제45개국
2014년 11월 27일 (27.11.2014)

(43) 국제공개일

WO 2014/189209 A1

(74) 배리인: 김태선 (KIM, Tae Sun); 135-915 서울시 강남구 대치동 37 일 1502 호, 서울 (KR)

공개:

제목: 라이트-티타늄 콘포메트 옥시데 미니지 다른 메탈은 촉매 되고, 티타늄-티타늄 콘포메트 콘포메트 티타늄 콘포메트 미니지 라이트-티타늄 콘포메트

제목: 티타늄-티타늄 콘포메트 콘포메트 티타늄 콘포메트 미니지 라이트-티타늄 콘포메트

요약서: [다음의 계속]
본 발명은 2가지 이중 금속이 도영된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 2가지 이중 금속이 도영된 리튬 티탄 복합 산화물에 관한 것으로서, 더욱 상세하게는 2가지 이중 금속의 혼합비율 조정하여 고성 티탄, 분화하고, 분리, 건조함으로써 분순물의 함량을 조절할 수 있는 이중 금속이 도영된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이중 금속이 도영된 리튬 티탄 복합 산화물에 관한 것이다. 본 발명은 리튬 티탄 복합 산화물의 표면에 2가지 이중 금속을 적절한 비율로 조절하여 도영함으로써 분배 분순물로 포함된 티탄알산 산화물, 아니 다채로 이산화티탄 및 Li₂TiO₃의 함량을 감소시켜 용량 특성 및 구조적 특성이 우수한 이산화티탄을 제조할 수 있으 며, 이와 같은 이산화티탄을 포함한 전지는 초기 충전전 효율 및 용특성이 높은 우수한 전지 특성을 나타낸다.
명세서
발명의 명칭: 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이중 금속이 도핑된 리튬 티탄 복합 산화물

기술분야
[1] 본 발명은 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 2가지 이중 금속이 도핑된 리튬 티탄 복합 산화물에 관한 것으로서, 더욱 상세하게는 2가지 이중 금속의 혼합비를 조절하여 고상 혼합, 분쇄하고, 분무 건조함으로써 불순물의 함량을 조절할 수 있는 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이중 금속이 도핑된 리튬 티탄 복합 산화물에 관한 것이다.

[2] 배경기술
[3] 리튬 이온이 부곡과 정극을 이동함으로써 충전전이 행해지는 비수전해질 전지는 괜히가지 별도 전지로서 활발한 연구 개발이 진행되고 있다. 최근, Li 흡장 방출 전위가 높은 리튬 티탄 복합 산화물이 주목받고 있다. 리튬 티탄 복합 산화물은 리튬 흡장 방출 전위에서는 원리적으로 금속 리튬이 석출되지 않아 금속 충전이나 저온 성능이 우수하다는 장점이 있다.

[4] 이러한 리튬 티탄 복합 산화물에는 일반식 Li_{1+x}Ti_{2x-y}O_{4} (x = 0.2 내지 1.0, y = 3 내지 4)로 표시되는 스피넬형 티탄산 리튬이 포함되고, 그의 대표적인 예에는 Li_{4}Ti_{5}O_{12} 및 Li_{4}Ti_{5}O_{12} 가 있다. 이 재료는 양극 활물질로서 중래로부터 사용되어 왔고, 응극 활물질로서도 활용할 수 있어서, 전지의 양극 및 응극 활성물로서 앞으로의 활용이 기대된다. 이들은 리튬 기준으로 1.5 V 의 전압을 가지고, 수명이 길다. 또한 충전-방전시의 평창 및 수축을 무시할 수 있으므로 전지의 대형화에 주목되는 전극 재료이다. 특히 상기 스피넬(spinel)형 티탄산리튬(조성식 Li_{4+x}Ti_{5}O_{12} (0 ≤ x ≤ 3)은 충전전시의 부피 변화가 작고, 가역적으로 우수하기 때문에 주목받고 있다.

[5] 그러나, 스피넬형 티탄산 리튬의 이론 용량은 175 mAh/g으로, 고용량화에는 한계가 있었다. 또한, 상기 스피넬형 티탄산 리튬은 제조 과정 중에서 일부가 무타일(rutile)형 TiO_{2} (r-TiO_{2})로 상분리되어 버린다. 상기 무타일(rutile)형 TiO_{2} (r-TiO_{2})는 암열 구조로 전기화학적 활성은 있으나, 반응 속도가 높고 전기전 전위 곡선을 가지며, 용량이 작기 때문에, 얻어지는 리튬 티탄 복합 산화물의 실험용량을 작게 만드는 문제점이 있었다.

[6] 발명의 상세한 설명
기술적 과제

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 이중 금속을 도핑하여 아나타세 및 루타일형 이산화티타늄의 생성을 억제하고, 1차 입자와의 크기를 제어함으로써 초기 용량 및 용특성이 개선된 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법 및 이에 의하여 제조된 이중 금속이 도핑된 리튬 티탄 복합 산화물을 제공하는 것을 목적으로 한다.

과정 해결 수단

본 발명은 상기와 같은 목적을 달성하기 위하여

i) 리튬 함유 화합물, 티탄 산화물, 이중 금속 M 함유 화합물 및 이중 금속 A 함유 화합물을 양론비로 고정 혼합하는 단계;

ii) 상기 i)의 고정 혼합물을 용체에 분산시키고 0.3 μm 내지 0.8 μm의 평균 입자 직경을 갖는 입자를 함유할 때까지 습식 분쇄하여 슬러리를 제조하는 단계;

iii) 상기 슬러리를 분무건조하여 입자를 형성하는 단계; 및

iv) 상기 분무건조된 입자를 소성하는 단계;를 포함하는 아래 화학식으로 표시되는 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법을 제공한다.

