungsbeispielen
können die Blöcke manchmal in der umgekehrten Reihenfolge, abhängig von der involvierten Funktionalität,
ausgeführt werden.

[0044] Wie in Fig. 4 gezeigt ist, kann das Diagnosesystem oder -verfahren 100 ausgelegt werden, als ob es
am Block 410 beginnt, wo ein Datenflußmodell, das das SUT darstellt, vorgesehen ist. Vorzugsweise umfaßt
das Datenflußmodell Informationen entsprechend den Datenpaketübertragungs-Beziehungen, die zumindest
einem Abschnitt des SUT zugeordnet sind. Im Block 420 wird das SUT im Hinblick auf das Datenflußmodell
diagnostiziert. Typischerweise umfaßt dies ein Erwerben von Testergebnissen wie z. B. durch Verwenden einer
Testlogik (siehe Testen 100A von Fig. 3), und ein Analysieren der Testergebnisse mit einer Schlußfolgerungs-
maschine (siehe Schlußfolgern 100C von Fig. 3). Wie vorstehend erwähnt ist, können die Testergebnisse
durch ein separates System erworben werden, das die Testergebnisse an das Diagnosesystem liefert.

[0045] Typischerweise ist die Datenflußsemantik, die in einem Datenflußmodell verkörpert ist, allgemeiner
Natur und kann auf verschiedene Systeme angewendet werden. Typischerweise ist das Datenflußmodell eines
speziellen SUT ein gerichteter Graph, der Scheitelpunkte und Kanten umfaßt. Ein Scheitelpunkt stellt den Ab-
schluß einer Kante dar, d. h. die Scheitelpunkte werden verwendet, um die Enden einer Kante zu definieren.
Zusätzlich kann ein Scheitelpunkt einer Position oder einem Abschnitt eines Datenübertragungswegs entspre-
chen, wo auf die Daten reagiert werden kann. Mittels eines Beispiels kann ein Scheitelpunkt einem Abschnitt
eines Datenübertragungswegs entsprechen, der Daten aussortiert, die falsch übertragen worden sind, d. h. der
Scheitelpunkt läßt Datenpakete fallen, teilt die Daten in mehrere Abschnitte auf, kombiniert die Daten, routet
die Daten und/oder reproduziert die Daten. Mittels eines weiteren Beispiels kann ein Scheitelpunkt einer Posi-
tion entsprechen, wo die Messungen, z. B. das Zählen von Daten, erfolgen und/oder wo die Güte oder
Schlechtheit von Daten bestimmt werden kann, z. B. können CRC (CRC = cyclical redundancy check = zykli-
sche Redundanzprüfung) ausgeführt werden. Es ist zu beachten, daß ein Aufspüren von Daten das Aufspüren
von Daten eines Typs, die nicht gut oder schlecht sind, umfassen kann. So können Ausführungsbeispiele der
6/27

DE 102 55 142 B4 2008.01.03
Erfindung angepaßt sein, um andere Charakteristika von Daten abhängig von der speziellen Anwendung zu
berücksichtigen.

[0046] Die Kanten repräsentieren die Datenübertragungswege oder Abschnitte derselben durch ein SUT von
einem Scheitelpunkt zu einem anderen. Spezieller sind die Kanten direktionale Komponenten, die als Gele-
genheiten zum Einführen von Datenübertragungsfehlern betrachtet werden. Zum Beispiel repräsentiert eine
Kante (A, B) die konditionale Übertragung von guten oder schlechten Daten, z. B. einem Datenpaket vom
Scheitelpunkt A zum Scheitelpunkt B. Eine Selbstschleife, z. B. (A, A), ist typischerweise nicht zulässig.

[0047] Im Hinblick auf ein SUT sind Fehlererfassungsfähigkeiten den Komponenten zugeordnet, die ange-
paßt sind, um Prüfungen auszuführen, um die Integrität von Daten während und/oder nach der Operation, wie
Erzeugen, Speichern, Übertragen und Empfangen, zu bestimmen. Solche Prüfungen umfassen CRC- und
Nachrichten-Zusammenfassungsverfahren wie MD5. Verständlicherweise gilt dies für jene SUTs, die paketba-
sierte Architekturen umfassen. Zum Beispiel kann die Datenübertragungsintegrität bei einem solchen SUT si-
chergestellt werden, indem ein CRC-Code an einer Position des SUT erzeugt wird, der CRC-Code an einer
anderen Position erneut berechnet wird und dann die zwei CRC-Codes verglichen werden.

[0048] Durch Aufspüren von Daten, wie durch Verwenden von Fehlererfassungsfähigkeiten, kann ein Ab-
schnitt oder eine Komponente eines SUT Informationen in bezug darauf erfassen, ob fehlerenthaltende Daten,
z. B. ein schlechtes Datenpaket, empfangen worden sind, übertragen worden sind oder im Begriff sind, über-
tragen zu werden und/oder ob schlechte Daten fallen gelassen oder nach unten ausgebreitet worden sind. Zu-
sätzlich kann bei einigen Ausführungsbeispielen der Zustand der Komponenten und/oder ein Zeitpunkt, der der
Fehlererfassung zugeordnet ist, bestimmt werden.

[0049] Bei einigen Ausführungsbeispielen wird davon ausgegangen, daß die Fehlerregistrierungsfähigkeit
des SUT vollkommen ist. Das heißt, daß typischerweise davon ausgegangen wird, daß das SUT den korrekten
Status von eingehenden Daten an allen Kanten unter allen Bedingungen registrieren kann. Dies ist bei typi-
schen Anwendungen natürlich falsch, kann jedoch ermöglichen, daß eine effizientere Diagnose mit einer hö-
heren Auflösung ausgeführt wird. Verständlicherweise könnten bei einigen Ausführungsbeispielen zusätzliche
Variablen verwendet werden, um z. B. eine unvollkommene Fehlerregistrierung zu berücksichtigen.

[0050] Wie vorstehend erwähnt ist, verwenden die Diagnosesysteme der vorliegenden Erfindung Einschrän-
kungen, um Fehlerkandidaten von SUTs zu diagnostizieren. Spezieller nutzen die Ausführungsbeispiele des
Diagnosesystems das Prinzip, daß der Datenpaketfluß durch das SUT gemäß der Funktionalität des SUT ein-
geschränkt ist. Dies ist typischerweise als ein Datenflußgraph eines speziellen Testwegs dargestellt. Das SUT
und der Datenflußgraph erfassen auch einen Vorrichtungsstatus, Zähler etc. Es kann jedoch auch eine andere
Schlußfolgerungsmaschinen-Funktionalität verwendet werden, und diese wird später beschrieben.

[0051] Ungeachtet der speziellen Funktionalität verwenden die Ausführungsbeispiele der Schlußfolgerungs-
maschine die gleiche Definition von einer Diagnose, d. h. die Ausgabe der Schlußfolgerungsmaschine. Zusätz-
lich verwenden die Schlußfolgerungsmaschinen Testergebnisse, die den Vorrichtungsstatus, Paketzählwerte
etc. umfassen, und Datenflußgraphen, die den Testweg und die zugeordnete Vorrichtungsfunktionalität be-
schreiben, als Eingabe. Schlußfolgerungsstrategien erzeugen eine Diagnose als Ausgabe, die verdächtige
Kanten und die Fehlertypen/Mengen, die jeder Kante zugeordnet sind, umfassen kann. Zum Beispiel kann eine
Kante als auffällig gelten, wenn ein Fehler auf dieser Kante mit den Testergebnissen übereinstimmt. Im Ge-
gensatz dazu kann eine Kante nicht als verdächtig gelten, d. h. gut, wenn ein beliebiger Ausfall auf dieser Kan-
te mit den Testergebnissen nicht übereinstimmt. Gute und verdächtige Kanten können dann nach Wunsch in
physische Komponenten des SUT abgebildet werden.

[0052] Diesbezüglich können Ausführungsbeispiele der Schlußfolgerungsmaschine der Erfindung eine oder
mehrere Techniken wie ein lineares Programmieren, eine regelbasierte und flußereignisbasierte Fehlersimu-
lation, verwenden, um die Einschränkungen anzuwenden. Die Ausführungsbeispiele der Diagnosesysteme,
die ein lineares Programmieren nutzen, um die SUTs auszuwerten, verwenden typischerweise Einschrän-
kungsgleichheiten und/oder -ungleichheiten von denen ein Beispiel später beschrieben wird, um eine Diagno-
se zu bestimmen.

[0053] Mittels eines Beispiels kann das lineare Programmieren verwendet werden, um eine machbare Diag-
nose angesichts der SUT-Funktionalitätseinschränkungen und Einschränkungen, die dem Test zugeordnet
sind, z. B. Gesamtanzahl von versuchten Daten, z. B. Datenpaketübertragungen und/oder Einschränkungen,
die dem beobachteten Verhalten (Testergebnissen) zugeordnet sind, zu finden. Speziell kann das lineare Pro-
7/27

DE 102 55 142 B4 2008.01.03
grammieren bei einigen Ausführungsbeispielen verwendet werden, um die Anzahl von Datenpaketen, die an
jeder Kante schlecht gemacht wurden, zu optimieren/maximieren.

[0054] Man nehme z. B. an, daß ein gerichteter Graph G = (V, E), der den zulässigen Fluß von Daten, z. B.
Datenpakete, modelliert, vorgesehen ist. Ein Scheitelpunkt ν ∊ V von G ist eine Position, wo z. B. Messungen
stattfinden können, die Güte oder Schlechtheit von Paketen getestet werden kann, z. B. durch Überprüfen ei-
nes CRC-Codes, und/oder schlechte Pakete z. B. fallengelassen werden können.

