
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0331392 A1

US 20120331392A1

Akolkar et al. (43) Pub. Date: Dec. 27, 2012

(54) SYSTEMAND METHOD FOR DATA-DRIVEN (52) U.S. Cl. ... T15/738
WEB PAGENAVIGATION CONTROL

(75) Inventors: Rahul P. Akolkar, Tuckahoe, NY (US);
John M. Boyer, Victoria (CA); Charles (57) ABSTRACT
F. Wiecha, Hastings on Hudson, NY
(US) A system and method for web application navigation control

includes updating navigation data models used in navigation
(73) Assignee: ENRSNS constraints with received data from an end-user or system.

ARMONK, NY (US) s Without needing a centralized application-specific controller,
s from a collection of extensible navigation rules associated

(21) Appl. No.: 13/602,989 with each page of a plurality of pages, the extensible naviga
tion rules are automatically selected which depend on

(22) Filed: Sep. 4, 2012 changed data values and need re-evaluation. The navigation
constraints associated only with the pages potentially chang

Related U.S. Application Data ing their ready state to execute from among the plurality of
(63) Continuation of application No. 12/847,484, filed on pages in an entire application are evaluated to determine

Jul 30, 2010. which pages are ready to run based on updated data from the
s navigation data models. A preferred page to be actually navi

Publication Classification gated to next is selected from among a set of all available and
ready pages by execution of a set of second and separate

(51) Int. Cl. navigation constraints using results of the navigation con
G06F 3/0 (2006.01) straints of the evaluating step.

Page1.html

XFC is ide

Kinstance Sr. f>

<instance Sr. f>

AC

logo.png

Page2.html

Xrris Mode

<instance sic. f>

<ing Src f>

RR.Xr
<Fioredata>

X

Signature

2 foredata

38

US 2012/0331392 A1 Dec. 27, 2012 Sheet 1 of 9 Patent Application Publication

370 ||

Patent Application Publication

Page1.htrial

XFO fins ?ocie

<instance Sic. fi>

<instance Src. f>

<ing Src />

36

G.2

Dec. 27, 2012 Sheet 2 of 9 US 2012/0331392 A1

AO

..Qgo.png

Page2.html

XFO is Mode

<instance Sfc. f>

<ing Src f>

D2.xn
<inoredata>

X,

Signature

2/noredata

38

Patent Application Publication Dec. 27, 2012 Sheet 3 of 9 US 2012/0331392 A1

Server-side WD rocessor
fi-NF frext-resource.xm

knavigate- 4
<target-Page2.htmik/targets

</ravigates

Page1.html
Xorris wooie XForris wide

<rstance GE Dixin f> <rstarce GE 2.x f> As
<instance GE)2.xn f>
<s missio P. <smission PJ
X: SS

WD-NFfeXt-resource f>
<Sirission P. C2.xn f>
<submissic, E

Wi-F/ex-resource f>
<Surissio Pijl 1.x in f>
<s missio 2.xir f>

f a f <s fissio GE if-NFf ext-resource fe

W-ENA ex-feSci Cef- &
<ing Src f>

< Sc. f. ae ng Src 2.xn

<roredata)

X?.

Signature
</noredata

FG.3

Patent Application Publication Dec. 27, 2012 Sheet 4 of 9 US 2012/0331392 A1

<<PREWOSkk NEX st >> ONE & K
page, Page.htm {page, Page3.html {document, http://theapp

P P Ø
Wi-NFArext-resorce Wi-N-fnext-e Sorce

xforms-Sunnit-dore

Xfcis-skiinit-core

Oxf

if page if docurrent

kfor S-S bit

38 Data

Synchronization
Sbnissions 233

xfors-surfit-dore

GE CS

Wi-NFA next-geSCrce WD-id to http://the App

34. 42

G.4

Patent Application Publication Dec. 27, 2012 Sheet 5 of 9 US 2012/0331392 A1

RESf interatio (ofter
(example:State Chart XM)

-NA rex
fresource.xm
<navigates
<target-next <f target
</navigates

Page2.htm
XF3i's yode

- - - - - - - -, x XFS focia

<instance GE Oxn is <irstance GE D2.Xr f>
kistaics GE D.xin fs

<st fission P.

2. -Nif next-fresorce is
<s timission P. D.X s.

<submission P 2.xml fis <sionission GE ic f>
<submission GE ic f> N <ing Sic f>

. 2.x: 25 2.x: 5.
<ncretatas

Bia

F.G. 5

Patent Application Publication Dec. 27, 2012 Sheet 6 of 9 US 2012/0331392 A1

262

<<PREWOSCK >>NEX > >> CON<k
{{age, previous : page, next idocument, http://theapp

PU Ø
Wi-NFA ext-resource -NFAn ext-ire Sorce

xforms-smit-core kfors-Sofit

ata 33

Synchronization
Sibiissions 233

CS

WD-id to http://the App

34: 42

F.G. 6

Patent Application Publication

Relate data fields f

types with constraints
SO

Check for nation to

deter fine if condition is net

5 ai.

Check for deletiors

aid backtrack

SO3

Check for Stored

infortatio:

O8

Skip steps if informatio
is already known

509

if condition(s) are
met, evoke trigger

50

rigger Starts process to Corto
navigatioi is accordance with

populated data fields and Content
s

Return to earlier page
based oi, a change in data

S.

Resuite execution of earlier

page without feprompting
55

G.7

Dec. 27, 2012 Sheet 7 of 9 US 2012/0331392 A1

Customize the application

Acid inci Statenets

520

Cvice eve of

abstraction f interface

522

Author CCitro

independently of
piat for in

524

wove application
between platforms
independentiy of
page Structe

526

Patent Application Publication Dec. 27, 2012 Sheet 8 of 9 US 2012/0331392 A1

Update
navigation data
modes with Select and navigate a

data preferred page
540 5A3

Perform f distorize
tie-breaking Retiri to

Seet 55 earief fear
aYar & & extense ageS

pages for

Restine

execution

navigation ased
rties withot it (Control navigation changed on data

i Yires airs f data Controer based of presence charges
542 absence of data waiues 6 Wales

S2 562

Evaluate pages
to detenine

those that are

ready to
execute

Acic cereideic 46 p y
costraints

(e.g., bind statements
without extension points

53a.

G. 8

Patent Application Publication Dec. 27, 2012 Sheet 9 of 9 US 2012/0331392 A1

Server

602

Processor
Memory - 603

64

As 8 interaction

Applicatio:
6OS

nogue

612

Dependency
graph
6

iser device

310

ise device

66.
iser device

60

Forris with
cata fieds

55

FG.9

US 2012/0331392 A1

SYSTEMAND METHOD FOR DATA-DRIVEN
WEB PAGENAVIGATION CONTROL

RELATED APPLICATION INFORMATION

0001. This application is a Continuation application of
co-pending U.S. patent application Ser. No. 12/847,484 filed
on Jul. 30, 2010, incorporated herein by reference in its
entirety.

BACKGROUND

0002 1. Technical Field
0003. The present invention relates to web page naviga
tion control and more particularly to a system and method for
automatically providing navigation through pages based on a
position and/or content of data known or entered into a web
form or page.
0004 2. Description of the Related Art
0005 Complexities result from a lack of integrated docu
ment packaging for current document formats which repre
sent composite forms in collaborative business processes.
Underlying document formats that flow through business pro
cesses typically are existing formats such as PDF, DOC,
HTML, or various proprietary XML formats. Proprietary, or
Vendor-centric, formats are not suitable representations for
complex composite forms due to the closed nature of their
formats. Complex forms require new or extended represen
tations for issues such as data sharing across document frag
ments, transfer of control among fragments, electronic signa
tures that span document fragments, and style sheets for
coherent presentation and interaction.
0006 When large form applications are based on an XML

file format, they are somewhat open and interoperable. Use of
a custom XML Vocabulary, when implemented in plug-in or
other runtimes separate from web browsers, often limits
access to the full power of well-known web resources that
customers expect to be able to use, such as CSSTM and Java
ScriptTM
0007 Web formats today, such as HTML, do not support
packaging of composite resources directly—the page is the
unit of content storage. Hyperlinks permit navigation among
related resources but do not define collections of related con
tent. Formats that collect related artifacts including HTML
pages, images, and metadata into internally coherent entities
are intended for archiving websites for historical or offline
purposes, not as runtime platforms.
0008 Most solutions to the packaging of composite web
applications therefore are specific to the middleware platform
on which the web application is deployed. Web application
archive format (WAR) files are used by JEE web application
servers to package and deploy the set of artifacts needed by a
given web application including HTML pages or the Java
Server Pages that create them, Java beans for storing and
validating data during user interaction, and static resources
Such as images.
0009 JEE web applications commonly include flow
based controllers such as Struts to control the internal behav
ior of the various artifacts included in the WAR file and to
invoke back-end services as required. Generally, web archive
(WAR) files define a packaging mechanism for composite
web applications, but they do so in a platform-specific (JEE)
way. Such archives are not transportable to other runtimes
including non-JEE application servers or client-based runt
1CS