[화학식] Li2TiO3(A,M)=O

(상기 화학식에서 상기 M은 Zr, Mg, Al, Ni, Co, Mn, Cu로 이루어진 그룹에서 선택되고, 상기 A는 Na, K, V 및 B로 이루어진 그룹에서 선택되고, 0.1≤x≤1.5, 0≤y≤1 이고, x+y≤2, 8≤x/y≤9을 만족하는 것임)

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 이중 금속 M은 Zr 이고, 상기 이중 금속 A는 Na, K, V 및 B로 이루어진 그룹에서 선택되고, 0.1≤x≤1.5, 0≤y≤1 이고, x+y≤2, 8≤x/y≤9을 만족하는 것임.)

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 Na 함유 화합물은 탄산나트륨, 수산화나트륨, 및 이들의 혼합물에서 선택되고, 수산화나트륨이 습식 공정시 용해가 잘 되기 때문에 사용하였다.

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 Zr 함유 화합물은 Zr(OH)4, ZrO2 및 이들의 혼합물에서 선택되는 것을 특징으로 한다.

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 티탄 산화물은 아나타세형 또는 히드록시티타늄을 특징으로 한다.

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 리튬 함유 화합물은 수산화리튬 또는 탄산리튬을 특징으로 한다.

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 ii) 단계에서는 용액으로서 물을 사용하고, 저로코니아 비드를 이용하여 2000 내지 4000 rpm으로 습식 분쇄하는 것을 특징으로 한다.

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법에 있어서,
상기 iii) 단계의 분무 간조하는 단계에서는 투입 열풍 온도를 250 내지 300℃, 배기 열풍 온도를 100 내지 150℃로 분무 간조하는 것을 특징으로 한다.

[24] 본 발명의 이중 금속이 도포된 리튬 틴탄 복합 산화물의 제조 방법에 있어서, 상기 iv) 단계에서의 소성 공정은 상기 iii) 단계에서의 분무 간조를 공기 분위기, 700 내지 800℃에서, 5 시간 내지 10 시간 동안 소성하는 것을 특징으로 한다.

본 발명에 있어서, 상기 리튬 틴탄 복합 산화물을 분쇄하기 위한 건식 분쇄법은 특별히 한정되지 않지만, 상기 소성에 의해 형성된 임자를 마이크로 크기까지 분쇄하기 위해 구체적으로는 제트에어밀로 분쇄하는 것이 바람직하다.

[26]

[27] 본원 발명은 또한, 본원 발명의 제조 방법에 의해 제조되고 1차 임자가 집합하여 형성된 2차 임자로서, 아래 화학식으로 표시되고, 상기 1차 임자의 직경이 0.5 μm 내지 0.8 μm이고, 상기 2차 임자의 직경이 5 μm 내지 25 μm 인 스피NIL 구조인 것을 특징으로 하는 이중 금속이 도포된 리튬 틴탄 복합 산화물을 제공한다.

[28] 화학식 \[\text{Li}_2\text{Ti}_4\text{O}_{12} \]

[29] (상기 화학식에서 상기 M은 Zr, Mg, Al, Ni, Co, Mn, Cu로 이루어진 그룹에서 선택되고, 상기 A는 Na, K, V 및 B로 이루어진 그룹에서 선택되고, 0.1≤x≤1.5, 0.8≤x+y≤9을 만족하는 것임)

[30] 본 발명에 의한 이중 금속이 도포된 리튬 틴탄 복합 산화물의 2차 임자의 D_{50}이 0.7 μm 내지 1.5 μm 인 것을 특징으로 한다.

[31] 본 발명에 의한 이중 금속이 도포된 리튬 틴탄 복합 산화물은 \(\text{Li}_{4-x}\text{Ti}_5\text{O}_{12} \)의 메인 피크 강도를 100이라고 할 때에, 아나타세형 TiO_2의 메인 피크의 강도가 1 이하, 루테일형 TiO_2(R-TiO_2)의 메인 피크의 강도가 1 이상이고, \(\text{Li}_2\text{TiO}_3 \)의 메인 피크의 강도가 5 이하인 것을 특징으로 한다.

[33] 본 발명은 또한, 본 발명의 이중 금속이 도포된 리튬 틴탄 복합 산화물을 양극 활물질로서 사용하는 양극을 함유하는 리튬이차전지, 또는 본 발명의 이중 금속이 도포된 리튬 틴탄 복합 산화물을 음극 활물질로서 사용하는 음극을 함유하는 리튬이차전지를 제공한다.

[34]

[36] 본 발명의 제조 방법은 원료 화합물인 리튬 화합물, 틴탄 화합물 및 2가지 이중 금속을 도포하기 위한 이중 금속 포함 화합물을 동시에 고상 혼합하되, 혼합되는 2가지 이중 금속 포함 화합물의 혼합비를 조절함으로써 리튬 틴탄 복합
산화물의 제조하는 것을 기술적 특성으로 한다.

[37] 출발물질로서 사용하는 티탄 산화물 포함 화합물은 염화물, 황산염 또는 유기염 등의 어느 것이라도 좋다. 그러나, 본 발명에서는와 같이 방전 용량 또는 전지 특성이 우수한 리튬 티탄 복합 산화물을 제조하기 위해서 출발물질로서 사용하는 티탄 산화물 포함 화합물의 결정 구조는, 아나테제형 이산화티탄 또는 탄수 산화티탄을 사용하는 것이 바람직하다.