[0055] Ein Scheitelpunkt kann mit Informationen über bestimmte Verhaltenscharakteristika des Scheitel-
punkts etikettiert sein. Zum Beispiel ist ein „Ausbreitungs"- (bzw. prop) Scheitelpunkt ein Scheitelpunkt, der
schlechte Pakete ausbreitet, und ein „Nicht-Ausbreitungs"- (bzw. noprop) Scheitelpunkt ist ein Scheitelpunkt,
der schlechte Pakete, die erfaßt wurden, fallenläßt. Zusätzlich stellt ein „Bus"-Scheitelpunkt einen physischen
Bus dar, d. h. alle guten Pakete, die empfangen wurden, werden auf allen „Aus-Kanten" eines solchen Schei-
telpunkts übertragen. „Uneingeschränkte" Scheitelpunkte können ebenfalls verwendet werden. Bezüglich der
Beziehungen zwischen der Anzahl von Paketen, die empfangen wurden, und der Anzahl von Paketen, die
durch diesen Typ von Scheitelpunkt übertragen wurden, ist kein Wissen verfügbar. Ein solcher Scheitelpunkt
kann verwendet werden, um komplexe, datenabhängige Operationen des SUT darzustellen, wo die Mengen
von guten und schlechten Paketen, die in den Scheitelpunkt hineinfließen und aus demselben herausfließen,
beispielsweise schwierig zu beschreiben sind.

[0056] Man lasse Λ = {Ausbreitung, Nicht-Ausbreitung, Bus, uneingeschränkt} den Satz von möglichen Schei-
telpunktetiketten sein. Jeder Scheitelpunkt ν Ausbreitung ε V weist einen zugeordneten Satz von Etiketten auf,
der durch die Funktion T:V → 2Λ gegeben ist. Die gerichteten Kanten E ⊆ V × V sind Kommunikationswege zwi-
schen den Scheitelpunkten. Ohne die Allgemeingültigkeit zu mindern, werden typischerweise einzelne Rich-
tungskanten, d. h. Kanten mit nur einem Pfeil, verwendet. Ansonsten kann eine bidirektionale Kante durch zwei
einzelne direktionale Kanten ersetzt werden. Erinnern wir uns, daß die Kanten (j, i) ∊ E als die „Ein-Kanten"
von i bezeichnet werden und daß die Kanten (j, i) ∊ E als die „Aus-Kanten von i bezeichnet werden.

[0057] Von der nachstehenden Semantik von Kanten wird typischerweise ausgegangen: Ein Paket, das in ei-
nen Scheitelpunkt ν von einer beliebigen seiner Ein-Kanten fließt, kann aus einer beliebigen Aus-Kante fließen.
Wenn ein System oder Test bekannt ist, um den Fluß von Paketen einzuschränken, die in einen Scheitelpunkt
ν an einer speziellen Kante oder Kanten eintreten, um aus einer speziellen Kante oder Kanten auszutreten,
dann sollte der Scheitelpunkt ν in zwei oder mehrere Scheitelpunkte aufgeteilt werden. Zusätzlich wird ein
Scheitelpunkt als eine „Quelle" bezeichnet, wenn er keine Ein-Kanten aufweist. ER wird als eine „Senke" be-
zeichnet, wenn er keine Aus-Kanten aufweist.

[0058] Neben dem Graphen G wird davon ausgegangen, daß ein Satz von Zählern Ψ und eine Abbildung M
: E × {t, r} × {good, bad} → Ψ vorhanden ist. Die Abbildung M gibt die Semantik der Zähler an. Sie sollte wie
folgt interpretiert werden:
Man nehme an M((i, j), t, good) = ψ. Dann wird ψ inkrementiert, immer wenn ein gutes Paket vom Scheitelpunkt
i auf eine Kante (i, j) übertragen wird.
Man nehme an M((i, j), t, bad) = ψ. Dann wird ψ inkrementiert, immer wenn ein schlechtes Paket vom Schei-
telpunkt i auf die Kante (i, j) übertragen wird.
Man nehme an M((i, j), r, good) = ψ. Dann wird ψ inkrementiert, immer wenn ein gutes Paket durch den Schei-
telpunkt j über die Kante (i, j) empfangen wird.
Es ist anzunehmen daß M((i, j), t, bad) = ψ. Dann wird ψ inkrementiert, immer wenn ein schlechtes Paket vom
Scheitelpunkt j über die Kante (i, j) empfangen wird.

[0059] Es ist zu beachten, daß eine Abbildung M darauf gerichtet sein sollte, jedoch nicht Eins-zu-Eins sein
kann. Man nehmen z. B. an, daß ein Scheitelpunkt ν drei Ein-Kanten (x, v), (y, v) und (z, v) aufweist. Es ist
wünschenswert, daß ψ alle guten Pakete, die bei ν ankommen, zählt. Dann setze man:

M(((x, v)r, good)) = M(((y, v), r, good)) = M(((z, v), r, good)) = ψ

[0060] In der gleichen Weise kann ein einzelner Zähler verwendet werden, um eine große Vielzahl von unter-
schiedlichen Ereignissen, die an verschiedenen Kanten stattfinden, zu zählen. Ein Satz von speziellen gemes-
senen Werten für jeden Zähler wird als Syndrom bezeichnet.

[0061] Die allgemeine Prämisse der SUT-Diagnose unter Verwendung des linearen Programmierens umfaßt
ein Codieren verfügbarer Informationen, z. B. Informationen bezüglich der Einschränkung der Pakete, Zähler-
8/27

DE 102 55 142 B4 2008.01.03
semantik und gemessener Zählerwerte, zu einem Optimierungsproblem, wobei die optimale Lösung desselben
bestimmt, ob eine spezielle Kante fehlerhaft sein kann.

[0062] Diesbezüglich können die Ausführungsbeispiele einer Schlußfolgerungsmaschine eines Diagnosesys-
tems, das das lineare Programmieren verwendet, allgemein als drei Teilabschnitte umfassend bezeichnet wer-
den: (1) Einschränkungsextraktion, (2) Hinzufügen von Syndromeinschränkungen und (3) Bestimmen, welche
Fehlerkandidaten angesichts der Einschränkungen und des Syndroms möglich sind. Typischerweise kann der
erste Teilabschnitt für ein gegebenes SUT im voraus berechnet werden. Zusätzlich müssen typischerweise nur
der zweite und der dritte Teilabschnitt für jedes Syndrom erneut durchlaufen werden.

[0063] Im Hinblick auf die Einschränkungsextraktion wird ein Satz von Variablen U(i,j)∊E{g(i, j), b(i, j), mb(i, j)
gd(i, j), bd(i, j)} erzeugt. Die Variable g(i, j) stellt die Anzahl von guten Paketen, die auf die Kante (i, j) übertragen
werden, dar. Die Variable b(i, j) stellt die Anzahl von schlechten Paketen dar, die auf der Kante (i, j) durch den
Scheitelpunkt i übertragen werden. Die Variable mb(i, j) stellt die Anzahl von Paketen dar, die auf der Kante (i,
j) schlecht gemacht wurden, d. h. die Pakete, die auf der Kante als gut übertragen wurden, jedoch als schlecht
empfangen wurden. Die Variable gd(i, j) stellt die Anzahl von guten Paketen dar, die auf der Kante (i, j) über-
tragen wurden, die verschwand. Es ist zu beachten, daß ein Paket verschwinden kann, wenn es so verfälscht
wird, daß eine Empfangsvorrichtung das Paket nicht als Paket erkennen kann. Die Variable bd(i, j) stellt die
Anzahl von schlechten Paketen dar, die auf der Kante (i, j) übertragen wurden, die verschwand.

[0064] Allgemein wird ein anfänglich leerer Satz von Einschränkungen C erzeugt. Für jeden Scheitelpunkt i
mit uneingeschränktem T(i), der zumindest eine Ein-Kante und zumindest eine Aus-Kante aufweist, ist zu C
aus den Einschränkungen, die nachstehend definiert sind, folgendes hinzuzufügen,
• die Einschränkung KG(i) wenn bus T(i),
• die Einschränkung KGB(i, j) für jede Aus-Kante j von i wenn bus ∊ T(i).

[0065] Für jeden Scheitelpunkt i mit uneingeschränkter T(i), die zumindest eine Aus-Kante aufweist, ist zu C
• die Einschränkung KBP(i), wenn prop ∊ T(i) und bus T(i),
• die Einschränkung KBPB(i, j) für jede Aus-Kante j von i, wenn prop ∊ T(i) und bus ∊ T(i),
• eine KBNP-Einschränkung, wenn prop T(i),

 hinzuzufügen.

[0066] Für jede Kante (i, j) ∊ E ist eine Einschränkung EDGECONsERVE (i, j) hinzuzufügen.

[0067] Für jeden Zähler ψ ∊ Ψ ist eine Einschränkung COUNTER (Ψ) hinzuzufügen.

[0068] Die vorstehend erwähnten Einschränkungen sind wie folgt definiert:

KG(i)

[0069] Die Einschränkung KG sagt aus, daß die Anzahl von guten Paketen, die an den Scheitelpunkt i über-
tragen werden, minus der Anzahl von Paketen, die auf den Ein-Kanten von i verschwanden, minus der Anzahl
von Paketen, die innerhalb der Ein-Kanten von i schlecht gemacht wurde, gleich der Anzahl von guten Paketen
sein muß, die aus i fließen.

