
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0136500 A1

Wong et al.

US 2014O136500A1

(43) Pub. Date: May 15, 2014

(54)

(71)

(72)

(73)

(21)

(22)

SYSTEM, METHOD AND COMPUTER
PROGRAMI PRODUCT FORVERSIONING
CONTENT IN ADATABASE SYSTEMUSING
CONTENT TYPE SPECIFIC OBJECTS

Applicant: salesforce.com, inc., San Francisco, CA
(US)

Inventors: Simon Wong, San Carlos, CA (US);
Walter Macklem, San Francisco, CA
(US); Mark Fischer, Chelmsford, MA
(US); Orjan Kjellberg, Walnut Creek,
CA (US); Olivier Pin, San Francisco,
CA (US); Sonali Agrawal, San Carlos,
CA (US); Ron Pragides, San Francisco,
CA (US); Etienne Giraudy, San
Francisco, CA (US)

Assignee: salesforce.com,inc., San Francisco, CA
(US)

Appl. No.: 14/158,732

Filed: Jan. 17, 2014

Data
Storage

Related U.S. Application Data
(63) Continuation of application No. 13/047,697, filed on

Mar. 14, 2011, now Pat. No. 8,666,937.
(60) Provisional application No. 61/313,621, filed on Mar.

12, 2010.
Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/30309 (2013.01)
USPC .. 707/695

(57) ABSTRACT
In accordance with embodiments, there are provided mecha
nisms and methods for versioning content in a database sys
tem using content type specific objects. These mechanisms
and methods for versioning content in a database system
using content type specific objects can enable embodiments
to provide a database system which stores information asso
ciated with multiple versions of content. The ability of
embodiments to provide a database system which Supports
content versioning can enable an efficient and comprehensive
storage of content types having different features by the data
base system.

System Program
Data Code

Storage

Pricessor
System Frocess Space
'l-

Neiwick V

interface

Application
ato

sef
Syster
32

Network
31:

Patent Application Publication May 15, 2014 Sheet 1 of 5 US 2014/O136500 A1

SRN. CNE

EY A. Y. & E CNN N 194

FOR EAC- VERSON OF THE CONENT,
STORING NFORMATION Associal ED WITH THE s
VERSION IN A DATABASE USING AT LEAST onE - N.

OBE SECC EYE

PoinTING THE INFORMATION TO THE STORED 108
CNE Y.

Patent Application Publication May 15, 2014 Sheet 2 of 5 US 2014/O136500 A1

EE f ERSON AE

STAROARD STANDARE
FE FIELD M KAW PK KAPK

KEE ARCE WERS:
S E AAAEE E:GE ARCE AEE

kA pk CONTENT
"

Patent Application Publication May 15, 2014 Sheet 3 of 5 US 2014/O136500 A1

3.

32 1. N
A-C RECEIVE QUERY >

YES

39 - - RN (ERY

f s QUERY SPECIFIC TooBJECT TYPE >
No YES

38

EFY CEECS
312 IDENTIFY oBJECTS SELECTED SEECE BYE ORY

BY - ERY SG KEY KEFX
DNFER ASSOCAE

3 YE

308

FoR on Y FELDs cois Monro
- H. S.C.E OBJECTS,

RETURN THE VALUES of Those
3.

RETURN VALUES OF FELDS 3.
ASSCA
ENFE SECS

ES

Patent Application Publication May 15, 2014 Sheet 4 of 5 US 2014/O136500 A1

System
Data

Storage

Tenant
Data

Program

Storage Code

Processor
System Process Space

Applicatio
af

Network
if eace

Evereit 4.

Network
3.14.

user
System - S - 3 - - - -

42

Patent Application Publication May 15, 2014 Sheet 5 of 5 US 2014/O136500 A1

Y - 52

425 S4

- 56

Search System 54g

Application enant vanagement Syster A 6
Setup Process Process

Mecharis; 538 SO 52
Save

Routines 536
PLsool Process ||

53 r
k

Enviro"ret
4.

NetWik
it is

input
System 4-12C

US 2014/O 136500 A1

SYSTEM, METHOD AND COMPUTER
PROGRAMI PRODUCT FORVERSIONING
CONTENT IN ADATABASE SYSTEMUSING

CONTENT TYPE SPECIFIC OBJECTS

CLAIM OF PRIORITY

0001. This application is a continuation of U.S. applica
tion Ser. No. 13/047,697, filed Mar. 14, 2011, which claims
the benefit of U.S. Provisional Patent Application No. 61/313,
621, filed Mar. 12, 2010, the entire contents of which are
incorporated herein by reference.

COPYRIGHT NOTICE

0002. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro
duction by anyone of the patent document or the patent dis
closure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

0003. One or more implementations relate generally to
versioning content in a database system.

BACKGROUND

0004. The subject matter discussed in the background sec
tion should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The Subject matter in the background section merely repre
sents different approaches, which in and of themselves may
also be inventions.
0005. In conventional database systems, a database is gen
erally able to store various different types of content using
objects. For example, the database may store standard types
of content using standard objects and/or custom types of
content using custom objects. However, techniques for Stor
ing content have generally exhibited various limitations.
0006 For example, conventional database systems typi
cally store objects across a single table, which inefficiently, or
more often impractically, Support storage of information with
respect to multiple versions of content. As another example,
conventional database systems do not necessarily take into
account when different types of objects (i.e. storing different
types of content) have some types of data which are different
and some types of data which are common, Such that the
database does not maximize efficiency with respect to storing
Such data types.
0007 Accordingly, it is desirable to provide techniques
enabling efficient and comprehensive storage of content types
having different features by the database system.

