
(19) United States
US 20020087500A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0087500A1
BERKOWITZ. et al. (43) Pub. Date: Jul. 4, 2002

(54) IN-MEMORY DATABASE SYSTEM

(76) Inventors: BRIAN T. BERKOWITZ, SEATTLE,
WA (US); SREENIVAS SIMHADRI,
ISSAQUAH, WA (US); PETER A.
CHRISTOFFERSON, KENMORE,
WA (US); GUNNAR MEIN,
ISSAQUAH, WA (US)

Correspondence Address:
KLARQUIST SPARKMAN CAMPBELL
LEIGH & WHNSTON LLP
121 S.W. SALMON STREET
SUTE 1600
PORTLAND, OR 97204 (US)

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/135,917

(52) U.S. Cl. .. 707/1

(57) ABSTRACT

An in-memory database System uses a shared memory to
cache records and keys read from a database and controls the
updating of the records and keys through a database man
ager process. When a transaction performs an update, the
original, unmodified data is preserved in the shared memory,
the new data is written to the shared memory, and a
look-aside table for the transaction records the changes. A
transaction performs read-only access to the shared memory
using its own context while a versioning Scheme based on
the look-aside tables ensures a read-committed isolation
level view of the original, unmodified data until the modi
fying transaction commits the update. The database manager
is responsible for writing the new data into the shared
memory and for maintaining the look-aside tables for all
transaction which have made modifications to the data in the
shared memory. The database manager also writes commit
ted changes to the database and performs rollback on
uncommitted changes in the shared memory using the

(22) Filed: Aug. 18, 1998 entries in the look-aside table for the committing/aborting
transaction. The shared memory is divided into logical pages

Publication Classification and short duration page latches are employed to maintain
consistency on the page while a transaction or the database

(51) Int. Cl." ... G06F 7700 manager is reading or Writing data on the page.

- *
systEMMEMORY ! 47

- - - - - - - - - - - -

(ROM) 24 -1 22
MONTOR Bios 26 21

- - - - - - - - - - - -
s ow---

OPERAING 5 PRESN VIDEO
SYSTEM ADAPTER
------- --2O

| APPLICATION 56 23 PROGRAMS K SYSTEM BUS
am

OTHER, 57 J 32 ! 33 J4 46
PROGRAM i
MODULES HARD DSK MAGNETIC DISK OPTICAL SERIAL NETWORK LOCAL AREA NETWORK

I DRIVE DRIVE DRIVE PORT INTERFACE
| procray 8 || INTERFACE INTERFACE INTERFACE INTERFACE
| DAIA 24 E}- | in 27 E-28 E-30

PROGRAM
DATA

MODULES

REMOTE
COMPUTER

APPLICATION - - - - -
56 Ross 5O

49

US 2002/0087500 A1 Jul. 4, 2002. Sheet 1 of 14 Patent Application Publication

XÀJONALEN WENW TWOOT

SETOC]OW

S£18 WEIS?S

Patent Application Publication Jul. 4, 2002 Sheet 2 of 14 US 2002/0087500 A1

US 2002/0087500 A1 Jul. 4, 2002. Sheet 3 of 14 Patent Application Publication

|

Patent Application Publication Jul. 4, 2002. Sheet 4 of 14 US 2002/0087500 A1

:

Patent Application Publication Jul. 4, 2002. Sheet 5 of 14 US 2002/0087500 A1

4 of

Patent Application Publication Jul. 4, 2002. Sheet 6 of 14 US 2002/0087500 A1

p 74.6A

Patent Application Publication Jul. 4, 2002. Sheet 7 of 14 US 2002/0087500 A1

F7 4, 56

Patent Application Publication Jul. 4, 2002. Sheet 8 of 14 US 2002/0087500 A1

6ASS

Patent Application Publication Jul. 4, 2002. Sheet 9 of 14 US 2002/0087500 A1

Patent Application Publication Jul. 4, 2002. Sheet 10 of 14 US 2002/0087500 A1

InSe?ake
feae fact
gay J &tz

Patent Application Publication Jul. 4, 2002. Sheet 11 of 14 US 2002/0087500 A1

Patent Application Publication Jul. 4, 2002. Sheet 12 of 14 US 2002/0087500 A1

W a

o
1Kea-2
er-21 fizer

oic- aside
15-2ue

o 3

Patent Application Publication Jul. 4, 2002 Sheet 13 of 14 US 2002/0087500 A1

N A400 2- foc)3 Jo of

Patent Application Publication Jul. 4, 2002. Sheet 14 of 14 US 2002/0087500 A1

2 ecs

TableSize

F/4. / 2

f 3, od
f 354 w3.o.4

M3ar 73ce

13.
TableSize

to 3.

F-76 / 3

US 2002/0O87500 A1

N-MEMORY DATABASE SYSTEM

FIELD OF THE INVENTION

0001. This invention relates generally to databases, and
more particularly to enabling multiple concurrent read-only
access to database records.

COPYRIGHT NOTICE/PERMISSION

0002 A portion of the disclosure of this patent document
contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever. The following notice applies to the Soft
ware and data as described below and in the drawing hereto:
Copyright(R) 1997, Microsoft Corporation, All Rights
Reserved.

BACKGROUND OF THE INVENTION

0.003 Existing database systems employ a database man
ager that control reads and writes on the database records to
guarantee consistency of the data. A transaction issues a
record request to the database manager which is executed by
Switching between the context for the transaction and that
for the database manager, typically a very expensive opera
tion in terms of processing cycles. The reverse context
Switch is performed when the database manager completes
the request and returns data to the transaction. However,
when a transaction is only reading data and not making
changes, the context Switch introduces unnecessary over
head and Slows the processing of the read-only transaction.
0004. When the database manager immediately changes
the data in the database in response to an update request, the
database manager must reverse the changes using a rollback
mechanism if the requesting transaction aborts. Therefore, in
order to present a consistent view of the data to another
transaction, the database manager either denies access to the
changed data until the modifying transaction commits the
changes, or permits the other transaction access to the data
but must also rollback the other transaction if the modifying
transaction aborts. The processing of read-only transactions
is thus slowed when they execute concurrently with trans
actions that update common data.
0005 Therefore, a database system is needed which
permits read-only transactions direct access to data and
which presents a consistent view of data to a transaction
without the complications involved with standard rollback
procedures.

SUMMARY OF THE INVENTION

0006 The above-mentioned shortcomings, disadvan
tages and problems are addressed by the present invention,
which will be understood by reading and Studying the
following Specification.
0007 An in-memory database system uses a shared
memory to cache records and keys read from a database and
controls the updating of the records and keys through a
database manager process. When a transaction performs an
update, the original, unmodified data is preserved in the
shared memory, the new data is written to the shared

Jul. 4, 2002

memory, and a look-aside table for the transaction records
the changes. A transaction performs read-only access to the
shared memory using its own context while a versioning
Scheme based on the look-aside tables ensures a read
committed isolation level view of the original, unmodified
data until the modifying transaction commits the update. The
database manager is responsible for writing the new data
into the shared memory and for maintaining the look-aside
tables for all transaction which have made modifications to
the data in the shared memory. The database manager also
writes committed changes to the database and performs
rollback on uncommitted changes in the shared memory
using the entries in the look-aside table for the committing/
aborting transaction. The shared memory is divided into
logical pages and short duration page latches are employed
to maintain consistency on the page while a transaction or
the database manager is reading or writing data on the page.
0008. A method of controlling access to database records
which are Stored in memory shared among multiple pro
ceSSes is described as creating record and/or indeX entries in
a look-aside table, preserving the original data in the shared
memory, and allowing a process access to the modified data
if a corresponding record and/or indeX entries exists in the
look-aside table for the process. The method also performs
rollback and abort processing using the look-aside table.
0009. The in-memory database system is described as
having a plurality of clients which manipulate data, a shared
memory for caching the data, an in-memory database man
ager that creates the look-aside table entries and writes
changes to the shared memory. The details of data structures
and page latches used by the in-memory database System are
given. A particular implementation of the in-memory data
base System is also described.
0010. The present invention describes systems, clients,
Servers, methods, and computer-readable media of varying
Scope. In addition to the aspects and advantages of the
present invention described in this Summary, further aspects
and advantages of the invention will become apparent by
reference to the drawings and by reading the detailed
description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 shows a diagram of the hardware and
operating environment in conjunction with which embodi
ments of the invention may be practiced;
0012 FIG. 2 is a diagram illustrating a system-level
Overview of an exemplary embodiment of the invention;
0013 FIGS. 3A and 3B are time line diagrams illustrat
ing the interactions of two client processes operating in the
exemplary embodiment shown in FIG. 2;
0014 FIG. 4 is a flowchart of a method to be performed
by a client process according to an exemplary embodiment
of the invention;