Dec. 27, 2012

0010 Going beyond packaging formats, web archive files
are deployment not runtime artifacts and hence do not define
a network access protocol, or URL pattern, for accessing their
contents. Web archives similarly provide no support for
aggregating multiple content Sources when several end-users
are involved in a document-centric business process.
0011. The emerging W3C format for widgets makes simi
lar use of Zip-based archives for packaging but, as in the JEE
WAR example above, lacks requirements or Support for an
interactive protocol or instance-specific data storage. URI
standards being defined for widgets are intended to resolve
references internal to the widget from one resource to another.
Prior work on composite document packaging focuses on
adapting document content for rendering to multiple devices.
0012. In traditional workflow, the token of control is the
central focus and content (whether in documents or other
wise) flows through the process from one artifact to anotheras
a result of the execution of a control path defined by the
workflow. Documents and document behavior become sec
ondary to control flow.
0013 High level declarative languages for control are
required just as they are for data and presentation. Many of
today's complex forms processing systems require authors to
“escape out of their document-centric languages when
describing behavior, even to manage document presentation
and validation in single workflow steps with individual users.
Document-centric formats that do not extend to behavioral
control increase complexity due to the need to map repeatedly
between declarative and procedural programming models.
0014 Declarative languages for document behavior may
nonetheless be expressed in multiple conceptual models,
including flow-based languages with adaptations for human
interaction, state-based languages, and time-based lan
guages. These declarative languages share the advantage of
being independent of the specific runtime middleware plat
form being used to Support the composite web application.
0015 Without a simple means to represent large or com
plex forms as composite documents, monolithic documents
result in performance and Scalability limitations, particularly
on a logical client. Large documents are slow to transmit,
parse, and display and consume large amounts of storage.
When large forms applications are represented with a single
XML document, the result is excessive, and Sustained
demand on memory resources is needed to provide a perfor
mant user experience. This is demanding on a rich client
program, but it is even more demanding when the logical
client includes a server program to present the parts of the
document to an end-user through a web browser. The server
side of the solution has the same performance challenges as a
rich client for one user, but also does not scale up beyond a
few dozen concurrent users per CPU.
0016. The processing associated with a complex docu
ment may take place at multiple locations in a distributed
system. End-users may interact with rich or thin clients. Web
services may augment document content from the server.
Intermediaries may transform document content in the net
work. The decision as to where to perform each document
operation should be decoupled from how the document is
represented to allow for “late binding or alternative choices
in how document processing is deployed onto a particular
infrastructure. Lightweight means to provide language exten
sions to current browsers have been developed based on the

US 2012/0331392 A1

use of JavaScript TM as an XML tag library implementation
language rather than as the direct authoring language for web
pageS.

SUMMARY

0017. A system and method for web application naviga
tion control includes relating data entry fields in a page stored
in computer readable storage memory with non-procedural
computed dependency constraints that provide navigation
control when a condition is met. A presence of user-side
information is checked to determine if the condition is met
and the indicated navigation control is to be invoked. If the
condition is met, a trigger event is evoked to navigate to a new
page based on at least one of a set of entry fields where data
was entered in and a type of data content entered in the entry
fields without guidance from procedural navigation code.
0018. A system for web application navigation control
includes a server including a dependency graph relating data
entry fields in a page with a navigation instruction that pro
vides navigation control when a condition is met. An interac
tion module is configured to be sensitive to at least one of
user-side information entry and known information to deter
mine if the navigation instruction is to be invoked. A proces
sor is configured to execute the navigation instruction in
accordance with a presence or absence of data values or
conditions over those values to navigate to a new page based
on at least one of a set of entry fields data was entered in and
a type of data content entered in the entry fields without
guidance from procedural navigation code.
0019. A system and method for web application naviga
tion control includes updating navigation data models used in
navigation constraints with received data from an end-user or
system. Without needing a centralized application-specific
controller, from a collection of extensible navigation rules
associated with each page of a plurality of pages, the exten
sible navigation rules are automatically selected which
depend on changed data values and need re-evaluation. The
navigation constraints associated only with the pages poten
tially changing their ready state to execute from among the
plurality of pages in an entire application are evaluated to
determine which pages are ready to run based on updated data
from the navigation data models. A preferred page to be
actually navigated to next is selected from among a set of all
available and ready pages by execution of a set of second and
separate navigation constraints using results of the navigation
constraints of the evaluating step.
0020. These and other features and advantages will
become apparent from the following detailed description of
illustrative embodiments thereof, which is to be read in con
nection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

0021. The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:
0022 FIG. 1 is a diagram showing a monolithic document
decomposed and aggregated into an interactive web docu
ment (IWD) in accordance with the present principles;
0023 FIG. 2 is a diagram showing resources using Svc
attributes with relative URIs to access other resources in a
same IWD;
0024 FIG. 3 is a diagram showing an illustrative page
navigation Submission sequence;

Dec. 27, 2012

0025 FIG. 4 is a diagram showing submission patterns for
IWD interaction control;
0026 FIG. 5 is a diagram showing an interaction control
ler Submission sequence for interaction control based page
navigation;
0027 FIG. 6 is a diagram showing submission patterns for
IWD interaction control using logical navigation targets;
0028 FIG. 7 is a block/flow diagram showing a system/
method for web page navigation control in accordance with
one illustrative embodiment;
0029 FIG. 8 is a block/flow diagram showing a system/
method for web page navigation control in accordance with
another illustrative embodiment; and
0030 FIG. 9 is a block diagram showing a system for web
page navigation control in accordance with another illustra
tive embodiment.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0031. In accordance with the present principles, systems
and methods for unifying storage and management of various
artifacts for web applications and the like into an Interactive
Web Document (IWD) are illustratively provided. Docu
ments allow end-users to encapsulate information related to a
collaborative business process into a package that can be
saved, emailed, digitally signed, and used as the basis for
interaction in an activity or an ad hoc workflow. While docu
ments are used incidentally today in web applications, for
example, in HTML presentations of content stored otherwise
in back-end systems, they are not yet the central artifact for
developers of dynamic, data intensive web applications.
0032. The storage and management unification of the vari
ous artifacts of web applications into an Interactive Web
Document (IWD) provides that data, presentation, behavior,
attachments, and digital signatures collected throughout the
business process are unified into a single composite web
resource. A standards-based approach to packaging multiple
resources into IWD archives based on the Open Document
Format, a REST-based protocol for interacting with IWDs,
and an extensible interaction controller architecture are illus
tratively described.
0033. In accordance with the present principles, web
application navigation control is provided by updating navi
gation data models used in navigation constraints with
received data from an end-user or system. Without needing a
centralized application-specific controller, from a collection
of extensible navigation rules associated with each page of a
plurality of pages, the extensible navigation rules are auto
matically selected which depend on changed data values and
need re-evaluation. The navigation constraints associated
only with the pages potentially changing their ready state to
execute from among the plurality of pages in an entire appli
cation are evaluated to determine which pages are ready to run
based on updated data from the navigation data models. A
preferred page to be actually navigated to next is selected
from among a set of all available and ready pages by execu
tion of a set of second and separate navigation constraints
using results of the navigation constraints.
0034. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an

US 2012/0331392 A1

embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0035 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

0036. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0037 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
Computer program code for carrying out operations for
aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0038 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in

Dec. 27, 2012

the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0039. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0040. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0041. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0042. A new composite document format called Interac
tive Web Documents (IWDs), based on reuse of existing
standards such as the Open Document Format (ODF) pack
aging format is described. The format collects together all
artifacts of a complex form moving through a business pro
cess. In addition, a REST-based protocol is defined for inter
acting with IWDs at runtime. A standard format for office
based documents (ODF) provides an archive format for
packaging the various artifacts relevant to an office document,
including content, style sheets, and images, along with a
manifest itemizing those assets.
0043 IWDs extend ODF packages in two ways: first, they
reuse the ODF package format for interactive documents by
defining a mapping between REST-based requests over the
web into the internal artifacts stored in the archive. This
mapping allows IWDS to maintain their identity as integrated
resources. The second extension IWDs make to ODF archives

US 2012/0331392 A1

is to allow for additional artifacts relevant to interactive
forms, including (X)HTML pages, additional style sheets,
documents defining data models (e.g. using XForms models)
and declarative controllers managing transitions among these
artifacts as the document executes. IWDs thus are containers
for a set of smaller subdocuments, each of which can be
served and rendered more quickly than the complete mono
lithic document while providing control over the navigation
among the included documents and aggregation of data
results from each.
0044) The IWD architecture defines not only how IWD
artifacts are stored internally in their ODF-based archive, but
also how they interact with the external environment using a
REST-based protocol. IWD runtimes support a set of URL
patterns for REST-based interaction including GET, PUT,
POST, and DELETE operations on documents inside the
IWD resource. IWDs thus are well-behaved web resources
and can be served by any web platform (client or server) able
to support its REST protocol. Client-based access may be
made directly to IWDs hosted by rich clients or remotely to
IWDs served to a web browser or other thin client. Server
based middleware used to implement the backbone business
bus over which IWDs execute in a business process likewise
can manage IWDS using the same interface-treating the
Interactive Web Document as a service.
0045. The document-centric approach to forms applica
tions is popular with both end-users and application develop
ers. A new file format and processing model for describing
rich interactive forms applications that preserves their docu
ment-centric nature while also better accommodating their
memory and performance demands is presented in this dis
closure. The file format itself is based on the ODF standard
and (X)HTML web pages, while the rich, secure processing
model is based on XForms and XML Signatures.
0046 Referring now to the drawings in which like numer
als represent the same or similar elements and initially to FIG.
1, a monolithic document 101, its decomposition and aggre
gation into an Interactive Web Document (IWD) are illustra
tively depicted. Resources comprising a web application are
stored within a single compressed archive file 100 that con
forms to the ODF package format. As such the archive file 100
also includes an internal indication 102 of its content type and
a manifest 104 of its resources, and their content types. FIG.
1 depicts the simple transition from a single, monolithic XML
document 101 to the new Interactive Web Document (IWD)
format 100.