KGB(i, j)

[0070] Die Einschränkung KG sagt aus, daß die Anzahl von guten Paketen, die an den Scheitelpunkt i über-
tragen werden, minus der Anzahl von Paketen, die auf den Ein-Kanten von i schwanden, minus der Anzahl von

(Die Kirchhoff-ähnliche Einschränkung auf den guten Paketen, Scheitelpunkt kein Bus):

(Kirchhoff-ähnliche Einschränkung auf guten Paketen, Scheitelpunkt ist ein Bus):
9/27

DE 102 55 142 B4 2008.01.03
Paketen ist, die innerhalb der Ein-Kanten von i schlecht gemacht wurden, gleich der Anzahl von guten Paketen
sein müssen, die aus der Aus-Kante j von i herausfließen.

KBP(i)

[0071] Die Einschränkung KBP sagt aus, daß bei einem Ausbreitungs-Scheitelpunkt i die Anzahl von schlech-
ten Paketen, die an i übertragen wurden, plus der Anzahl von Paketen, die auf den Ein-Kanten von i ver-
schwanden, plus der Anzahl von Paketen, die innerhalb der Ein-Kanten von i schlecht gemacht wurden, gleich
der Anzahl von schlechten Paketen sein muß, die aus i herausfließen.

KBPB(i, j)

[0072] Die Einschränkung KBP sagt aus, daß bei einem Ausbreitungs-Scheitelpunkt i die Anzahl von schlech-
ten Paketen, die an i übertragen wurden, minus der Anzahl von Paketen, die auf den Ein-Kanten von I ver-
schwanden, plus der Anzahl von Paketen, die innerhalb der Ein-Kanten des i schlecht gemacht wurden, gleich
der Anzahl von schlechten Paketen sein muß, die aus jeder Aus-Kante j von i fließen.

KBNP(i)

[0073] Die Einschränkung KBNP sagt aus, daß keine schlechten Pakete von einem Nicht-Ausbrei-
tungs-Scheitelpunkt übertragen werden.

EDGECONSERVE(i, j)

(Konservierung von Paketen auf Kanten):

gd(i, j) + mb(i, j) g(i, j)
bd(i, j) b(i,j)

[0074] Diese Ungleichheiten sagen aus, daß nicht mehr Pakete verschwinden können oder auf einer Kante
schlecht gemacht werden können als auf der Kante übertragen wurden. Die EDGECONSERVE-Einschränkun-
gen sind typischerweise notwendig. Ohne sie könnten Lösungen gefunden werden, wo mehr Pakete ver-
schwinden als übertragen wurden.

(Kirchhoff-ähnliche Einschränkung auf guten Paketen, Ausbreitungs-Scheitelpunkt, Scheitelpunkt kein Bus):

(Kirchhoff-ähnliche Einschränkung auf schlechte Pakete, Ausbreitungs-Scheitelpunkt, Scheitelpunkt ist ein
Bus):

(Kirchhoff-ähnliche Einschränkung auf schlechte Pakete, Nicht-Ausbreitungs-Scheitelpunkt):
10/27

DE 102 55 142 B4 2008.01.03

[0075] Es ist zu beachten, daß es typischerweise auch notwendig ist, alle Variablen einzuschränken, um
nichtnegativ zu sein, d. h. es sind keine negativen Paketflüsse vorhanden. Zusätzlich ist es in einigen Situati-
onen wünschenswert, alle oder einige Variablen einzuschränken, um Ganzzahlen zu sein.

[0076] Setzt man den Vorgang mit dem Hinzufügen von Syndromeinschränkungen fort, umfaßt ein Syndrom
typischerweise Werte, die den verschiedenen Zählern oder verschiedenen anderen beobachteten SUT-Vor-
richtungsstatussen zugeordnet sind, die nach der Testausführung gesammelt werden. Für jeden solchen Zäh-
ler ist eine Gleichheit zu C hinzuzufügen, die den Wert des Zählers spezifiziert. Zum Beispiel, wenn der ge-
messene Wert eines Zählers, der ψ11 zugeordnet ist, den Wert 127 aufweist, und ein gemessener Wert eines
Zähler, der ψ17 zugeordnet ist, den Wert 1001 aufweist, sind die Einschränkungen counter_value (ψ11) = 127
und counter_value (ψ17) = 1001 hinzuzufügen. Diese Syndromeinschränkungen werden als S bezeichnet.

[0077] Im Hinblick auf die Bestimmung von möglichen Fehlerkandidaten, ist es die Aufgabe zu bestimmen,
welche Fehlerkandidaten möglicherweise die schlechten Pakete, die erfaßt wurden, bewirkt haben könnten, z.
B. welche Fehlerkandidaten die beobachteten Testergebnisse, wie die Fehlerwerte, in korrekter Weise berück-
sichtigen. Vorzugsweise umfaßt jeder Fehlerkandidat einen Fehlertyp, z. B. mb, gd, bd, etc., und eine Quantität
des Fehlertyps und entspricht einer zugeordneten Kante (i, j) ∊ E.

[0078] Zum Beispiel können n Pakete auf spezielle Weise auf einer spezielle Kante falsch übertragen worden
sein, und mehr als ein Fehlerkandidat kann dieser Kante zugeordnet sein. Dieser Satz von Fehlerkandidaten
wird als FC(i, j) bezeichnet. Zusätzlich kann das SUT mehr als eine fehlerhafte Kante aufweisen, und mehr als
ein Fehlerkandidat kann einem gegebenen beobachteten Testergebnis zugeordnet sein.

[0079] Bei diesem Ausführungsbeispiel kann ein gegebener Fehlerkandidat fehlerhaft sein, wenn nur eine
einzige Lösung für das System von Einschränkungsgleichungen vorhanden ist, wo zumindest eine oder meh-
rere der zugeordneten Fehlervariablen größer als 0 ist. Die Einschränkungen C und S sind alle linear. Da die
Variablenwerte typischerweise auch alle Ganzzahlen sind, können die Einschränkungsgleichungen als ein
IP-Problem (IP = integer programming = ganzzahliges Programmierungen) gelöst werden.

[0080] Verschiedene Routinen können zum Lösen von IP-Problemen verwendet werden. Zum Beispiel gibt
es viele Bibliotheksroutinen, wie z. B. lp_solve, die zum Lösen von IP-Problemen verfügbar sind. Der Quellen-
code für lp_solve ist hierin durch Bezugnahme aufgenommen. Es ist zu beachten, daß bei lp_solve die Vari-
ablen per Vorgabe nichtnegativ sind, so daß die Variablen nicht explizit als nichtnegativ einschränkt sein müs-
sen. Zusätzlich löst lp_solve die IP-Probleme unter Verwendung des „Branch and Bound"-Verfahrens.

[0081] Durch Auswählen einer objektiven Funktion und Iterieren durch mehrere IP-Formulierungen unter Ver-
wendung verschiedener Einschränkungen können alle Fehlertypen effizient für jede mögliche Fehlerkante nu-

COUNTER(ψ) (Die Ereignisse spezifizieren, die ψ zählt):
11/27

DE 102 55 142 B4 2008.01.03
meriert werden. Speziell lautet die objektive Funktion typischerweise:

d. h., um die Summe von Paketen, die auf allen Kanten in E schlecht gemacht wurden, zu maximieren. Diese
Funktion erzwingt eine Lösung für alle Fehlervariablen, so daß jedes nicht-leere FC(i, j) zumindest einen Feh-
lerkandidat enthält. Es ist zu beachten, daß eine einzelne Optimierung nicht alle Mitglieder von jedem FC(i, j)
erzeugt, sondern nur einen möglichst großen Satz eines gleichzeitig erfüllten FC(i, j). Diese objektive Funktion
liefert Lösungen an die Fehlervariablen, wo mehr als eine Kante fehlerhaft sein kann.

[0082] Um zusätzliche Fehlerkandidaten zu erzeugen, kann das IP ferner eingeschränkt werden, und zusätz-
liche Optimierungen können betrieben werden, wie in der folgenden Weise. Zum Beispiel lasse man

und

UFC = UFC1.

[0083] Für jedes fc ∊ UFC1:
1. Füge zu C einen Einschränkung hinzu, die diese Fehlervariable auf 0 setzt, d. h. die diesen Fehlertyp
aus zukünftigen Lösungen eliminiert. Dies bewirkt effektiv, daß neue Fehlertypen als Lösungen auftauchen.
2. Optimiere dieses neue IP.
3. Wenn eine machbare Lösung existiert, füge einen oder mehrere resultierende eindeutige Fehlerkandida-
ten zu UFC hinzu.
4. Wenn eine machbare Lösung nicht existiert, entferne aus C die Einschränkung, die in Schritt 1 hinzuge-
fügt wurde.

[0084] Das UFC sollte nun einen Fehlerkandidaten von jedem machbaren Typ für jede möglicherweise feh-
lerhafte Kante enthalten. Es ist zu beachten, daß es für einige IP-Löser bei Schritt 1 effizienter sein kann, einen
variablen Satz aus dem Problem zu entfernen, indem alle Referenzen auf denselben in allen Einschränkungen
gelöscht werden, als eine Einschränkung, die erfordert, daß er 0 ist, hinzuzufügen.