0.015 FIGS.5A, 5B, 5C, 6, 7, 8 and 9 are flowcharts of
methods to be performed by a database manager process
according to an exemplary embodiment of the invention;
0016 FIG. 10 is a diagram of a look-aside data structure
for use in an exemplary implementation of the invention;
0017 FIG. 11 is diagram of a transaction data structure
for use in an exemplary implementation of the invention;

US 2002/0O87500 A1

0.018 FIG. 12 is a diagram of a single level hash table
data Structure for use in an exemplary implementation of the
invention; and
0019 FIG. 13 is a diagram of a two level hash table data
Structure for use in an exemplary implementation of the
invention.

DETAILED DESCRIPTION OF THE
INVENTION

0020. In the following detailed description of exemplary
embodiments of the invention, reference is made to the
accompanying drawings which form a part hereof, and in
which is shown by way of illustration Specific exemplary
embodiments in which the invention may be practiced.
These embodiments are described in Sufficient detail to
enable those skilled in the art to practice the invention, and
it is to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the Spirit or Scope of
the present invention. The following detailed description is,
therefore, not to be taken in a limiting Sense, and the Scope
of the present invention is defined only by the appended
claims.

0021. The detailed description is divided into five sec
tions. In the first Section, the hardware and the operating
environment in conjunction with which embodiments of the
invention may be practiced are described. In the Second
Section, a System level overview of the invention is pre
Sented. In the third section, methods for an exemplary
embodiment of the invention are provided. In the fourth
Section, a particular implementation of the invention is
described that operates as part of Microsoft Corp.’s Distrib
uted Transaction Coordinator. Finally, in the fifth section, a
conclusion of the detailed description is provided.

Hardware and Operating Environment
0022 FIG. 1 is a diagram of the hardware and operating
environment in conjunction with which embodiments of the
invention may be practiced. The description of FIG. 1 is
intended to provide a brief, general description of Suitable
computer hardware and a Suitable computing environment in
conjunction with which the invention may be implemented.
Although not required, the invention is described in the
general context of computer-executable instructions, Such as
program modules, being executed by a computer, Such as a
personal computer. Generally, program modules include
routines, programs, objects, components, data structures,
etc., that perform particular tasks or implement particular
abstract data types.
0023 Moreover, those skilled in the art will appreciate
that the invention may be practiced with other computer
System configurations, including hand-held devices, multi
processor Systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main
frame computers, and the like. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote memory Storage devices.
0024. The exemplary hardware and operating environ
ment of FIG. 1 for implementing the invention includes a

Jul. 4, 2002

general purpose computing device in the form of a computer
20, including a processing unit 21, a System memory 22, and
a System buS 23 that operatively couples various System
components include the System memory to the processing
unit 21. There may be only one or there may be more than
one processing unit 21, Such that the processor of computer
20 comprises a single central-processing unit (CPU), or a
plurality of processing units, commonly referred to as a
parallel processing environment. The computer 20 may be a
conventional computer, a distributed computer, or any other
type of computer; the invention is not So limited.

0025 The system bus 23 may be any of several types of
bus structures including a memory bus or memory control
ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. The System memory may also be
referred to as Simply the memory, and includes read only
memory (ROM) 24 and random access memory (RAM) 25.
a basic input/output System (BIOS) 26, containing the basic
routines that help to transfer information between elements
within the computer 20, Such as during Start-up, is Stored in
ROM 24. The computer 20 further includes a hard disk drive
27 for reading from and writing to a hard disk, not shown,
a magnetic disk drive 28 for reading from or writing to a
removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 Such
as a CD ROM or other optical media.

0026. The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter
face 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile Storage of computer-readable instruc
tions, data Structures, program modules and other data for
the computer 20. It should be appreciated by those skilled in
the art that any type of computer-readable media which can
Store data that is accessible by a computer, Such as magnetic
cassettes, flash memory cards, digital Video disks, Bernoulli
cartridges, random access memories (RAMs), read only
memories (ROMs), and the like, may be used in the exem
plary operating environment.

0027. A number of program modules may be stored on
the hard disk, magnetic disk 29, optical disk 31, ROM 24, or
RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37, and
program data 38. A user may enter commands and informa
tion into the personal computer 20 through input devices
such as a keyboard 40 and pointing device 42. Other input
devices (not shown) may include a microphone, joystick,
game pad, Satellite dish, Scanner, or the like. These and other
input devices are often connected to the processing unit 21
through a Serial port interface 46 that is coupled to the
System bus, but may be connected by other interfaces, Such
as a parallel port, game port, or a universal Serial bus (USB).
A monitor 47 or other type of display device is also
connected to the System buS 23 via an interface, Such as a
Video adapter 48. In addition to the monitor, computers
typically include other peripheral output devices (not
shown), Such as Speakers and printers.
0028. The computer 20 may operate in a networked
environment using logical connections to one or more
remote computers, Such as remote computer 49. These
logical connections are achieved by a communication device

US 2002/0O87500 A1

coupled to or a part of the computer 20, the invention is not
limited to a particular type of communications device. The
remote computer 49 may be another computer, a Server, a
router, a network PC, a client, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the computer 20,
although only a memory Storage device 50 has been illus
trated in FIG. 1. The logical connections depicted in FIG.
1 include a local-area network (LAN) 51 and a wide-area
network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer net
Works, intranets and the Internet.
0029 When used in a LAN-networking environment, the
computer 20 is connected to the local network 51 through a
network interface or adapter 53, which is one type of
communications device. When used in a WAN-networking
environment, the computer 20 typically includes a modem
54, a type of communications device, or any other type of
communications device for establishing communications
over the wide area network 52, Such as the Internet. The
modem 54, which may be internal or external, is connected
to the system bus 23 via the serial port interface 46. In a
networked environment, program modules depicted relative
to the personal computer 20, or portions thereof, may be
Stored in the remote memory Storage device. It is appreciated
that the network connections shown are exemplary and other
means of and communications devices for establishing a
communications link between the computerS may be used.
0030 The hardware and operating environment in con
junction with which embodiments of the invention may be
practiced has been described. The computer in conjunction
with which embodiments of the invention may be practiced
may be a conventional computer, a distributed computer, or
any other type of computer, the invention is not So limited.
Such a computer typically includes one or more processing
units as its processor, and a computer-readable medium Such
as a memory. The computer may also include a communi
cations device Such as a network adapter or a modem, So that
it is able to communicatively couple other computers.

System Level Overview
0.031) A system level overview of the operation of an
exemplary embodiment of the invention is described by
reference to FIG. 2. As shown in FIG. 2, an in-memory
database System 200 comprises an in-memory database
(IMDB) manager 201 and shared memory 202 in a computer
such as local computer 20 in FIG. 1. The IMDB manager
201 is responsible for reading and writing records from a
database 220 into and from shared memory 202 on behalf of
a client process 210. Database 220 can be resident on the
Same computer as the in-memory database System 200 or
can be located on a different computer Such as remote
computer 49 in FIG. 1. The client process 210 can reside on
the same computer as the in-memory database System 200 or
can execute on a different computer as long as the client
process 210 can address the shared memory 202.
0.032 Because the client process 210 can address the
shared memory 202 through its context, the client proceSS
can directly access the records in Shared memory 202
without having to call the IMDB manager. In the exemplary
embodiment, the client process 210 has read-only access to
the records and calls the IMDB manager to modify or delete
an existing record or to create a new record.