[38] 아나테제형 이산화티탄은 순도가 95% 이상, 바람직하게는 98% 이상일 필요가 있다. 순도가 95% 미만인 경우, 활성물 중량당 용량이 감소하기 때문에 바람직하지 않다. 고순도, 예를 들면 순도 99.99%의 것을 사용할 수도 있지만, 이 경우 비용이 높게 된다. 전극 활성물의 관점에서 생각할 경우, 순도가 98% 이상이면, 입자 직경 및 형상의 영향이 고순도화 영향보다 커진다.

[39] 본 발명의 제조 방법에 있어서, 출발물질로서 사용하는 리튬 화합물은 수산화리튬, 수산화리튬1수화물, 산화리튬, 탄산수소리튬 또는 탄산리튬과 같은 리튬염이 가능하다.

[40] 본 발명의 제조 방법에 있어서, 상기 도평량은 2가지 이중금속 중 이중 금속 M은 Zr, Mg, Al, Ni, Co, Mn, Cu로 이루어진 그룹에서 선택되고, 상기 이중 금속 A는 Na, K, V 및 B로 이루어진 그룹에서 선택되는 것을 특징으로 하며, 용량 특성 및 구조적 특성을 Zr과 Na이 동시에 도평량의 것이 바람직하다.

[41] 상기 Na를 포함하는 화합물로는 수산화나트륨, 탄산나트륨 또는 이들의 혼합물인 것이 바람직하다. Zr를 함유하는 화합물로는 Zr(OH)₄, ZrO₂ 또는 이들의 혼합물인 것이 바람직하다.

[42] 본 발명에 있어서, 이중 금속 M의 도평량은 0.1% 이상 1.5% 이하, 상기 이중 금속 A의 도평량은 0% 내지 1% 이하이고, 이중 금속 M과 이중 금속 A의 전체 도평량은 2% 이하이며, 이중 금속 M의 도평량 x와 상기 이중 금속 A의 도평량 y는 8≤x/y≤9을 만족하는 것이 바람직하다.

[43] 상기 이중 금속 M의 도평량이 1.5% 초과일 경우에는 전도성이 오히려 저하되어 전지의 제반 성능 저하가 초래될 수 있고, 상기 이중 금속 A의 도평량이 0% 중량%인 경우 이중 금속 도평량에 따른 전지의 안전성 향상 효과가 미미하게 된다.

[44] 본 발명에 따른 리튬 티탄 복합 산화물을 제조하는 방법은 출발물질로서 리튬 화합물, 티탄 화합물, 도평 금속을 양론비로 혼합하고, 상기 고상 혼합물을 액체 매체 중에 분산시키고 습식 분쇄하여 만들어진 슬러리를 공지의 방법으로 분무하여 건조 소성함으로써 1차 입자가 집합하여 형성된 2차 입자의 조립 분말을 사용할 수 있다.

[45] 본 발명의 제조 방법에 있어서는 상기 동시 혼합된 리튬 화합물, 티탄 화합물 및 도평 금속을 분산매에 분산시킨 후 매체교반형 분쇄기 등을 사용하여 습식 분쇄하는 방법을 사용하는 것이 바람직하다. 슬러리의 습식 분쇄를 위해
사용되는 분산매로는 각종 유기용매, 수성용매를 사용할 수 있지만, 바람직한 것은 물이다.

[47] 슬러리를 전체의 중량에 대한 원료 화합물의 총 중량 비율은, 50중량% 이상이며, 60중량% 이하로 하는 것이 바람직하다. 중량 비율이 상기 범위 미만인 경우에는, 슬러리 농도가 극단적으로 희박하기 때문에 분무 건조에 의해 생성된 구형 입자가 필요 이상으로 작아지거나 파손되기 쉽다. 이 중량 비율이 상기 범위를 초과하면 슬러리의 굳임성을 유지하기 어렵다.

[48] 슬러리 중의 고형물의 평균 입자는 평균 입경 D₉₀이 0.3 μm 내지 0.8 μm 가 되도록 2000 내지 4000 rpm 으로 슬식 분쇄하는 것이 바람직하다. 슬러리 중의 고형물의 평균 입자 직경이 너무 크면 소성 공정에서의 반응성이 저하할 뿐만 아니라 구형도가 저하하여 최종적인 분체 충전 밀도가 낮아지는 경향이 있다. 그러나, 필요 이상으로 소립차화하는 것은 분쇄의 비용 상승으로 연결되기 때문에, 분쇄물의 평균 입자 직경은 통상 0.3 μm 내지 0.8 μm가 될 때까지 슬식 분쇄 한다.

[49] 본 발명의 리튬 틴탄 복합 산화물 분체의 분무 건조에 의하여 1차 입자가 결합하여 2차 입자를 형성하고, 상기 1차 입자의 직경이 0.5 μm 내지 0.8 μm, 2차 입자의 직경이 5 μm 내지 25 μm 인 입자가 생성된다.

[50] 분무시기는 수단은 특별히 중요하지 않고 특정된 구형 크기를 지닌 노즐을 가압하는데 한정되지 않으며, 사실, 입의의 공지된 분무-건조 장치가 사용될 수 있다. 분무기는 일반적으로 회전원반식과 노즐식으로 대별되며, 노즐식은 압력 노즐형(pressure nozzle)과 2 유체 노즐형(two-fluid nozzle)으로 구분된다. 이외에도 회전식 분무기, 압력 노즐, 공기식 노즐, 소닉 노즐 등과 같이 당해 분야에 의하여 공지된 수단 모두 이용될 수 있다. 공급 속도, 공급물 질도, 분무-건조된 제품의 원하는 입자 크기, 분산액, 유용수 액체선 또는 유용수 마이크로액체선의 비합 균이 등은 분무 수단의 선택시 전략적으로 고려되는 인자이다.