[0085] Bei einigen Anwendungen kann es wünschenswert sein, eine Anzahl von gleichzeitigen Ausfällen zu
erzwingen. Zum Beispiel kann aufgrund von A priori-Kenntnissen oder einer Kundenpräferenz eine Anzahl von
gleichzeitigen defekten Kanten erzwungen werden. Alternativ ist nach Occam Razor anzunehmen, daß es
wünschenswert ist, zu einer Diagnose mit einer minimalen Anzahl von defekten Kanten zu gelangen. Eine sol-
che Diagnose kann festgestellt werden, indem zuerst versucht wird, eine einzelne defekte Kante zu finden, die
die verfügbaren Daten erörtert. Anschließend, wenn keine existiert, soll versucht werden, ein Paar von effekti-
ven Kanten zu finden, die das Verfügbare erklären. Dieser Prozeß kann fortgesetzt werden, bis eine Mehrfach-
defekt-Hypothese gefunden wird, die das Syndrom erklärt.

Fall 1.

[0086] Es wird nun auf das Datenflußmodell von Fig. 5 Bezug genommen. Jeder Scheitelpunkt, z. B. Schei-
telpunkt 1, Scheitelpunkt 2 und Scheitelpunkt 3, weist vordefinierte Verhaltenscharakteristika auf. Speziell ist
ein Scheitelpunkt 1 in der Lage, gute Pakete, die übertragen werden, zu zählen, Scheitelpunkt 2, schlechte
Pakete, die empfangen wurden, zu zählen und Scheitelpunkt 3 in der Lage, gute Pakete, die empfangen wer-
den, zu zählen. Zusätzlich breiten sowohl der Scheitelpunkt 1 als auch der Scheitelpunkt 3 keine empfangenen
schlechten Pakete aus, und der Scheitelpunkt 2 breitet empfangene schlechte Pakete aus.

[0087] Basierend auf dem Datenflußmodell 500 können drei Zähler verwendet werden: Ψ = {ψ1, ψ2, ψ3}.

[0088] Die Abbildung M ist gegeben durch:

M((1, 2), t, good) = ψ1

M((1, 2), r, bad) = ψ2
12/27

DE 102 55 142 B4 2008.01.03
M((2, 3), r, good) = ψ3

[0089] Die Einschränkungen C, die aus dem Datenflußmodell 500 entstehen, sind:

b_1_2 = 0; (KBNP auf Scheitelpunkt 1)

g_1_2 – gd_1_2 – mb_1_2 – g_2_3 – 0; (KG (2))

b_1_2 + bd_1_2 = mb_1_1 – b_2_3 = 0; (KBP (2))

g_1_2 = psi_1; (COUNTER (ψ1))

b_1_2 – bd_1_2 + mb_1_2 = psi_2; (COUNTER auf (ψ2))

g_2_3 – gd_2_3 – mb_2_3 = psi_3; (COUNTER auf (ψ3))

gd_1_2 + mb_1_2 g_1_2; (EDGECONSERVE (1, 2))

bd_1_2 ≤ b_1_2; (EDGECONSERVE (1, 2))

gd_2_3 + mb_2_3 ≤ g_2_3; (EDGECONSERVE (2, 3))

bd_2_3 ≤ b_2_3; (EDGECONSERVE (2, 3))

[0090] Es ist anzunehmen, daß basierend auf erworbenen Testergebnissen der Scheitelpunkt 1 20 gute Pa-
kete zählte, der Scheitelpunkt 2 einen CRC-Fehler zählte und der Scheitelpunkt 3 19 gute Pakete zählte. Die
Einschränkungen S, die aus diesem Syndrom entstehen, sind:

psi_1 = 20

psi_2 = 1

psi_3 = 19

[0091] Das Ganzzahlenprogramm ist maximal {mb_1_2 + mb_2_3)|C, S}. Die Fehlervariablen mb(1, 2), gd(1,
2), bd(1, 2), mb(2, 3), gd(2, 3), bd(2, 3) sind größer oder gleich 1, wenn nur ihre entsprechende Kante fehlerhaft
sein kann.

[0092] Nach dem Lösen des IP-Problems, das vorstehend beschrieben ist, ist mb(1, 2) gleich 1 und alle an-
deren Fehlervariablen sind 0. Daher ist die Kante (1, 2) defekt und ein Paket wurde schlecht gemacht.

Fall 2.

[0093] Es wird nun Bezug auf Fig. 6 genommen, die ein Blockdiagramm eines repräsentativen SUT darstellt.
Wie in Fig. 6 gezeigt ist, umfaßt das SUT 600 fünf Komponenten, d. h. START, N2PB, PBIF, BUF und CBOC.
Jede Komponente weist vordefinierte Verhaltenscharakteristika auf. Speziell ist jede der dargestellten Kompo-
nenten des SUT 600 in der Lage, empfangene Daten, z. B. Datenpakete, zu zählen und CRC-Prüfungen aus-
zuführen. Zusätzlich wird darauf hingewiesen, daß sich mehrere der Komponenten in bezug aufeinander, beim
Empfangen von schlechten Daten anders verhalten. Speziell breiten sowohl N2PB und BUF empfangene
schlechte Daten aus, und sowohl START als auch PBIF breiten keine empfangenen schlechten Daten aus. Es
gibt auch zwei unterschiedliche Arten von BUFF-Einheiten. Der „smart buff" (bzw. intelligenter Puffer) zählt die
guten Pakete, die empfangen wurden, der „dumb buff" (bzw. dummer Puffer) tut dies nicht.

[0094] In Falle des „dumb buff" können vier Zähler verwendet werden: Ψ = {ψ1, ψ2, ψ3, ψ4}. Die Abbildung M
ist gegeben durch:

M((start, n2pb), t, good) = ψ1;

M((start, n2pb), r, good) = ψ2;
13/27

DE 102 55 142 B4 2008.01.03
M((n2pb, pbif), r, good) = M((buff, pbif), r, good) = ψ3; und

M((pbif, cboc), r, good) = ψ4.

[0095] Es ist zu beachten, daß zwei unterschiedliche Argumente zu M auf ψ3 abgebildet werden. So wird ψ3

inkrementiert, immer wenn ein gutes Paket durch pbif auf einer ihrer beiden Ein-Kanten empfangen wird. Im
Falle des „smart buff" ist ein zusätzlicher Zähler ψ5 typischerweise erforderlich, und M(pbif, buff)), r, good) = ψ5.

[0096] Das Datenflußmodell 700 von Fig. 7 kann basierend auf den Informationen, die bezüglich des SUT
600 von Fig. 6 präsentiert sind, konstruiert sein. Es ist zu beachten, daß das Blockdiagramm von Fig. 6 und
das Datenflußmodell 700 von Fig. 7 eine Datenflußambiguität aufweisen. Das heißt, daß das Blockdiagramm
und das Datenflußmodell 700 jeweils nicht beschreiben, wie die Daten tatsächlich von PBIF zu CBOC fließen.
Speziell ist es dahingehend zweideutig, ob die Daten, die bei PBIF ankommen, zuerst zu BUF und zurück flie-
ßen, bevor sie zu CBUC übertragen werden, oder BUF irgendwie umgangen wird. Aufgrund dieser Ambiguität
kann das Datenflußmodell 700, das direkte Analogien für die fünf Komponenten des Blockdiagramms von
Fig. 6 liefert, weniger nützlich sein als andere Datenflußmodelle, die keine solche Ambiguität beinhalten. Zum
Beispiel, wenn Informationen bezüglich des tatsächlichen Flusses von Daten von PBIF zu CBOC erfaßt wer-
den, kann ein unzweideutiges Datenflußmodell, das die Übertragung von Daten durch das SUT darstellt, kon-
struiert werden. Ein Ausführungsbeispiel eines solchen Datenflußmodells wird später im Hinblick auf Fig. 8 be-
schrieben.

[0097] Zurückkehrend zum Datenflußmodell von Fig. 7, wurden fünf Syndrome erzeugt, von denen ein jedes
ein mögliches Syndrom ist, das aus einem zeitweise auftretenden Ausfall von einer der fünf Kanten im Daten-
flußmodell entsteht. Die Syndrome sind in Tabelle 1 gezeigt.

[0098] Die Ergebnisse zum Lösen der Probleme des linearen Programmierens sind in Tabelle 2 und Tabelle
3 gezeigt. Man erinnere sich, daß ein Nicht-Nulleintrag impliziert, daß die entsprechende Fehlerhypothese eine
machbare Ausfallursache sein kann. Der Wert ist die Anzahl von schlechten Paketen, die dieser Ausfallursa-
che zugeschrieben sind.

Tabelle 1: Syndrome, die in Fall 1 und 2 verwendet werden

Zähler Syn. 1 Syn. 2 Syn. 3 Syn. 4 Syn. 5

defekt start→n2pb n2pb→pbif pbif→buff buff→pbif pbif→cboc

ψ1 10 10 10 10 10

ψ2 9 10 10 10 10

ψ3 18 18 19 19 20

ψ4 9 9 9 9 9

ψ5 9 9 9 10 10

Tabelle 2: Ergebnisse des LP-Lösens für Fall 2, dummer Puffer.

Fehlerhypo. Syn. 1 Syn. 2 Syn. 3 Syn. 4 Syn. 5

start→n2pb 1 0 0 0 0

n2pb→pbif 0 1 1 1 1

pbif→buff 0 1 1 1 1

buff→pbif 0 1 1 1 1

pbif→cboc 0 1 1 1 1
14/27

DE 102 55 142 B4 2008.01.03
Fall 3.

[0099] In diesem Beispiel wird eine weitere Annahme zu der vorstehenden, in bezug auf Fall 2 beschriebenen
hinzugefügt. Speziell ist anzunehmen, daß eine zusätzliche Einschränkung bekannt ist, d. h., daß die Pakete
von n2pb zu pbif zum buff zu pbif zu cboc fließen müssen. Anschließend kann ein genaueres Datenflußmodell
für das SUT konstruiert werden. Ein solches Datenflußmodell ist in Fig. 8 dargestellt.