Jul. 4, 2002

0033 FIG. 3A is a time line diagram illustrating the
interactions of two client processes in accordance with the
exemplary embodiment of the invention. Each client process
is represented by a database transaction which performs
operations on database records. In FIG. 3A, the two data
base transaction access the same database employee record
for an employee named “Smith.” The primary key for the
employee records is the employee number which in the case
of employee Smith is “123.” The actions described below
are divided among the transactions for the client processes
and the IMDB manager 201 when one client process per
forms modifies a database record.

0034) Transaction1 executes a retrieve command on the
employee record “123' which returns copy 301 of the
employee record from shared memory 202 at time mark A1.
If a copy of the record is not already in memory, the IMDB
manager 201 reads a copy from the database 220 into shared
memory 202. Transaction1 modifies the last name of the
employee from “Smith' to “Jones' at time mark B1.
Because the name change has not yet been committed by
transaction1, the modified record is not written back to the
database. Instead, the IMDB manager 201 creates a modified
copy 303 of the record in shared memory and sets a
“modified” flag 302 in the original copy 301 of the record in
the shared memory. The IMDB manager 201 also creates a
look-aside table 305 for transactions in transaction1's con
text, if one does not already exist, and creates a record entry
306 in the look-aside table 305 which points to the location
of the modified copy 303 of the record in shared memory.
The look-aside table 305 is accessible only by transaction1
and by the IMDB manager.

0035. When transaction 1 wants to re-read the record at
time mark C1, transaction 1 Specifies the key again and
retrieves the original copy 301 from shared memory.
Because the modified flag 302 is set in copy 301, the
transaction1 searches its look-aside table 305 and finds the
record entry 306. Transaction1 then retrieves the modified
copy 303 of the record using the information in the record
entry 306 at time mark D1. When transaction 1 commits its
changes at time mark E1, the IMDB manager writes all
modifications Specified in transaction1's look-aside table
305 to the shared memory and to the database. The look
aside table 305 is deleted after all the modifications have
been committed.

0036) As shown in FIG. 3A, transaction2 is executing
concurrently with transaction1. Transaction2 issues a
retrieve command using key “123' at time mark A2 which
retrieves the copy 201 from shared memory. When transac
tion2 next retrieves the record using the key “123' at time
mark B2 after transaction1 has modified the record, trans
action2 reads the copy 301 from the database and recognizes
that the modified flag 302 is set. Therefore, transaction2
knows that changes to the record are pending and Searches
its look-aside table 310, if one exists, for a corresponding
record entry. Because transaction1 was responsible for the
modification, transaction2 does not find a corresponding
record entry and therefore continues its processing with the
unmodified copy 301 of the record.

0037. Once transaction1 has committed the changes (at
time mark E1), a third read operation by transaction2 on key
“123” (at time mark C2) returns the modified copy 303 of
the record in shared memory to transaction2. Note that

US 2002/0O87500 A1

transaction2 Sees an inconsistency between the information
in the copy 301 of the record retrieved at time marks A2 and
B2, and the copy 303 retrieved at time mark C2. The
in-memory database System of the present invention guar
antees consistency of read-committed transactions but does
not guarantee consistency of read-repeatable or Serializable
transactions.

0.038 Alternatively at time mark E1, transaction 1 can
abort and rollback the uncommitted changes using the
information in the look-aside table. After rollback, the copy
301 of the employee record in the Shared memory appears as
it was at time mark A1, i.e., before transaction1 modified it
at time mark B1. Rollback processing is described in detail
in the next Section.

0039. Setting the modified flag in old records reduces the
number of accesses required on the look-aside tables. How
ever, alternate embodiments in which the modified flag is not
used are also contemplated as within the Scope of the
invention. In these embodiment, the client process Searches
the look-aside table each time it retrieves a record from the
shared memory.
0040. Furthermore, as one of skill in the art will readily
appreciate, various embodiments for the entries in the look
aside table are possible. In the exemplary embodiment being
discussed in this Section, each record in Shared memory is
located using a record identifier (RECID) specified in the
index entries for the record. The RECID is also used as a
hash key to Search for the corresponding record entry in the
look-aside tables. When record is modified, the IMDB
manager hashes the RECID (OLDRECID) for the original
record to determine which record entry to use in the appro
priate look-aside table. The RECID (NEWRECID) for the
modified record is written into the entry. In the interest of
clarity, FIG. 3A does not show the index entries since only
non-key data is modified in the example.
0041 FIG. 3B shows the same series of transactions
when the employee name is the primary key for the
employee records. Therefore, in FIG. 3B, the primary index
for the employee table is shown to illustrate the actions taken
a key is changed.
0042. As in FIG.3A, a copy 301 of the employee record

is read from shared memory at time mark A1, the record
entry 306 pointing to the modified copy 303 is created in
look-aside table 305, and the modified flag set in the original
copy 301 at time mark B1.
0043. Because the primary key for the record has
changed, at time mark B1 the IMDB manager also inserts a
new key entry 322 for “Jones' into the primary key index
table 320 for the employee records. The new key entry 322
contains the new RECID (NEWRECID) for the modified
record. The old entry 321 for “Smith' is marked as uncom
mitted-deleted (UCD) while the new entry 322 is marked as
uncommitted-inserted (UCI). Two index entries 307, 308 are
also added to the look-aside table 305. Index entry 307
contains an identifier for the employee table
(“EMPLOYEE”), an identifier for the primary index
(“NAME”), and the value of the deleted key (“SMITH").
Index entry 308 contains the identifier for the employee
table (“EMPLOYEE”), the identifier for the primary index
(“NAME”), and the value of the inserted key (“JONES”).
The indeX entries are located by hashing on table identifier,
indeX identifier, and key value.

Jul. 4, 2002

0044) At time mark C1, transaction1 issues a retrieve
command on the employee record using the primary key
“Smith.” The index entry 321 is marked as uncommitted
deleted, so transaction 1 uses the string “EMPLOYEE
NAME-SMITH to Search its look-aside table 305 for a
matching entry. Because a matching entry, in this case entry
307, exists, transaction1 knows it is the modifying transac
tion, so the primary key of “Smith' does not exist for it and
no record is returned. Similarly when transaction1 issues a
retrieve command on the employee record using the primary
key “Jones' at time mark D1, it determines it is the modi
fying transaction because entry 308 exists So it uses
NEWRECID in the index entry 322 to retrieve the modified
copy 303 of the record (time mark E1).
0045. On the other hand, when transaction2 issues a
retrieve command for the employee record using “Smith' at
time mark B2, it determines that the primary key “Smith' is
marked as uncommitted-deleted, and that it is not the
modifying transaction since its look-aside table 310 does not
contain a matching entry. The transaction2 can continue to
use the original copy 301 of the record if the name modi
fication is not critical to its processing (time mark C2).
Similarly, when transaction2 issues a retrieve command for
the employee record using "Jones' at time mark D2, it
determines that the primary key "Jones' is marked as
uncommitted-inserted, and that is not the modifying trans
action, So it treats they key as if it were not in the indeX.
0046 A similar scenario takes place when a secondary
key for a record is modified. A transaction that is retrieving
the record using the Secondary key proceeds as described
above for FIG. 3B where the index table and the index
entries are specific for the Secondary key. For Secondary
indices that are not required to have unique key values, the
exemplary embodiment of the IMDB manager combines the
Secondary key value with the primary key value to yield a
unique key value. Other commonly used mechanisms to
create unique keys for non-unique keys are equally appli
cable and are within the Scope of the invention.

0047. After the secondary key is modified, a transaction
retrieving the record using the primary key reads the
unmodified copy of the record Since the key entry in the
primary key contains the OLDRECID. The modified flag in
the record alerts the transaction that a change to the data is
pending. The transaction then uses the OLDRECID to
Search its look-aside table and retrieves the modified copy if
it finds a matching entry.

