PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/46674
GOG6F 9/00, 17/30, 15/40, 12/00, 17/00, Al X L.
12/14, 7/00, 15/00 (43) International Publication Date: 16 September 1999 (16.09.99)
(21) International Application Number: PCT/US99/05382 | (81) Designated States: JP, European patent (AT, BE, CH, CY, DE,

(22) International Filing Date: 11 March 1999 (11.03.99)

(30) Priority Data:
09/039,281 12 March 1998 (12.03.98) UsS

(71) Applicant: CROSSWORLDS SOFTWARE, INC. [US/US];
Suite 800, 577 Airport Boulevard, Burlingame, CA
94010-2024 (US).

(72) Inventors: GUPTA, Prashant; 1037 Franklin Street, Monterey,
CA 93940 (US). RUBIN, David, S.; 903 Sanchez Street,
San Francisco, CA 94114 (US).

(74) Agent: SUYAT, Reginald, J.; Fish & Richardson P.C., Suite
100, 2200 Sand Hill Road, Menlo Park, CA 94025 (US).

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: ISOLATION LEVELS AND COMPENSATING TRANSACTIONS IN AN INFORMATION SYSTEM

(57) Abstract

A transaction system (224) implemented on a server machine
(220) for maintaining consistency in an information system support-
ing asynchronous transactions. The information system includes a
database (252) shared among a plurality of users and implemented
on a client machine (250). The transaction system (224) is invoked
at run-time for a transaction where the transaction includes one or
more sub—transaction steps. The transactions system (224) includes
a graphical user interface (212) for receiving a user defined isola-
tion level selection for executing a transaction between the server
machine (220) and the database (252) or application (251), a persis-
tent service (226) for storing object state information for each object
affected in the execution of each sub-transaction step and a state
verification service (225) for verifying the state of each object af-
fected by a sub—transaction step to verify that the state of the object
is the same as a last time the object was seen in the transaction.

29~

SERVER '2‘35,:"":‘ OPERATING SYSTEM 210
cPU NETWORK SUBSYSTEM 208
‘MEMORYI BUSINESS LOGIC 22
1 META-DATA MANAGEMENT SERVICE 221
TRANSACTION SYSTEM 224
27 PERSISTENT SERVICE 26
ol SAGA SERVICE 228 |
RECOVERY SERVICE 20
ﬁ STATE VERIFICATION SERVICE 225

USER LI
P Z
213 TRANSACTION CONTE 238

SAGA

lummﬁgwfcmwl Issnvsa g‘al

\-260
20~
m 202 212 204 CUENT MACHINE
COMMUNICATIONS|
R [vevon]
[Pt
OPERATING SYSTEM 210
NETWORK SUBSYSTEM 208
API 240
APPLICATION 1
DATABASE 252
®
L[]
H

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Repubiic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
VAWM

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/46674 PCT/US99/05382

ISOLATION LEVELS AND COMPENSATING TRANSACTIONS IN AN
INFORMATION SYSTEM

The present invention relates generally to computing systems, and more
particularly to a method and apparatus for processing asynchronous transactions in an

information system.

Background

An information or database system is a repository for a collection of
computerized data files (the database). An information system may include database
management functions, in the form of a database management system, for allowing
one or more users to access, retrieve, and modify information in the database. The
database consists of a collection of persistent data that may be used by the application
systems of some given enterprise. Typically, many such users may access the
database at given time. One function of the database management system is to guard
against the many threats presented to the data in the database. Tools for safeguarding
database data may include recovery, concurrency, security and integrity tools.

Recovery and concurrency are related notions that involve transaction
processing. A transaction is a logical unit of work. A transaction may involve one or
more accesses to the database and may include or more updates to information stored
in the database. Even though many database actions may be invoked, a transaction is
considered to be an atomic unit. Classical transaction processing provides that if a
transaction executes some updates to a database and then a failure occurs before the
transaction reaches its normal termination, then those updates will be undone.

In order to facilitate transaction processing, the database management system
may include a transaction manager. The transaction manager oversees transactions to
the database and may use tools such as COMMIT and ROLLBACK operations to
provide the atomicity required to support transaction processing. A COMMIT
operation signals a successful end-of-transaction, that a logical unit of work, a
transaction, has been completed. A ROLLBACK operation signals an unsuccessful

end-of-transaction indicating that the database may be in an inconsistent state.

10

15

20

25

30

WO 99/46674 PCT/US99/05382

2

Recovery refers to those operations initiated by the transaction manager in response to
a ROLLBACK.

Concurrency refers to the interaction of transactions executed by multiple
users. A concurrency manager or other concurrency control mechanism may be
provided as part of the database management functions to ensure that concurrent
transactions do not interfere with each other’s operation. A concurrency control
mechanism can alleviate problems related to lost updates, uncommitted dependency
and inconsistent analysis problems. A more detailed description of concurrency
problems is described in “An Introduction to Database Systems”, fifth edition, 1991,
by C.J. Date and published by Addison Wesley.

One conventional solution to concurrency problems is the use of locks.
Locking provides an assurance that one transaction can rely on the state of a
particular portion of a database, and not be concerned with another transaction
modifying the state of the data.

Conventional concurrency managers employ two kinds of lock, namely
exclusive locks (X locks) and shared locks (S locks). Only one transaction can hold
an X lock on a transaction record at a time. Two or more transactions may maintain S
locks on the same record. For example, if transaction A holds an exclusive (X) lock
on record R, then a request from transaction B for a lock of either type on R will cause
B to go into a wait state. B will wait until A's lock is released. If transaction A holds a
shared (S) lock on record R. then a request from transaction B for an X lock on R will
cause B to go into a wait state (and B will wait until A's lock is released). However, a
request from transaction B for an S lock on R will be granted (that is, B will now also
hold an S lock on R).