[0100] Wie in Fig. 8 gezeigt ist, umfaßt das Datenflußmodell 800 die Scheitelpunkte START, N2PB, PBIF1,
BUF, PBIF2 und CBOC. Die Kanten START→N2PB, N2PB→PBIF1, PBIF1→BUF, BUF→PBIF2 und
PBIF2→CBOC sind durch die Scheitelpunkte definiert. So ist die Komponente IF von Fig. 6 zum Zwecke des
Datenflußmodells 800 als zwei getrennte Scheitelpunkte umdefiniert worden, d. h. PBIF1 und PBIF2, wodurch
die Datenflußambiguität aufgehoben worden ist.

[0101] Wie in Fall 2 können vier Zähler verwendet werden: Ψ = {ψ1, ψ2, ψ3, ψ4}. Die Abbildung M ist angege-
ben durch:

M((start, n2pb), t, good) = ψ1

M((start, n2pb), r, good) = ψ2,

M((n2pb, pbif1), r, good) = M((buff, pbif2), r, good) = ψ3,

M((pbif2, cboc), r, good) = ψ4.

[0102] Im Falle des intelligenten Puffers ist ein zusätzlicher ψ5 erforderlich, und M((pbif1, buff) r, good) = ψ5.
Es ist zu beachten, daß ψ3 inkrementiert wird, wenn ein gutes Paket durch entweder pbif1 oder pbif2 empfan-
gen wird. Dies ist darin begründet, daß beim ursprünglichen Datenflußmodell von Fig. 7 pbif alle ankommen-
den gute Pakete, die auf einer der beiden Kanten ankommen, zählt.

[0103] Die Einschränkungen C sind:

g_start_n2pb-gd_start_n2pb-mb_start_n2pb_pbifl=0;

b_start_n2pb-bd_start_n2pb=mbjstart-b_n2pb_pbifl=0;

g_n2pb_pbifl-gd_n2pb_pbif-mb_n2pb_pbifl-g_pbifl_buff=0;

b_pbifl_buff=0;

g_pbifl_buff-gd_pbif_buff-mb_pbif_buff-g_buff_pbif2=0;

b_pbifl_buff-bd_pbifl_buff+mb_pbif_buff-b_buff_pbif2=0;

g_buff_pbif2-gd_buff_pbif2_mb_buff-pbif-g_pbif2_cboc=0;

b_pbif2_cboc=0;

gd_start_n2pb+mb_start_n2pb≤g_start_n2pb;

Tabelle 3: Ergebnisse des LP-Lösens für Fall 2, intelligenter Puffer.

Fehlerhypo. Syn. 1 Syn. 2 Syn. 3 Syn. 4 Syn. 5

start→n2pb 1 0 0 0 0

n2pb→pbif 0 1 0 1 0

pbif→buff 0 0 1 0 1

buff→pbif 0 1 0 1 0

pbif→cboc 0 0 1 0 1
15/27

DE 102 55 142 B4 2008.01.03
bd_start_n2pb<b_start_n2pb;

gd_2npb_pbifl+mb_n2pb_pbif≤g_n2pb_pbifl;

bd_n2pb_pbif1≤b_n2pb_pbifl;

gd_pbifl_buff+mb_pbif_buff≤g_pbif_buff;

bd_pbifl_buff≤b_pbifl_buff;

gd_buff_pbif2+mb_buff_pbif≤g_buff_pbif2;

bd_biff_pbif2≤b_buff1_pbif;

g_start_n2pb=psi_1;

g_start_n2pb-gd_start_n2pb-mb_start_n2pb=psi_2;

g_n2pb_pbifl-gd_n2pb_pbifl-mb_n2pb_pbif+ g_buff_pbif2-gd_buff_pbif2-mb_buff_pbif=psi_3;

g_pbif2_choc-gd_pbif2_choc-mb_pbif_choc=psi_4;

g_pbifl_buff-gd_pbifl_buff-mb_pbif_buff=psi_5

[0104] Die Ergebnisse zum Lösen der LP-Probleme erscheinen in Tabelle 4 und 5. In diesem Fall sind die
Variablen zusätzlich eingeschränkt, um Ganzzahlen zu sein.

[0105] Wie zuvor erwähnt wurde, können die Ausführungsbeispiele des Diagnosesystems Schlußfolgerungs-
maschinen umfassen, die verschiedene Techniken zum Diagnostizieren von Fehlern verwenden. Mittels eines
Beispiels kann ein Algorithmus oder eine regelbasierte Kantenklassifizierung und eine Kantenklassifizierung
durch eine ereignisbasierte Fehlersimulation verwendet werden.

[0106] Im Hinblick auf die regelbasierte Kantenklassifizierung können, anstelle des Verarbeitens des Graphen
und der Testeinschränkungen und eines Datenflußmodells in Sätze von Gleichungen zur Optimierung (vorste-
hend beschrieben), die gleichen Informationen unter Verwendung der Regeln ausgewertet werden. Diese Re-

Tabelle 4: Ergebnisse des LP-Lösens für Fall 3, dummer Puffer.

Fehlerhypo. Syn. 1 Syn. 2 Syn. 3 Syn. 4 Syn. 5

start→n2pb 1 0 0 0 0

n2pb→pbifl 0 1 0 0 0

pbifl→buff 0 0 1 1 0

buff→pbif2 0 0 1 1 0

pbif2→cboc 0 0 0 0 1

Tabelle 5: Ergebnisse des LP-Lösens für Fall 3, smarter Puffer.

Fehlerhypo. Syn. 1 Syn. 2 Syn. 3 Syn. 4 Syn. 5

start→n2pb 1 0 0 0 0

n2pb→pbifl 0 1 0 0 0

pbifl→buff 0 0 1 0 0

buff→pbif2 0 0 0 1 0

pbif2→cboc 0 0 0 0 1
16/27

DE 102 55 142 B4 2008.01.03
geln können angepaßt sein, um Kanten eines Datenflußmodells als gut oder verdächtig zu klassifizieren. Spe-
ziell könnte die regelbasierte Kantenklassifizierung als ein Algorithmus durch eine Programmiersprache wie C
oder Prolog implementiert sein. Als weiteres Beispiel könnte die regelbasierte Kantenklassifizierung durch eine
einschränkungsbasierte Technologie wie CLP implementiert sein.

[0107] Typischerweise sind die Einschränkungen gemäß dem Graphen G(V, E) und der Abbildung M relevant.
Zum Beispiel hält ein Busscheitelpunkt bestimmten Flußeinschränkungen, wie vorstehend angegeben ist, ein;
ein Nicht-Ausbreitungs-Scheitelpunkt hält bestimmten Einschränkungen ein, alle Kanten halten die EDGE-
CONSERVE-Einschränkung usw. ein. Die Einschränkungen dienen als eine präzise Definition der Bedeutung
des Datenflußgraphen und sind nicht vom Ausführungsbeispiel, das zum Erzeugen einer Diagnose verwendet
wird, abhängig.

[0108] Die Einschränkungen, die den Scheitelpunkten, Kanten und Zählern zugeordnet sind, werden unter-
sucht, um Diagnosen zu bestimmen. Typischerweise weist jeder Scheitelpunkt einen relevanten Satz von Fluß-
einschränkungen, die durch Lambda bestimmt werden, auf. Zusätzlich umfaßt jede Kante typischerweise ei-
nen zugeordneten Satz von Einschränkungen, die die Konservierung von Datenpaketen über dieser Kante, z.
B. EDGECONSERVE, beschreiben. Ferner umfaßt jeder Zähler typischerweise einen Satz von Einschränkun-
gen, die durch G, die Abbildung M und durch die gemessenen Testergebnisse aus dem SUT definiert sind.

[0109] Bei einem regelbasierten Ausführungsbeispiel wird ein lineares Programm für die allgemeinen Ein-
schränkungen nicht allgemein verwendet, sondern stattdessen wird ein graphunabhängiger Algorithmus ver-
wendet, um G zu durchlaufen und die notwendigen Einschränkungen anzuwenden, um eine Diagnose zu be-
stimmen, die mit dem SUT und den Testergebnissen übereinstimmt.

[0110] Es ist zu beachten, daß die allgemeinen Einschränkungen auch als Regeln, die zusammen mit G und
der Abbildung M in eine Regelverarbeitungsmaschine eingegeben werden, ausgedrückt werden können. Eine
solche Regelverarbeitungsmaschine durchläuft dann G, wendet die Einschränkungen an und bestimmt eine
Diagnose, die mit G, M und den Testergebnissen übereinstimmt.

[0111] Zurückkehrend zum Datenflußmodell 800 von Fig. 8 und den Ergebnissen des Syndroms 1 von Tabel-
le 5 werden die Informationen, die dem Datenflußmodell 800 zugeordnet sind und Syndrom 1 nun unter Ver-
wendung einer exemplarischen regelbasierten Kantenklassifizierungstechnik analysiert.

[0112] Man erinnere sich, daß fünf Zähler im Falle des intelligenten Puffers verwendet werden können:
Ψ = {ψ1, ψ2, ψ3, ψ4, ψ5}. Die Abbildung M ist gegeben durch:

M((start, n2pb), t, good) = ψ1

M((start, n2pb), r, good) = ψ2,

M((n2pb, pbifl), r, good) = M((buff, pbif2), r, good) = ψ3,

M((pbif2, cboc), r, good) = ψ4 und

M((pbif, buff), r, good) = ψ5 und

wobei die Zählerwerte folgende sind: ψ1 = 10, ψ2 = 9, ψ3 = 18, ψ4 = 9, ψ5 = 9.