0048. The IMDB manager creates both index and record
entries in the look-aside table when a record is deleted. The
affected key entry in the each indeX table is marked as
uncommitted-deleted, an indeX entry in each appropriate
look-aside table keyed on the record table, index, and
deleted key value is created, and a null record entry in each
look-aside table is created So that hashing into the look-aside
table using the OLDRECID indicates that the record is
deleted. Similarly, when a record is created, the IMDB
manager creates a new key entry in the each indeX table
marked as uncommitted-inserted and an indeX entry in each
appropriate look-aside table keyed on the record table,
index, and new key value. A record entry is also created in
the look-aside table which contains the NEWRECID for the
newly created record; the record entry is hashed into using
a null value.

US 2002/0O87500 A1

0049 Marking key entries as uncommitted-deleted or
uncommitted-inserted reduces the number of accesses to the
look-aside table in the same fashion as Setting the modified
flag in an old record. Alternate embodiments in which the
key entries are not So marked as contemplated as within the
Scope of the invention.
0050. The system level overview of the operation of an
exemplary embodiment of the invention has been described
in this section of the detailed description. The IMDB system
maintains data in the shared memory in both a new, uncom
mitted State resulting from a update function performed by
a transaction, and in the original, committed State to provide
versioning control for client processes. The IMDB system is
predicated on two principals:

0051 1. No record is updated (added, deleted or
modified) by more than one transaction at a time So
that there is always only one uncommitted copy of
any record in the shared memory; and

0052 2. No key entry in an index is inserted or
deleted by more than one transaction at a time So that
there is always only one uncommitted copy of any
unique key in the shared memory.

0.053 While the invention is not limited to any particular
Set of transactions, for Sake of clarity the modification of a
Single record using a simplified version of a look-aside table
has been described. Alternate embodiments of the data
structures for the look-aside table and the details of Suitable
hashing algorithms are described in Section four.

Methods of an Exemplary Embodiment of the
Invention

0054. In the previous section, a system level overview of
the operation of an exemplary embodiment of the invention
was described. In this Section, the particular methods per
formed by the clients and the IMDB manager of Such an
exemplary embodiment are described by reference to a
series of flowcharts. The methods to be performed by the
clients constitute computer programs made up of computer
executable instructions. Similarly, the methods to be per
formed by the IMDB manager constitute computer programs
also made up of computer-executable instructions. Describ
ing the methods by reference to flowcharts enables one
skilled in the art to develop programs including instructions
to carry out the methods on a Suitable computer (the pro
ceSSor of the computer executing the instructions from
computer-readable media).
0.055 The exemplary embodiment of a invention
described by methods in the flowcharts of FIGS. 4-7 requires
all indeX entries in the look-aside table to be unique.
Because all Secondary keys in a database may not be
required to have unique values, the invention combines Such
Secondary keys with the primary key for the record (which
is unique) to create a unique key for the corresponding
Secondary indeX entry in the look-aside table. Additionally,
if a record has been deleted and then the same record is
reinserted by a transaction before the deletion is committed,
the indeX entries for the records keys in the appropriate
look-aside table contain a NEWRECID for the reinserted
record, which is used when retrieving the record by the
transaction that deleted and reinserted the record. The key
entries in the index tables contain an OLDRECID for the
original record, which is used when retrieving the record by
all other transactions.

Jul. 4, 2002

0056 Referring first to FIG. 4, a flowchart of a method
to be performed by a client according to an exemplary
embodiment of the invention is shown. This method is
inclusive of the acts required to be taken by the client when
retrieving a record.
0057 The client uses an appropriate hashing algorithm,
or other suitable method, to find the key entry in the
appropriate index table in shared memory (block 401). The
key entry can be either a primary key for the record or a
Secondary key depending on the criteria Specified by the
client in the retrieval command. The client next determines
if the key entry has been changed.

0058 If the key entry in the index table is marked as
uncommitted-deleted (UCD) (block 403) and uncommitted
inserted (block 405), the client searches its look-aside table
for a matching index entry (block 407). If a matching index
entry is found (block 409), then the client uses the NEWRE
CID in the index entry to read the copy of the record it
reinserted (block 411). If a matching entry is not found at
block 409, then the original key still exists for the client and
the client uses the OLDRECID in the key entry in the index
table to read the original copy of the record (block 413).
0059. If the key entry in the index table is marked as
uncommitted-deleted (UCD) (block 403) but not uncommit
ted-inserted (block 405), the client searches its look-aside
table for a matching entry (block 415). If a matching entry
is found, the client has deleted the key So the key does not
exist for it and thus no record is retrieved. If a matching
entry is not found (block 417), the original key still exists for
the client and the client uses the OLDRECID in the key
entry in the indeX table to read the original copy of the record
(block 413).
0060) If the key entry is not marked as uncommitted
deleted (block 403) but is marked as uncommitted-inserted
(UCI) (block 419), the client searches its look-aside table for
a matching index entry (block 421). If a matching index
entry is found (block 423), the client knows that it is the
transaction that inserted (modified) the key and uses the
NEWRECID in the index entry to read the modified copy of
the record from shared memory (block 411). If a matching
index entry is not found at block 423, the client knows that
another transaction modified the key and has not committed
the change So the key value does not exist for the client.
0061. If the key entry is not marked as either uncommit
ted-inserted or uncommitted-deleted, the client reads the
record from the shared memory using the RECID in the key
entry (block 425). The client checks the modified flag in the
record to determine if any data has been changed (block
427). If the modified flag is set, then the client searches its
look-aside table for a matching record entry (block 429). If
a matching record entry is found (block 431), then the client
knows it is the transaction that modified the record, and uses
the NEWRECID in the record entry to read the modified
copy of the record from the shared memory (block 411). If
the client does not find a matching record entry at block 431,
the client knows that the unmodified copy of the record read
at block 425 is the copy that exists for it.
0062) The IMDB manager reads and writes records from
the database using commands Specific to the type of data
base used to Store the records. For example, a relational
database Such as Oracle is accessed using Standard SQL

US 2002/0O87500 A1

commands. The invention is not limited to use with only
relational databases, but is applicable to any key-based data
Structure. The IMDB manager is responsible for assigning
RECIDs to records and for storing the records in the shared
memory. The IMDB manager is also responsible for creating
the corresponding shared memory indices for a record, and
for creating and managing the look-aside tables in shared
memory. In one embodiment, the IMDB manager pre-loads
entire tables of database records into shared memory, and
creates the RECIDS and shared memory indices during an
initialization phase. In an alternate embodiment, the IMDB
manager pre-loads only a Subset of database records when a
range of key values is specified by a client.
0.063. The client transactions can only read information
from shared memory and must call the IMDB to request
modifications to the records and indices. One of skill in the
art will immediately appreciate that any number of well
known data management techniques can be used by the
IMDB manager in managing the shared memory. One par
ticular technique is discussed in detail in the next Section.
0064. The client transaction calls the IMDB manager to
perform five functions illustrated in FIGS. 5A-C (modify),
FIG. 6 (delete), FIG. 7 (add), FIG. 8 (commit), and FIG.
9 (rollback). In the exemplary embodiment being described
in this section, the IMDB creates a look-aside table for a
client transaction when the transaction first requests a modi
fication to a record in the shared memory (not illustrated).
Alternate embodiments in which the IMDB manager creates
the shared memory table at different Stages in the processing
of the transaction will be readily apparent to one of skill in
the art and are contemplated as within the Scope of the
invention.