0047. A monolithic form document 101 stores in a single
XML document all images 108, all supporting document
attachments 110 provided by end-users, all XML data
instances 112 and business rule models 114, all scripts and
style-sheets 116, all web pages 118 needed for various wizard
experiences, and all pages or other files which may be needed
for high-precision “contractual views and “print views of
the business function. In the Interactive Web Document 100,
these resources are aggregated, yet their decomposition
remains within the ODF package. Aggregating the resources
enables the document-centric business process, and preserv
ing the decomposition enables better design tooling, and it
also enables the components to be addressable as separate
resources via a REST service interface.
0048. An application developer has the option of placing
the data models (M) 114 into the web pages 118 rather than
separating them out, thus allowing optimizing and tailoring
the client-side business rules to control just what is on each

Dec. 27, 2012

page. The XML data instances (D) 112 are in separate files,
and the many web pages (W, and F.) 118 and 116 that may be
needed to complete the business function are in separate files,
each capable of sharing access to the XML data files in the
package by simply referencing them with the Src attribute of
an<xforms: instance> (see below). Each of the web pages 118
(116) can permit the user to transition to any other web page
in the document using an <xforms: Submission (see below),
which also permits the next page to be determined dynami
cally from user input.
0049. In lieu of directly expressing page transition instruc
tions within the web pages 118, application developers may
formalize the state transitions of the Interactive Web Docu
ment into a centralized interaction controller (IC) based, for
example, on State Chart XML as described herein.
0050 IWD Metadata: According to the ODF packaging
format, the file which may be regarded as the root of process
ing is called content.xml. Other current ODF formats are used
to contain the results of a rather passive and relatively free
form user interface experience (e.g., text editing), and the
contents of the content.xml file are appropriate to that task. In
the case of an Interactive Web Document, the ODF package is
intended to aggregate the web application resources needed
to perform a business function, and content.xml contains
information relevant to that purpose. This can include: 1) an
indication of the current web page on which to begin process
ing when the Interactive Web Document is launched; this
setting initially indicates starting web page, but it can be
adjusted whenever the user navigates to a new web page in the
IWD; 2) the base URI of the server from which the document
was first obtained; this setting is only automatically set if it is
empty and the document was obtained from the web; 3) a
document-level definition for the resources (e.g. PDF/A
documents or web pages) that comprise the print view of the
document; 4) an IWD template identifier to help easily deter
mine the IWD template from which this IWD was instanti
ated; this setting helps optimize instantiation by enabling the
ability to only instantiate IWD components that differ from
the template; 5) a globally unique identifier (GUID) for the
IWD to help track the IWD through a multi-user collaborative
process; 6) an indicator of a centralized interaction controller
file that helps manage the state of the IWD; 7) other IWD
metadata, such as information about an IWD-internal cache
of content from externally referenced URIs.
0051 Although it is also feasible to store the shared data of
an IWD in content.xml, the variation illustratively discussed
herein uses separate data files as this simplifies both IWD
authoring and the REST interface for the IWD. The metadata
element indicates the current web page on which processing
begins. As a result, the following markup provides an
example of the content.xml file of an IWD:

<odfdocument-content D
Xmlins:odf=&odfns:-

<odf:office-body>
<iwd xmlins="&iwdns:-

<current>Page1.html{current>
<iwd

<odf:office-body>
<odfdocument-content

0.052 Package-Relative Referencing: Many web-based
technologies use URIs to enable a document to obtain or
reference related web resources. A simple example is the src

US 2012/0331392 A1

attribute on <img and <scripts tags in (X)HTML web pages.
The web technologies used within an IWD are further
equipped with a relative URI dereferencing facility that
enables access to resources within the IWD that are posi
tioned relative to the referencing resource.
0053 Referring to FIG. 2, a diagram of a simple IWD 130
comprised of two web pages (Page1.html and Page2.html)
132 and 134, two data files (D1.xmland D2.xml) 136 and 138
and an image (Logo.png) 140. If Page1.html is stored in the
root directory of an archive, and a file Logo.jpg is stored in an
images Subdirectory, then a web page can display the logo
image using the following markup:

sing src="images/logo.jpg - W. F.

0054 Similarly, FIG. 2 shows that web pages can use an
XForms element called <xfinstance>, where Xf is bound to
the XForms namespace, to access an XML data model, and
that element also Supports an Src attribute. As a result, the
following markup can be used to import the data file D1.xml
from a data Subdirectory into a web page in the root directory
of the archive:

<xf:instance id="d1 src="dataD1.xml> M

0055 Run-Time Behaviors of an IWD: Session Instantia
tion: There are a number of ways in which a user can begin
interacting with an IWD. The user could click an anchor link
to the IWD template or the user could make a request of a
server endpoint that returns an IWD template or perhaps an
IWD that has been partially completed in a prior session. In all
these cases, the IWD content type on the outbound result is
detected, and the content is rerouted to the IWD server via a
POST operation. Rather than delivering the entire binary
ODF package for the IWD, this operation creates an interac
tion session for the IWD and then returns aredirection page to
the end-user that requests the <current> web page from the
session-qualified IWD.
0056. The act of instantiating an IWD interaction session
consists of logically exploding its file resources into a unique
directory determined dynamically at the time of the request.
All further interactions on the IWD by the end-user are chan
neled through a session ID associated with that directory by
the IWD server implementation. This permits any number of
users to instantiate any number of IWDs since each instan
tiation results in a unique session directory. Note that if the
IWD provides a template identifier, then rather than physi
cally storing a copy of all files in the IWD, it is possible to
detect which files differ from the template and to store only
those. Requests for unmodified files are answered with con
tent from the template. Once the IWD interaction session is
created, access to IWD resources is channeled through the
session-qualified URIs of a REST API that provides the stan
dard CRUD operations (create, read, update, delete).
0057 Data Sharing across Web Pages: Web pages are able

to use XForms user interface bindings to enable the end-user
to access and, depending on the form control, modify data
stored in an XForms instance. In a single web page applica
tion, the XForms instance can contain the data as inline con
tent. However, to share data across web pages, the data is

Dec. 27, 2012

stored in a data file in the IWD. For example let the file
D1.xml in a data directory of the IWD contain the following
COntent:

<policy Xmlins="> D
<name>Kazimierz

Kuratowski-Siname>
<policy>

0058. The data is then imported into a particular web page
using the Src attribute of the <xfinstance>, which makes the
data content available via XPath referencing regardless of
whether it was obtained from inline content or an external
resource as follows:

<xf:instance id="d1 M
Src="data D1.xml> W. F.

<xfinput
ref="policy/name''>

<xf-label-Insured
Name:<xflabel

0059. In this case, the web page contains both the model
and user interface controls. When it is loaded in the web
browser, resolving the Src attribute does a GET request to the
session-qualified IWD REST service for the resources named
by package relative URIs.
0060 Data Synchronization via Submissions: The end
user may wish to navigate to a new page or to Submit a
completed IWD to the back-end server application for pro
cessing. Since a current page will be discarded, any instance
data modifications made by the end-user have to be saved to
the IWD via PUT requests to the session-qualified IWD inter
action REST service. These requests are made by <xf: sub
mission elements having the markup patterns described
below.
0061 Although most web pages in the IWD will tend to
manipulate only one or two shared instances, the pattern for
two instances easily extends to an arbitrary number. Thus,
assume we have two instances, a first D1.xml and a last
D2.xml:

<xfinstance id="d1 M
Src="dataD1.xml>
<xfinstance id="d2
Src="data D2.xml>

0062) Given these instances, the following markup pattern
shows two submissions that put them to the IWD. In these
Submissions, the resource attribute indicates the package
relative URI to write (e.g. data/D1.xml or data/D2.xml), and
the ref attribute indicates the instance whose content is writ
ten. The replace attribute indicates that nothing is replaced by
the put operation, so processing of the current web page
continues. The relevant and validate attributes indicate that
the data synchronization Submissions do not perform data
validation or pruning of non-relevant nodes since these Sub
missions are intermediate steps in an aggregate data collec
tion operation.

US 2012/0331392 A1

<xf:Submission id="Submit data1 M
method=“put ref=“instance(d1)
resource="data. D1.xml replace="none'
relevant=false validate=false'>
<xfsend ev:event=xforms-submit-done

submission="Submit data2 >
<Xfmessage

ev:event=xforms-submit-error>
Server down, please try again.