[51] 상기 iii)단계에서 상기 ii)의 슬러리를 분무 건조하는 단계에서는 두입 열풍온도를 250 내지 300 ℃, 베기 열풍 온도를 100 내지 150 ℃로 분무 건조하는 것이 입자의 모양, 크기 및 결정도를 높이기 위해 바람직하다.

[52] 이렇게 하여 얻어진 혼합 분체는 이어서 소성 처리된다. 소성 온도로는, 원료로서 사용되는 리튬 화합물, 틴탄 산화물, 이종 금속 등 그 밖의 금속화합물 등의 종류에 따라서도 다르지만, 통상 600 ℃ 이상, 바람직하게는 700 ℃ 이상이고, 또한 통상 900 ℃ 이하, 바람직하게는 800 ℃ 이하이다. 이때의 소성 조건은 원료 조성에도 의존하지만, 소성 온도가 너무 높으면 입차 입자가 과도하게 성장되고, 반대로 너무 낮으면 부피밀도가 작고, 또한 비표면적이 과도하게 커진다.

[53] 소성 시간은 온도에 따라서도 다르지만, 통상 상기 서술한 온도 범위라면 30분
이상, 바람직하게는 5시간 이상, 또한 통상 20시간 이하, 바람직하게는 10시간 이하이다. 소성 시간이 너무 짧으면 결정성이 좋은 리튬 틴탄 복합 산화물 분쇄를 얻기 어렵고, 또 너무 긴 것은 그다지 실용적이지 않다. 소성 시간이 너무 길면 또 그 후 퇴화(pulverization)가 필요해지거나 퇴화가 곤란해지기로 하기 때문에, 바람직하게는 10시간 이하이다.

[55]
소성시의 분위기는 공기 분위기에서 소성하지만, 제조하는 화합물의 조성이나 구조에 따라 질소나 아르곤 등의 불활성 가스 분위기로 할 수 있다. 이들은 가압하여 사용하는 것이 바람직하다.

[56]
본 발명의 이중 금속이 도공된 리튬 틴탄 복합 산화물의 제조 방법은 y) 단계로 소성된 임자를 분쇄하는 단계를 더 포함하는 것을 특징으로 한다. 상기 소성된 임자는 건식 분쇄법으로 분쇄하는 것이 바람직하며, 건식 분쇄법은 특별히
한정되지 않지만, 상기 소성에 의해 형성된 임자를 마이크로 크기까지 분쇄하기
위해 구체적으로는 점에에어릴로 분쇄하는 것이 바람직하다.

[57]
본 발명은 또한, 상기 추가적으로 건식 분쇄하는 단계에 의해 분쇄된 임자를 제공한다. 본 발명에 있어서, 상기 임자는 건식 분쇄에 의해 상기 1차 임자간
결합이 약해져 1차 임자가 분리되게 되고, 결과적으로 분쇄된 임자의 크기는 D₉₀
이 0.7μm 내지 1.5μm인 것을 특징으로 한다.

[58]
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조되고, 아레 화학적으로
표시되는 이중 금속이 도공된 리튬 틴탄 복합 산화물을 제공한다.

[59]

[60]
[화학식] LiₓTi₄₋ₓMₓO₁₂

[61]
(상기 화학식에서 상기 M은 Zr, Mg, Al, Ni, Co, Mn, Cu로 이루어진 그룹에서
선택되고, 상기 A는 Na, K, V 및 B로 이루어진 그룹에서 선택되고, 0.1 ≤ x ≤ 1.5,
0 ≤ y ≤ 1이고, x + y ≤ 28 ≤ x/y ≤ 9을 만족하는 것임)

[62]
본 발명에 있어서 합성되는 이중 금속이 도공된 리튬 틴탄 복합 산화물의 각
성분의 조성은 혼합시의 각 화합물의 투입비, 즉 혼합비에 의해 조정할 수 있다.
또, 분체 특성인 입도 분포, BET 비표면적, 밸 밀도 및 압분체 밀도는 혼합 방법
및 산화 처리에 의해 조정할 수 있다.

[63]
본 발명의 이중 금속이 도공된 리튬 틴탄 복합 산화물은 1차 임자가 집합하여
형성되는 2차 임자 상태로 구성되며, 상기 1차 임자의 직경이 0.5 내지 0.8 μm
이고, 상기 2차 임자의 직경은 5 내지 25 μm의 것을 특징으로 한다.

[64]
본 발명의 제조 방법에 의하여 제조된 이중 금속이 도공된 리튬 틴탄 복합
산화물은 스피델 구조인 것을 특징으로 한다. 특히, 본 발명의 제조 방법에
의하여 제조된 이중 금속이 도공된 리튬 틴탄 복합 산화물은 LiₓTi₄₋ₓO₁₂의 메인
피크 강도를 100이라고 할 때, 야나타계 형 TiO₂의 메인 피크의 강도가 1 이하,
루타일형 TiO₂(R-TiO₂)의 메인 피크의 강도가 1 이하이고, LiₓTiO₂의 메인 피크의
강도가 5 이하인 것을 특징으로 한다. 루타일형 이산화티탄의 주피크가
발명의 제도 방법에 의하여 제조된 이종 금속이 도핑된 리튬 틴탄 복합
산화물은 불순물로서 용량을 감소시키는 루타일형 이산화티탄의 수퍼크의
크기가 1이하로, 루타일형 이산화티탄의 포함량이 매우 적어 결정성을 높일
뿐만 아니라, 전지 용량을 증가시키는 효과를 나타낸다.