0065 Turning first to FIG. 5A, when a client calls the
IMDB manager to modify a record, the IMDB manager
determines if the record has been previously modified by the
same client (block 501), i.e., the modification has not yet
been committed So a matching record entry exists in the
client's look-aside table for the client. If so, then the
previously modified copy of the record is used instead of that
supplied in the function call (block 503). In an alternate
embodiment, the IMDB manager returns an error message if
the modified flag is Set in the record and a matching entry in
the look-aside table is not found as a check to ensure a client
does not attempt to modify a record having uncommitted
modifications made by another client.
0.066 The IMDB manager performs a Delete Key opera
tion on the old value for each key that is to change (block
507). The DeleteKey operation is described in more detail
below in conjunction with FIG. 5B.
0067. The IMDB manager creates the modified record in
shared memory with a NEWRECID (block 509). If the
record being modified is newly added (block 511), i.e.,
added by the same transaction and not yet committed, the
IMDB manager updates the look-aside table entry for the
record by replacing the RECID for the previous copy of the
record with the NEWRECID for the modified record (block
513). The IMDB manager performs an InsertKey operation
on the new value for each key that is to change to equate the
new key value with the NEWRECID (block 515). Duplicate
key entries that are detected by the InsertKey operation, as
described in more detail below in conjunction with FIG. 5C,
cause the record modification to fail. For each key that is not

Jul. 4, 2002

being modified, the IMDB manager updates all the corre
sponding key entries for the appropriate indices in shared
memory with the NEWRECID (block 517).
0068 If the record being modified is not newly added, the
IMDB performs an InsertKey operation on the new value for
each key that is to change to equate the new key with the
OLDRECID of the copy of the record before the current
modification (block 519). The retrieval function described
above maps the new key to the NEWRECID for the client
that modifies the record; the new key does not exists for the
other clients. As before, if the key is a duplicate (block.521),
the record modification fails.

0069. If the record was previously modified (block 523),
then the record entry in the look-aside table is updated by
replacing the RECID for the previously modified record
with the NEWRECID for the current modified record (block
525).
0070 The DeleteKey operation is illustrated in FIG. 5B
and performed by the IMDB manager when executing the
modify and delete functions. The IMDB manager deter
mines if an indeX entry in the look-aside table exists with the
same key value that is being deleted (block 531). If not, then
the IMDB manager creates a new index entry in the look
aside table that contains the deleted key value and RECID of
the corresponding record (block 533). The IMDB manager
also marks the key entry for the deleted value in the index
table as uncommitted-deleted (block 535).
0071. If there is a matching index entry in the look-aside
table at block 531, then the IMDB manager determines if the
corresponding key entry in the indeX table is marked as
uncommitted-inserted (block 537). If not, the entry must be
marked as both uncommitted-deleted and uncommitted
inserted So the indeX entry is retained and the key entry is
remarked as uncommitted-deleted (block 535). If the key
entry is marked as uncommitted-inserted at block 537, then
both the existing indeX entry and the key entry are deleted
(blocks 539 and 541).
0072 The InsertKey operation is illustrated in FIG. 5C
and performed by the IMDB manager when executing the
modify and add functions. The IMDB manager determines
if an indeX entry in the look-aside table exists with the same
key value that is being inserted (block 551). If not, then the
IMDB manager creates a new indeX entry in the look-aside
table that contains the new key value and the RECID
specified in the InsertKey operation (block 553). The IMDB
manager also inserts an entry for the new key value in the
indeX table and marks the entry as uncommitted-inserted
(block 555).
0073) If the index entry does exist at block 551, then the
IMDB manager determines if the key entry in the index table
is marked uncommitted-inserted (block 557). If so, then the
key to be added is a duplicate and an error flag is set (block
559). If the key entry is not marked uncommitted-inserted,
then the entry must be uncommitted-deleted. Therefore, the
existing key entry is marked as both uncommitted-deleted
and uncommitted-inserted (block 561), the existing index
entry in the look-aside table is deleted (block 563), and a
new indeX entry containing the reinserted key value and the
NEWRECID for the reinserted record is created (block 565).
0074) When the client calls the IMDB manager to delete
a record (referring to FIG. 6), the IMDB manager deter

US 2002/0O87500 A1

mines if the record was previously modified (block 601) so
that the modified record can be used rather than the record
specified in the function call (block 603). As described in
conjunction with FIG. 5, in an alternate embodiment, the
IMDB manager checks if the same client performed the
previous modification and returns an error if not.
0075) The IMDB manager performs the DeleteKey
operation illustrated in FIG. 5B for each key in the deleted
record (block a605). If the record is newly added (block
607), the IMDB deletes the corresponding record entry in
the look-aside table (block 609) and deletes the newly added
record from shared memory (block 611).
0076). If the record was previously modified (block 613),
the IMDB manager deletes the record entry in the look-aside
table (block 615) and deletes the modified record from the
shared memory (block 617). The IMDB manager also cre
ates a new record entry in the look-aside table that has a null
value for the new RECID to denote that the record has been
deleted (block 619). The null RECID entry is found by
hashing on the RECID of the deleted record. If the record is
neither newly added nor previously modified, the IMDB
manager marks the record as modified (block 621) and
creates the new null record entry at block 619.
0077 FIG. 7 illustrates the acts performed by the IMDB
manager when a client requests that a record be added to the
database. The IMDB manager creates the new record in the
shared memory marked as modified (block 701), adds a
record entry containing the RECID of the new record to the
look-aside table (block 703), and performs the InsertKey
operation illustrated in FIG. 5C for each key in the record
(block 705). If any of the keys duplicate existing key values
(block 707), the record is not added.
0078 Commit and rollback processes are mirror images
of each other. When the client commits changes, it calls the
IMDB manager to update the shared memory to reflect the
modifications made by the client as shown in FIG. 8. The
IMDB manager reads each entry in the look-aside table for
the client (block 801) and determines what type of entry it
is. The methods used to determine the entry type depends on
the data structure of the look-aside table as one of skill in the
art will immediately appreciate. The details of a particular
look-aside table are described in the next Section.

0079 If the entry is for a modified record (block 803), the
IMDB manager updates the corresponding key entries in the
index tables for the record by replacing the original RECID
in the key entries with the RECID for the modified record
(block 804). The IMDB manager also deletes the original
record from the shared memory (block 807). If the entry is
for a deleted record (block 805), the IMDB deletes the
original record from the shared memory (block 807). If the
entry is an index entry corresponding to an added key (block
809), the IMDB manager removes the UCI marking from the
key entry in the shared memory (block 811). If the entry is
an index entry corresponding to a deleted key (block 813),
the IMDB manager deletes the key entry from the shared
memory (block 815). If the entry is an index entry corre
sponding to a key that has been reinserted (block 817), the
IMDB manager removes the UCD and UCI markings from
the key entry in the shared memory (block 819) and updates
the key entry with the RECID from the corresponding index
entry in the look-aside table (block 821). Note that if the
entry is for an added record, the IMDB manager takes no

Jul. 4, 2002

action because the newly added indices when committed
point to where the new record is Stored in Shared memory.
Once all entries in the look-aside table have been processed
(block 823), the IMDB manager deletes the look-aside table
from the shared memory (block 825).
0080 When a client does not commit its changes
(aborts), it requests that the IMDB manager rollback the
shared memory to a point prior to the changes by discarding
all the modifications in shared memory (FIG. 9). The IMDB
manager reads each entry from the look-aside table (block
901) and determines the type of entry as explained above in
conjunction with FIG.8. If the entry is for a modified record
(block 903), the IMDB manager clears the modified flag
from the original record in the shared memory (block 905)
and deletes the modified (new) record from the shared
memory (block 909). If the entry is for an added record
(block 907), the IMDB manager deletes the new record from
the shared memory (block 909). If the entry is an index entry
for an added key (block 911), the IMDB manager deletes the
new key entry from the shared memory (block 913). If the
entry is an index entry for a deleted key (block 915), the
IMDB manager removes the uncommitted-deleted (UCD)
marking from the key entry in the shared memory (block
917). If the entry is an index entry for a reinserted key (block
919), the IMDB manager removed the UCD and UCI
markings from the key entry in the shared memory (block
921). Note that when the entry is for a deleted record, the
IMDB manager takes no action because the indices when
rolled back will point to the original record in the shared
memory. Once all entries in the look-aside table have been
processed (block 923), the IMDB manager deletes the
look-aside table from the shared memory (block 925).
0081. The particular methods performed by a client pro
ceSS and an in-memory database manager process of an
exemplary embodiment of the invention have been
described. The method performed by the client process has
been shown by reference to a flowchart including all the acts
from 401 until 431. The methods performed by the in
memory database manager process has been shown by
reference to six flowcharts including all the acts from 501
until 565, from 601 until 623, from 701 until 715, from 801
until 819, and from 901 until 921. As will be readily
apparent to one skilled in the art, the particular order in
which certain acts are performed can be varied without
departing from the Scope of the invention. For example,
when a key is modified, the old key can be marked as
uncommitted-deleted either before or after the new key is
created because the both the original and changed keys are
present in the shared memory.