Transaction requests for record locks are normally implicit. When a
transaction successfully retrieves a record, it automatically acquires an S lock on that
record. When a transaction successfully updates a record, it automatically acquires an
X lock on that record. If the transaction already holds an S lock on the record, then
the update will "promote" the S lock to X level. X locks are held until the next
synchpoint. A synchpoint represents the boundary between two consecutive
transactions; it thus corresponds to the end of a logical unit of work, and hence to a

point at which the database is (or should be) in a state of consistency. Typically, the

10

15

20

25

30

WO 99/46674 PCT/US99/05382

3

only operations that establish a synchpoint are COMMIT, ROLLBACK, and program
initiation. S locks are also normally held until the next synchpoint.

The typical role of any transaction service is to ensure the classical ACID
properties of transactions. These include; Atomicity, Consistency, Isolation, and
Durability.

Atomicity refers to the property of a transaction service in which either all
steps of a transaction are done or no steps are done. Consistency refers to the
transitioning of data from one well known state to another well known state. The
isolation property, as the term suggests, provides that data modifications made within
the scope of a transaction are isolated from other transactional data modifications. In
other words, intermediate results of a transaction are not "exposed" to other
transactions. The durability property ensures that data modifications made within the
scope of a transaction are guaranteed to be saved on disk.

In short, it is the job of the transaction service to ensure that state changes to
persistent data are made in such a way that they are isolated from state changes made
by other processes and can be “recovered” (that is in case of a failure we can restore
an object to a well known state). While locking provides guarantees for concurrency,
problems arise in processing long-lived or asynchronous transactions. As was
described above, locks remain in place until the completion of a transaction and the
occurrence of a next synchpoint. However, where long-lived transactions arise, locks
to the database can result in inefficient performance. For example, a business
transaction may include a request for quotations to be sent out to various suppliers.
The transaction will complete at some indeterminate time in the future when one or
more of the bids have been returned. Obviously, it would be inefficient to tie up
resources in a database while waiting for these type of long lived transactions.

In classical online transaction processing (OLTP) systems, the workload
consists of small, short duration transactions that touch a smail amount of data and
complete (e.g., the classical airline reservation system) very quickly. In systems that
exhibit long-lived transactions, the workloads may consist of transactions that touch
data that lives across a WAN, or a transaction that references data through a reliable
messaging provider (i.e. where the application need not be executing). In either case,

the semantics of the workload is radically different then the classical OLTP workload.

10

15

20

25

30

WO 99/46674 : PCT/US99/05382

4

For these workloads, conventional locking schemes provided by transaction

processing systems are woefully inadequate.

Summary of the Invention

In general, in one aspect, the invention provides a transaction system
implemented on a server machine for maintaining consistency in an information
system supporting asynchronous transactions. The information system includes a
database shared among a plurality of users and implemented on a client machine. The
transaction system is invoked at run-time for a transaction where the transaction
includes one or more subtransaction steps. The transaction system includes a
graphical user interface for receiving a user defined isolation level selection for
executing a transaction between the server machine and the database or application, a
persistent service for storing object state information for each object affected in the
execution of each subtransaction step and a state verification service for verifying the
state of each object affected by a subtransaction step to verify the state of the object is
the same as a last time the object was seen in the transaction.

Aspects of the invention include numerous features.

The isolation level selection may vary across a range from consistent service to
continuous service where consistent service meets all ACID properties at a
subtransaction level and continuous service provides no guarantees of any of the
ACID properties in the execution of a subtransaction. The consistent service includes
isolation level 3 reads for guaranteeing consistency of reads over a time period in
which each subtransaction is executed.

The isolation level selection includes stringent isolation service and no
isolation service. The stringent isolation service provides compliance to all ACID
transactional properties at the subtransaction level and the no isolation service
provides no guarantees of any ACID properties in the execution of a subtransaction.

The transaction system includes a best effort isolation service where both the
best effort service and the stringent service provide compliance to all ACID properties
but the stringent service includes isolation level 3 reads to guarantee consistency over
an entire time a subtransaction step is executing. The transaction system includes a

minimal effort isolation service where the state verification service is disabled and no

10

15

20

25

30

WO 99/46674 PCT/US99/05382

5

object state checks are performed prior to execution of a subtransaction step.

The transaction system includes a no effort isolation level selection which results
execution of a transaction until a consistency error is returned during subtransaction
processing.

The transaction system includes a saga service for maintaining a linked list of
subtransaction records and compensating transaction records as a transaction is
executed and a recovery service for implementing compensating transactions upon the
occurrence of a fault in a forward progress of the execution of a transaction.

In another aspect, the invention provides a method implemented on a server
machine for maintaining consistency in an information system where the information
system includes a database shared among a plurality of users and implemented on a
client machine. The method is invoked at run-time for a transaction where the
transaction includes one or more subtransaction steps. The method includes
selecting a predefined service level selection for executing a transaction between the
server machine and the database applications, storing object state information for each
object affected in the execution of each subtransaction step and checking a state of
each object affected by a subtransaction step to verify the state of the object is the
same as a last time the object was seen in the transaction. If the state does not match a
last known state, then the forward execution progress for the transaction is stopped.

In another aspect, the invention provides a collaboration implemented on a
server machine including business logic for directing the interaction of independent
applications and includes a plurality of connectors for communicating with a like
plurality of applications, an interchange server including an application collaboration
module and service module. The application collaboration module defines the inter-
operability between two or more applications and includes a transaction having one or
more subtransaction steps for delivering data to one or more connectors for transfer to
an associated application. The interchange server includes a service module including
a transaction system for maintaining consistency in databases managed by the
applications. The transaction system includes a graphical user interface for
configuring a user defined isolation level selection for characterizing an isolation
level to be maintained during transaction execution, a persistent service for storing

object state information for each object affected in the execution of each

10

15

20

25

30

WO 99/46674 PCT/US99/05382

6

subtransaction step and a state verification service for verifying the state of each
object affected by a subtransaction step to verify the state of the object is the same as
a last time the object was seen in the transaction.

Aspects of the invention include numerous advantages. One advantage of the
invention is that a flexible transaction service is provided so that clients of the
service may request the appropriate level of service that is needed. With each
differing level of service provided, the transaction service ensures the appropriate
transactional and recovery semantics. The transaction service is easy to configure,
provides the appropriate interfaces to other interchange clients, and provides
extensibility. Other advantages and features will be apparent from the following

description and claims.