</xfmessage->
<xf:submission
<xf:Submission id="Submit data2 M

method=“put ref=“instance(d2)
resource="data/D2.xml replace="none'
relevant=false validate=false'>

<xfmessage
ev:event=xforms-submit-error>
Server down, please try again.

<xfmessage->
<xf:submission

0063. The lifecycle of an XForms submission includes a
final event, either xforms-submit-done on success (further
above) or xforms-submit-error on failure (just above). For the
error case, this markup pattern shows a simple way to report
failure. In the Success case, all data synchronization Submis
sions except the last have a handler that initiates Synchroni
Zation of the next data instance in the sequence. The Xforms
submit-done event handling for the last data submission will
be described below.

0064 Web Page Navigation: Navigation to a new page
within the IWD involves the use of a prime mover submis
Sion, the data synchronization Submissions, and a page navi
gation submission. Referring to FIG. 3, a schematic of the
sequence of submission operations (<submission PUT >) for
a page navigation is illustratively shown. First, the server-side
IWD processor is informed (arrow 171) of a next resource,
Page2.html. A second and third data synchronization Submis
sions (172 and 173) put the data collected by Page1.html into
a server-side IWD instance(s) 304. An IWD could have fewer
or more of these Submissions, depending on how many data
instances need to be synchronized. A fourth submission (174)
requests a next resource (174"), and a fifth submission (175)
shows Page2.html consuming one of the results of the data
synchronization.
0065. The sequence can be initiated by an <xftriggerd,
which is a generic form control that may be represented by a
user interface element such as a button. On activation of the
trigger, the <xfsend action is executed, which initiates the
prime mover Submission. In this example, a navigation to the
second page of an IWD is shown:

<xftrigger id="NavControl's W
<xf-labeld-Go to Page 2</xf-labeld
<xf:Send ev:event=''DOMActivate

submission=“NavIWD Page2/>
</xftriggers

0066. The prime mover submission uses a local data
instance to store the navigation information that will drive the
web page navigation. It is necessary to save this information
because the prime mover Submission needs to first launch the
data synchronization Submissions, the last of which will

Dec. 27, 2012

execute the page navigation Submission, so memory for the
page navigation information is needed. Here is the markup for
this instance:

<xfinstance id="NavTo'> M
<navigate Xmlins=">

<target-Page2.html></target
<operation pages/operation>

</navigate
<xfinstance>

0067. The <xftriggerd above initiates the prime mover
submission identified as NavIWD Page2. The XForms sub
mission process begins with an Xforms-Submit event, which
occurs before the data submission. In the prime mover
markup pattern below, the xforms-submit event handler pro
vides the navigation target and operation parameters that will
be needed after the data synchronization Submission(s).
These parameters are then put to a special resource called
IWD-INF/next-resource provided by the REST interface.
Once the Submission Succeeds, the Xforms-Submit-done han
dler initiates the data synchronization Submissions.

<xf:submission id="NavIWD Page2 M
resource=IWD-INF next-resource'
method=“put ref=“instance(NavTo)
replace="none
validate=false' relevant=false'>
<xf:action ev:event=xforms-submits

<xfsetvalue
ref="instance(NavTo) target'
>Page3.xhtml{xfsetvalues

<xfsetvalue
ref="instance(NavTo)/operation
>pages/xfsetvalues

<xfaction
<xf.send

ev:event=xforms-submit-done
submission="Submit data1 is

<Xfmessage
ev:event=xforms-submit-error>
Server down, please try again.

</xfmessage->
<xf:Submission

s

0068. The Xforms-submit-done handler was elided in the
last of the data synchronization Submissions. The following
conditional handler invokes the page navigation Submission,
if the navigation operation is was set to page by the prime
OVe:

<xf.send M
ev:event=xforms-submit-done
Submission=NavIWD’
if-"instance(NavTo)/operation=page"

f>

0069. The final page navigation submission performs a get
operation on the IWD-INF/next-resource that was set by the
prime mover Submission. This Submission replaces the cur
rent page with the next resource. On a server, the <current>
element in content.xml is set to the next resource <target
value. Here is the markup pattern for the final page navigation
Submission:

US 2012/0331392 A1

<xf:Submission id="NavIWD' M
method=''get' replace="all
serialization="none
resource=IWD-INF next-resource'

0070 Document Completion Request: A similar submis
sion sequence is used to submit an IWD for server-side pro
cessing, e.g., performing the business transaction represented
by the IWD or taking the next step of a workflow and provi
sioning the IWD to another user.
0071 Referring to FIG.4, differences by putting the docu
ment completion Submission pattern in context with a page
navigation Submission pattern is illustratively depicted. Page
navigation instructions include previous 232, next 234 and
done 236. There are only a few differences in the prime mover
submission for IWD document completion, relative to the
prime mover for page navigation. First, the Submission would
be initiated by a distinct xftrigger (labeled > DONE <
236 in FIG. 4). Second, the navigation <target is a business
process or server application module endpoint, rather than an
IWD web page resource. Third, the navigation operation is set
to document rather than page. Fourth, the prime mover
submission does not need to submit any data to the IWD, so
data synchronization submission(s) 238 can be initiated dur
ing the Xforms-submit event rather thanxforms-submit-done.
These changes result in the following markup pattern for the
document completion prime mover Submission:

<xf:submission id="CompletelWD> M
<xf:action ev:event=xforms-submit

<xfsetvalue
ref="instance(NavTo)/target”
>http://the App-xfsetvalues

<xfsetvalue
ref="instance(NavTo)/operation”
>document<xfsetvalue

<xfsend submission="Submit data1 -
<xfaction>

<xf:submission

0072. As FIG. 4 also shows, the last data synchronization
Submission receives another Xforms-Submit-done handler so
that it is able to conditionally launch the document comple
tion Submission:

<xf.send M
ev:event=xforms-submit-done
Submission=SubmitWD’
if-"instance(NavTo)/operation= documen

0073. The document completion submission occurs at the
end of an interaction session with a particular client-side
end-user. Its purpose is to provide the IWD to the server-side
business process or application module, which then decides
whether to provide the IWD to another collaborator in a
workflow or to use the IWD content to drive back-end busi
ness transactions. Here is the markup pattern:

Dec. 27, 2012

<xf:Submission id="SubmitWD’ M
method="post replace="all
serialization="&iwdContentType:
encoding=base64
validate=false' relevant=false'>
<xforms: resource

value="instance? NavTo)/target"/>
<xf:Submission

0074 This submission uses a custom serialization to
which the IWD processing code is responsive, i.e., the IWD
processor overrides the default XForms serialization via the
xforms-submit-serialize event. There are two conceptual
models for providing the completed IWD to the business
process or server application module, a push model 242 and a
pull model 240. Under the push model 242, the completed
IWD is repackaged into a full IWD serialization that is posted
to a server application module. However, this model is less
efficient than the pull model 240, so the latter is used as the
default. Under the pull model 240, a main piece of informa
tion that is serialized and transmitted to the server application
module is just the interaction session ID for the IWD. This
allows the server application module to pull any needed IWD
content from the interaction session. The server application
module may request the entire repackaged IWD if needed for
archival purposes, but most business process steps just pull
the data needed to drive specific transactions or provide the
same interaction session to the next collaborator in a sequen
tial workflow. Thus, the approach of instantiating a REST
service for document interaction enables significantly opti
mized responsiveness to the actual data processing require
ments of business processing pipelines and collaborative
workflows.
0075 Platform-Independent Performant Implementation:
The IWD Server implementation is described as the set of
server resources available and a REST API that the server
supports. The notable resources maintained on an IWD
Server can be attributed to the following resource types:

0.076 1. IWDs. This is a singleton resource that is the
collection of all active IWD instances of the server.

0.077 2. IWD. Within IWDs, each IWD instance is
represented by a GUID.

0078. 3. Entry. Within an IWD instance, there are a
number of entry resources corresponding in name to the
ODF entries for each IWD instance, for example, http://
server.com/IWDs/a-GUID/Page2.html.

0079 4. ic Within an IWD instance, there is one inter
action controller resource.

0080 5. export For each IWD instance, this resource
provides IWD instance as an archive, terminating its
interaction session.

I0081. The various higher level operations, such as page
navigation, document completion and signature generation
and validation, are supported by low level REST API opera
tions such as those described in Table 1. The two resource
types marked by an asterisk, viz. IWD* and Entry, indicate
that those are not the literal URL fragments used in the REST
API. In the first case, an individual IWD resource is identified
by its GUID instead. For an Entry resource within a given
IWD instance, the relative path from the base of the ODF
package is used instead. IWD Servers may implement access
control rules on one or more of these resource types and
operations. By defining web application interaction in terms

US 2012/0331392 A1

of the ODF packaging format and a REST API, we enable
platform independent implementation. In one embodiment, a
IWD Server implementation can be built using JAX-RS,
which defines a Java API for RESTful Web Services.

TABLE 1.