[0113] Wird die Analyse mit dem Kantenstart → n2pb begonnen, kann bestimmt werden, daß die Zähler 1 und
2 Informationen enthalten, die dieser Kante entsprechen. Speziell enthält der Zähler 1 Informationen bezüglich
der Anzahl von guten Paketen, die auf der Kante übertragen wurden, und der Zähler 2 enthält Informationen
bezüglich der Anzahl von guten Paketen, die von der Kante empfangen werden. Es ist zu beachten, daß im
Hinblick auf eine beliebige Kante, wenn die Anzahl von guten Paketen, die zur Kante übertragen wurden, gleich
der Anzahl von guten Paketen ist, die von der Kante empfangen wurden, die Kante nicht verdächtig ist. Im Hin-
blick auf den Kantenstart → n2pb ist jedoch die Anzahl von guten Paketen, die von dieser Kante empfangen
wurden, nicht gleich der Anzahl von guten Paketen, die an diese Kante übertragen wurden, d. h. Zähler 1 –
Zähler 2 = 1. Man erinnere sich, daß die Anzahl von guten Paketen, die von einer Kante empfangen wurden,
gleich der Anzahl von guten Paketen, die an die Kante übertragen wurden, minus der Anzahl von guten Pake-
ten, die auf der Kante übertragen wurden, die verschwanden, minus der Anzahl von guten Paketen, die auf der
Kante schlecht gemacht wurden, ist. Daher ist 2-gd-mb = 1 oder, da nur Ganzzahlen verwendet werden, ent-
17/27

DE 102 55 142 B4 2008.01.03
weder mb(start, n2pb) oder gd(start, n2pb) gleich 1.

[0114] Im Hinblick auf die Kante n2pb-pbifl, sind die Zähler 2 und 3 relevant. Sich daran erinnernd, daß der
Zähler 3 alle guten Pakete zählt, die bei pbifl und pbif2 empfangen wurden, sollte der Zähler 3 während einer
fehlerfreien Operation einen Wert enthalten, der zweimal so groß wie der Zählerwert von Zähler 2. Die Anwen-
dung dieser Regel offenbart, daß der Wert des Zählers 3 zweimal so groß ist wie der Wert von Zähler 2, daher
sollte die Kante n2pb pbifl nicht verdächtig sein. Dies ist eine weitere Anwendung der Zählerregel, die feststellt,
daß die Anzahl von guten Paketen, die von einer Kante empfangen wurden, gleich der Anzahl von guten Pa-
keten, die zu der Kante übertragen wurden, minus der Anzahl von guten Paketen, die auf der Kante ver-
schwanden, minus der Anzahl von guten Paketen, die auf der Kante schlecht gemacht wurden, ist. Speziell,
da bekannt ist, daß 18 Pakete beim Zähler 3 als gut empfangen wurden, und der Zähler 3 nur zweimal so groß
sein kann wie der Wert von Zähler 2, muß die Operation der Kante n2pb, pbifl fehlerfrei gewesen sein. Es ist
zu beachten, daß die verbleibenden Kanten in einer ähnlichen Weise klassifiziert werden könnten, wie einem
Fachmann offenkundig wäre.

[0115] Wie vorstehend erwähnt ist, kann die Kantenklassifizierung durch eine flußereignisbasierte Fehlersi-
mulation auch verwendet werden, um eine Diagnose zu liefern. Speziell können ein Datenflußgraph, zugeord-
nete Einschränkungen und ein Fehlermodell verwendet werden, um ein Verhaltensmodell zu konstruieren. Die
flußereignisbasierte Fehlersimulation dieses Verhaltensmodells kann dann im Hinblick auf ein zeitweise-auf-
tretender-Fehlermodell durchgeführt werden, wobei die Ergebnisse in einem Fehlerwörterbuch gespeichert
werden. Dieses Fehlerwörterbuch kann eine Abbildung zwischen den Testergebnissen und den zugeordneten
Diagnosen für zeitweise auftretenden Ausfälle in Paketvorrichtungen liefern.

[0116] Obgleich die Verhaltensmodelle und zugeordneten Simulatoren und Fehlersimulatoren für einige ana-
loge und digitale Schaltungen existieren, können diese praktisch verwendet werden, um eine Diagnose von
zeitweise auftretenden Fehlern von Komplexes-Paket-Architekturvorrichtungen wie Routern zu erzeugen. Dies
ist darin begründet, daß solche Verhaltensmodelle und Simulatoren eine Bit-um-Bit-Beschreibung eines Test-
stimulus für ein komplexes SUT verwenden, das auf Millionen von Paketen arbeitet, und daher nicht kommer-
ziell praktikabel sind.

[0117] Die Ausführungsbeispiele der Schlußfolgerungsmaschine, die eine flußereignisbasierte Fehlersimula-
tion verwenden, verwenden Verhaltensmodelle, die die Elemente, z. B. Kanten und Scheitelpunkte, eines Da-
tenflußgraphen betriebsmäßig darstellen. Das resultierende Modell auf Teil-, Platinen- oder Systemebene kann
praktisch entwickelt und fehlersimuliert werden, um ein Fehlerwörterbuch und so eine Diagnose für zeitweise
auftretende Fehler in Paketvorrichtungen zu erzeugen.

[0118] Der logische Prozeß der Fehlersimulation dient allgemein zum Simulieren eines eingebrachten Feh-
lers, Anwenden einer Beschreibung eines Teststimulus auf die Vorrichtung und Beobachten der Vorrichtungs-
antwort unter der eingebrachten Fehlerbedingung. Ein Fehlerwörterbuch zeichnet dann die Entsprechung des
eingebrachten Fehlers zu einem sichtbaren Ergebnis auf. Der Prozeß wird für jeden Fehlertyp im Fehlermodell
wiederholt.

[0119] Im Gegensatz zur herkömmlichen Fehlersimulation stellt der Teststimulus, der durch die Ausführungs-
beispiele der Schlußfolgerungsmaschine geliefert wird, nicht die tatsächliche Eingabe in die Vorrichtung in der
Form von Einsen und Nullen dar. Speziell ist der verwendete Teststimulus ein Modell oder eine Abstraktion der
Eingaben, z. B. die Anzahl von Paketen und ihr Typ. Zusätzlich werden die Ereignisse, die dem SUT-Betrieb
entsprechen, simuliert. Als weiterer Unterscheidungspunkt können die Ausführungsbeispiele der Schlußfolge-
rungsmaschine Fehlermodelle für zeitweise auftretende Ausfälle verwenden.

[0120] Da die flußsignifikanten Ergebnisse, z. B. Anzahl von Paketen, Pakettyp, Inhalt von internen Zählern
oder ein anderer Zustand, von Interesse sind, können die Wirkungsgrade erreicht werden, indem die Betriebs-
mittel nicht zugeordnet werden müssen, um eine Aktivität eines Systems auf Bitebene aufzuspüren. Ein gege-
benes flußsignifikantes Testergebnis kann mit simulierten Testergebnissen verglichen werden. Wenn die Er-
gebnisse übereinstimmen, dann können die simulierten Fehler, die den simulierten Testergebnissen entspre-
chen, durch Konsultieren des Fehlerwörterbuchs bestimmt werden.

[0121] Nachstehend folgt eine allgemeine Beschreibung eines Ausführungsbeispiels einer Schlußfolgerungs-
maschine, die eine ereignisbasierte Fehlersimulation verwendet. Zuerst wird ein Ausführungsbeispiel des Ver-
haltensmodell beschrieben. Zum Beispiel nimmt ein entsprechendes Verhaltensmodell für einen Busscheitel-
punkt jedes paketempfangene Ereignis auf einer beliebigen seiner Ein-Kanten an und erzeugt ein Paket, das
18/27

DE 102 55 142 B4 2008.01.03
sogar auf allen Aus-Kanten übertragen wurde. Diese Nachbildung umfaßt ein Reproduzieren eines Ereignis-
ses, das anzeigt, das ein Paket auf jeder Aus-Kante übertragen wurde. Wenn der Busscheitelpunkt ein Fallen-
lassen aller schlechten Pakete (Nicht-Ausbreitungs-Mitglied T(i)) erforderte, dann würde ein beliebiges ankom-
mendes Schlechtes-Paket-Ankunftsereignis aussortiert werden.

[0122] Im Hinblick auf einen Ausbreitungs-Nicht-Bus-Scheitelpunkt mit mehreren Aus-Kanten wird jedes Pa-
ket-Ankunfts-Ereignis auf einer beliebigen Kante reproduziert, jedoch nicht notwendigerweise auf allen Kanten.
Das zugeordnete Verhaltensmodell implementiert dies durch ein nichtdeterministisches Erzeugen eines paket-
übertragenen Ereignisses auf einer und nur einer Aus-Kante. In ähnlicher Weise existiert eine Abbildung zwi-
schen allen Scheitelpunkttypen und T(i) zu einem zugeordneten Verhaltensmodell, das gemäß den Einschrän-
kungen arbeitet, die dem Scheitelpunkt und seinen Eigenschaften zugeordnet sind.

[0123] Zusätzlich kann jeder Quellenscheitelpunkt für jeden Test eine gegebene Anzahl von Paketen eines
gegebenen Typs liefern. Dies ist als ein Verhaltensmodell realisiert, das die zugeordnete Anzahl von paketü-
bertragenen Ereignissen auf seinen Aus-Kanten erzeugt. Im Hinblick auf eine Senke erzeugt jede Senke, jeder
Scheitelpunkt keine neuen Ereignisse, weil sie keine Aus-Kanten aufweist.