Brief Description of the Drawings

Figure 1 is a schematic block diagram of a modular application collaboration
according the invention.

Figure 2 is a schematic block diagram of a distributed computer system
including a transaction system according the invention.

Figure 3a is a schematic block diagram for a transaction according to the
invention.

Figure 3b is a schematic block diagram for a compensating transaction
according to the invention.

Figure 4a is a flow diagram of a method for providing database consistency
according to the invention.

Figure 4b is a sample transaction associated with the flow diagram of Figure
4a.

Figure 4c is a sample saga generated in association with the flow diagram of
Figure 4a.

Figure 5 is a schematic block diagram for a transaction context for storing
transaction semantics according to the invention.

Figure 6 is flow diagram for servicing long-lived transactions according to the

invention.

10

15

20

25

30

WO 99/46674 PCT/US99/05382

7

Detailed Description

The preferred embodiment of the present invention operates in the context of a
collaboration architecture as disclosed in commonly owned U.S. Patent Application
Serial No. 08/780,593, filed January 8, 1997, which is hereby incorporated by
reference. The preferred embodiment is used to provide a flexible transaction system
within collaborations as defined in the above-referenced application.

In general, the collaboration architecture supports the interaction of
independent applications which would be incompatible and could not directly interact
with one another on their own. An example of the structure of a collaboration
architecture is shown in FIG. 1. A collaboration architecture provides an interchange
server 100 for interaction between independent applications 102, 104, 106.
Interchange server 100 preferably operates between applications 102, 104, 106 where
applications 102, 104, 106 are connected to interchange server 100 by corresponding
connectors 108, 110, 112. Connectors 108, 110, 112 are then associated with
collaborations 114, 116 located within interchange server 100. Collaborations 114,
116 represent one or more processes. Each process is a transaction involving one or
more of applications 102, 104, 106. Thus, collaborations 114, 116 serve as common
meeting points for the interaction and exchange of data among applications 102, 104,
106.

For example, collaboration 114 may include a process which requires
receiving data from application 102 and sending a portion of that data to application
104 in a different format. Application 102 sends data into connector 108. Connector
108 transforms the data into an interchange format object and publishes an event
indicating the availability of the data. Collaboration 114 receives the object as a
subscriber to that event. Collaboration 114 performs its process and generates an
object to be sent to connector 110. Connector 110 transforms the object into an
appropriate format and initiates an appropriate function in application 104. In this
way, a process is accomplished which requires interaction from two applications 102,
104 which are independently incompatible.

A more generic architecture for processing asynchronous transactions
according to the invention is shown in FIG. 2. A distributed computing system 200

includes a server machine 220 and a client machine 250. Each of server machine 220

10

15

20

25

30

WO 99/46674 PCT/US99/05382

8

and the client machine 250 may include a central processing unit 202, memory 204,
disk subsystem 206, network subsystem 208, an operating system 210 and a
communications interface 212. Each provides the necessary services for application
programs to run. Memory 204 may include volatile and non-volatile random access
memory (RAM) as well as read only memory (ROM). Disk subsystem 206 in server
machine 220 may be used to store executable programs, for example business
applications (business logic) or collaborations, while disk subsystem 206 in client
machine 250 may be used to store applications 251 and a database 252. Network
subsystem 208 facilitates communications through communications interface 212
with applications executing on other server machines 220 and client machine 250.
The various client and server machines are connected by a network 260. The network
may be of the form of an intranet, internet, local area network or other similar device.

Server machine 220 may incorporate business logic 222 that is responsible for
carrying out certain predefined requests against application API's such that the nature
of a business problem is addressed. For the purposes of this example, server machine
220 provides requests to API 240 (in client machine 250) for communicating with an
application 251 executing on client machine 250. Server machine 220 includes a
transaction system 224, meta-data management service 221 and user interface 207.

Transaction system 224 provides support for asynchronous or long-lived
transactions and includes methods for setting and supporting isolation levels (service
levels). Transaction system 224 allows clients to request an appropriate level of
service that is needed. With each differing level of service provided, transaction
system 224 ensures the appropriate transactional and recovery semantics. Transaction
system 224 includes a state verification service 225, persistent service 226, saga
service 228 and recovery service 230.

State verification service 225 checks state information associated with objects
indicated by a transaction. Specifically, the state verification service is invoked at
runtime for a transaction. As each subtransaction step is executed, state verification
service 225 checks the state of each object affected by a given transaction step to
verify that the current state of the object is the same as the last time the same object
was seen in the transaction.

Persistent service 226 is responsible for ensuring the persistent state of

10

15

20

25

30

WO 99/46674 PCT/US99/05382

9

information. All other components of the transaction system rely on the correct
operation of the persistent service. All object state information needed to execute an
undo operation must be stored persistently at run time. Associated with persistent
service 226 is a repository 227 for logging object state information and compensating
transaction information associated with transactions executed in accordance with
business logic 222.

Saga service 228 is responsible for ensuring transaction correctness including
controlling the semantics of “begin transaction”, “commit transaction”, and “abort
transaction” operations. Saga service 228 creates a “saga” defined below) which
defines a transaction for interaction between applications executing on server and
client machines 220 and 250 respectively, along with an accompanying compensating
transaction for undoing the transaction in the event of an abort (transaction failure).

Recovery service 230 is responsible for ensuring the transactional correctness
after a failure. Furthermore, it is the responsibility of the recovery service to define
what types of failures are recoverable, and the methodology for recovery (i.e. roll
back versus roll forward).

The operation of each of these services is discussed in greater detail below.

Meta-data management service 224 includes methods for displaying service
requests on a graphical user interface (GUI) 212 of user interface 207. The service
requests prompt a user to define isolation level selections for use in processing
business logic 222 which may in turn be stored in repository 237. The processing of
business logic 222 and the use of the user defined isolation levels is discussed in
greater detail below.