Distributed Transaction Coordinator Implementation
0082 In this section of the detailed description, a par
ticular implementation of the in-memory database System is
described that is part of the Distributed Transaction Coor
dinator (DTC) available from Microsoft Corp. The in
memory database System employed by the DTC uses page
latches to control access to shared memory, and Special hash
table data Structures and hash functions to implement the
look-aside table and a transaction table.

0083) Shared Memory
0084. The shared memory for the IMDB is divided into
logical fixed length pages. The records and index keys from

US 2002/0O87500 A1

the database are cached on the shared memory pages by the
IMDB manager (core process). The index keys cached in the
shared memory are arranged in balanced (B+) tree structures
for quick access.
0085. The look-aside tables for the client processes are
also cached on the shared memory pages. In the DTC
embodiment, the core proceSS maintains a transaction table
in the shared memory which asSociates a transaction iden
tifier, such as a globally unique identifier (GUID), with its
look-aside table.

0.086 As with the rest of the data in the shared memory,
the client processes are permitted only read access to the
look-aside tables and the transaction table.

0087. A shared memory page comprises a header, a
timestamp array, a slot array, and a data Section. The header
contains a page identifier, the number of entries (data base
records, index keys, look-aside tables) Stored on the page, a
pointer to free Space within the data Section, and the Size of
the free Space. The timestamp array Stores a timestamp value
for each page entry. The slot array contains one slot for each
page entry; each slot contains the offset of the entry from the
Start of the data Section and the length of the entry.
0088 Page Latches
0089. A portion of the shared memory is reserved for
page latches. Page latches are a Synchronization mechanism
which ensures the consistency of the data on a page while a
transaction is accessing the page. The page latches are
associated with the page and thus can be maintained for
multiple transactions operating on a page. Additionally, page
latches are of short duration, lasting for only as long as
necessary to read or write data to the page. These charac
teristics also mean that page latches are not Subject to
deadlocks. In contrast, traditional database locks are asso
ciated with a single transaction to keep the transaction
consistent, are held for the duration of the transaction, and
can incur deadlock situations which require the implemen
tation of complex deadlock detection and resolutions algo
rithms.

0090 There is a single exclusive page latch associated
with each page which is used by the core process to prevent
client processes from accessing the page while the core
proceSS is updating data on the page. Each page also has
multiple shared page latches. Any process (client or core)
can obtain a shared page latch which allows the holder to
read data from the page. There are as many shared page
latches active at one time as there are transactions accessing
the page. Note that a transaction having many threads of
execution will use only a Single shared page latch for all the
threads.

0091) If there is an exclusive latch on a page, no shared
latches can be active. Similarly, when a thread in the core
proceSS requests an exclusive page latch, it must wait until
all active shared page latches have been released. Thus, page
latches provide increased performance in read-intensive
environments, which are the most common types of data
base transactions.

0092 Because page latches are meant for short duration
operations and no deadlock detection Scheme is used for
them, the client and core processes are designed to obtain
page latches in Such a way as to prevent deadlock. Typically

Jul. 4, 2002

a thread of execution will obtain only a Single latch at a time.
However when multiple latches are required, a predeter
mined ordering is used. When multiple indeX pages in the
B+ tree Structure must be latched, a parent page is latched
before any of its children pages. When multiple pages at the
Same level in the index, or multiple data pages, must be
latched, they pages are latched in physical order. For
example if pages p1, p2, and p3 must be latched where p1
is a non-leaf page and p2, and p3 are leaf pages in the index,
then p1 is latched first, then the lower of p1 and p2, then the
higher of p1 and p2.

0093. The page latches for a data page are not stored on
the data page because the client proceSS must have write
access to the page latch itself in order to obtain the latch and
only the core proceSS has write access to the data pages.
Instead the page latches are Stored in a region of shared
memory Separate from the database pages themselves and
shared by the core and client processes in write mode. In the
DTC implementation, the page latch memory region con
tains eight bytes of latch data for each data page in the shared
memory. Therefore, a particular page latch can be found by
using the page number to determine the offset for the page
latch shared memory, e.g., for page i, the offset in the shared
page latch table is i8.

0094. Each page latch consists of two fields (both 32-bits
in length):

0.095 dwShareCount that indicates the number of
shared readers of the page, and

0096 fBxclusive which is set to indicate there is an
exclusive latch requested on the page. A page is share
latched if dwShareCount is greater than Zero. A page
is exclusively latched if dwShareCount is zero and
fExclusive is set (equal to one). A page is share
latched but the core process is waiting for an exclu
sive latch if dwShareCount greater than Zero and
fExclusive is one.

0097 When a thread wants to acquire a shared latch, it
executes the following procedure:

0.098 1. Determines if fExclusive is 0. If so, go to 2,
otherwise go to 5.

0099 2. Increment dwShareCount (using an Inter
lockedIncrement instruction that guarantees that
only one thread will increment the count; multiple
threads trying to increment the count are processed
in a Serial fashion).

0100 3. Determine if fExclusive is 0. If so, then
return.

0101 4. Decrement dwShareCount (using Inter
locked Decrement).

0102) 5. Sleep and go to 1.

0103) Thus, a thread can only acquire a shared latch if no
other thread has an exclusive latch or is waiting for an
exclusive latch. Note, that after incrementing the Share
count, the thread determines if fBXclusive is Set because in
the interval, another thread may come along and may
Successfully obtain an exclusive latch as described in more
detail below.

US 2002/0O87500 A1

0104. A thread releases a shared latch by using Inter
locked Decrement to decrement dwShareCount.

0105. When a thread wants to acquire an exclusive latch,
it executes the following procedure:

0106 1. Use Interlocked Comparexchange to set
fExclusive to 1. The InterlockedComparexchange
instruction guarantees that a single thread Sets fBX
clusive to 1, So either the instruction will Succeed in
setting fBxclusive to 1 or it will fail which indicates
that the fExclusive was already set to 1.

0107 2. If the instruction fails, then another thread
has or is waiting for an exclusive latch. Sleep and
retry until it Succeeds.

0108) 3. If the instruction succeeds in setting fBX
clusive to 1, determine whether dwShareCount is
greater than 0.

0109 4. If dwShareCount is 0, then return.
0.110) 5. Set a local counter times.Through Loop to 0.
0.111) 6. If dwShareCount is greater than 0 then
determine if times.Throughloop is greater than Some
predetermined maximum. If So, then go to 8.

0112 7. Increment times.Through Loop, sleep, and
go to 6.

0113 8. Set dwShareCount to 0 and return.
0114. A thread releases an exclusive latch by using Inter
locked CompareBXchange to Set fBXclusive to Zero.
0115 Because only one thread is allowed to set fBxclu
Sive at a time, the Interlocked CompareExchange instruction
is used. The Interlocked CompareBXchange instruction Sets a
memory variable to a value only if the memory compares
equal to another value. The above procedure calls
InterlockedComparexchange(&fExclusive, 1, 0) So that
InterlockedComparexchange will only set fBxclusive to
one if fBXclusive is equal to Zero. Interlocked CompareEX
change can be implemented either on the underlying pro
ceSSor or in the operating System using other Synchroniza
tion primitives provided by the processor.
0116. After obtaining fBxclusive, the thread waits for
dwShareCount to fall to zero. As discussed above, latches
are meant for short duration operations So that the Share
count falls to Zero relatively quickly as other threads release
their share latches and because no thread can acquire a
shared latch on the page Since Shared latches cannot be
acquired when fBXclusive is Set. However, because the client
processes are running untrusted application code, it is poS
Sible that a client proceSS can die while holding a share latch.
To recover from this situation, the core process resets the
share count if it unable to acquire an exclusive latch after
Some period of time (e.g., 5 Seconds). The core process does
not reset an exclusive latch Since exclusive latches are only
obtained by the core process threads and the core proceSS
only runs trusted code.
0117 Hash Table Data Structures
0118 Both the look-aside tables and the transaction table
are implemented as hash table data Structures. The look
aside table data structures are designed to give very high
performance and can be Scaled to different sizes, as