The REST APIs for the Key Resource Types

Resource Operations Semantics of the Operations

IWDS GET Returns list of IWD instances
POST Creates an instance of the posted IWD

IWD: GET Returns IWD instance (if application vnd.ibm.iwd
is accepted) or list of IWD entries
(if only text/html is accepted)

DELETE Destroys the IWD instance
Entry GET Returns a specified resource within the IWD

instance
PUT Creates or replaces a resource in the IWD

instance
DELETE Deletes a resource from the IWD instance

ic POST Returns the next page in the IWD as decided
by the IWD’s interaction controller

export GET Returns a portable export of the IWD instance
archive and terminates
he IWD instance interaction session

0082. The present definition also supports a desired prop
erty of application instance portability via export GET and
IWDs POST operations. These enable the entire web appli
cation interaction session to be serialized, transported across
enterprise IT domain boundaries, and then reinstantiated. For
example, a patient intake record can be instantiated at a medi
cal clinic, transported to a hospital, embellished with diagno
sis and treatment information, and then transported again to
an insurance claim center.
I0083 Consolidating the Interaction Workflow in the IWD:
Extending the IWD Interaction Model The IWD file format
enables creation of server resource-friendly, high perfor
mance large forms applications by virtue of packaging the
forms application as a composite made up of multiple docu
ments to furnish the pertinent views, data, logic and so forth.
A formalized IWD interaction controller can build upon data
views packaged within the document by introducing a
dynamic, data driven management construct for page naviga
tion and other behaviors. The IWD run-time processor Sup
ports a pluggable notion of such an interaction controller (IC)
to define and execute the IWD page transition workflow with
graceful fallback to static navigation schemes in the absence
of such an IC.
0084 State Charts for Interaction Control: It is possible to
formalize the view state transitions using a state chart that
models the closure over all potential page transition
sequences that may occur during the IWD instance run-time
lifecycle, from document instantiation leading up to docu
ment completion. The IWD run-time processor enables plug
ging in a State Chart XML (SCXML) based definition of an
IC. A processor detects whether an IC has been plugged in by
introspecting the contents of the ODF content.xml, specifi
cally the “ic' component in the IWD definition. Consider the
following:

<offidocument-content D
xmlins:off=&odfns:-

<off:office-body>

Dec. 27, 2012

-continued

<iwd xmlins="&iwdns:-
<ic-controller.scxml.<

fic
</iwd

</off:office-body>
<offidocument-content

I0085. The above content.xml snippet conveys the follow
ing information to the IWD run-time processor: Foremost, it
conveys the presence of an IC for managing the page naviga
tions within this IWD. Secondly, it conveys the location of the
IC, specified by the relative URL “controller scxml with
respect to the root of the REST-based URL for the IWD
instance. The presence of an IC causes the IWD run-time
processor to augment certain phases in the IWD lifecycle with
additional processing to support dynamic page transitions. It
also dedicates the relative URL “ic' to the dynamic interac
tion controller resource for the IWD instance, such that a GET
request delegates dynamic page navigation to the IC. Further,
it necessitates minor changes to the markup patterns for the
prime mover and page transition XForms submissions in
individual web pages within the IWD, as described below.
I0086 Once the run-time processor establishes the unique
session identity and completed the IWD instantiation by
exploding the template contents as necessary, it delegates the
act of determining a first page to be provisioned to the client
to the corresponding IC instance. The run-time processor
traverses the relative URL to locate the IC definition for the
IWD and creates an IWD instance specific SCXML processor
based on that definition. This SCXML processor subse
quently reads in any parts of the data model, i.e., specific
XML data instances that the state chart refers to. The runtime
processor triggers an instantiation event on the SCXML pro
cessor, which causes the SCXML processor to follow appro
priate transition(s) based on their XML-data dependent
guards and come to rest in some initial state. This initial state
is queried by the IWD run-time processor to determine the
first page to provision to the client. The id of the current state
is also the relative URL to the corresponding page to be
provisioned to the client when in that controller state, but
other mapping techniques may also be employed.
I0087. Just before the initial web page is delivered to the
client, the run-time processor saves the state of the instanti
ated SCXML processor in the “ic' subdirectory of the
exploded IWD instance. Similarly, XML data changes, if any,
are saved to the proper locations in the “data subdirectory.
The web pages delivered to the client obtain the XML data for
their XForms instances from package-relative URIs in the src
attributes, and they perform data synchronization via XForms
Submissions. However, page navigation requests are Submit
ted to the package-relative “ic' URI which represents the
dynamic interaction controller resource for the IWD. Navi
gation is driven by logical targets, rather than concrete URLs.
The trigger which initiates the Submission sequence deter
mines the name of the event to be fired on the state chart
controller.

I0088 Referring to FIG. 5, a schematic of such sequence of
Submission operations for IC-based page navigation is illus
tratively shown. First, a server-side IWD processor 302 is
informed of the name of the event to be fired, “next'. See
arrow 251. A second and third data synchronization submis
sion (252 and 253) puts the data collected by Page1.html into
a server-side IWD instance(s) 304 using a chaining pattern

US 2012/0331392 A1

described above. A fourth submission (254) requests the
dynamic interaction controller resource for the IWD which is
determined by an active state (254") in a state chart 258 based
controller implementation, and a fifth submission (255)
shows Page2.html consuming one of the results of the earlier
data synchronization. This pattern results in certain changes
to the previously described markup patterns. The instance
that stores the navigation information takes the form:

<xfinstance id="NavTo's M
<navigate Xmlins= * >

<target-targets
</navigate

<xfinstance>

0089. Since page navigation is delegated to the IC
resource, the prime mover XForms submission specifies the
logical target, i.e., the name of the event to be fired on the state
chart 258, rather than a concrete package-relative URL for the
Subsequent page:

<xf:Submission id="ICNavigate Next M
resource=IWD-INF next-resource
method='''put' ref="instanced NavTo)
replace="none validate="false'
relevant=false'>

<xfsetvalue ev:event=xforms-submit
ref="instance(NavTo)/target”
>next-Sixfsetvalue

<xf.send ev:event=xforms-submit-done
submission="Submit data1 >

<Xfmessage
ev:event=xforms-submit-error>

There was a problem contacting the server.
Try again.

</xfmessage->
<xf:Submission

0090 Any intermediate data synchronization XForms
Submissions continue to use the same patterns. The trigger for
the prime mover XForms submissions in the user interface
reflects the dynamic nature to the user with appropriate
labels:

<xftriggers- W. F.
<xf-labeld-Next Page3/xf-labeld
<xf:Send ev:event=''DOMActivate

Submission="ICNavigate Next
</xftriggers

0091. The page navigation submission targets the pack
age-relative “ic' URI for the dynamic IC resource:

<xf:submission id="NavIWD method=''get' M
serialization="none resource="ic
replace=“all” f>

0092. Once the page navigation submission makes a GET
request to the server at the package-relative “ic URL, the
IWD run-time processor restores the SCXML processor from
the state previously saved in the IWD instance’s “ic' subdi

Dec. 27, 2012

rectory, which then reads in any XML data instances the state
chart refers to. These XML data instances have already been
updated by the chained data synchronization XForms sub
missions as necessary. The run-time processor then reads the
name of the event to be fired on the SCXML processor (by
retrieving the “NavTo' instance data stored at the location
“WEB-INF/next-resource') and fires the state transition
bearing the corresponding name in its event attribute. The
SCXML processor follows appropriate transitions based on
their XML-data dependent guards and comes to rest in some
state. The target attribute of a transition indicates the id of a
quiescent state. The IWD processor determines the next page
to provide from this state. Again, in one mapping, the new
resource to return is based on the id of the new state. The
SCXML processor state and any data changes are saved to the
IWD instance, and then the new page is provided to the client.
0093. Referring to FIG. 6, a submission sequence to sub
mit an IWD for server-side processing on document comple
tion is shown and is similar to that described above in FIG. 4.
A notable difference is that page navigation uses logical navi
gation targets such as “previous 260 and “next 262. The
relevant markup described also appears in the above
examples. Notably, those examples about service invocations
and document completion. Compared to the basic IWD life
cycle previously described, the IC-based IWD completion
request here may not require a distinct Submission to a server
application module or business process module due to the
ability to implement simple workflows via SCXML service
invocations.