Client machine 250 may execute an application 251 and initiate or respond to
transactions requiring the transfer of data to or from server machine 220. API240
provides a method of communicating requests for data retrieval, data insert, data
update, or data delete to application 251 running on client machine 250. For the
purposes of these discussions, data resident in the client, located, for example in
database 252, is to be manipulated by a transaction initiated by server machine 220.
API 240 does not provide any interfaces for interaction with any external transaction
coordinator. Thus it does not expose, for external use, any notion of "transactional"

behavior.

10

15

20

25

30

WO 99/46674 . PCT/US99/05382

10

A fundamental problem that is addressed by the transaction system disclosed
herein is to interact with a generic API (that does not expose transactional interfaces)
on behalf of business logic executing on the server such that the notion of
transactional work can be achieved. Transactional work is defined as a sequence of
operations that exhibit the ACID properties.

A transaction system that interacts with application APIs can not use exclusive
locking (because it is not exposed through the APIs), thus it must rely solely on the
functionality provided by the API to achieve the ACID properties.

In the invention, business logic 222 exposes a GUI that allows the user to
specify one of four separate transactional isolation levels: stringent, best effort,
minimal effort and none. The selection of the particular isolation level define
requirements for storage of state information as well as methodologies for responses
to failed subtransaction steps. From stringent on down, each subsequent level offers
the user a tradeoff between guarantees of the transactional ACID properties and
system performance. Less restrictive levels of service (minimal effort and none),
provide little or no guarantee of the ACID properties, however, less and less system
overhead is needed by the transaction system to execute these transactions (thus
providing greater degrees of system throughput). In order to understand the operation
of each of the levels of service, a sample transaction is defined.

Referring now to Figure 3a, business logic 222 (FIG. 2) may include one or
more transactions 300. A transaction 300 may include one or more subtransactions
302. Each subtransaction includes an object identifier 304 for identifying all business
objects that are to be affected by the subtransaction, a verb 306 describing the action
performed as part of the subtransaction and values 308 (or a business object) to be
used with the verb.

Transaction 300 has associated therewith a compensating saga chain 310
which may be executed in the event of failure of transaction 300. The saga chain 310
may include one or more compensating transactions 312. A one to one mapping of
subtransactions and compensating transactions may exist. Each compensating
transaction 312 includes an object identifier 314 for identifying all business objects
that are to be affected by the compenSating transaction, a compensating verb 316

describing the action performed as part of the compensating transaction and values

10

15

20

25

30

WO 99/46674 . PCT/US99/05382

11

318 (or business object) to be used with the compensating verb.

The content creation for compensating transactions is left to the developer of
the business logic. What particular steps form a compensating transaction is defined
by that developer. At the time for execution of a transaction (run-time), transaction
system 224 (particularly saga service 228) develops a “saga” defining the transaction
(and sub-transactions) and any associated compensating transaction as provided by
the business logic. A saga is a set of subtransaction steps with correlated
compensating transaction steps such that there exists one and only one atomic
compensating transaction that contains logic that will semantically undo the affects of
each subtransaction step. The saga forms a queue that records necessary information
associated with the transaction and associated compensating transaction steps so that
logical “undo” of a transaction may be implemented upon the detection of a failure
condition. Saga service 228 is used to create and modify saga.

At the time of execution (run-time), a transaction 300 may result in the
retrieval, update or other manipulation of a record (business object) stored in database
252. At each subtransaction step, a business object may be manipulated according to
the subtransaction verb. At the completion of each sub transaction step, the persistent
service may be invoked to maintain a listing of the subtransaction steps performed as
well as the state of any objects and the isolation level requested for the transaction
service.

Given the basic transaction architecture, the operation of the transaction
service including persistent service, saga service and recovery service for each level

of isolation may be described.

Stringent Level

The stringent isolation level is characterized by stringent entry criteria which
are defined before each subtransaction step (or a compensating transaction) is
executed. If the entry criteria fails, the step (or compensation) fails with an “isolation
fault”. If the fault has occurred at the subtransaction step, the transaction is aborted
and the recovery service begins compensation. If the fault occurred at the
compensation, a detailed trace event may be logged, and the saga is aborted. Ina

preferred embodiment, upon detection of a fault when executing a compensating

10

15

20

25

30

WO 99/46674 . PCT/US99/05382

12

transaction, the saga is aborted and request for human intervention is generated.

Stringent entry criteria is maintained as follows: as each subtransaction
executes, the subsequent state of all business objects affected is logged persistently as
part of the transaction context in, for example, repository 237. Upon entry to each
new subtransaction step, a test is performed. For each business object about to be
affected by this step (as indicated by the object identifier), a search is conducted in
the context of the transaction. More particularly, each affected business object is
checked to determine whether that particular business object has been operated on (by
previous subtransaction steps in a given transaction) in the current transaction
context. For all business objects that have been operated on, the current state of the
business object is checked against the last known state of the object in the transaction
context. If a match arises, then no state change has arisen since the last time the
business object was seen in the transaction context and the execution of the
subtransaction step may proceed. At the completion of each subtransaction step, the
business objects affected by the given transaction step are updated in the transaction
context with the latest versions. If no match arises, then an isolation failure is raised,
the transaction may be aborted and the recovery services invoked.

Figure 4a shows a flow control for a transaction configured with stringent
isolation service, where the transaction steps are as shown in Figure 4b along with
saga as shown in Figure 4c that would be produced by saga service 228.

Transaction 400 is initiated (450). The first subtransaction forward execution
step 402 associated with transaction 400 provides for the creation of a NewEmployee
object 404. Saga is initiated (452) and the first subtransaction step is executed (454).
A saga 420 is created in which a compensating record 406 for this subtransaction is
stored along with state information associated with all objects which are affected by
the compensating subtransaction (456).

A check is made to determine if more subtransaction steps are provided in the
transaction (458). If not, the transaction may be committed (459). If more transaction
steps are to be processed, a check (460) is made to determine for all business objects
affected by the next subtransaction step if the particular business object is known in
the transaction context. The check is performed at the API level as is discussed

below.

10

15

20

25

30

WO 99/46674 . PCT/US99/05382

13

By known, we mean that the business object has been previously affected by a
subtransaction provided as part of transaction 400. Note, the logic that must be
executed by the transaction service prior to execution of the subtransaction or any
compensating transaction. If no business objects are known (462), the subtransaction
step executes (464).