발명의 효과

본 발명의 이종 금속이 도핑된 리튬 틴탄 복합 산화물 제조 방법은 이종 금속을
혼합, 분쇄하고, 분무 건조함으로써 리튬 틴탄 복합 산화물의 표면에 2가지 이종
금속을 적절한 비율로 조절하여 도핑함으로써 종래 불순물로 포함되던
루타일형 이산화티탄, 아나타체형 이산화티탄 및 Li_{2}TiO_{3}의 함유량을 감소시키며
용량 특성 및 구조적 특성에 우수한 이산화티탄을 제조할 수 있으며, 본 발명의
제조 방법에 의하여 제조된 이종 금속이 도핑된 이산화티탄을 포함한 전지에는
조기 충전 전 효율 및 용특성이 높은 우수한 전지 특성을 나타낸다.

도면의 간단한 설명

도 1은 본 발명의 일 실시예에서 제조된 1가지 이종 금속이 도핑된 리튬 틴탄
복합 산화물의 SEM 사진을 나타낸다.

도 2는 본 발명의 일 실시예에서 제조된 1가지 이종 금속이 도핑된 리튬 틴탄
복합 산화물을 포함하는 테스트 셜의 용량 특성 및 용특성을 측정한 결과를
나타낸다.

도 3 및 도 4는 본 발명의 일 실시예에서 제조된 2가지 이종 금속이 도핑된 리튬
티탄 복합 산화물의 SEM 사진을 나타낸다.

도 5는 본 발명의 일 실시예에서 제조된 2가지 이종 금속이 도핑된 리튬 틴탄
복합 산화물을 포함하는 테스트 셜의 용량 특성 및 용특성을 측정한 결과를
나타낸다.

도 6은 본 발명의 일 실시예에서 제조된 2가지 이종 금속이 도핑된 리튬 틴탄
복합 산화물 및 비교예의 리튬 틴탄 복합 산화물의 XRD 사진을 나타낸다.

발명의 실시를 위한 형태

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본
발명이 아래 실시예에 의하여 한정되는 것은 아니다.

<실시예 1> 1가지 이종 금속이 도핑된 리튬 틴탄 복합 산화물의 제조

출발물질로서 수산화리튬 1 별, 아나타체형 산화티탄 1 별 및 이종 금속으로서
Zr 0.1 별의 비율로 고성 혼합하고, 물에 교반하며 용해하였다.
[81] 지르코니아 비드를 사용하여 3000 rpm 으로 분쇄한 후, 열풍온도를 270°C, 배기 열풍 온도를 120 °C로 분무건조하고, 소성 온도를 750°C, 770°C 2가지로 하여 산소분위기에서 10시간 동안 열처리하고, 제트에어밸로 건식 분쇄하여 지르코늄이 도영된 리튬 틈탄 복합 산화물을 제조하였다.

[82] 상기와 같은 방법으로 이중금속으로서 Al, Mg, Na 를 각각 0.05 볼의 비율로 혼합하여 리튬 틈탄 복합 산화물을 제조하였다.

[83]

[84] <비교예>

[85] 이중금속을 포함하지 않는 것을 제외하고는 실시에 1과 동일하게 하고 750°C 에서 열처리하여 리튬 틈탄 복합 산화물을 제조하였다.

[86]

[87] <실험에 1-1> SEM 사진 촬영

[88] 상기 실시에 1에서 제조된 1가지 이중 금속이 도영된 리튬 틈탄 복합 산화물의 SEM 사진을 도 1에 나타내었다.

[89]

[90] <실험에 1-2> 전지 특성 평가 - 용량 특성 및 용특성 측정

[91] 상기 실시에 1에서 제조된 1가지 이중 금속이 도영된 리튬 틈탄 복합 산화물을 양극활물질로 하고, 리튬 호일을 상대 전극으로 하여, 다층성 플러플렌막(셀가르드 엘에일써 제, Celgard 2300, 두께: 25µm)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디메틸 카보네이트가 부피비로 1:2로 혼합된 용액에 LiPF6 가 1 볼 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다. 비교예의 경우도 동일하게 코인 전지를 제조하였다.

[92] 상기 비교예의 리튬 틈탄 복합 산화물 및 1가지 이중 금속이 도영된 리튬 틈탄 복합 산화물을 포함하는 테스트셀의 용량 및 용특성을 측정하였으며, 그 결과를 도 2에 나타내었다. 도 2에서 Zr, Na 을 도영한 경우 Al, Mg 을 도영한 경우보다 용량 특성 및 용특성이 개선되는 것을 확인할 수 있다.

[93]

[94] <실험에 2> 2가지 이중 금속이 도영된 리튬 틈탄 복합 산화물의 제조

[95] 상기 실시에 1에서 용량 특성 및 용특성이 우수하게 측정된 지르코늄과 나트륨의 두가지 이중 금속이 도영된 리튬 틈탄 복합 산화물을 제조하였다.

[96] 출발물질로서 수산화리튬 1 볼, 아나티제형 산화리튬 1 볼 및 지르코늄 0.05 볼 및 나트륨 화합물로서 탄산나트륨과 수산화나트륨 혼합물의 혼합 비율을 0.006, 0.008, 0.01 볼로 각각 변경시켜서 고상 혼합하고, 물에 교반하며 용해하였다.