0094 Service Invocations: A state chart IC that manages a
series of wizard style interactions across views within an
IWD is also capable of declaratively describing synchronous
as well as asynchronous service invocations as part of the
activities performed while entering and exiting controller
states, or on particular state transitions. The services orches
trated into the workflow vary widely depending on the appli
cation. Common tasks include sending notifiers and updating
logs. As a simple example, consider an expense report appli
cation where the Submission of a report delivers a confirma
tion email to the person filing the report. The following
SCXML markup illustrates the invocation of the email ser
vice as part of the view transition from the completed docu
ment Submission page “submit.xhtml to the page “complet
ed.xhtml that informs the user that they have completed the
business process and that a confirmation email will be sent:

<scxml:state id="submit.xhtml> IC
<scxml:transition event=submit

target="completed.xhtml">
<service:email
to="instance(expense)/empl/email
subject="concat(Expense Report#.

instance(expense)/id)' >
Thank you for Submitting an expense
report for the amount of:
instance(expense') total
The approver is:
instance(expense), approver

<service:email
<scxml:transition>

<scxml:state

0095 Collaboration across Actors: The RESTful API for
IWD interaction ensures that interactions with IWD instances
are not constrained to a particular user agent or actor. The

US 2012/0331392 A1

state chart IC can be used to coordinate the set of collaborative
tasks required for IWD document completion. The following
SCXML markup illustrates a collaboration scenario wherein
the Submission of an expense report notifies a new actor, the
approver, of a task requiring attention:

<scxml:state id="submit.xhtml> IC
<scxml:transition event=submit

target="completed.xhtml">
<service:email
to="instance(expense)/empl/email
subject="concat(Expense Submittedt,

instance(expense), id) f>
<service:email
to="instance(expense)/approver/email
subject="concat(Expense For Approvali,

instance(expense)/id)' >
<scxml:transition

<scxml:state

0096. Using XForms Data in Interaction Controllers: We
consider an active XForms data model within a running
server-side IWD session as an extension to a simple storage
only data model. By treating data synchronization Submis
sions as updates to a server-side running model, within-pack
age XForms bind expressions can be triggered, which offeran
opportunity for additional layers of validation, constraints,
and spreadsheet-like calculations across the IWD as side
effects of data synchronization. An executing IWD can then
use these results to invoke web services, intelligently reflect
errors back to the user, or modify page navigation, as appro
priate.
0097 Conventional systems require program code to link
web page invocation and other actions. In accordance with the
present principles, a dependency graph may be set up to
provide the needed triggering of webpages, logical chaining
and other actions. For example, if three data fields need to be
filed out and a user does so, a bind constructor other construct
automatically triggers a new action Such as opening a new
web page or the like. In this way, a user is navigated through
a website based on their own actions. The programmer need
only create a dependency graph and not program each and
every sequence to link pages and cause a user to be guided
through a web page. This provides an enormous amount of
flexibility for both the programmer and the user.
0098 Advantageously, a data-driven web application con

trol is provided. Page navigation is selected by presence?
absence of data values or conditions over those values, and
not pre-determined by programming code. Changes to data
values may trigger a return to earlier pages in flexible or
unanticipated patterns without explicit coding by a page
author. Execution may then resume where the user left off
without reprompting for intermediate steps. In one embodi
ment, data may be provided by other means, e.g., without
asking the user and may cause intelligent skipping of steps
when the system determines it already has that information—
leading to flexibility in user interaction. For example, the
system may include a user's date of birth from an unrelated
profile stored in the system or other means. This information
is employed to fill in a data field automatically without user
intervention. The provided data along with any other infor
mation needed is still employed to trigger a page change in
accordance with the dependency graph conditions.
0099. Application navigation can be extended or custom
ized by authors/programmers by adding additional “bind'

Dec. 27, 2012

statements without the need for pre-defined extension points
as in conventional programming code. E.g., an author can
create dependencies between the presence of data in certain
data fields so that navigation can be customized as desired.
Navigation behavior results from a sum total of all the binds
present whether provided by the original or extended appli
cation (customized).
0100. Application authors can work at the level of their
“business logic' and not at the lower level implementation
details of application control. This raises the level of abstrac
tion of web control so that business analysts and other non
developers can do more work without the help from program
mers. Navigation control is independent of specific
middleware (e.g., Java EE) so can be moved flexibly to other
platforms such as Microsoft.NET or Google App Engine, or
to run on a client in a browser. This provides a significant
advantage as applications are authored in a cloud and may be
deployed to run on a variety of platforms.
0101. In the same way, the application can be more easily
moved from one device to another which may not have the
same “page' structure since application flow is determined
strictly by the set of data values and bind expressions ineffect.
We can save an application on one device and reload it on
another which has slightly (or significantly) different bind
expressions and get varying behavior in a way not achievable
in current programming models or middleware.
0102. In the markup example below, the XForms data
instance in loan.xml is assumed to include elements for the
name and income of the primary borrower of a hypothetical
loan as well as elements for optional information for the
borrower's spouse. The desired business logic is to customize
the application's navigational path to prompt for spousal
information when the income of the primary borrower is
below some threshold value, such as S80,000, as indicated in
the bind expression associated with the model.

<xfmodel id="test> IC
<xf:instance id="loansrc="loan.xml>
<xfbind nodeset="instance(loan')/Spouse”
relevant="instance(loan). Borrower/Income

< 80000">
</xfbinds

<xfmodel

0103) The XForms bind expressions are declarative
expressions written in XPath which allow authors to compute
“model item properties” (MIPs) that provide calculated val
ues, define validation constraints, and indicate when specific
data in a model is needed, read only or relevant given the state
of instance data anywhere in the model.
0104 Such bind expressions are used on the client in
XForms documents that interact directly with the user-con
trolling the visibility of user interface controls on the screen,
indicating error States, and ensuring all required fields are
filled before form submission. Model item property bind
expressions are explored where data required to make the
decision is not provided to the client-side web page. For
example, it may be necessary for efficiency to avoid providing
all data instances of a large model to the individual web pages
of an IWD, or it may be that the decision needs to be based on
the result of a web service if, for example, the decision logic
or its intermediate data should not be placed in the IWD for
privacy, security, or trade secret reasons. Instead, only the

US 2012/0331392 A1

results of the web service would be placed in the IWD, where
relevance expressions, as in the markup example above, or
other bind expressions can then be brought to bear in the
interaction session.

0105 XForms Data in State-Chart Controllers: In one
embodiment of our IWD implementation, we exposed model
instance data as well as model item properties (such as cal
culate, constraint, required, read-only and relevant) to the
IWD’s interaction controller. As shown in the example
markup below, the various MIPs were referenced usingXPath
functions in the SCXML transition conditions. In this
example, the application begins with loan1.html, indicated by
the initial attribute of the controller's root scxml element.
Upon submission of the form data from the client, all data
instances in the server-side model that have matching
instances in Submitted data are updated with content from the
client. The transition condition will result in navigation to
cosigner.html if the spouse data elements are flagged as rel
evant by the bind expression or to loan2.html otherwise.

<scxml initial="loan1.html> IC
<state id="loan1.html>

<transition event=next
cond="iwd:Relevant(loan Spouse)
target="cosigner.html">

<transition event=next
target="loan2.html">

<states

0106 We have experimented with providing XPath func
tions that allow SCXML controllers to reference live XForms
model data and relevance MIPs as shown in the example.
Providing access to required and validity MIPs would be
similarly straightforward. Similarly, providing XPath func
tions for setting data values would be a valuable next step. We
provide implementations of many XForms actions, e.g. set
value, delete, insert, and especially send (for calling web
services), as custom actions to be used in SCXML onentry,
onexit, and transition elements.
0107 XForms as an Interaction Controller: A function of
interaction controllers is to compute the next page to be
displayed in an IWD and expose that value through the IWD
INF/next-resource entry of their REST interface. A wide vari
ety of interaction controller implementations is possible for
determining the next interaction step as a function of the
current state of the IWD. The markup example below and its
following description will be used to explore the possibility
that the data-driven bind mechanism of XForms models is
sufficient to drive IWD navigation in a purely declarative
programming manner. The declarative nature of Such a web
controller would provide a significant simplification over cur
rent practice based on imperative languages such as Java or
PHP, or even on higher level abstractions such as the SCXML
state machines described above for a set of applications.
0108. The declarative nature of this controller specifica
tion means that web authors can focus on the abstract condi
tions under which a particular page should be presented to the
user and not on the procedural means for how to control the
selection of the next page in navigation.

Dec. 27, 2012

0109 Markup Example:

<xfmodel id="test> IC

<xfinstance id=IC'>
<IC Xmlins=''>

<nextIWDEntryfs
<pagetable>

<page1 >
<ready>true</ready>
<name>loan1.html:/name>

</page1 >
<page2

<ready>false-ready>
<name>loan2.html:/name>

</page2
<pagetable>

<AIC
<xf:instance>
<xf:bind nodeset="instance(IC)' >
<!--- guard conditions for each page --->
<xf:bind nodeset="pagetable/page1? ready
calculate="if

instance? loan')/Borrower Name
= , true, false)/s

<xf:bind nodeset="pagetable/page.2.fready
calculate="if instance(loan)/Principal

= 0, true, false)/>
<!--- pick the first ready page --->
<xf:bind nodeset="nextIWDEntry
calculate="../pagetable?* (ready=true

fname -
<xfbinds

<xfmodel

0110. The markup example above shows the test XForms
loan data model extended with an additional “IC” instance to
store the ready-state of each page in an IWD. Each page has
a ready element setto “true' or “false' indicating whether the
corresponding page with the given name should be in the set
of pages from which the next page will be selected.
0111. A set of bind expressions determines the readiness
of each page according to application specific business logic.
In particular, the readiness of the loan2.html page is com
puted by a bind expression that tests the presence of a specific
loan amount. Whenever the principal data element value is
“0”, the loan2.html page is ready to run and its ready flag in
the pagetable/page2 entry is set to true. Otherwise, when the
loan amount has been provided by whatever means in what
ever order with respect to other pages—loan2.html will not be
presented to the user.
0112 Unlike the prior art in web navigation techniques,
these readiness constraints need not be coordinated by a cen
tral application-specific navigation controller implemented
by web authors. Rather, the separate and individual con
straints determine the readiness of an associated page as
distributed units of logic. The constraints thus form a much
more de-centralized and extensible approach to web naviga
tion specification than current technologies.
0113. The extensibility of web navigation constraints
means that new expressions may be inserted into the set of
navigation constraints without concern as to their order in the
overall program specification, e.g., without concern for their
sequence in the markup example above. The execution order
of navigation constraints is determined by the set of expres
sions which need to be re-evaluated given their dependence
on input values which have been updated in the current cycle
of execution by data model changes either from the user or