Jul. 4, 2002

described further below, to accommodate varying numbers
of transactions and updates. The indeX and record entries
described in the two previous Sections are kept in the
look-aside tables along with Some miscellaneous entries.
0119) The DTC embodiment of a look-aside table data
structure 1000 is illustrated in FIG. 10. A record entry 1001
comprises three fields: a record identifier for the RECID of
the unmodified record 1002, a record identifier for the
RECID of the modified record 1003, and a bitmap 1004 used
to denote which columns of the record have been modified.
If a record is modified multiple times by a transaction, the
later changes are OR'd together with the existing bitmap
1004 to create a new bitmap. The bitmap is used to construct
the proper database calls when writing committed changes
to a back-end database as part of the commit process.
0.120. An index entry 1011 comprises five fields: a
RECID 1012 for the key, two key length fields 1013, 1014
for the key and the primary key respectively, an identifier
1015 for the index for the key, and a RECID 1016 of the new
data record associated with the key if the key was deleted
and then reinserted as described in the previous Section.
Because keys can be variable length in the DTC implemen
tation, the key itself is allocated to a separate record to
permit fixed length look-aside table entries. In one alternate
embodiment, the key entry in the indeX Serves as the
Separate key record for the look-aside table; in an alternate
embodiment, the Separate key record is distinct from the key
entry So that dynamic allocation of additional keys to the
index does not require changes in the index entry 1011. One
of skill in the art will readily recognize that the key can be
stored in the look-aside table entry if variable length table
entries are Supported or if the key is restricted to fixed-length
values. When the key corresponding to an indeX entry is
required to have unique values, the primary key field 1014
is null. When the key is not required to be unique, a
combination of the key and the primary key is used for the
index entry and thus both fields 1013 and 1014 contain valid
values.

0121 The particular index or record entry is found by
translating a Search key into a table address using a hash
function shared between the core and client processes. The
RECID is the search key for record entries. A combination
of a database table identifier (which identifies the database
table with which the index is associated), the index identi
fier, and the key value is used as the Search key for index
entries.

0122) In the DTC implementation, a RECID is eight
bytes long where five bytes Specify the Shared memory page
number, one byte Specifies the page Sequence number, nine
bits Specify a slot on the page, and Seven bits Specify the Slot
Sequence number. The slot Sequence number and the page
Sequence number are used to distinguish recycled or over
flow slots and pages. However, the Sequence numbers are
not useful in distinguishing one record from another when
Searching the look-aside table and So only the page number
and slot are input into the hash function. The algorithm used
by the hash function for record search keys in the DTC
implementation is

0123 Let dw=low order four bytes of page #,
bh=high byte of page it, and slot=slot if then

0124) hash=dwˆ bhsccirc; (slot <<23)

US 2002/0O87500 A1

0.125 where ˆ specifies a bitwise exclusive OR
operation and << Specifies a left shift operation.

0.126 AS described above, the search key for an index
entry comprises a database table identifier, an index identi
fier (indexid), and the key value. The database table iden
tifier is a sixteen byte database identifier (DBID) and a
double word (32-bit) object identifier (OBJID) assigned by
the operating System. The algorithm used by the hash
function for index search keys in the DTC implementation
S

0127 hash=OBJIDˆ
indexid <<12ˆ keyhash

(DBID <<16)ˆ

0128 where keyhash is the result of a rotating exclusive
ORing of the bytes of the key, for example:

let cb be the number of bytes in the key
keyhash = keyO:
for (ib = 1; ib < cb; ib++)

{
keyhash = rot1(keyhash, 1);
keyhash = keyhash keyib;

0129. The value of “hash” produced by the algorithms is
divided by the maximum number of entries in the look-side
table and the remainder is used as an address for the indeX
or record entry. The hash algorithms are designed to produce
a look-aside table address for an entry which is reasonably
unique within the table, and falls in the range of Zero to one
less than the table size. Hash duplicates, or collisions, occur
when record already exists at the table address calculated by
the hash function for a new record. In Such a case, the IMDB
uses a linked list collision resolution Scheme in which the
new record is allocated to a Space in Shared memory and is
linked to the hash address as illustrated in FIGS. 12 and 13
below. The value of the search key RECID is compared with
the appropriate RECID field in each hash duplicate entry to
find the correct entry.

0130. One embodiment for a transaction table 1100 is
shown in FIG. 11 in which each entry 1101 comprises a
GUID 1102 for a transaction and the shared memory address
1103 for the look-aside table associated with the transaction.
The GUID 1102 is a 16-byte (four 32-bit words) globally
unique identifier assigned by the operating System. An entry
is located within the transaction table 1100 by exclusively
ORing the four words of the GUID, dividing the result by
the number of maximum number of entries in the transaction
table, and using the remainder to address the entry. Hash
duplicates are handled as described above for the look-aside
table. The address of the transaction table in the shared
memory is Stored in a fixed location in the shared memory
So that it can always be found by the client processes.

0131 AS mentioned above, the transaction and look
aside tables reside on fixed length shared memory pages and
are capable of being resized when necessary. Both tables are
designed to be allocated in various sizes with the Smallest
table having Seventeen entries and the largest having 866,
586 entries (the number of entries that fit on 1974 shared
memory pages). There are four other intermediate sizes in
the DTC implementation: 127, 439 (the number of entries

Jul. 4, 2002

that fit on one shared memory page), 7463 (the number of
entries that fit on Seventeen shared memory pages, and
55,753 (the number of entries that fit on 127 shared memory
pages). The table size is factored into the hashing function
as described above So that the resulting entry address falls
within the number of entries for that size of table. Alternate
table sizes are contemplated as within the Scope of the
invention.

0132) While any given table size can accommodate any
possible number of entries because collisions are resolved
using the linked list described above, having many more
entries than the table is sized to hold leads to reduced
performance when it is necessary to traverse the linked list.
0133) A hash table that fits on a single shared memory
page is illustrated in FIG. 12, e.g., a hash table with
seventeen, 127, or 439 entries in the DTC implementation.
A hash table that spans multiple shared memory pages is
illustrated in FIG. 13, e.g., a hash table of 7463, 55,753 or
86,586 entries in the DTC implementation. In both hash
table data structures, the first four bytes 1201, 1301 contain
the current size of the hash table. Both figures also illustrate
the use of linked lists 1204, 1306 to handle collisions and
overflow among table entries 1203, 1303 respectively. The
difference in the two data Structures is that the larger sized
hash table 1300 uses a two level page linking mechanism.
The first level 1301 is an array of page entries 1303 that
point to pages 1304 which contain the hash entries 1303
comparable with the hash entries 1203 of hash table 1200.
The Smallest three hash table sizes are Single level data
structures as shown in FIG. 12. The larger three hash table
sizes are two level data structures as shown in FIG. 13.

0.134. In order to increase the performance of the IMDB
System by reducing the number of traverses of a linked
collision list, a transaction or look-aside table is resized to
the next size if the current table size is not the maximum
allowed size and the number of entries in the current table
is greater than the maximum number of entries allowed
under the current size. Performance can also be degraded if
a transaction or look-aside table is too large Since the
dedicated but unused Space in Shared memory cannot be
allocated to other data. Therefore, a table is shrunk to a
Smaller size if the number of entries is less than one half the
number of entries in the next Smaller sized table.

0.135 The process of resizing a transaction or look-aside
table is the responsibility of the core process which acquires
an exclusive latch on the page or pages involved So that all
client processes are denied access to the look-aside table
during resizing. All entries in the old table are deleted from
the old table and are added to the new table. Each entry is
rehashed because the hash function for the new table can
result in a different table address for the entry than its table
address in the old table.

0.136 The application of the in-memory database system
described in the first two section to support Microsoft's
Distributed Transaction Controller has been described in this
Section. A combination of page latches and hashing meth
odologies enables the unique versioning Scheme described
in the previous Sections, thus providing concurrent database
acceSS while reducing the processing time for transactions.