If business objects are known (462), then the existing condition for the
business object is compared to the last known state of the business object (466). The
motivation here is to ensure that no other transaction has modified this object between
the last time the executing transaction modified it and the present time. If this check
succeeds, then the subtransaction is executed at step 464. If not, an isolation fault is
identified (468) which will invoke the recovery service to begin execution of
compensating transactions at level n-1.

As each subtransaction is executed, saga is modified to log the compensating
transaction for the particular subtransaction that just was committed. Saga 420 is
arranged in levels. Each level corresponds to a committed subtransaction. A new
entry is added each time a subtransaction competes execution. In this way, when a
subtransaction fails, rollback may proceed from the last successful subtransaction
execution step. After (or concurrent with) the first transaction step 402 is committed,
then a compensating transaction is added to saga 420. In this example, the
compensating transaction for undoing the first transaction step committed in the
transaction includes the deletion of the newly created employee object (as indicated
by delete verb 410 and object 412). As steps of transaction 400 are committed,
entries to saga are made to allow for the systematic undoing of the subtransaction
steps. When all subtransactions complete the transaction is deemed committed and

the saga is discarded.

Subtransaction Locking and Object Checking

Locking at the subtransaction level may be required to ensure transactional
isolation until the subtransaction operation is completed. However, no locking arises
at the transaction level. Specifically, when a business object has been identified as
being affected by a given subtransaction, the record associated with the business

object may be locked for the period of time until the particular subtransaction step is

10

15

20

25

30

WO 99/46674 PCT/US99/05382

14

completed and all object data has been stored. This locking function is invoked
through an isolation level 3 read. Isolation level 3 reads result in the temporary
locking of data up and until any change associated with a given subtransaction step is
invoked. A lock is placed on the record until the subtransaction is completed.

State verification service 225 may be invoked to check the state of each object
affected in a subtransaction step. State verification service 225 may perform these
checks at server 220 or may utilize functionality in the APIs to perform the checking
function.

For example, during forward progress the transaction subsystem optimally
stores the necessary state information (using the repository) of an operation as
described above for each service level. The network subsystem (in conjunction with
the operating system) may send operation and state information to the API for each
subtransaction step. When the request arrives at the API, the API may use the state
information along with the operation to perform an atomic test and set operation. If
the atomic test and set operation is successful, a status of success is returned to the
server machine (and ultimately the business logic) otherwise a status of failure is
returned. If an operation fails at any time then the process of "undoing what was
done" is initiated through the recovery service.

API 240 may invoke an atomic test and set in application 251 to read a record
from database 252 and lock the record until an equivalence determination can be
made by the API. More specifically, the transaction system transfers to the AP the
last known state of the particular business object associated with the given record
along with any change information (as indicated by the particular subtransaction
step). If the last known state is consistent with the state of the object in the
transaction context, then an update to the record is performed. Else, no update is
performed by the API. Note that the locking that is performed is again only handled
on a subtransaction level. Accordingly long term locking of data records in database
252 is not required to support what may be long-lived transactions executing on
server machine 220.

When an isolation fault has been identified, compensating transactions as
indicated in the saga queue may be executed according to a first-in-last-out

methodology to roliback to a consistent state. For the stringent isolation level, the

10

15

20

25

30

WO 99/46674

PCT/US99/05382

15

rollback operation is performed in a similar fashion to the run-time execution. That
is, prior to the execution of each compensating transaction, the state of all business
objects affected by the given compensating transaction step is verified to determine if
it is known in the transaction context. If any object is known and its state does not
match the last know state as defined within the transaction context then an isolation
fault is raised. Isolation faults that arise in the conduct of a compensating transaction

result in the logging of a detailed trace event and may abort the saga.

Best Effort

The difference between the stringent isolation level and best effort is very
subtle. Best effort uses the same algorithm as stringent (i.e. before each
subtransaction step an equivalence check is made between the saved previous state of
the object and the object’s current state in the transaction context) with one notable
exception. When the equivalence check is made no attempt is made to check data
records using isolation level 3 reads. The objects are simply read from the database
(by the API), compared to the saved previous state and the operation proceeds if they
are equal. If the check fails, an undo operation is begun for the saga. Those of
ordinary skill will recognize that since the transaction system is not requiring
repeatable reads during the equivalence check, a window is opened that may result in
consistency problems in the data records. The intent here is to provide as much
consistency as possible in an environment where repeatable reads are either not

supported or not available from the APIs.

Minimal Effort

The difference between minimal effort and best effort isolation is that the
transaction service does not attempt any equivalence checks before executing
subtransaction steps or compensating transactions. The intent here is to provide a
better performing isolation paradigm for those transaction mixes that are known to be
commutative. However, using this paradigm does require that the transaction
designers know the specific semantics of their transactions. Again, if a subtransaction
step fails (i.e. a negative acknowledgment is received from the application) then the

transaction service may invoke the undo semantics associated with the saga. For each

10

15

20

25

30

WO 99/46674 PCT/US99/05382

16

subtransaction step executed successfully up till the point of failure, a compensating

transaction may be executed.

No Effort

The no effort isolation paradigm really doesn’t provide isolation at all. It
simply provides that when a subtransaction step fails, a detailed event trace record is
logged such that human intervention (and reconciliation of the data) is possible and
the transaction stops. It’s important to note that in this paradigm, when a
subtransaction step fails, the saga stops and does not attempt rollback. Rather the

failure event is logged and human intervention is requested.

Forward Progress and the Persistent Service

After the user has chosen an isolation level and the business logic begins
execution, the persistent service associated with transaction system works to track
object state information before the network subsystem is utilized to execute
functionality from the application APL

As each operation is executed using the API, the transaction system intervenes
to add state information such that isolation (if requested) can be maintained during
forward transactional progress (as well as backward progress/rollback if it becomes
necessary). This is accomplished by storing the state of each object affected by a
subtransaction or compensating transaction step.