[0124] Die Kanteneinschränkungen werden auch auf Verhaltensmodelle abgebildet. Das Kantenmodell wan-
delt paketübertragene Ereignisse in paketangekommene Ereignisse für den Bestimmungsscheitelpunkt oder
das zugeordnete Zählermodell um. Unter den Fehlersimulationsbedingungen kann die Kante paketübertrage-
ne Ereignisse gemäß dem Fehlermodell in Schlechtes-Paket-angekommen-Ereignisse oder Gutes-Paket-ver-
schwunden-Ereignisse etc. umwandeln.

[0125] Die Zählereinschränkungen werden auch als Verhaltensmodelle dargestellt. Man erinnere sich, daß
die Abbildung M einem Zähler einen Pakettyp (gut/schlecht) und einem Ereignis (Paket tx, Paket rx) mit einer
Kante zuordnet. Das Paket tx ist das gleiche wie das übertragene Paket, das Paket rx ist das empfangene Pa-
ket. Ein gegebener Zähler überwacht seine zugeordneten Kanten für relevante Ereignisse. Wenn ein relevan-
tes Ereignis eintritt, wird der Zähler inkrementiert.

Ereignisbasierte Fehlersimulation – Beispiel 1 (Einzelnes-Gutes-Paket-Simulation)

[0126] Gemäß dem Testentwurf gibt der Startscheitelpunkt im Verlauf des Tests zehn Gutes-Paket-übertra-
gen-Ereignisse auf der Kante (Start, n2pb) aus. Die Ereignisketten durch die Simulation von einem Paket sind
wie folgt:

1. Start signalisiert, daß Paket 1 auf (start, n2pb) übertragen wurde;
2. Zähler ψ1 sieht sein relevantes Ereignis (gutes Paket auf (start, n2pb) übertragen) und inkrementiert sich
selbst;
3. ie Kante (Start, n2pb) sieht das Paket-übertragen-auf-Ereignis und konvertiert dasselbe in ein Pa-
ket-empfangen-von-Ereignis für die Kante (start, n2pb);
4. Zähler ψ2 sieht sein relevantes Ereignis (gutes Paket empfangen von (start, n2pb)) und inkrementiert sich
selbst;
5. Scheitelpunkt n2pb sieht ein gutes Paket, empfangen von (start, n2pb) und erzeugt ein gutes Paket, das
auf (n2pb, pbif) übertragen wurde;
6. Kante (n2pb, pbif) sieht ein Gutes-Paket-übertragen-auf-Ereignis und wandelt es in ein Gutes-Pa-
ket-empfangen-von-Ereignis um;
7. Zähler ψ3 sieht sein relevantes Ereignis und inkrementiert sich selbst;
8. Knoten pbif sieht ein Gutes-Paket-empfangen-von-Ereignis und erzeugt ein Gutes-Paket-übertragen-auf
(pbif, cboc). Für ein anschließendes Paket kann sich pbif dazu entschließen, stattdessen (pbif, buff) zu si-
gnalisieren; jedoch kann es per definitionem kein Ereignis für beide Kanten signalisieren;
9. Kante (pbif, cboc) sieht dann ein Gutes-Paket-übertragen-auf-Ereignis und wandelt es in ein Gutes-Pa-
ket-empfangen-von-Ereignis um;
10. Zähler ψ4 sieht dann ein Gutes-Paket-empfangen-von-Ereignis und inkrementiert sich selbst;
11. Dann erzeugt der Senkenknoten cboc keine weiteren Ereignisse, da die Lebensdauer dieses Pakets
komplett ist.

[0127] Am Ende der guten SUT-Simulation von allen 10 Paketquellen ist ψ1 = 10, ψ2 = 10, ψ3 = 20, ψ4 = 10.

Ereignisbasierte Fehlersimulation – Beispiel 2 (Einzelnes Schlechtes-Paket-Fehlersimulation)

[0128] Wie in dem vorhergehenden Beispiel sind die zehn Pakete Quellen. Jedoch ist eines der zehn Pakete
19/27

DE 102 55 142 B4 2008.01.03
auf (n2pb, pbif) verfälscht. Die Iteration der flußereignisbasierten Fehlersimulation erfolgt wie folgt. Es ist zu
beachten, daß sich der Fehlersimulator dazu entschließt, das Fehlerereignis „ein gutes Paket, das auf Kante
(n2pb, pbif) schlecht gemacht wurde", einzubringen.

1. Start signalisiert, daß Paket 1 auf (start, n2pb) übertragen wurde;
2. Zähler ψ1 sieht sein relevantes Ereignis (gutes Paket das auf (start, n2pb) übertragen wurde) und inkre-
mentiert sich selbst;
3. Kante (n2pb, pbiff) erkennt ihr relevantes Fehlerereignis „ein gutes Paket, das schlecht gemacht wurde"
und wandelt das Paket-übertragen-auf-Ereignis in ein Schlechtes-Paket-empfangen-von-Ereignis für
(n2pb, pbif) um;
4. Zähler ψ2 sieht nicht sein relevantes Ereignis (gutes Paket erhalten von (start, n2pb)) und inkrementiert
sich daher nicht selbst;
5. Scheitelpunkt n2pb sieht dann ein schlechtes Paket, das von (n2pb, pbif) empfangen wurde und sortiert
das Ereignis aus, weil pbif per Modelldefinition keine schlechten Pakete ausbreitet;
6. Fehlersimulation simuliert die Übertragung der verbleibenden neun guten Pakete, ohne ein weiteres Feh-
lerereignis zu umfassen.

[0129] Die resultierenden Zählwerte sind ψ1 = 10, ψ2 = 10, ψ3 = 18, ψ4 = 9. Der zugeordnete Fehlerwörter-
bucheintrag umfaßt diese Informationen und das Fehlerereignis, das den Anlaß dazu gab. Wenn die Tester-
gebnisse aus dem SUT mit diesem Eintrag in dem Fehlerwörterbuch übereinstimmen, lautet die Diagnose „Gu-
tes Paket, das auf (n2pb, pbif) schlecht gemacht wurde." Erwähnenswert ist, daß eine anschließende Simula-
tion des Ereignisses „Ein Paket, das schlecht gemacht wurde" auf (buff, pbif) die gleichen simulierten Ergeb-
nisse erzeugt. In diesem Fall umfaßt die Diagnose beide Fehlerereignisse, da beide eine vernünftige Erklärung
für die Ergebnisse sein können.

[0130] Der vorstehende Prozeß kann für jeden der Fehlertypen auf jeder der Kanten wiederholt werden. Die
Quantitäten der Fehlerereignisse pro Kante können variiert werden und die Anzahl der gleichzeitigen Kanten-
fehlerer kann ebenfalls gemäß den Bedürfnissen der Anwendung variiert werden. Die Anzahl von Iterationen
des Fehlersimulators kann eingestellt werden, um einen Nicht-Determinismus im Paketfluß, wie durch die De-
finition der Scheitelpunkte angezeigt ist, zu kompensieren. Dies führt zum Erzeugen von Fehlerwörterbuchein-
trägen für die verschiedenen Arten und Weisen, auf die sich das SUT verhalten könnte.

Patentansprüche

1. Verfahren zum Diagnostizieren von Datenpaketübertragungs-Fehlern in einem getesteten System
(SUT) (110), wobei das SUT Datenübertragungswege definiert, durch die Datenpakete übertragen werden,
wobei das Verfahren folgende Schritte aufweist:
Identifizieren von zumindest einigen Abschnitten der Datenübertragungswege das SUT, die Fehler in die Da-
tenpaketübertragung einbringen können;
Bereitstellen von Einschränkungen, die Datenpaketübertragungs-Beziehungen von zumindest einigen der Ab-
schnitte der Datenübertragungswege, die identifiziert wurden, definiert;
Diagnostizieren des SUT im Hinblick auf die Einschränkungen;
wobei ein Teststimulus, der als Eingabe für das Diagnostizieren des SUT verwendet wird, ein Modell einer tat-
sächlichen Eingabe, die dem SUT während des Betriebes zugeführt wird, ist.

2. Verfahren gemäß Anspruch 1, bei dem das Identifizieren ein Bereitstellen eines Datenflußmodells (120)
entsprechend dem SUT aufweist, wobei das Datenflußmodell Kanten und Scheitelpunkte umfaßt, wobei jede
der Kanten, die einem Abschnitt von einem der Datenübertragungswege des SUT entspricht, der Fehler in die
Datenübertragung einbringen kann, wobei jede der Kanten zwischen zwei der Scheitelpunkte definiert ist, wo-
bei jeder der Scheitelpunkte zumindest entweder einen Abschluß einer Kante oder eine Position darstellt, wo
eine Operation im Hinblick auf die Datenpakete geschehen kann.

3. Verfahren gemäß Anspruch 2, bei dem die Operation, die einem Scheitelpunkt entspricht, zumindest
entweder ein Fallenlassen von Daten, ein Aufteilen von Daten, ein Routen von Daten, ein Reproduzieren von
Daten, ein Kombinieren von Daten, ein Zählen von Daten und ein Identifizieren eines Typs von Daten umfaßt.

4. Verfahren gemäß Anspruch 2 oder 3, das ferner folgende Schritte aufweist:
Empfangen von Testergebnissen, die dem SUT entsprechen;
wobei das Diagnostizieren ein Analysieren der Testergebnisse im Hinblick auf das Datenflußmodel aufweist.