[97] 지르코니아 액드를 사용하여 3000 rpm 으로 습식 분쇄한 후, 열풍온도를 270°C, 배기 열풍 온도를 120 °C로 분무건조하고, 750°C, 770°C 산소분위기에서 10시간 동안 열처리하고, 제트에어밸로 건식 분쇄하여 2가지 이중 금속이 도영된 리튬 틈탄 복합 산화물을 제조하였다.
<실험 2-1> SEM 사진 측정

상기 실험에 2에서 제조된 2가지 이중 금속이 도핑된 리튬 턴탄 복합 산화물 및 Zr 만이 0.05 볼 도핑된 리튬 턴탄 복합 산화물 입자의 SEM 사진을 도 3에 나타내었다. 도 3에서 2가지 이중 금속을 도핑하는 경우에도 입자 크기는 변하지 않는 것을 확인할 수 있다.

도 4에 상기 실험에 2에서 제조된 2가지 이중 금속이 도핑된 리튬 턴탄 복합 산화물의 1차 입자의 크기를 측정한 결과를 나타내었다. 1차 입자의 크기가 0.564 내지 0.757 \(\mu \text{m} \) 의 크기로 측정되는 것을 확인할 수 있다.

<실험 2-2> 전기 화학 특성 측정

상기 실험에 2에서 제조된 2가지 이중 금속이 도핑된 리튬 턴탄 복합 산화물을 양극활물질로 하고, 리튬 호일을 상데 전극으로 하며, 다공성 폴리에틸렌막(셀카르드 엘엠씨체, Celgard 2300, 두께: 25\(\mu \text{m} \))을 세퍼레이터로 하고, 에틸렌 카보네이트와 디메틸 카보네이트가 부피비로 1:2로 혼합된 용매에 LiPF\(_6\)가 1볼 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다.

상기 실험에 2에서 제조된 2가지 이중 금속이 도핑된 리튬 턴탄 복합 산화물을 포함하는 테스트셀의 용량 및 용특성을 측정하였으며, 그 결과를 도 5에 나타내었다. 도 5에서 2가지 이중금속인 Zr 및 Na 을 각각 0.05볼, 0.006볼 도핑하고, 750 \(^\circ\text{C} \)에서 열처리한 실험에의 경우 비교의 리튬 턴탄 복합 산화물을 포함하는 테스트셀보다 용특성이 가장 크게 개선되는 것을 확인할 수 있다.

<실험 2-3> XRD 측정

상기 실험에 2에서 제조된 2가지 이중 금속으로 Zr 및 Na 을 각각 0.05볼, 0.006볼 도핑하고, 750\(^\circ\text{C} \)에서 열처리한 경우 리튬 턴탄 복합 산화물 및 비교에의 이중 금속을 도핑하지 않은 리튬 턴탄 복합 산화물의 XRD 사진을 도 6에 나타내었다.

도 6에서 본 실험의 실험에 따른 이중 금속으로서 Na 및 Zr 의 2가지 이중 금속이 도핑된 리튬 턴탄 복합 산화물은 스펜틸 구조라고 하며, \(\text{Li}_{0.3}\text{Ti}_{0.3}\text{O}_{4} \)의 메인 피크 강도를 100이라고 할 때에, 아나테계형 \(\text{TiO}_{2} \)의 메인 피크의 강도가 1 이하, 루타일형 \(\text{TiO}_{2} \)의 메인 피크의 강도가 1 이하이고, \(\text{Li}_2\text{TiO}_3 \)의 메인 피크의 강도가 5 이하한 것을 확인할 수 있다. 이중 금속으로서 도핑된 Na 및 Zr이 아나테계형 이산화티탄, 루타일형 이산화티탄 및 \(\text{Li}_2\text{TiO}_3 \)등의 분산물의 함량을 조절함으로써 이에 의하여 전기 성능을 개선하는 것을 확인할 수 있다.
산업상 이용가능성

본 발명의 이중 금속이 도핑된 리튬 티탄 복합 산화물 제조 방법은 이중 금속을 혼합, 분쇄하고, 분무 건조함으로써 리튬 티탄 복합 산화물의 표면에 2가지 이중 금속을 적절한 비율로 조절하여 도핑함으로써 종래 불순물로 포함되던 루타일형 이산화티탄, 아나타세형 이산화티탄 및 Li2TiO3의 함유량을 감소시켜 용량 특성 및 구조적 특성이 우수한 이산화티탄을 제조할 수 있으며, 본 발명의 제조 방법에 의하여 제조된 이중 금속이 도핑된 이산화티탄을 포함한 전지는 초기 충방전 효율 및 용특성이 높은 우수한 전지 특성을 나타낸다.
청구범위

[청구항 1] i) 리튬 함유 화합물, 탄산화물, 이종 금속 M 함유 화합물 및 이종 금속 A 함유 화합물로 고상 혼합하는 단계;
ii) 상기 i)의 고상 혼합물을 용매에 분산시키고 0.3 μm 내지 0.8 μm의 평균입자 직경을 갖는 입자를 함유할 때까지 슬러리 분해하여 슬러리를 제조하는 단계;
iii) 상기 슬러리를 분무건조하여 입자를 형성하는 단계; 및
iv) 상기 분무건조된 입자를 소성하는 단계; 를 포함하는 아래 화학식으로 표시되는 이종 금속이 도핑된 리튬 틴탄 복합 산화물의 제조 방법.

[화학식] Li₄Ti₅O₁₂

(상기 화학식에서 상기 M 은 Zr, Mg, Al, Ni, Co, Mn, Cu 로 이루어진 그룹에서 선택되고, 상기 A 는 Na, K, V 및 B 로 이루어진 그룹에서 선택되고, 0.1 ≤ x ≤ 1.5, 0 ≤ y ≤ 1 이고, x + y ≤ 2, 8 ≤ x / y ≤ 9 을 만족하는 것임)

[청구항 2] 제 1 항에 있어서,
상기 이종 금속 M 은 Zr 이고, 상기 이종 금속 A 는 Na 인 것을 특정으로 하는 이종 금속이 도핑된 리튬 틴탄 복합 산화물의 제조 방법.