Figure 5 depicts the Transaction Context 500. The transaction context defines
a persistent structure that is used by the transaction system to track the necessary state
information and compensation information needed to undo or recover an in progress
transaction. In the preferred embodiment, a parallel image of the context is stored in
memory to be referenced at run time.

The context includes a collaboration name 502, thread ID 504, isolation

‘configuration 506, index of current subtransaction step 508, compensation records

510, subtransaction step records 512 and saga skeleton 514. The collaboration
name 502 refers to the name of the collaboration (transaction) that uses the particular
transactional context. The thread ID 504 represents the instance of the transaction

that is executing. Note the thread ID uniquely identifies the transaction (or the

10

15

20

25

30

WO 99/46674 PCT/US99/05382

17

instance of the collaboration) and not the thread Id of the operating system that is
executing the particular transaction. Using the collaboration name and thread id, the
transaction service may locate the persistent transaction context for an instance of a
transaction. The isolation configuration 506 identifies the isolation level that has
been requested by the user. The index of current subtransaction step 508 indicates the
currently executing subtransaction step. This information is required by the recovery
service. Compensation records 510 provide the semantic undo of a subtransaction
step. Each compensation record consists of a business object (important to note here
is that the state of the business object is filled in by the persistent service during each
subtransaction step execution), and a verb. As far as an APl is concerned, a
compensation operation is simply a business object with a verb, much the same as any
other operation.

Subtransaction step records 512 are used only for transactions using best effort
or stringent isolation levels. These records represent the state of the business objects
as we have last seen them. Therefore, before executing a subtransaction step, the
transaction service checks the object to see that its state matches the state saved in the
subtransaction step record. Saga skeleton 514 is an ordered list of records.
Each record represents (at least) a compensation step that corresponds to a unique
subtransaction step within the transaction. The saga skeleton includes names of any
affected business objects, the corresponding compensation verb, and the state index of
the subtransaction step that corresponds to this compensation record. Space may be
reserved in the transaction context for storage of the runtime business object state as

developed as a result of the execution of an associated subtransaction.

SAGA

Saga is created and modified by saga service 228 (FIG. 2). The saga includes
compensating transaction steps including a pointer (or subtransaction index) 518, the
current state of all business objects that will be affected by the step 520, the verb 516
to be used for compensation and the values (or business object) 515 to be used with
the compensation verb. The pointer 518 points to the associated subtransaction step
that has been previously executed for which the compensating transaction defines an

“undo” operation. If an object has not been modified by any previous steps in the

10

15

20

25

30

WO 99/46674 PCT/US99/05382

18

saga then the current state is its state from the application.

Recovery Service

The recovery portion of the transaction service is required to execute
compensating transactions on behalf of an aborted saga (which in turn is on behalf of
an executing transaction). Recovery is also responsible for executing the appropriate
logic to ensure the correct isolation level semantics when executing compensating
transactions(as requested by the user). Recovery service oversees the execution of the
compensating transactions defined by the saga. The recovery execution may be
performed at the same isolation level as the execution of the original underlying
transaction. Accordingly, stringent isolation level 3 locking or repeatable reads may
be used in the rollback operations if stringent isolation level is selected.
Alternatively, a different isolation level may be selected by the user specifically for
recovery, if needed.

Rollback may include the execution of some or all of the compensating
transactions stored in saga. Rollback may stop at a last (or user selected) persistent
state and terminate. Alternatively, a contingency service may be provided for
allowing continuing the forward transaction progress after the completion of the
recovery steps. The contingency service may include jumping forward to continue the
forward progress of a transaction after an isolation fault has been identified. For
example, after an initial isolation fault is received and rollback commences, a rollback
may proceed until the last persistent state (for the database) is achieved. At that point,
the contingency service may jump forward to another location in the transaction and
commence forward execution again. Rollback and contingency options are user
definable and may be uniquely programmed by the developer in order to achieve the
particular business function desired.

Referring now to FIG. 6, a flow diagram 600 for processing transactions by a
transaction system according to the invention is shown. A user is prompted to define
desired (the “requested level”) and minimum isolation levels associated with a given
business logic function to be performed (602). The requested service level is checked
against each API invoked by a given transaction to determine if the requested level of

support is available (604). If the requested level is available, the isolation level is

10

15

20

25

30

WO 99/46674 PCT/US99/05382

19

stored in the repository (606). If the requested level is not supported, then the lowest
common level for the connectors is determined (607). If the lowest common level is
below the minimum requested level (608), then a fault is recorded and the
collaboration is not allowed to be executed (609). Else, the lowest common level is
recorded as the isolation level in the repository. The particular transaction may be
transitioned to the run-time mode and transactions may be executed in support of the
collaboration.

At run time, transactions associated with the collaboration are executed (610).
At each transaction step a check is made to determine the relevant isolation level
designated, then the subtransaction is executed in accordance with the isolation level
(612). In the event, isolation faults are identified (614), then the transaction may be
rolled back (616) or stopped (618) depending on the isolation level. The rollback
includes checking for the level of isolation, and executing the compensating
subtransactions according to the isolation level for the transaction. Otherwise, the

transaction continues until committing (622).

Implementation

The invention may be implemented in hardware of software, or a combination
of both. However the invention preferably is implemented in computer programs
executing on programmable computers each comprising a processor, a data storage
system (including volatile and nonvolatile memory and/or storage elements), at least
one input device, and at least one output device. Program code is applied to input
data to perform the functions described herein and generate output information. The
output information is applied to one or more output devices, in known fashion.

Each program is preferably implemented in a high level procedural or object
oriented programming language to communicate with a computer system. However,
the programs can be implemented in assembly or machine language, if desired. In
any case, the language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage media or device
(e.g., ROM, CDROM, or magnetic diskette) readable by a general or special purpose
programmable computer, for configuring and operating the computer when the

storage media or device is read by the

10

WO 99/46674 PCT/US99/05382

20

computer to perform the procedures described herein. The inventive system may also
be considered to be implemented as a computer-readable storage medium, configured
with a computer program, where the storage medium so configured causes a computer
to operate in a specific and predefined manner to perform the functions described
herein.