BRIEF SUMMARY

0008. In accordance with embodiments, there are pro
vided mechanisms and methods for versioning content in a
database system using content type specific objects. These
mechanisms and methods for versioning contentina database
system using content type specific objects can enable
embodiments to provide a database system which stores

May 15, 2014

information associated with multiple versions of content. The
ability of embodiments to provide a database system which
Supports content versioning can enable an efficient and com
prehensive storage of content types having different features
by the database system.
0009. In an embodiment and by way of example, a method
for versioning content in a database system using content type
specific objects is provided. In use, content is stored. Addi
tionally, a type of the content is identified. Further, for each
version of the content, information associated with the ver
sion is stored in a database using at least one object specific to
the type of the content. Moreover, the information is pointed
to the stored content.

0010 While one or more implementations and techniques
are described with reference to an embodiment in which
versioning content in a database system using content type
specific objects is implemented in a system having an appli
cation server providing a frontend for an on-demand database
service capable of Supporting multiple tenants, the one or
more implementations and techniques are not limited to
multi-tenant databases nor deployment on application serv
ers. Embodiments may be practiced using other database
architectures, i.e., ORACLE(R), DB2R) by IBM and the like
without departing from the scope of the embodiments
claimed.

0011. Any of the above embodiments may be used alone
or together with one another in any combination. The one or
more implementations encompassed within this specification
may also include embodiments that are only partially men
tioned or alluded to or are not mentioned or alluded to at all in
this brief summary or in the abstract. Although various
embodiments may have been motivated by various deficien
cies with the prior art, which may be discussed or alluded to
in one or more places in the specification, the embodiments
do not necessarily address any of these deficiencies. In other
words, different embodiments may address different defi
ciencies that may be discussed in the specification. Some
embodiments may only partially address some deficiencies or
just one deficiency that may be discussed in the specification,
and some embodiments may not address any of these defi
ciencies.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. In the following drawings like reference numbers
are used to refer to like elements. Although the following
figures depict various examples, the one or more implemen
tations are not limited to the examples depicted in the figures.
0013 FIG. 1 illustrates a method for versioning content in
a database system using content type specific objects, in
accordance with an embodiment;
0014 FIG. 2 illustrates tables of database system for ver
Sioning content using content type specific objects, in accor
dance with an embodiment;
0015 FIG. 3 illustrates a method for querying a database
storing content versioned using content type specific objects,
in accordance with an embodiment;
0016 FIG. 4 illustrates a block diagram of an example of
an environment wherein an on-demand database service
might be used; and
0017 FIG. 5 illustrates a block diagram of an embodiment
of elements of FIG. 4 and various possible interconnections
between these elements.

US 2014/O 136500 A1

DETAILED DESCRIPTION

General Overview

0018 Systems and methods are provided for versioning
content in a database system using content type specific
objects.
0019. As used herein, the term multi-tenant database sys
tem refers to those systems in which various elements of
hardware and software of the database system may be shared
by one or more customers. For example, a given application
server may simultaneously process requests for a great num
ber of customers, and a given database table may store rows
for a potentially much greater number of customers. As used
herein, the term query plan refers to a set of steps used to
access information in a database system.
0020 Next, mechanisms and methods for providing ver
Sioning of content in a database system using content type
specific objects will be described with reference to example
embodiments.
0021 FIG. 1 illustrates a method 100 for versioning con
tent in a database system using content type specific objects,
in accordance with an embodiment. As shown in operation
102, content is stored. In the context of the present embodi
ment, the content may include any data, data structure, code,
etc. capable of being stored. Just by way of example, the
content may include a document, such as a knowledge-based
document e.g. user manual, frequently asked questions
(FAQs), etc.
0022. In one embodiment, the content may be stored in a

file system. In another embodiment, the content may be
stored in a database. For example, the content may be stored
in a file system/database of a multi-tenant on-demand data
base system. Optionally, the content may be stored for being
accessed by tenants of the multi-tenant on-demand database
System (e.g. via a query, etc.).
0023. Additionally, as shown in operation 104, a type of
the content is identified. The type of the content may include
any categorization of the content. Just by way of example, the
type of the content may include one of a plurality of prede
termined categories. In the above example of content that
includes knowledge-based content, the type of the content
may include one of a user manual, FAQs, etc.
0024. It should be noted that the type of the content may be
identified in any desired manner. In one embodiment, the type
of the content may be identified based on subject matter
included in the content. For example, the content may be
analyzed to determine the Subject matter, and a category for
Such subject matter may then be identified (e.g. based on
keywords included in the subject matter which correspond
with a particular category, etc.).
0025. Further, as shown in operation 106, for each version
of the content, information associated with the version is
stored in a database using at least one object specific to the
type of the content. In the context of the present description,
each version of the content may include at least one aspect
which is different from other versions of the content. For
example, each version may represent a different update,
change, etc. made to the content (e.g. by a user).
0026. In addition, the object specific to the type of the
content in which the information is stored may include a
record specific to the type of the content. For example, the
record may be specific to the type of the content by having
fields configured according to the type of the content. Thus,
the fields of an object used to store information associated