[청구항 3] 제 2 항에 있어서,
상기 Zr 을 함유하는 화합물은 Zr(OH)₄, ZrO₂, 및 이들의 혼합물에서 선택되는 것을 특정으로 하는 이종 금속이 도핑된 리튬 틴탄 복합 산화물의 제조 방법.

[청구항 4] 제 2 항에 있어서,
상기 Na 를 함유하는 화합물은 탄산나트륨, 수산나트륨, 및 이들의 혼합물에서 선택되는 것을 특정으로 하는 이종 금속이 도핑된 리튬 틴탄 복합 산화물의 제조 방법.

[청구항 5] 제 1 항에 있어서,
상기 틴탄 산화물은 아나타세형 또는 함수 산화디탄인 것을 특정으로 하는 이종 금속이 도핑된 리튬 틴탄 복합 산화물의 제조 방법.

[청구항 6] 제 1 항에 있어서
상기 리튬 함유 화합물은 수산환리튬 또는 탄산리튬인 것을 특정으로 하는 이종 금속이 도핑된 리튬 틴탄 복합 산화물의 제조 방법.

[청구항 7] 제 1 항에 있어서,
상기 ii)단계에서는 용매로서 물을 사용하고, 지르코니아 비드를
이용하여 2000 내지 4000 rpm 으로 분쇄하는 것을 특징으로 하는 이중 금속이 도핑된 릿튬 티탄 복합 산화물의 제조 방법.

[청구항 8]
제 1 항에 있어서,
상기 iii) 단계의 분무 건조하는 단계에서는 투입 열풍온도를 250 내지 300℃, 배기 열풍온도를 100 내지 150 ℃로 분무건조하는 것을 특징으로 하는 이중 금속이 도핑된 릿튬 티탄 복합 산화물의 제조 방법.

[청구항 9]
제 1 항에 있어서,
상기 iv) 단계의 소성 공정에서는 상기 iii) 단계의 분무 건조법을 공기 분위기 하에서, 700 내지 800 ℃에서, 5 시간 내지 10 시간 동안 소성하는 것을 특징으로 하는 이중 금속이 도핑된 릿튬 티탄 복합 산화물의 제조 방법.

[청구항 10]
제 1 항에 있어서,
v) 상기 iv)에서 소성된 임자를 분쇄하는 단계;를 더 포함하는 것이나 이중 금속이 도핑된 릿툼 티탄 복합 산화물의 제조 방법.

[청구항 11]
제 10 항에 있어서,
상기 v) 소성된 임자를 분쇄하는 단계에서는 소성된 임자를 제트에어밀로 분쇄하는 것을 특징으로 하는 이중 금속이 도핑된 릿툼 티탄 복합 산화물의 제조 방법.

[청구항 12]
제 1 항 내지 제 11 항 중 어느 하나의 방법에 의하여 제조되고, 1차 입자가 집합하여 형성된 2차 입자로서, 아래화학적으로 표시되고, 상기 1차 입자의 직경이 0.5 μm 내지 0.8 μm이고, 상기 2차 입자의 직경이 5 μm 내지 25 μm 인 스피셜 구조인 것을 특징으로 하는 이중 금속이 도핑된 릿툼 티탄 복합 산화물.
[화학식] Li₄Ti₃(1−x)MₓAₓO₁₂
(상기 화학식에서 상기 M 은 Zr, Mg, Al, Ni, Co, Mn, Cu 로 이루어진 그룹에서 선택되고, 상기 A 는 Na, K, V 및 B 로 이루어진 그룹에서 선택되고, 0.1 ≤ x ≤ 1.5, 0 ≤ y ≤ 1이고, x + y ≤ 2, 8 ≤ x/y ≤ 9 을 만족하는 것임)

[청구항 13]
제 12 항에 있어서,
상기 2차 입자의 D₅₀이 0.7 μm 내지 1.5 μm 인 것을 특징으로 하는 것이 이중 금속이 도핑된 릿툼 티탄 복합 산화물.

[청구항 14]
제 12 항에 있어서,
상기 이중 금속이 도핑된 릿툼 티탄 복합 산화물은 Li₄Ti₃O₁₂의 메인 펌크 강도를 100이라고 할 때에, 아나테제 형 TiO₂의 메인 펌크의 강도가 1 이하, 루타일형 TiO₂의 메인 펌크의 강도가 5 이하인 것을 특징으로 하는 이중 금속이 도핑된 릿툼 티탄 복합 산화물.
[청구항 16] 제 12 항에 의해 이종 금속이 도핑된 리튬 티탄 복합 산화물을 포함하는 리튬 이차 전지용 음극.
[청구항 17] 제 15 항에 의한 양극을 함유하는 리튬 이차 전지.
[청구항 18] 제 16 항에 의한 음극을 함유하는 리튬 이차 전지.
[Fig. 1]

<table>
<thead>
<tr>
<th></th>
<th>Bare</th>
<th>Al doping 0.05mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>X5,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg doping 0.05mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na doping 0.05mol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2

- **Capacity**

- **Efficiency**

[Graph showing capacity and efficiency data for different samples labeled with their respective concentrations.]
INTERNATIONAL SEARCH REPORT