5. Verfahren gemäß Anspruch 4, bei dem das SUT Zähler umfaßt, die zumindest einigen der Kanten des
20/27

DE 102 55 142 B4 2008.01.03
Datenflußmodels entsprechen, wobei jeder der Zähler zumindest einem der Scheitelpunkte zugeordnet ist;
wobei das Verfahren ferner folgenden Schritt aufweist:
Empfangen von Informationen, die den Testergebnissen von zumindest einigen der Zähler entsprechen.

6. Verfahren gemäß Anspruch 4 oder 5, bei dem das Analysieren der Testergebnisse folgenden Schritt auf-
weist:
Identifizieren eines Fehlertyps, der einer fehlgeschlagenen Datenübertragung zugeordnet ist.

7. Verfahren gemäß einem der Ansprüche 4 bis 6, bei dem das Analysieren der Testergebnisse folgende
Schritte aufweist:
Empfangen von Informationen, die den fehlgeschlagenen Datenübertragungen entsprechen;
Identifizieren von Abschnitten des SUT, die den fehlgeschlagenen Datenübertragungen potentiell zugeordnet
sind.

8. Verfahren gemäß Anspruch 7, bei dem das Analysieren der Testergebnisse folgenden Schritt aufweist:
Ausschließen von Abschnitten des SUT, die anfänglich als den fehlgeschlagenen Datenübertragungen zuge-
ordnet identifiziert wurden, wenn bestimmt worden ist, daß jene Abschnitte des SUT nicht zumindest eine der
fehlgeschlagenen Datenübertragungen initiiert haben.

9. Verfahren gemäß Anspruch 7 oder 8, bei dem das Identifizieren ein Identifizieren der fehlgeschlagenen
Datenübertragungen unter Verwendung einer regelbasierten Kantenklassifizierungstechnik aufweist, die einen
graphunabhängigen Algorithmus verwendet, um die Einschränkungen zu durchlaufen und zumindest einige
der Einschränkungen anzuwenden, um eine Diagnose zu bestimmen.

10. Verfahren gemäß Anspruch 7 oder 8, bei dem das Identifizieren ein Identifizieren der fehlgeschlagenen
Datenübertragungen unter Verwendung einer flußereignisbasierten Fehlersimulationstechnik aufweist, die
Verhaltensmodelle verwendet, die Abschnitte des SUT darstellen, um ein Fehlerwörterbuch zu konstruieren.

11. Verfahren gemäß Anspruch 7 oder 8, bei dem das Identifizieren ein Identifizieren der fehlgeschlagenen
Datenübertragungen unter Verwendung einer linearen Programmierung aufweist.

12. Verfahren gemäß Anspruch 11, bei dem das lineare Programmieren ein ganzzahliges Programmieren
ist.

13. System zum Diagnostizieren von Datenpaketübertragungs-Fehlern in einem getesteten System (SUT)
(110), wobei das System folgende Merkmale aufweist:
ein Datenflussmodell (120), das zumindest einige Abschnitte der Datenübertragungswege des SUT darstellt;
und
eine Schlussfolgerungsmaschine (130), die dem Datenflußmodell zugeordnet ist, wobei die Schlußfolgerungs-
maschine angepaßt ist, um die Testergebnisse, die dem SUT entsprechen, bezüglich des Datenflußmodells
auszuwerten, wobei die Schlussfolgerungsmaschine angepasst ist, um die Testergebnisse des SUT bezüglich
Einschränkungen auszuwerten, wobei die Einschränkungen Beziehungen von zumindest einigen der Ab-
schnitte des Datenflussmodells definieren; und
wobei ein Teststimulus, der als Eingabe für das Diagnostizieren des SUT verwendet wird, ein Modell einer tat-
sächlichen Eingabe, die dem SUT während des Betriebes zugeführt wird, ist.

14. System gemäß Anspruch 13, bei dem das Datenflußmodell ein gerichteter Graph (500, 700, 800) ist,
der Kanten und Scheitelpunkte umfaßt, wobei jede der Kanten zumindest einem Abschnitt des Datenübertra-
gungswegs des SUT entspricht, durch den ein Fehler eingebracht werden kann, wobei jede der Kanten durch
zwei der Scheitelpunkte definiert ist.

15. System gemäß Anspruch 13, bei dem die Schlußfolgerungsmaschine die fehlgeschlagenen Datenü-
bertragungen unter Verwendung einer regelbasierten Kantenklassifizierungstechnik identifiziert, die einen gra-
phunabhängigen Algorithmus verwendet, um die Einschränkungen zu durchlaufen und zumindest einen Teil
der Einschränkungen anzuwenden, um eine Diagnose zu bestimmen.

16. System gemäß Anspruch 13 oder 15, bei dem die Schlußfolgerungsmaschine die fehlgeschlagenen
Datenübertragungen unter Verwendung einer ereignisbasierten Fehlersymulationstechnik identifiziert, die Ver-
haltensmodelle verwendet, die Abschnitte des SUT darstellen, um ein Fehlerwörterbuch zu konstruieren.
21/27

DE 102 55 142 B4 2008.01.03
17. System gemäß einem der Ansprüche 13 bis 16, bei dem die Schlußfolgerungsmaschine ein Identifizie-
ren der fehlgeschlagenen Datenübertragungen unter Verwendung einer linearen Programmierung aufweist.

18. System gemäß Anspruch 17, bei dem das lineare Programmieren ein ganzzahliges Programmieren ist.

19. System gemäß einem der Ansprüche 13 bis 18, bei dem die Schlußfolgerungsmaschine angepaßt ist,
um Informationen zu empfangen, die den fehlgeschlagenen Datenübertragungen entsprechen, und um Ab-
schnitte des SUT zu identifizieren, die den fehlgeschlagenen Datenübertragungen potentiell zugeordnet sind.

20. System zum Diagnostizieren von Datenpaketübertragungs-Fehlern in einem getesteten System (SUT),
wobei das System folgende Merkmale aufweist:
eine Einrichtung zum Empfangen von Testergebnissen, die Übertragungen von Datenpaketen durch zumin-
dest einige der Abschnitte der Datenübertragungswege des SUT entsprechen; und
eine Einrichtung zum Diagnostizieren des SUT im Hinblick auf die Einschränkungen, die die Datenpaketüber-
tragungs-Beziehungen von zumindest einigen der Abschnitte der Datenübertragungswege des SUT definie-
ren;
wobei ein Teststimulus, der als Eingabe für das Diagnostizieren des SUT verwendet wird, ein Modell einer tat-
sächlichen Eingabe, die dem SUT während des Betriebes zugeführt wird, ist.

21. System gemäß Anspruch 20, das ferner folgendes Merkmal aufweist:
eine Einrichtung zum Testen des SUT, um die Testergebnisse zu erzeugen.

22. Diagnosesystem, das auf einem computerlesbaren Medium gespeichert ist, wobei das Diagnosesys-
tem angepaßt ist, um Datenpaketübertragungs-Fehler in einem getesteten System (SUT) zu diagnostizieren,
wobei das Diagnosesystem folgende Merkmale aufweist:
eine Logik, die konfiguriert ist, um zumindest einige Abschnitte der Datenübertragungswege des SUT zu iden-
tifizieren, die zum Einbringen von Fehlern in die Datenpakets-Übertragung fähig sind;
eine Logik, die konfiguriert ist, um Einschränkungen zu liefern, die Datenpaketübertragungs-Beziehungen von
zumindest einigen der Abschnitte der Datenübertragungswege definieren;
eine Logik, die konfiguriert ist, um das SUT bezüglich der Einschränkungen zu diagnostizieren;
wobei ein Teststimulus, der als Eingabe für das Diagnostizieren des SUT verwendet wird, ein Modell einer tat-
sächlichen Eingabe, die dem SUT während des Betriebes zugeführt wird, ist.

23. Diagnosesystem gemäß Anspruch 22, bei dem die Logik, die zum Diagnostizieren konfiguriert ist, fol-
gende Merkmale aufweist:
eine Logik, die konfiguriert ist, um ein Datenflußmodell zu liefern; und
eine Logik, die konfiguriert ist, um das SUT bezüglich eines Datenflußmodells zu analysieren.

24. Diagnosesystem gemäß Anspruch 22 oder 23, bei dem die Logik, die zum Diagnostizieren konfiguriert
ist, eine Logik umfaßt, die konfiguriert ist, um Informationen zu erzeugen, die den Fluß von Daten anzeigen,
die einem Zeitpunkt der Fehlererfassung zugeordnet sind.

25. Diagnosesystem gemäß einem der Ansprüche 22 bis 24, bei dem die Logik, die zum Diagnostizieren
konfiguriert ist, eine Logik umfaßt, die zum Identifizieren von Abschnitten des SUT konfiguriert ist, die den fehl-
geschlagenen Datenübertragungen potentiell zugeordnet sind.

26. Diagnosesystem gemäß Anspruch 25, bei dem die Logik, die zum Diagnostizieren konfiguriert ist, eine
Logik umfaßt, die konfiguriert ist, um Komponenten auszuschließen, die anfänglich als den fehlgeschlagenen
Datenübertragungen zugeordnet identifiziert waren.

Es folgen 5 Blatt Zeichnungen
22/27

DE 102 55 142 B4 2008.01.03
Anhängende Zeichnungen
23/27

DE 102 55 142 B4 2008.01.03
24/27

DE 102 55 142 B4 2008.01.03
25/27

DE 102 55 142 B4 2008.01.03
26/27

DE 102 55 142 B4 2008.01.03
27/27

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