US 2012/0331392 A1

related system components. These data changes imply a set of
navigation constraints which are now potentially invalid and
need to be recomputed. Only those constraints will be
selected for re-evaluation among all those present in the
application.
0114. The order of execution among the constraints which
have been marked for re-evaluation is determined by exam
ining which among them have all inputs determined and
which require intermediate values which may be provided by
other constraints to themselves become available for execu
tion. All of this navigation constraint execution management
is provided automatically by the underlying navigation
framework and is, unlike conventional technologies, not
required to be implemented by the application author.
0115 The set of navigation constraints may also be
extended by developers other than the original application
author. Given the flexibility of the above execution manage
ment structure, other developers wanting to add navigation
constraints can think solely in terms of the incremental logic
they need and again unlike current technologies avoid the
complexity of the additional logic of integrating their new
constraints into the overall operation of the system. Their
navigation constraints are simply added to the overall set in
play in a particular application and execute in a manner con
sistent with those constraints they are extending.
0116. The declarative nature of the navigation constraints,
together with the considerable ease of extending constraints
without need for additionally specifying their interaction with
prior constraints, enables non-programmer designers to be
able to manage the creation and extension of web navigation
in a manner that previously required higher skilled developers
working with conventional procedural languages such as
Java, JavaScript, or C to accomplish.
0117 Very often, more than one page in an application
will be marked as ready to run given the evaluation of the set
of navigation constraints in any given cycle of execution.
Rather than fixing a specific or “hard coded strategy for
picking the best page to present to the user from among this
set of available ready pages, an additional level of navigation
constraints is used to make this determination and to break
these “ties”. Using the same formalism, i.e., the same declara
tive language for navigation constraints and the same auto
mated execution process for tie-breaking as for page evalua
tion, means we have a uniform and also easily extensible
technology for resolving conflicts among multiple possible
pages as well as for determining the readiness of the pages
themselves. This uniforming and extensibility means that all
aspects of navigation control can be authored and extended by
non-programmers and presented in design tool environments
in a consistent manner.
0118. In the example markup above, a second “bind'
expression determines which of the ready pages should be
selected as the next step in running the IWD application. In
the markup example, the bind simply selects the first page
having a ready flag of true and sets the corresponding page
name as the current value of the nextIWDEntry element,
which the REST implementation maps to IWD-INF/next
resource method calls.
0119 The binds in this example are designed to give the
idea of declarative interaction control, and a more realistic
IWD web application would use more involved ready state
rules, e.g., to allow the user to go back to the web pages for
previous steps. For example, if the user had already pro
gressed beyond the second page, loan2.html, and had pro

Dec. 27, 2012

vided a loan amount, then loan2.html would normally be
marked as not ready for execution and would not be presented
to the user. If some further consideration caused the principal
field in the data model to be reset to Zero for whatever
reason—then the effect on the web navigation as seen by the
user would be to re-cycle back to the loan2.html page and
reprompt for this information without need for the application
author to separately consider and implement this “exception”
type of navigation control. Having exception navigation
results from the side-effect of changes to the data presents an
extremely flexible programming model and removes consid
erable complexity from the navigation path design problem as
it allows the author to focus on the main paths of navigation
allowing exceptions to cause momentary jumps back to cor
rect earlier steps.
I0120 Note that the resulting return to the main path of
navigation will also occur automatically. Once the user has
seen loan2.html again, and re-entered the loan principal,
those pages between loan2.html and where the exception
occurred will likely be still marked as not ready for execution
since their work has been accomplished, and the user will
return automatically to the point of interruption. If there are
additional intermediate results that have been invalidated by
the reprompting for the loan principal, then those pages and
only those pages will be presented again for the user to per
form only the minimal rework required by the exception.
I0121 Note that the strategy of opportunistically present
ing that page which reflects the next unit of work needed
given the state of data actually present in the system also
allows for the navigation path to "skip ahead'. If some data
elements can be derived automatically by System components
rather than being provided by directly by the end-user, then
those pages responsible for prompting the user and providing
those values will already be marked as not ready for execu
tion—since their work as been accomplished by other means
than involving the end user. The actual navigation seen by the
user therefore will be optimized for the data actually needed
to complete the problem and can vary Substantially depending
on the data available or derived by the system at the time of
interaction.

I0122) An additional technical aspect of this design
includes the way for invoking web services defined in the
controlling the XForms model. Web service definitions them
selves can be placed within the XForms model in XForms
submission elements, which can specify the resource URI,
the Submission method, the data to send and its format, and
how to process the result. To invoke the service, events occur
corresponding to IWD data synchronization, and since this
operation updates the data instances Xforms-insert and
xforms-delete events are appropriate. The XForms send
action, which initiates an XForms Submission, can be set to
hook these events, and the if attribute can be used for con
ditional invocation.

I0123 Note that a dependency graph of XForms bind
expressions is not equivalent to a more general business-rule
based approach Such as in a full production system or con
straint solver. There are prior uses of rule and constraint
systems for business process management in which each step
in application flow is derived from the execution of a set of
rules or solution of a set of constraints. The present embodi
ments provide a large and interesting set of applications
where a more restricted data dependency graph—akin to a
spreadsheet model rather than a full rule set is sufficient.
Particularly for presentation-oriented flow control, such an

US 2012/0331392 A1

approach could be significantly simpler in Syntax and pro
cessing model than a more complete business-rule- or con
straint-based approach.
0.124. A platform-independent format for composite web
documents based on ODF archives has been presented. A
composite Interactive Web Document aggregates all artifacts
pertaining to document data or content, views needed to inter
act with or print the document, and declarative controllers for
runtime behavior. IWDs extend conventional web archive
formats such as the JEE WAR format by providing a REST
based protocol for interaction. The protocol maps relative
URIs onto these package contents and Supports a full set of
CRUD operations. IWDs also extend common web archives
by supporting REST services for interactive behaviors,
including access to platform-independent specifications of
behavior based declarative languages such as State Chart
XML. In addition to REST services for digital signature
operations, markup patterns are shown for both client-driven
and server-controlled page navigation during document inter
action.
0125 Additional patterns for storing and managing con
tent within an IWD can be employed on advanced digital
signature use cases for collaborative business processes, on
issues of access control and concurrency, and on extending
the within-IWD workflow described here to encompass
workflow across a composition of multiple IWDs interacting
in more complex business processes. Relating to patterns for
data storage and management, we can leverage the existing
structure of ODF content.xml files within archives not only to
store IWD metadata (for example, the currently executing
page) but also to store the aggregated data or content of the
IWD instance during execution. This simplifies the submis
sion patterns for page navigation by collecting multiple
XForms instances into a single XML structure within the
<odfoffice-body element. In most cases, a single XForms
submission could then be used both to synchronize data and
effect a page transition.
0126 Relating to issues of IWD access, an access control
technology. Such as, XACML, may be integrated and address
issues of concurrent access by multiple actors. We recognize
that realistic workflows will often be more complex than are
appropriate to encapsulate in a single IWD. New levels of
control extending the within-IWD notation presented may be
employed. IWDs maybe composed of IWDs, i.e. hierarchical
archives with IWD members in addition to leaflevel artifacts.
As a higher order IWD, the control mechanisms presented
here should remain valid. On the other hand, we want the
behavior of nested IWDs to adapt appropriately to their
shared context by conforming to common styles, sharing
data, and adjusting navigation appropriately to find the bal
ance between encapsulation and visibility across IWD com
positions.
0127. Referring to FIG. 7, a system/method for web appli
cation navigation control is illustratively shown in accor
dance with one embodiment. In block 502, data entry fields
and configurations in a page are related to a constraint or
constraints that provide navigation control when a condition
is met. The conditions may be dependent on the type of data
entered, the configuration of data entered (e.g., different data
fields that may be populated by a user), conditions under
which data was entered, etc. The constraints may include
non-procedural computed dependency constraints that may
include bind constraints or other constraints that provide
navigation control when a condition is met.

Dec. 27, 2012

I0128. In block 504, presence of user-side information is
checked to determine if the condition is met is and the indi
cated navigation control is to be invoked. This may also
include determining whether data has been deleted so that the
process can be reversed and the user may be prompted (e.g.,
navigated) back to an earlier form based upon the deletion in
block 506. The user-side information may include detecting a
presence of data provided by one of a user and memory
storage independent of the user, in block 508. In block 509,
steps may be skipped when a system determines the informa
tion is already known.
I0129. In block 510, if the condition is met, the trigger
event is evoked to navigate to a new page based on at least one
of a set of entry fields where data was entered and a type of
data content entered in the entry fields without guidance from
procedural navigation code. The procedural code would be
code scripted by programmers in a navigation scheme. In
other words, the data configuration or data type is employed
to determine where to go next. This is in contrast to conven
tional system where programming code is provided to Script
a next move. Instead, the users actions and the availability of
information are employed to navigate through pages, docu
ments etc. In block 512, the trigger starts a process which
controls navigation in accordance with a presence or absence
of data values or conditions over those values. This may
include controlling a sequence of web page steps during a
user session.