International application No.
PCT/KR2014/003060

A. CLASSIFICATION OF SUBJECT MATTER

C01G 23/04(2006.01)i, C01D 15/02(2006.01)i, B01J 6/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C01G 23/04; H01M 4/583; C01G 45/00; H01M 4/02; H01M 4/485; C01D 15/02; B01J 6/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: lithium, titanium, dissimilar metal, doping, wet grinding, spray drying, sintering, first particle, second particle, spinel, electrode, battery

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>YI, TING-FENG et al., Spinel Li4Ti5-xZrxO12 (0≤x≤0.25) materials as high-performance anode materials for lithium-ion batteries, Journal of Alloys and Compounds, January 2013, vol. 558, pages 11-17</td>
<td>1-18</td>
</tr>
<tr>
<td></td>
<td>See abstract; pages 11-13.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2011-0141392 A (PHOENIX MATERIALS CO., LTD.) 19 October 2011</td>
<td>1-18</td>
</tr>
<tr>
<td></td>
<td>See abstract; paragraphs [0032], [0033], [0038], [0041]; claims 1, 6-11.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-145619 A (MITSUBISHI CHEMICALS CORP.) 22 May 2005</td>
<td>1-18</td>
</tr>
<tr>
<td></td>
<td>See abstract; paragraphs [0019], [0020], [0041]-[0044], [0046], [0049], [0051]-[0054]; claims 7-9, 13-16, 21-24.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>LI, XING et al., Structural and electrochemical performances of Li4Ti5-xZrxO12 as anode material for lithium-ion batteries, Journal of Alloys and Compounds, 2009, vol. 487, pages L12-L17</td>
<td>1-18</td>
</tr>
<tr>
<td></td>
<td>See abstract; pages L12-L14, L16.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WANG, ZHENHONG et al., Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries, Journal of Physics and Chemistry of Solids, 2011, vol. 72, pages 773-778</td>
<td>1-18</td>
</tr>
<tr>
<td></td>
<td>See abstract; page 774.</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{\square} \text{ Further documents are listed in the continuation of Box C.} \quad \checkmark \text{ See patent family annex.} \]

\[\text{* Special categories of cited documents:} \quad \text{F later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention} \]

\[\text{E earlier application or patent but published on or after the international filing date} \quad \text{X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone} \]

\[\text{L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)} \quad \text{Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art} \]

\[\text{O document referring to an oral disclosure, use, exhibition or other means} \quad \text{& document member of the same patent family} \]

Date of the actual completion of the international search
12 AUGUST 2014 (12.08.2014)

Date of mailing of the international search report
13 AUGUST 2014 (13.08.2014)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 189 Scence-ro, Daejeon 305-701,
Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2011-0114392 A</td>
<td>19/10/2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2002-145619 A</td>
<td>22/06/2002</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분야)
C01G 23/04(2006.01)i, C01D 15/02(2006.01)i, B01J 6/00(2006.01)i

B. 조사된 분야
조사된 최소문헌(국제특허분야를 기재)
C01G 23/04; H01M 4/583; C01G 45/00; H01M 4/02; H01M 4/485; C01D 15/02; B01J 6/00

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허청공신공보 및 한국공개특허안공보: 조사된 최소문헌내에 기재된 IPC
일본특허청공신공보 및 일본공개특허공보: 조사된 최소문헌내에 기재된 IPC

국제특허출원환 전산 데이터베이스(데이터베이스의 명칭 및 검색어(대용할 경우))
eKOMPASS(특허청 내부 검색시스템) & 키워드: 리튬, 탄소, 이종 급속, 도핑, 습식 문제, 분무 건조, 소형, 1차 입자, 2차 입자, 스플릿, 전극, 전지

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(대용할 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>YI, TING-FENG et al., Spinel Li4Ti5-xZrxO12 (0≤x≤0.25) materials as high-performance anode materials for lithium-ion batteries, Journal of Alloys and Compounds, January 2013, Vol. 558, Pages 11-17</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-145619 A (MITSUBISHI CHEMICALS CORP.) 2005.05.22</td>
<td>1-18</td>
</tr>
<tr>
<td>Y</td>
<td>LI, XING et al., Structural and electrochemical performances of Li4Ti5-xZrxO12 as anode material for lithium-ion batteries, Journal of Alloys and Compounds, 2009, Vol. 487, Pages L12-L17</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>WANG, ZHENHONG et al., Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries, Journal of Physics and Chemistry of Solids, 2011, Vol. 72, Pages 773-778</td>
<td>1-18</td>
</tr>
</tbody>
</table>

시작문단이 C(계속)에 기재되어 있습니다. 다음특허에 관한 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
 “A” 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌
 “B” 국제특허출원보다 빠른 출원일 또는 출원일을 가지거나 국제특허출원 이후에 공개된 출원일 또는 특허문헌
 “L” 우선권 주장자에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이용을 명시)를 둘러싸기 위하여 인용된 문헌
 “O” 구두 개시, 사용, 전시 또는 기타 수단을 인용하고 있는 문헌
 “P” 우선권일 이후에 공개되었으나 국제특허출원 이전에 공개된 문헌

국제특허출원의 실제 완료일
2014년 08월 12일 (12.08.2014)

국제특허보고서 발송일
2014년 08월 13일 (13.08.2014)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정사로 189.
4층 (문산동, 정부대로2199)
전화번호: +82-42-72-7140

전화번호: +82-42-481-8649
<table>
<thead>
<tr>
<th>문서번호</th>
<th>공개일</th>
<th>대응특허번호</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2011-0114392 A</td>
<td>2011/10/19</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>JP 2002-145619 A</td>
<td>2002/05/22</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)