May 15, 2014

with one type of content may be at least partially different
than fields of an object used to store information associated
with another type of content. This may be a result of a differ
ence in information capable of being associated with different
types of objects, or a different in information desired to be
stored in the database with respect to the different types of
objects. It should be noted that sub-types of content may be
handled similarly to the use of content types described herein.
0027. The information associated with the version may
include any information describing at least one aspect of the
version. As an option, the information may be extracted from
the content (e.g. a header of the content, a body of the content,
etc.). As another option, the information may be identified by
analyzing the content. As yet another option, the information
may be identified via a message associated with the content
(e.g. sent by the tenant when uploading the content).
0028. In one embodiment, the information may include
standard information stored in standard fields of the database
(e.g. the database in which the content may optionally be
stored). Just by way of example, the standard information
may include at least one of a title of the content, a version
number of the content, a publication date of the content, etc.
0029. To this end, the standard fields may include a title
field (for storing a title of the associated content), a version
field (for storing a version number of the associated content),
a publication date field (for storing a publication date of the
associated content), etc. Optionally, the standard fields may
be common to each object in the database. For example,
objects associated with each type of content may all include
the standard fields.
0030. In another embodiment, the information may
include custom information stored in custom fields of the
database (e.g. the database in which the content may option
ally be stored). As an option, the custom information may
include information specific to the type of the content. Just by
way of example, where the content includes a user manual,
the custom information may include a product number iden
tifying a specific product to which the user manual pertains.
As another example, for each version, the associated object
may include at least one field for storing information indicat
ing a change in the content (e.g. between the version and an
immediately prior version or between the version and the
original version of the content).
0031. To this end, the custom fields may include fields for
storing custom information that is specific to the type of the
content associated with the object including Such custom
fields (e.g. a product number field for storing the aforemen
tioned product number). It should be noted that at least a
portion of the custom fields may be unique to the object that
is specific to the type of the content. For example, for each
type of content, the associated object may include at least one
custom field that is unique with respect to objects associated
with other types of content.
0032 Ofcourse, as another option, at least a portion of the
custom fields may be shared among different objects each
specific to a different type of content. Accordingly, at least
one custom field may be shared among objects associated
with different types of content. Just by way of example, an
object associated with content which includes a user manual
and an object associated with content which includes FAQs
may share a custom field indicative of a manufacturer of a
product to which the user manual and FAQs pertain.
0033. In one embodiment, a single object may store all
information associated with the version. For example, a

US 2014/O 136500 A1

single object (e.g. record) may store the standard information
and the custom information. Thus, the single object may be
included in a single table of the database (e.g. where Such
table optionally stores objects associated with content of dif
ferent types).
0034. In another embodiment, a plurality of objects (e.g.
records) may store the information associated with the ver
Sion. For example, a first object may store the standard infor
mation and a second object may store the custom information.
Optionally, the database may include a first table including
the standard fields for storing the standard information asso
ciated with the version and a second table including the cus
tom fields for storing the custom information associated with
the version. As a further option, a private key may be shared
among the first table and the second table, namely the first
object and the second object, for associating the standard
information with the custom information.
0035 Moreover, as shown in operation 108, the informa
tion is pointed to the stored content. In one embodiment, the
information may be pointed to the stored content directly by
storing, in association with the information, a reference to the
stored content. For example, the reference may be stored in a
field of the object. In another embodiment, the information
may be pointed to the stored content indirectly by storing, in
association with the information, a reference to another object
(e.g. record) of another table of the database storing a refer
ence to the stored content.

0036. As noted above, the content may be stored in the
database, in one embodiment. Thus, pointing the information
to the stored content may include pointing the information to
an object of the database storing the content. As also noted
above, the content may be stored in a file system, in another
embodiment. With respect to such embodiment, pointing the
information to the stored content may include pointing the
information to a location in the file system (e.g. a memory
address in the file system).
0037 To this end, pointing the information to the stored
content may include storing a reference to the stored content
in association with the information associated with the ver
Sion, such that each of the versions points to a single instance
of the content. For example, as described above, for each
version, the associated object may include at least one field
for storing information indicating a change in the content
(e.g. between the version and an immediately prior version or
between the version and the original version of the content).
Thus, each object associated with a different version of the
content may indicate a change to the stored content necessi
tating the new version, and may each reference the same
stored content.

0038. It should be noted that in another embodiment, a
method (not shown) may be implemented for sharing fields
among objects associated with different content types. For
example, the aforementioned sharing of custom fields among
objects associated with different content types may be uti
lized with respect to objects that are independent of a version
of the associated content. In particular, content may be stored
and a first type of the content may be identified. Additionally,
information associated with the content may be stored in a
database using at least one first object specific to the first type
of the content. Further, a custom field of the first object may
be configured to be shared with at least one second object
specific to a second type of content different than the first type
of the content. In this way, objects representing different
types of content (e.g. regardless of a version of the content)

May 15, 2014

may share custom fields. Various embodiments of sharing
custom fields among objects specific to content versions that
are also associated with different content types are described
below, and it should be noted that such embodiments may also
be implemented for objects which are not necessarily specific
to content versions, but which generally represent content
(e.g. all versions of the content). For example, the storage of
shared custom fields and the querying of shared custom fields,
as described below, may also be implemented for objects
which are not necessarily specific to content versions.
0039 FIG. 2 illustrates tables of database system 200 for
versioning content using content type specific objects, in
accordance with an embodiment. As an option, the database
system 200 may be implemented in the context of the func
tionality of FIG.1. For example, the database system 200 may
be implemented by the multi-tenant on-demand database sys
tem described herein. Of course, however, the database sys
tem 200 may be implemented in any desired environment.
Again, the aforementioned definitions may apply during the
present description.

0040. As shown, a Knowledge Article Table stores a pri
vate key (KA PK) and associated content (CONTENT). For
example, each different stored content may have one single
row in the Knowledge ArticleTable with a unique private key.
In one embodiment, the content may be stored in the Knowl
edge Article Table in association with the private key. In
another embodiment, the content may be stored in a file
system, such that a reference e.g. uniform resource locator
(URL) to the content may be stored in the Knowledge Article
Table in association with the private key.
0041. The Knowledge Article Table private key may pro
vide a stable identifier to content so that any reference to the
content (e.g. a URL, etc.) can use the private key, instead of
the below described Knowledge Article Version Table private
key (KAV PK), and still be valid as new underlying versions
of the content are published over time (and thus new private
keys in the Knowledge Article Version Table assigned to such
new versions). For example, the system can, at query time
through the knowledge Article Table private key, redirect to
the most recent Knowledge Article Version Table row that
contains the latest version of the content. Also just like the
Knowledge Article Version Table, the Knowledge Article
Table may have a tenant identifier (ORGID) identifying the
same tenant as its Knowledge Article Version Table rows for
which the content is stored.