Conclusion

0.137 Ain-memory database system has been described
that enables multiple concurrent read-only access to data

US 2002/0O87500 A1

base records through a unique versioning Scheme based on
look-aside tables associated with modifying transactions.
Although Specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be Substituted for the Specific
embodiments shown. This application is intended to cover
any adaptations or variations of the present invention.
0138 For example, those of ordinary skill within the art
will appreciate that a persistent database is not necessary to
practice the invention and that the data Structures and
methods of the invention can be used to implement a
Stand-alone, non-persistent data base. Additionally, while
the invention has been described in terms of transactions that
commit or abort related updates as a group, the look-aside
table versioning Scheme is equally applicable to transactions
which commit or abort updates individually by including
information in the look-aside table which asSociates each
table entry with the update command that created the entry.
Furthermore, those of ordinary skill within the art will
appreciate that the invention can be practiced with any type
of back-end database Server, requiring only that the in
memory database manager process be constructed to execute
the appropriate commands to read and write data to the
database Server.

0.139. The terminology used in this application with
respect to is meant to include all of these environments.
Therefore, it is manifestly intended that this invention be
limited only by the following claims and equivalents
thereof.

We claim:
1. A computerized method for controlling access to data

base records Stored in memory shared among multiple
processes comprising:

creating a record entry in look-aside table for a proceSS
when the proceSS updates a database;

preserving any original database record affected by the
update, and

giving a process access to a new database record created
by the update if a record entry corresponding to the new
database record exists in the look-aside table for the
proceSS.

2. The computerized method of claim 1, further compris
Ing:

Setting a modified flag in the original database record; and
determining if a Search of the look-aside table for a

process is required when the process accesses a data
base record based on the State of the modified flag.

3. The computerized method of claim 1, further compris
Ing:

deleting any original database record corresponding to a
record entry for a new database record in a look-aside
table when the process associated with the look-aside
table commits its updates.

4. The computerized method of claim 1, further compris
Ing:

deleting any new database record corresponding to a
record entry in a look-aside table when the proceSS
asSociated with the look-aside table aborts its updates.

Jul. 4, 2002

5. The computerized method of claim 1, further compris
ing:

creating an indeX entry in the look-aside table for a
process when the proceSS updates key data for a data
base record;

preserving any original key data affected by the update;
and

giving a process access to any new key data created by the
update if a key entry corresponding to the new key data
exists in the look-aside table for the process.

6. The computerized method of claim 5, further compris
Ing:

marking any new key data as inserted; and
marking any original key data as deleted.
7. The computerized method of claim 5, further compris

ing:
deleting any original key data corresponding to an indeX

entry for new key data in a look-aside table when the
process associated with the look-aside table commits its
updates.

8. The computerized method of claim 5, further compris
Ing:

deleting any new key data corresponding to an indeX entry
in a look-aside table when the proceSS associated with
the look-aside table aborts its updates.

9. A computerized System comprising:

a plurality of client processes for manipulating data;
a shared memory for caching the data manipulated by the

plurality of client processes, and
an in-memory database manager for creating a table in the

shared memory for each one of the plurality of client
process that requests changes to data in the shared
memory, for making the changes, and for modifying the
table to reflect changes made to the data requested by
the associated client process,

wherein each client process uses its associated table to
determine if it has access to changed data in Shared
memory.

10. The computerized system of claim 9, wherein the
in-memory database manager further uses the table associ
ated with a client process to make data changed in response
to a request by the client process accessible to the plurality
of client processes when the client proceSS commits its
changes.

11. The computerized system of claim 9, wherein the
in-memory database manager further uses the table associ
ated with a client process to Void data changed in response
to a request by the client proceSS when the client process
aborts its changes.

12. The computerized system of claim 9, further com
prising a database located external to the shared memory
from which the in-memory database manager reads data into
the shared memory and writes data from the shared memory.

13. A computer-readable medium having Stored thereon a
look-aside table data Structure comprising:

an old record field containing data representing a record
identifier for an original record;

US 2002/0O87500 A1

a new record field containing data representing a record
identifier for a new record associated with the original
record identified by the old record field; and

a column bitmap field containing data representing col
umns of data that are different between the original
record identified by the old record field and the new
record identified by the new record field.

14. The computer-readable medium of claim 13, wherein
the data in the old record field is null if the new record
identified by the new record field is created from a blank
record.

15. The computer-readable medium of claim 13, wherein
the data in the new record field is null if the old record
identified by the old record field is deleted.

16. The computer-readable medium of claim 13, further
comprising:

a key record identifier field containing data representing
an address for a record containing a key value;

a key length field containing data representing the length
of the key in the record identified by the key record
identifier field;

a primary key length field containing data representing the
length of a primary key associated with the key in the
record identified by the key record identifier field;

an index identifier field containing data representing an
index structure for the key in the record identified by
the key record identifier field; and

a data record identifier field containing data representing
an address for a data record associated with the key
value identified by the key record identifier field.

17. A computer-readable medium having Stored thereon
an transaction table data Structure comprising:

a transaction identifier field containing data representing
a unique identifier for a transaction; and

a table address field containing data representing a table
Structure holding update information for the transaction
identified by the transaction identifier field.

18. A computer-readable medium having computer-ex
ecutable instructions to cause a computer to perform a
method comprising:

dividing a shared memory into pages and associating an
exclusive page latch with each page, and further asso
ciating a plurality of Shared page latches with each
page, wherein the exclusive page latch is acquired by a
core proceSS when writing data to a page, and one of the
shared page latches is acquired by a client transaction
when reading data from a page;

Writing unmodified database data in the pages,
creating a look-aside table on a page in response to a

client transaction requesting an update to the database
data, wherein the look-aside table contains entries for
tracking the updates,

Writing the updated database data in the pages, and
deleting unmodified database data from the pages when

the corresponding updated database data is committed
by the transaction that requested the update.

19. The computer-readable medium of claim 18, wherein
the look-aside table is expanded when the size of the table

Jul. 4, 2002

is not equal to a pre-determined maximum size and the
number of entries in with the table is greater than a pre
determined maximum number of entries for the size of the
table.

20. The computer-readable medium of claim 19, wherein
the look-aside table is contracted when the number of entries
in the table is less than one half of the number of entries in
a predetermined next Smaller size.

21. The computer-readable medium of claim 19, wherein
the look-aside table can span multiple pages.

22. The computer-readable medium of claim 19, further
comprising determining the look-aside table for a transac
tion based on a transaction number Stored in a transaction
table.

23. The computer-readable medium of claim 19, wherein
the look-aside table containing record entries and the
method further comprises locating a record entry for a
record using a table address calculated as

(dwˆ bhˆ (slot <<23))% table size
wherein dw is the low order four bytes of a shared
memory page number on which the record is Stored, bh
is the high byte of the shared memory page number, Slot
is the Slot on the page associated with the entry, ˆ
is a bit vise exclusive OR operation, << is a left shift
operation, and % is a modulo operation.

24. The computer-readable medium of claim 23, wherein
the look-aside table further contains indeX entries associated
with key for a record and the method further comprises
locating an index entry for a key using a table address
calculated as

(OBJIDˆ (DBID <<16)ˆ indexid <<12ˆ
keyhash)% table size

wherein OBJID and DBID identify a database table for
the record, indexid identifies the index for the key,
keyhash is the result of a rotating exclusive ORing of
the bytes of the key, ˆ is a bitwise exclusive OR
operation, << is a left shift operation, and % is a
modulo operation.

25. A method for maintaining data consistency on a shared
memory page comprising:

Synchronizing read-only access to the page using a plu
rality of shared page latches associated with the page,
wherein each transaction accessing the page to read
data holds one of the plurality of shared page latches for
only as long as necessary to read the data; and

Synchronizing update access to the page with the read
only accesses to the page using a Single exclusive page
latch associated with the page, wherein only a core
process can request the exclusive page latch, latches the
page for update when all shared page latches are
released, and holds the exclusive page latch for only as
long as necessary to update the data.

26. The method of claim 25, further comprising:
clearing all shared page latches associated with the page
when the core process has not obtained the exclusive
page latch after a pre-determined period of time has
elapsed since the core process requested the exclusive
page latch.