A preferred embodiment of the present invention has been described, along
with some variations. Nevertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of the invention.
Accordingly, it is to be understood that the invention is not to be limited by the

specific illustrated embodiments, but only by the scope of the appended claims.

10

15

20

25

30

WO 99/46674 PCT/US99/05382

21

WHAT IS CLAIMED IS:

1. A transaction system implemented on a server machine for maintaining
consistency in an information system supporting asynchronous transactions, the
information system including a database shared among a plurality of users and
implemented on a client machine, the transaction system invoked at run-time fora
transaction where the transaction includes one or more subtransaction steps, the
transaction system including:

a graphical user interface for receiving a user defined isolation level selection
for executing a transaction between the server machine and the database or
application;

a persistent service for storing object state information for each object affected
in the execution of each subtransaction step; and

a state verification service for verifying the state of each object affected by a
subtransaction step to verify the state of the object is the same as a last time the object

was seen in the transaction.

2. The transaction system of claim 1 wherein the isolation level selection
varies across a range from consistent service to continuous service where consistent
service meets all ACID properties at a subtransaction level and continuous service
provides no guarantees of any of the ACID properties in the execution ofa

subtransaction.

3. The transaction system of claim 2 where the consistent service
includes isolation level 3 reads for guaranteeing consistency of reads over a time

period in which each subtransaction is executed.

4. The transaction system of claim 1 wherein the isolation level selection
includes stringent isolation service and no isolation service, the stringent isolation
service providing compliance to all ACID transactional properties at the
subtransaction level and the no isolation service providing no guarantees of any ACID

properties in the execution of a subtransaction.

10

15

20

25

30

WO 99/46674 PCT/US99/05382

22

5. The transaction system of claim 4 further including a best effort
isolation service where both the best effort service and the stringent service provide
compliance to all ACID properties but the stringent service includes isolation level 3

reads to guarantee consistency over an entire time a subtransaction step is executing.

6. The transaction system of claim 5 further including a minimal effort
isolation service where the state verification service is disabled and no object state

checks are performed prior to execution of a subtransaction step.

7. The transaction system of claim 4 further including a no effort
isolation level selection which results execution of a transaction until a consistency

error is returned during subtransaction processing.

8. The transaction system of claim 1 further including

a saga service for maintaining a linked list of subtransaction records and
compensating transaction records as a transaction is executed; and

a recovery service for implementing compensating transactions upon the

occurrence of a fault in a forward progress of the execution of a transaction.

9. A method implemented on a server machine for maintaining
consistency in an information system, the information system including a database
shared among a plurality of users and implemented on a client machine, the method
invoked at run-time for a transaction where the transaction includes one or more
subtransaction steps, the method including:

selecting a predefined service level selection for executing a transaction
between the server machine and the database applications;

storing object state information for each object affected in the execution of
each subtransaction step; and

checking a state of each object affected by a subtransaction step to verify the
state of the object is the same as a last time the object was seen in the transaction and
if the state does not match a last known state then stopping forward execution

progress for the transaction.

10

15

WO 99/46674 PCT/US99/05382

23

10. A collaboration implemented on a server machine including business
logic for directing the interaction of independent applications, the collaboration
comprising:

a plurality of connectors for communicating with a like plurality of
applications;

an interchange server including an application collaboration module and
service module, the application collaboration module defining the inter-operability
between two or more applications and including a transaction having one or more
subtransaction steps for delivering data to one or more connectors for transfer to an
associated application,

the service module including a transaction system for maintaining consistency
in databases managed by the applications, the transaction system including a
graphical user interface for configuring a user defined isolation level selection for
characterizing an isolation level to be maintained during transaction execution, a
persistent service for storing object state information for each object affected in the
execution of each subtransaction step and a state verification service for verifying the
state of each object affected by a subtransaction step to verify the state of the object is

the same as a last time the object was seen in the transaction.

WO 99/46674

1/6

PCT/US99/05382

~ 100
-
INTERCHANGE SERVER A
114 116
[COLLABORATIOIj (COLLABORATIOI\j
~108 ~ 110 112
\—| CONNECTOR CONNECTOR CONNECTOR —
1
v 102 104 I 106
APPLICATIOﬂ E’PUCATION APPLICATION
/300 /370
OBJECT OBJECT COMPENSATING
ID VERB VALUE D VERB VALUE
302 312
OBJ VERB | VALUE f OBJ | VERB VALUE f
f302 f312
OBJ VERB | VALUE OBJ | VERB VALUE
f302 f312
OBJ VERB | VALUE OBJ | VERB VALUE
f302 f312
OBJ VERB | VALUE OBJ | VERB VALUE
f302 f312
OBJ VERB | VALUE OBJ | VERB VALUE
f302 312
OBJ VERB | VALUE OBJ | VERB VALUE
k304 L306 L308 K314 k316 k318
FIG._3a FIG._3b

SUBSTITUTE SHEET (RULE 26)

WO 99/46674

200 \‘

2/

6

PCT/US99/05382

SERVER MACHINE

— 202 204 OPERATING SYSTEM 210
NETWORK SUBSYSTEM 208
MEMORY || BUSINESS LOGIC 222
' META-DATA MANAGEMENT SERVICE 221
TRANSACTION SYSTEM 224
/207 PERSISTENT SERVICE 226
SAGA SERVICE 228
QU (22 RECOVERY SERVICE 230
STATE VERIFICATION SERVICE 225

USER
COMMUNICATIONS || REPOSITORY 237
o3 TRANSACTION CONTE 238
SAGA 239

NETWORK INTERCONNECTIVITY

(SWITCHES, etc)

SERVER 220

N\~ 260
202 CLIENT MACHINE
cru 212 /204
COMMUNICATIONS
INTERFACE MEMORY
]]

/206

OPERATING SYSTEM 210

NETWORK SUBSYSTEM 208

API 240

APPLICATION 251

DATABASE 252

 SUBSTITUTE SHEET (RULE 26)