0042. The Knowledge Article Version Table may store a
plurality of objects, each included in a different row of the
Knowledge Article Version Table. In the embodiment shown,
the Knowledge Article Version Table includes a tenant iden
tifier (ORGID) identifying a tenant for which the associated
content is stored, a key prefix (KP) identifying a type of the
associated content, a private key (KAV PK) unique to the
object, and various standard fields for storing standard infor
mation associated with each object. Accordingly, objects
storing information associated with different types of content
(as indicated by the different KPs) may be stored in the
Knowledge Article Version Table.
0043. The standard fields may include a title field, version
field, etc. The Knowledge Article Version Table may also
include a Knowledge ArticleTable private key (KA PK) field
such that each object in the Knowledge Article Version Table
references the content (or a location thereof) with which it is

US 2014/O 136500 A1

associated via the KA PK. As another option, the Knowledge
Article Version Table may include a field for storing refer
ences to related content.

0044) Further, a Knowledge Article Version Custom Field
Data Table may store a plurality of objects associated with the
objects stored in the Knowledge Article Version Table. As
shown, each object in the Knowledge Article Version Custom
Field Data Table may include a private key (PK) field for
storing a private key which references a private key of the
Knowledge Article VersionTable. To this end, an object in the
Knowledge Article Version Custom Field Data Table may
reference an object in the Knowledge Article Version Table,
and vice versa.

0045. The Article Version Custom Field Data Table also
includes custom fields. Thus, the fields in the Article Version
Custom Field Data Table may beat least partially different for
each object associated with a different type of content. As
shown, an object storing information associated with content
of a first type (referenced by PK=Y) may have a different type
of custom field (i.e. for storing a different type of data) than an
object storing information associated with content of a sec
ond type (referenced by PK=Z). For example, for one column
of the Article Version Custom Field Data Table, the custom
fields therein may be of various different types (i.e. for storing
different types of information).
0046. As also shown, in another embodiment, an object
storing information associated with content of a first type
(referenced by PK=Y) may have a same type of custom field
(i.e. for storing a different type of data) as an object storing
information associated with content of a second type (refer
enced by PK=Z). To this end, for another column of the
Article Version Custom Field Data Table, the custom fields
therein may be of a same type (i.e. for storing the same type of
information). Optionally, a certain number of pre-allocated
fields in the Article Version Custom Field Data Table may be
reserved for common custom fields.

0047. It should be noted that logical custom fields on con
tent types (shared or not) may be mapped onto a fixed set of
physical columns on a custom field data table. For example,
organization-specific and/or entity-specific custom fields
may be assigned to fixed physical columns on the custom field
data table. As another example, a query optimizer may be
used to map the columns and generate the actual query on the
database. Embodiments of the aforementioned examples are
described in U.S. Pat. No. 7,779,039 entitled “Custom enti
ties and fields in a multi-tenant database system.” by Weiss
man et al. filed Apr. 2, 2004; and U.S. Pat. No. 7,529,728,
entitled “Query optimization in a multi-tenant database sys
tem.” by Weissman et al. filed Sep. 23, 2003, which are both
herein incorporated by reference in their entirety for all pur
poses.

0048 FIG. 3 illustrates a method 300 for querying a data
base storing content versioned using content type specific
objects, in accordance with an embodiment. As an option, the
present method 300 may be carried out in the context of the
functionality of FIGS. 1-2. For example, the method 300 may
be carried out on the database system of FIG. 2. Of course,
however, the method 300 may be carried out in any desired
environment. Again, the aforementioned definitions may
apply during the present description.
0049. As shown in decision 302, it is determined whether
a query has been received. The query may include any query

May 15, 2014

for at least one object, or portion thereof. In one embodiment,
the query may be for an object storing information associated
with a particular content.
0050. If it is determined that a query has not been received,
the method 300 continues to wait for receipt of such a query.
However, once it is determined that query has been received,
the query is run. Note operation 304. For example, statements
in the query may be executed against a database indicated by
the query.
0051. Additionally, as shown in decision 306, it is deter
mined whether the query is specific to a particular type of
object. In one embodiment, a user may issue a query to select
from a particular type of object. For example, the user may
include a statement in the query to select from a particular
type of object by referencing a name of the particular type of
object (e.g. "select... from ... UserManual'). In response, a
key prefix identifier assigned to the particular type of object
referenced in the query may be automatically identified. Just
by way of example, based on the query text, our infrastructure
is what is generating the “where key prefix=kAO clause in
the generated database query. Thus, the generated database
query may include a where clause to filter on the key prefix
column of the object table. One example of automatically
generating a clause in the query to reference the key prefix
identifier is described in U.S. Pat. No. 7,779,039, entitled
“Custom entities and fields in a multi-tenant database sys
tem.” by Weissman et al. filed Apr. 2, 2004, which is herein
incorporated by reference in its entirety for all purposes.
0052. In another embodiment, a user may issue a query to
select from all types of objects. For example, the user may
include a statement in the query to select from all object types
(e.g. select... from Objects” or where the objects are knowl
edge articles, “select ... from KnowledgeArticle').
0053 For example, if the query is specific to an object
type, then only objects associated with the particular type of
object identified by the key prefix identifier (i.e. having the
key prefix identifier) may be retrieved. Table 1 illustrates an
example of a query which includes a key prefix identifier. Of
course, it should he noted that the query shown in Table 1 is
set forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

TABLE 1

SELECT
FROM Knowledge Article Version Table
WHERE ORGID = <>AND KIP = <>

0054 As another example, if the query is not specific to an
object type, then objects associated any type of content (i.e.
having any key prefix identifier) may be retrieved. Table 2
illustrates an example of a query which does not include a key
prefix identifier. Of course, it should be noted that the query
shown in Table 2 is set forth for illustrative purposes only, and
thus should not be construed as limiting in any manner.