0.130. In block 514, a return to earlier pages based upon
changes to data values may be provided without need for
explicit error or exception handling logic to be provided by
the application author. In one embodiment, a return to an
earlier page may be triggered in a flexible or unanticipated
pattern based upon changes to data values. In block 516,
execution of the earlier page may be resumed without
reprompting for intermediate steps (but with reprompting for
data values made invalid by new user inputs).
I0131 The present embodiments provide flexibility in
navigation and also provide customizability by non-program
mer users in block 519. In block 520, bind statements may be
added without extension points to customize navigation
behavior. This provides additional conditions or customiz
ability by programmer or non-programmers alike. In block
522, a level of abstraction of application control can be pro
vided Such that non-developers are able to customize naviga
tion behavior, e.g., using non-procedural dependency expres
sions (e.g., bind constructs or the like). This may include a
control interface for configuring a new bind statement or
other functionality to the application. In block 524, using the
control interface or otherwise, navigation control can be
authored which is independent of specific middleware to per
mit flexibly moving an application between platforms.
Dependency graphs and bind constructs in accordance with
the present principles are independent of the middleware
platform used. In block 526, an application control applica
tion can be moved from one device to another independently
of a page structure since application flow is determined by a
set of data values and bind expressions in effect.
I0132 Referring to FIG. 8, another system/method for web
application navigation control is illustratively depicted. In
block 540, navigation data models used in navigation con
straints with received data from an end-user or system are
updated. The received data from an end-user or system may
include a presence of data provided by one of a user and
memory storage independent of the user. In block 542, with

US 2012/0331392 A1

out needing a centralized application-specific controller,
extensible navigation rules which depend on changed data
values and need re-evaluation are automatically selected from
a collection of extensible navigation rules associated with
each page of a plurality of pages. In block 546, the navigation
constraints associated only with the pages potentially chang
ing their ready state to execute from among the plurality of
pages in an entire application are evaluated to determine
which pages are ready to run based on updated data from the
navigation data models. In block 548, a preferred page to be
actually navigated to next from among a set of all available
and ready pages by execution of a set of second and separate
navigation constraints is selected using results of the naviga
tion constraints of the evaluating step.
0133. In block 550, tie-breaking between pages is per
formed based on the navigation constraints to select a next
qualified page from the set of all available and ready pages.
This may be based on the amount of data the most current data
or any other criteria. The tie-breaking criteria may be custom
ized by a non-developer end-user. In block 552, selecting the
pages is performed by controlling navigation in accordance
with a presence or absence of data values or conditions over
those values. This includes controlling a web page navigation
sequence or the like.
0134. In block 560, a return to earlier pages may be trig
gered based upon changes to data values without need for
explicit error or exception handling logic provided by an
application author. In block 562, execution of the earlier page
may be resumed without reprompting for intermediate steps
but with reprompting for data values made invalid by new
user inputs. In block 564, data dependency constraints includ
ing bind statements may be added without need for pre
determined extension points to customize navigation behav
1O

0135 Referring to FIG. 9, a system/architecture 600 for
web application navigation control is illustratively shown. A
server or other computer device 602 may be located at or near
a user or users or remotely from a user or users. The server 602
preferably communicates with a user(s) over a network 604.
The network may include a wired or wireless network and
may include a cellular network, cable network, satellite net
work, a telephone network etc. The server 602 includes
memory 603 and at least one processor 614. An application
605 is provided, in accordance with the present principles,
that permits user actions in the form of data entry type and
position to automatically control navigation. The application
605 is preferably independent of an application platform and
can be used with any middle-ware, for example, or with any
device.
0136. A dependency graph 606 may be provided at the
server or distributed over the network 604. The dependency
graph 606 relates data fields and data types with triggers and
navigation controls. Web pages, forms or the like are rendered
on a user's computer or other rendering device 610. Data
entry fields in a page are related to navigation instructions that
provide navigation control when a condition is met. For
example, if three particular fields have data entered by the
users, a new page is opened. In another example, if a field has
a yes answer a first page is opened, and a no answer would
open a different second page. Other conditions are also con
templated.
0.137 An interaction module 612 is configured to be sen
sitive to one of user-side information entry and known infor
mation to determine if the navigation instruction is to be

Dec. 27, 2012

invoked. The interaction module 612 uses bind instructions
and the dependency graph 606 to make these determinations.
The user enters data or data is entered for a user in a form 615.
Depending on the fields populated, the data type, etc., deter
mines how navigation is carried out.
0.138 A processor 614 is configured to execute the navi
gation instruction in accordance with a presence or absence of
data values or conditions over those values to navigate to a
new page based on a set of entry fields that data has been
entered in and/or a type of data content entered in the entry
fields without guidance from programmed navigation code.
The navigation instruction controls a sequence of steps
between web pages.
0.139. Having described preferred embodiments of a sys
tem and method for data-driven web page navigation control
(which are intended to be illustrative and not limiting), it is
noted that modifications and variations can be made by per
sons skilled in the art in light of the above teachings. It is
therefore to be understood that changes may be made in the
particular embodiments disclosed which are within the scope
of the invention as outlined by the appended claims. Having
thus described aspects of the invention, with the details and
particularity required by the patent laws, what is claimed and
desired protected by Letters Patent is set forth in the appended
claims.
What is claimed is:
1. A computer readable storage medium comprising a com

puter readable program for web application navigation con
trol, wherein the computer readable program when executed
on a computer causes the computer to perform the steps of

updating navigation data models used in navigation con
straints with received data from an end-user or system,
the data models being stored on a computer storage
medium;

without needing a centralized application-specific control
ler, automatically selecting from a collection of exten
sible navigation rules associated with each page of a
plurality of pages the extensible navigation rules which
depend on changed data values and need re-evaluation;

evaluating the navigation constraints associated only with
the pages potentially changing their ready state to
execute from among the plurality of pages in an entire
application to determine which pages are ready to run
based on updated data from the navigation data models;
and

selecting a preferred page to be actually navigated to next
from among a set of all available and ready pages by
execution of a set of second and separate navigation
constraints using results of the navigation constraints of
the evaluating step.

2. The computer readable storage medium as recited in
claim 1, wherein selecting includes tie-breaking between
pages based on the navigation constraints to select a next
qualified page from the set of all available and ready pages.

3. The computer readable storage medium as recited in
claim 1, wherein tie-breaking is customized by a non-devel
oper end-user.

4. The computer readable storage medium as recited in
claim 1, wherein selecting includes controlling navigation in
accordance with a presence or absence of data values or
conditions over those values.

5. The computer readable storage medium as recited in
claim 4, wherein controlling navigation includes controlling a
Web page navigation sequence.

US 2012/0331392 A1

6. The computer readable storage medium as recited in
claim 1, further comprising triggering a return to earlier pages
based upon changes to data values without need for explicit
error or exception handling logic provided by an application
author.

7. The computer readable storage medium as recited in
claim 6, further comprising resuming execution of the earlier
page without reprompting for intermediate steps but with
reprompting for data values made invalid by new user inputs.

8. The computer readable storage medium as recited in
claim 1, wherein with received data from an end-user or
system includes a presence of data provided by one of a user
and memory storage independent of the user.

9. The computer readable storage medium as recited in
claim 1, further comprising adding data dependency con
straints including bind statements without need for pre-deter
mined extension points to customize navigation behavior.

10. A computer readable storage medium comprising a
computer readable program for web application navigation
control, wherein the computer readable program when
executed on a computer causes the computer to perform the
steps of:

relating data entry fields in a page stored in computer
readable storage memory with non-procedural com
puted dependency constraints that provide navigation
control when a condition is met:

checking a presence of user-side information to determine
if the condition is met and the indicated navigation con
trol is to be invoked; and

if the condition is met, evoking a trigger event to navigate
to a new page based on at least one of a set of entry fields

Dec. 27, 2012

where data was entered in and a type of data content
entered in the entry fields without guidance from proce
dural navigation code.

11. A system for web application navigation control, com
prising:

a server including a dependency graph relating data entry
fields in a page with a navigation instruction that pro
vides navigation control when a condition is met;

an interaction module configured to be sensitive to at least
one of user-side information entry and known informa
tion to determine if the navigation instruction is to be
invoked; and

a processor configured to execute the navigation instruc
tion in accordance with a presence or absence of data
values or conditions over those values to navigate to a
new page based on at least one of a set of entry fields data
was entered in and a type of data content entered in the
entry fields without guidance from procedural naviga
tion code.

12. The system as recited in claim 11, wherein the naviga
tion instruction controls a sequence of steps between web
pageS.

13. The system as recited in claim 11, wherein the system
is independent of an application platform on which it is
executed.

14. The system as recited in claim 11, further comprising at
least one tie-breaking mechanism to select from qualified
pages from a set of all available and ready pages.

15. The system as recited in claim 14, wherein at least one
tie-breaking mechanism is customizable by a non-developer
end-user.