WO 99/46674 PCT/US99/05382

3/6
450
BEGIN
TRANSACTION
l 452
INITIATE SAGA
l 454
EXECUTE
SUBTRANSACTION
STORE STATE OF
OBJECTS AND
MODIFY SAGA
ANY CHECK STATE OF
NO MORE YES | OBJECTS FOR THE
| SUBTRANSACTIONS ™ SUBTRANSACTION
?/ STEP
462
NO OBJECTS
KNOWN
?
404~y 466
L. EXECUTE
SUBTRANSACTION
STEP
~ 459 468
ISOLATION FAULT
END/COMMIT
TRANSACTION INVOKE RECOVERY
FIG._4a

SUBSTITUTE SHEET (TULE 26)

WO 99/46674 ' PCT/US99/05382

4/6
420
/400 /
COMPENSATING ,
j ya 404 f 402 LEVEL VERB OBJECTNVALUE 406
CREATE NewEmployee | > 1 | DELETE 410 | NeyEmPployee
SUBTRANSACTION A > 2 | UNDOA
SUBTRANSACTION B > 3 | UNDOB
MODIFY SALARY OF SALARY
NewEmpioyee > 4 | CHANGE NewEmployee
SUBTRANSACTION C —> 5 |UNDOC
COMMIT SUBTRANSACTION
FIG._4b FIG._4c

SUBSTITUTE SHEET (RULE 26)

WO 99/46674 PCT/US99/05382

5/6
COLLABORATION NAME 502 |)
THREAD ID OF COLLABORATION 5
INSTANCE 204
ISOLATION CONFIGURATION 506
INDEX OF CURRENT 508
SUBTRANSACTION STEP 208
510 |
\\ COMPENSATION } SUBTRANSACTION // 512
RECORDS STEP RECORDS -
515\ :
516~ BUSINESS oBJECT | | [BUSINESS OBJECT
518~ NAME n NAME
| COMPENSATION VERB l
STATE INDEX :
|
— |
|
RUNTIME :
BUSINESS , >
OBJECT BUSINESS OBJECT | | [BUSINESS OBJECT
STATE NAME l NAME SAGA
520
COMPENSATION VERB| | SKELETON
STATE INDEX |
|
|
|
|
|
|
BUSINESS OBJECT : BUSINESS OBJECT
NAME | NAME
COMPENSATION VERB| |
STATE INDEX |
|
|
|
|
|
|
|
| J

SUBSTITUTE SHEET (RULE 26)

WO 99/46674 v PCT/US99/05382

6/6
602
USER DEFINES
REQUESTED AND
MINIMUM
ISOLATION LEVELS
604 697
DETERMINE THE
REQUESTED “_NO LOWEST COMMON
LEVEL SUPPORTED ISOLATION
LEVEL

608

LOWEST
LEVEL ABOVE
THE M!}NIMUM

LOG ISOLATION YES

LEVEL

609

l 610 FAIL

EXECUTE
TRANSACTION

l /‘612

618
EXECUTE EACH a

SUBTRANSACTION
STEP IN LOG THE EVENT

ACCORDANCE AND CONTINUE

WITH THE LOGGED
ISOLATION LEVEL

615

ANY

ISOLATION

FAULTS
?

“NO EFFORT”

LEVEL OF

ISOLATION
?

END/COMMIT ROLLBACK

FIG._6

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/05382

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6)

US CL :707/10, 103, 104

-GO6F 9/00, 17/30, 15/40, 12/00, 17/00, 12/14, 7/00, 15/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s. 707/10, 103, 104, 8

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, IEEE(ONLINE), NPL(Non Patent Literature).

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y,P US 5,864,679 A (KANAI et al) 26 January 1999, col. 6, lines 15-| 1, 9, 10
28.

Y US 5,212,788 A (LOMET et al) 18 May 1993, col. 6, lines 15-61.1 1,9, 10

Y,P US 5,758,149 A (BIERMA et al), 26 May 1998, col. 2, line 53-col. | 1, 9, 10
3, line 65.

Y US 5,280,612 A (LORIE et al) 18 January 1994, col. 4, line 57-col. | 1, 9, 10
7, line 9.

Y,P US 5,781,910 A (GOSTANIAN et al) 14 July 1998, col. 5, line 36-1 1,910
col. 7, line 21.

Y US 5,644,768 A (PERIWAL et al) 01 July 1997, col. 3, line 9-col.| 1,910
4, line 5.

Purther documenis are listed in the continuation of Box C.

D See patent family annex.

. Q ial

later document published after the international filing date or priority

P gories of cited do ts: T
. . . date snd not in conflict with the application but cited to understand
d':;\:n:’efn; ;:’t;l:‘;ﬂf :l: 5::::31 state of the art which is not considered the principle or theory underlying the invention
. X" document of particular relevance; the claimed invention cannot be
calier document published on or fter the international filing date considered novel or cannot be considered to involve an inventive step
document which may throw doubts on priority claim(s) or which is when the document is taken slone
cited to blish the publication date of another citation or other
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
mesns being obvious to s person skilled in the art
document published prior to the international filing date but later than ~ »g» document member of the same patent family

pe
the priority date claimed

Date of the actual completion of the international search

06 MAY 1999

Date of mailing of the international search report

26 MAY 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

| F.~ e No. (703) 305-3230

Authorized officer .
Thomas G. Black %

Telephone No.

703) 305-9707

Porm PCT/ISA/210 (second sheet)(July 1992) x

INTERNATIONAL SEARCH REPORT International application No.

PCT/US99/05382
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y KRAMER et al. Applications of transaction processing for session |1, 9, 10

management in multi-media information networks. Global
Telecommunications Conference, 1992. Conference

Record., GLOBECOM '92. Communication for Global Users.,
1EEE. pages 764-769.

Y BYUN et al. Nonblocking two-phase commit protocol to avoid 1,910
unnecessary transaction abort for distributed systems. Journal of
systems architecture, vol. 43, Issue: 1-5, March 1997. pages 245-
254,

Y LAM et al. Preemptive transaction scheduling in hard real-time 1,9,10
database systems. Journal of System Architecture, Vol. 43, Issue:
9, August 1997, pages 525-637.

Porm PCT/ISA/210 (continuation of second sheet)(July 1992) x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