TABLE 2

SELECT
FROM Knowledge Article Version Table
WHERE ORGID = <>

0055. If it is determined that the query is not specific to an
object type, then objects selected by the query are identified.
Note operation 312. In particular, objects meeting the criteria

US 2014/O 136500 A1

of the query which are returned from the running of the query
(in operation 304) may be identified.
0056 Furthermore, for only the fields that are common to

all of the selected objects, values of the fields are returned, as
shown in operation 314. Thus, the fields which are the same
across all of the returned objects may be determined. For
example, the standard fields and the shared custom fields may
be determined. In this way, the values of such determined
fields may be returned as a result of the query.
0057 To this end, only fields that are common to all
objects types may be capable of being referenced in the query.
The query may only return the values of those fields that are
common to all object types. Similarly, the query may only
filter on those fields that are common to all object types.
Fields common to all object types may include standard fields
and the shared custom fields. To this end, for example, if
Publisher is a custom field specific to an object type User
Manual, and hence not applicable to an object type FAQ, then
it may not be allowed to run a query to select from all object
types where Publisher has a certain value. It may also not be
allowed to run a query to select Publisher from all object
types.
0058 If it is determined that the query is specific to an
object type, then objects selected by the query using the key
prefix identifier associated with the particular type of object
are identified. Note operation 308. For example, only objects
having the key prefix identifier (e.g. associated with content
of the type identified by the key prefix identifier) may be
identified. Thus, only objects of the particular type of object
referenced in the query may be identified.
0059 Moreover, values of fields associated with the iden

tified objects are returned, as shown in operation 310. Thus, a
value for each field included in the identified objects may be
returned, since the identified objects may have the same stan
dard fields and custom fields. For example, since the key
prefix is specified, the query may be free to reference any
shared field or any field that is specific to the object type of the
given key prefix. But, it may not be allowed to reference any
custom field specific to other article types. Just by way of
example, if Publisher is a custom field specific to article type
UserManual, it may not make sense o query or filter on
Publisher when the query key prefix is that of article type
FAQs.

System Overview

0060 FIG. 4 illustrates a block diagram of an environment
410 wherein an on-demand database service might be used.
Environment 410 may include user systems 412, network
414, System 416, processor system 417, application platform
418, network interface 420, tenant data storage 422, system
data storage 424, program code 426, and process space 428.
In other embodiments, environment 410 may not have all of
the components listed and/or may have other elements instead
of, or in addition to, those listed above.
0061 Environment 410 is an environment in which an
on-demand database service exists. User system 412 may be
any machine or system that is used by a user to access a
database user System. For example, any of user systems 412
can be a handheld computing device, a mobile phone, a laptop
computer, a work station, and/or a network of computing
devices. As illustrated in FIG. 4 (and in more detail in FIG. 5)
user Systems 412 might interact via a network 414 with an
on-demand database service, which is system 416.

May 15, 2014

0062 An on-demand database service, such as system
416, is a database system that is made available to outside
users that do not need to necessarily be concerned with build
ing and/or maintaining the database system, but instead may
be available for their use when the users need the database
system (e.g., on the demand of the users). Some on-demand
database services may store information from one or more
tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly,
“on-demand database service 416' and “system 416' will be
used interchangeably herein. A database image may include
one or more database objects. A relational database manage
ment system (RDMS) or the equivalent may execute storage
and retrieval of information against the database object(s).
Application platform 418 may be a framework that allows the
applications of system 416 to run, such as the hardware and/or
Software, e.g., the operating system. In an embodiment, on
demand database service 416 may include an application
platform 418 that enables creation, managing and executing
one or more applications developed by the provider of the
on-demand database service, users accessing the on-demand
database service via user systems 412, or third party applica
tion developers accessing the on-demand database service via
user systems 412.
0063. The users of user systems 412 may differ in their
respective capacities, and the capacity of a particular user
system 412 might be entirely determined by permissions
(permission levels) for the current user. For example, where a
salesperson is using a particular user system 412 to interact
with system 416, that user system has the capacities allotted
to that salesperson. However, while an administrator is using
that user system to interact with system 416, that user system
has the capacities allotted to that administrator. In systems
with a hierarchical role model, users at one permission level
may have access to applications, data, and database informa
tion accessible by a lower permission level user, but may not
have access to certain applications, database information, and
data accessible by a user at a higher permission level. Thus,
different users will have different capabilities with regard to
accessing and modifying application and database informa
tion, depending on a user's security or permission level.
0064 Network 414 is any network or combination of net
works of devices that communicate with one another. For
example, network 414 can be any one or any combination of
a LAN (local area network), WAN (wide area network), tele
phone network, wireless network, point-to-point network,
star network, token ring network, hub network, or other
appropriate configuration. As the most common type of com
puter network in current use is a TCP/IP (Transfer Control
Protocol and Internet Protocol) network, such as the global
internetwork of networks often referred to as the “Internet'
with a capital “I” that network will be used in many of the
examples herein. However, it should be understood that the
networks that the one or more implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.
0065. User systems 412 might communicate with system
416 using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate. Such as HTTP,
FTP, AFS, WAP, etc. In an example where HTTP is used, user
system 412 might include an HTTP client commonly referred
to as a “browser for sending and receiving HTTP messages
to and from an HTTP server at system 416. Such an HTTP
server might be implemented as the sole network interface

US 2014/O 136500 A1

between system 416 and network 414, but other techniques
might be used as well or instead. In some implementations,
the interface between system 416 and network 414 includes
load sharing functionality, such as round-robin HTTP request
distributors to balance loads and distribute incoming HTTP
requests evenly over a plurality of servers. At least as for the
users that are accessing that server, each of the plurality of
servers has access to the MTS data; however, other alterna
tive configurations may be used instead.
0066. In one embodiment, system 416, shown in FIG. 4,
implements a web-based customer relationship management
(CRM) system. For example, in one embodiment, system 416
includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, webpages and other information to and
from user systems 412 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object, however, tenant
data typically is arranged so that data of one tenant is kept
logically separate from that of other tenants so that one tenant
does not have access to another tenant's data, unless such data
is expressly shared. In certain embodiments, system 416
implements applications other than, or in addition to, a CRM
application. For example, system 416 may provide tenant
access to multiple hosted (standard and custom) applications,
including a CRM application. User (or third party developer)
applications, which may or may not include CRM, may be
Supported by the application platform 418, which manages
creation, storage of the applications into one or more database
objects and executing of the applications in a virtual machine
in the process space of the system 416.
0067. One arrangement for elements of system 416 is
shown in FIG. 4, including a network interface 420, applica
tion platform 418, tenant data storage 422 for tenant data 423,
system data storage 424 for system data 425 accessible to
system 416 and possibly multiple tenants, program code 426
for implementing various functions of system 416, and a
process space 428 for executing MTS system processes and
tenant-specific processes. Such as running applications as part
of an application hosting service. Additional processes that
may execute on system 416 include database indexing pro
CCSSCS.

0068. Several elements in the system shown in FIG. 4
include conventional, well-known elements that are
explained only briefly here. For example, each user system
412 could include a desktop personal computer, workstation,
laptop, PDA, cell phone, or any wireless access protocol
(WAP) enabled device or any other computing device capable
of interfacing directly or indirectly to the Internet or other
network connection. User system 412 typically runs an
HTTPS client, e.g., a browsing program, such as Microsoft's
Internet Explorer browser. Netscape's Navigator browser,
Opera's browser, or a WAP-enabled browser in the case of a
cellphone, PDA or other wireless device, or the like, allowing
a user (e.g., Subscriber of the multi-tenant database system) of
user system 412 to access, process and view information,
pages and applications available to it from system 416 over
network 414. Each user system 412 also typically includes
one or more user interface devices, such as a keyboard, a
mouse, trackball, touchpad, touch screen, pen or the like, for
interacting with a graphical user interface (GUI) provided by
the browser on a display (e.g., a monitor Screen, LCD display,
etc.) in conjunction with pages, forms, applications and other

May 15, 2014

information provided by system 416 or other systems or
servers. For example, the user interface device can be used to
access data and applications hosted by system 416, and to
perform searches on Stored data, and otherwise allow a user to
interact with various GUI pages that may be presented to a
user. As discussed above, embodiments are Suitable for use
with the Internet, which refers to a specific global internet
work of networks. However, it should be understood that
other networks can be used instead of the Internet. Such as an
intranet, an extranet, a virtual private network (VPN), a non
TCP/IP based network, any LAN or WAN or the like.
0069. According to one embodiment, each user system
412 and all of its components are operator configurable using
applications, such as a browser, including computer code run
using a central processing unit such as an Intel Pentium R
processor or the like. Similarly, system 416 (and additional
instances of an MTS, where inure than one is present) and all
of their components might be operator configurable using
application(s) including computer code to run using a central
processing unit such as processor System 417, which may
include an Intel Pentium(R) processor or the like, and/or mul
tiple processor units. A computer program product embodi
ment includes a machine-readable storage medium (media)
having instructions stored thereon/in which can be used to
program a computer to perform any of the processes of the
embodiments described herein. Computer code for operating
and configuring system 416 to intercommunicate and to pro
cess webpages, applications and other data and media content
as described herein are preferably downloaded and stored on
a hard disk, but the entire program code, or portions thereof,
may also be stored in any other volatile or non-volatile
memory medium or device as is well known, such as a ROM
or RAM, or provided on any media capable of storing pro
gram code. Such as any type of rotating media including
floppy disks, optical discs, digital versatile disk (DVD), com
pact disk (CD), microdrive, and magneto-optical disks, and
magnetic or optical cards, nanoSystems (including molecular
memory ICs), or any type of media or device suitable for
storing instructions and/or data. Additionally, the entire pro
gram code, orportions thereof, may be transmitted and down
loaded from a software source over a transmission medium,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN, etc.)
using any communication medium and protocols (e.g., TCP/
IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will
also be appreciated that computer code for implementing
embodiments can be implemented in any programming lan
guage that can be executed on a client system and/or server or
server system such as, for example, C, C++, HTML, any other
markup language, JavaTM, JavaScript, ActiveX, any other
Scripting language. Such as VBScript, and many other pro
gramming languages as are well known may be used. (JavaTM
is a trademark of Sun MicroSystems, Inc.).
0070 According to one embodiment, each system 416 is
configured to provide webpages, forms, applications, data
and media content to user (client) systems 412 to Support the
access by user systems 412 as tenants of system 416. As such,
system 416 provides security mechanisms to keep each ten
ant's data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and

US 2014/O 136500 A1

one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term 'server is
meant to include a computer system, including processing
hardware and process space(s), and an associated Storage
system and database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under
stood that “server system’’ and “server are often used inter
changeably herein. Similarly, the database object described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.
(0071 FIG.5 also illustrates environment 410. However, in
FIG. 5 elements of system 416 and various interconnections
in an embodiment are further illustrated. FIG. 5 shows that
user system 412 may include processor system 412A,
memory system 412B, input system 412C, and output system
412D. FIG.5 shows network 414 and system 416. FIG.5also
shows that system 416 may include tenant data storage 422,
tenant data 423, system data storage 424, System data 425.
User Interface (UI) 530. Application Program Interface (API)
532, PL/SOQL 534, save routines 536, application setup
mechanism 538, applications servers 500-500 system pro
cess space 502, tenant process spaces 504, tenant manage
ment process space 510, tenant storage area 512, user storage
514, and application metadata 516. In other embodiments,
environment 410 may not have the same elements as those
listed above and/or may have other elements instead of, or in
addition to, those listed above.
0072 User system 412, network 414, system 416, tenant
data storage 422, and system data storage 424 were discussed
above in FIG. 4. Regarding user system 412, processor sys
tem 412A may be any combination of one or more processors.
Memory system 412B may be any combination of one or
more memory devices, short term, and/or long term memory.
Input system 412C may be any combination of input devices,
Such as one or more keyboards, mice, trackballs, Scanners,
cameras, and/or interfaces to networks. Output system 412D
may be any combination of output devices, such as one or
more monitors, printers, and/or interfaces to networks. As
shown by FIG. 5, system 416 may include a network interface
420 (of FIG. 4) implemented as a set of HTTP application
servers 500, an application platform 418, tenant data storage
422, and system data storage 424. Also shown is system
process space 502, including individual tenant process spaces
504 and a tenant management process space 510. Each appli
cation server 500 may be configured to tenant data storage
422 and the tenant data 423 therein, and system data storage
424 and the system data 425 therein to serve requests of user
systems 412. The tenant data 423 might be divided into indi
vidual tenant storage areas 512, which can be either a physical
arrangement and/or a logical arrangement of data. Within
each tenant storage area 512, user storage 514 and application
metadata 516 might be similarly allocated for each user. For
example, a copy of a user's most recently used (MRU) items
might be stored to user storage 514. Similarly, a copy of MRU
items for an entire organization that is a tenant might be stored
to tenant storage area 512. AUI 530 provides a user interface
and an API 532 provides an application programmer interface
to system 416 resident processes to users and/or developers at

May 15, 2014

user systems 412. The tenant data and the system data may be
stored in various databases, such as one or more OracleTM
databases.
0073. Application platform 418 includes an application
setup mechanism 538 that supports application developers
creation and management of applications, which may be
saved as metadata into tenant data storage 422 by save rou
tines 536 for execution by subscribers as one or more tenant
process spaces 504 managed by tenant management process
510 for example. Invocations to such applications may be
coded using PL/SOOL 534 that provides a programming
language style interface extension to API 532. A detailed
description of some PL/SOOL language embodiments is dis
cussed in commonly owned co-pending U.S. Provisional
Patent Application 60/828,192 entitled, PROGRAMMING
LANGUAGE METHOD AND SYSTEM FOR EXTEND
ING APIS TO EXECUTE IN CONJUNCTION WITH
DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006,
which is incorporated in its entirety herein for all purposes.
Invocations to applications may be detected by one or more
system processes, which manage retrieving application meta
data 516 for the subscriber making the invocation and execut
ing the metadata as an application in a virtual machine.
0074 Each application server 500 may be communicably
coupled to database systems, e.g., having access to system
data 425 and tenant data 423, via a different network connec
tion. For example, one application server 500 might be
coupled via the network 414 (e.g., the Internet), another appli
cation server 500 might be coupled via a direct network
link, and anotherapplication server 500 might be coupled by
yet a different network connection. Transfer Control Protocol
and Internet Protocol (TCP/IP) are typical protocols for com
municating between application servers 500 and the database
system. However, it will be apparent to one skilled in the art
that other transport protocols may be used to optimize the
system depending on the network interconnect used.
0075. In certain embodiments, each application server 500

is configured to handle requests for any user associated with
any organization that is a tenant. Because it is desirable to be
able to add and remove application servers from the server
pool at any time for any reason, there is preferably no server
affinity for a user and/or organization to a specific application
server 500. In one embodiment, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-LP
load balancer) is communicably coupled between the appli
cation servers 500 and the user systems 412 to distribute
requests to the application servers 500. In one embodiment,
the load balancer uses a least connections algorithm to route
user requests to the application servers 500. Other examples
of load balancing algorithms, such as round robin and
observed response time, also can be used. For example, in
certain embodiments, three consecutive requests from the
same user could hit three different application servers 500,
and three requests from different users could hit the same
application server 500. In this manner, system 416 is multi
tenant, wherein system 416 handles storage of, and access to,
different objects, data and applications across disparate users
and organizations.
0076. As an example of storage, one tenant might be a
company that employs a sales force where each salesperson
uses system 416 to manage their sales process. Thus, a user
might maintain contact data, leads data, customer follow-up
data, performance data, goals and progress data, etc., all
applicable to that user's personal sales process (e.g., intenant

US 2014/O 136500 A1

data storage 422). In an example of a MTS arrangement, since
all of the data and the applications to access, view, modify,
report, transmit, calculate, etc., can be maintained and
accessed by a user system having nothing more than network
access, the user can manage his or her sales efforts and cycles
from any of many different user systems. For example, if a
salesperson is visiting a customer and the customer has Inter
net access in their lobby, the salesperson can obtain critical
updates as to that customer while waiting for the customer to
arrive in the lobby.
0077. While each user's data might be separate from other
users’ data regardless of the employers of each user, some
data might he organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 416 that are allocated at the tenant level
while other data structures might he managed at the user level.
Because an MTS might Support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant spe
cific data, System 416 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.
0078. In certain embodiments, user systems 412 (which
may be client systems) communicate with application servers
500 to request and update system-level and tenant-level data
from system 416 that may require sending one or more que
ries to tenant data storage 422 and/or system data storage 424.
System 416 (e.g., an application server 500 in system 416)
automatically generates one or more SQL statements (e.g.,
one or more SQL queries) that are designed to access the
desired information. System data storage 424 may generate
query plans to access the requested data from the database.
0079. Each database can generally be viewed as a collec
tion of objects, such as a set of logical tables, containing data
fitted into predefined categories. A “table' is one representa
tion of a data object, and may be used herein to simplify the
conceptual description of objects and custom objects. It
should be understood that “table' and “object may be used
interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or record of a table contains
an instance of data for each category defined by the fields. For
example, a CRM database may include a table that describes
a customer with fields for basic contact information Such as
name, address, phone number, fax number, etc. Another table
might describe a purchase order, including fields for informa
tion Such as customer, product, sale price, date, etc. In some
multi-tenant database systems, standard entity tables might
be provided for use by all tenants. For CRM database appli
cations, such standard entities might include tables for
Account, Contact, Lead, and Opportunity data, each contain
ing pre-defined fields. It should be understood that the word
“entity” may also be used interchangeably herein with
“object” and “table'.
0080. In some multi-tenant database systems, tenants may
be allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus

May 15, 2014

tom index fields. U.S. patent application Ser. No. 10/817,161,
filed Apr. 2, 2004, entitled “Custom Entities and Fields in a
Multi-Tenant Database System', and which is hereby incor
porated herein by reference, teaches systems and methods for
creating custom objects as well as customizing standard
objects in a multi-tenant database system. In certain embodi
ments, for example, all custom entity data rows are stored in
a single multi-tenant physical table, which may contain mul
tiple logical tables per organization. It is transparent to cus
tomers that their multiple “tables' are in fact stored in one
large table or that their data may be stored in the same table as
the data of other customers.
I0081. While one or more implementations have been
described by way of example and in terms of the specific
embodiments, it is to be understood that one or more imple
mentations are not limited to the disclosed embodiments. To
the contrary, it is intended to cover various modifications and
similar arrangements as would be apparent to those skilled in
the art. Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
Such modifications and similar arrangements.

1. A computer program product, comprising a non-transi
tory computer usable medium having a computer readable
program code embodied therein, the computer readable pro
gram code adapted to be executed to implement a method for
versioning content in a database system using content type
specific objects, the method comprising:

storing content;
identifying a type of the content;
for each version of the content, storing information asso

ciated with the version in a database using at least one
object specific to the type of the content; and

pointing the information to the stored content.
2. The computer program product of claim 1, wherein the

content includes a document.
3. The computer program product of claim 2, wherein the

document includes a knowledge-based document.
4. The computer program product of claim 1, wherein the

content is stored in one of a file system of a multi-tenant
on-demand database system and the database.

5. The computer program product of claim 1, wherein the
type of the content includes one of a plurality of predeter
mined categories.

6. The computer program product of claim 1, wherein the
type of the content is identified based on subject matter
included in the content.

7. The computer program product of claim 1, wherein each
version of the content includes at least one aspect which is
different from other versions of the content.

8. The computer program product of claim 1, wherein the
information associated with the version includes standard
information stored in standard fields of the database.

9. The computer program product of claim 8, wherein the
standard fields are common to each object in the database.

10. The computer program product of claim 8, wherein the
standard information includes at least one of a title of the
content, a version number of the content, and a publication
date of the content.

11. The computer program product of claim 8, wherein the
standard information is stored in association with a key prefix
identifying the type of the content.

12. The computer program product of claim 1, wherein the
information associated with the version includes custom
information stored in custom fields of the database.

US 2014/O 136500 A1

13. The computer program product of claim 12, wherein at
least a portion of the custom fields are unique to the object that
is specific to the type of the content.

14. The computer program product of claim 12, wherein at
least a portion of the custom fields are shared among different
objects each specific to a different type of content.

15. The computer program product of claim 1, wherein the
database includes a first table including standard fields for
storing standard information associated with the version and
a second table including custom fields for storing custom
information associated with the version.

16. The computer program product of claim 15, wherein a
private key is shared among the first table and the second
table, for associating the standard information associated
with the version with the custom information associated with
the version.

17. The computer program product of claim 1, wherein
pointing the information to the stored content includes storing
a reference to the stored content in association with the infor
mation associated with the version, such that each of the
versions points to a single instance of the content.

18. The computer program product of claim 1, further
comprising, in response receipt of a query on the database:

determining whether the query is specific to a particular
type of object;

if it is determined that the query is specific to the particular
type of object, identifying only objects of the particular
type of object and returning values of fields associated
with the identified objects; and

if it is determined that the query is not specific to the
particular type of object, identifying objects selected by
the query and returning, only for fields that are common
to all of the selected objects, values of the fields.

19. A method, comprising:
storing content;
identifying a type of the content;

May 15, 2014

for each version of the content, storing information asso
ciated with the version in a database using at least one
object specific to the type of the content, utilizing a
processor, and

pointing the information to the stored content.
20. An apparatus, comprising:
a processor for:

storing content;
identifying a type of the content;
for each version of the content, storing information asso

ciated with the version in a database using at least one
object specific to the type of the content; and

pointing the information to the stored content.
21. A method for transmitting code, comprising:
transmitting code to store content;
transmitting code to identify a type of the content;
transmitting code to store information associated with a

version of the content in a database using at least one
object specific to the type of the content, for each version
of the content; and

transmitting code to point the information to the stored
COntent.

22. A computer program product, comprising a non-tran
sitory computer usable medium having a computer readable
program code embodied therein, the computer readable pro
gram code adapted to be executed to implement a method for
sharing fields among different content types, the method
comprising:

storing content;
identifying a first type of the content;
storing information associated with the content in a data

base using at least one first object specific to the first type
of the content; and

configuring a custom field of the first object to be shared
with at least one second object specific to a second type
of content different than the first type of the content.

k k k k k

