LAMINATED GLASS WINDSCREEN INTENDED TO BE USED AT THE SAME TIME AS A HUD SYSTEM REFLECTOR

Inventor: Gerd Sauer, Stolberg (DE)

Correspondence Address:
OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT, P.C.
1940 DUKE STREET
ALEXANDRIA, VA 22314 (US)

Assignee: SAINT-GOBAIN GLASS FRANCE, Courbevoie (FR)

Appl. No.: 11/057,161
Filed: Feb. 15, 2005

Related U.S. Application Data

Continuation of application No. 10/156,106, filed on May 29, 2002, now Pat. No. 6,866,918, which is a continuation of application No. 09/121,844, filed on Jul. 24, 1998, now abandoned.

A laminated safety glass windscreen, which can also be used as a reflector in a HUD system, comprises at least first and second panes and a thermoplastic intermediate layer which joins these panes together. The cross-section of the intermediate layer is in the shape of a wedge, decreasing in thickness from top to bottom. The thermoplastic intermediate layer may be composed of two sheets, one of which is provided with a colored filtering strip and has a wedged cross-section conditioned by the appearance of this filtering strip. The other sheet has a wedged cross-section such that the two sheets together have the prescribed convergence angle for using the windscreen as a reflector.
LAMINATED GLASS WINDSCREEN INTENDED TO BE USED AT THE SAME TIME AS A HUD SYSTEM REFLECTOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a laminated glass windscreen having a predetermined taper angle and intended to be used at the same time as a reflector in a HUD system.

2. Discussion of the Background

It is known that the reflection of light rays from the surfaces of glass increases with the angle of incidence. In the case of windscreens which are fitted with a large angle of inclination, objects situated inside the vehicle and below the windscreen are visible to the driver in the windscreen, which acts as a mirror. This effect can be exploited, for example by projecting optical information onto the windscreen. In this regard, however, ordinary windscreens with parallel faces present the problem that the light rays, which are reflected both by the interior surface and by the exterior surface of the windscreen, present the observer with two images which are offset relative to one another.

It is known from EP 0 420 228 B1, hereby incorporated by reference, that this problem of double images can be avoided by using an intermediate layer with a wedge-shaped cross-section which makes the two reflecting surfaces of the windscreen form an angle such that the two reflected images appear superimposed to the driver’s eyes. In this way, not only is a relatively sharp reflected image obtained, but the clarity of the image is also enhanced. However, the taper angle required of the intermediate layer for this purpose depends strongly on the angle at which the windscreen is fitted and on the position of the image projector in the vehicle, and therefore needs to be carefully adapted to each particular situation.

It is also known to use a thermoplastic intermediate sheet with a tinted filtering band during the manufacture of curved windscreens made of laminated glass with a filtering strip along the upper edge. The desired curvature of the filtering strip is then obtained by intentional irregular stretching of the sheet. This stretching, involving plastic deformation of the sheet, is carried out in order to adapt the profile of the filtering strip to that of the upper part of the laminated windscreen. Stretching in the shape of a circular arc leads to a taper on the long side of the curvature, which gives a sheet with a wedge-shaped cross-section. The taper angle of a sheet stretched in this way is determined by the radius required for the filtering strip. Therefore, the thermoplastic sheet with wedge-shaped cross-section formed in this way does not normally have the taper angle needed for a windscreen to be used as a reflector in a head-up display (HUD) system comprising two reflection surfaces which form a determined angle in order to superimpose the images.

SUMMARY OF THE INVENTION

An object of the invention is to provide a laminated glass window which contains a tinted filtering strip integrated with the thermoplastic intermediate sheet, whose curvature is adapted to that of the upper edge of the laminated glass pane and whose two panes also form, relative to one another, an angle such that they serve as a reflector in a head-up display system, resulting in two reflected images which are superimposed with a view to enhancing brightness and avoiding a double image.

This object is achieved with an intermediate layer comprising at least two thermoplastic sheets, one of which is provided along its upper edge with a tinted filtering strip, and the other has a wedge-shaped cross-section such that the two sheets together have the desired taper angle.

BRIEF DESCRIPTION OF THE DRAWINGS

Various other objects, features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the accompanying drawings in which like reference characters designate like or corresponding parts throughout the several views and wherein:

FIG. 1 is a front view of a windscreen with a tinted filtering strip, and

FIG. 2 is a view in section on the axis II-II in FIG. 1.

FIG. 3 is a view in section on the axis II-II in FIG. 1, of an embodiment different from that of FIG. 2.

DETAILED DESCRIPTION OF THE INVENTION

A laminated glass window according to the invention has the advantage that the two reflecting surfaces can be arranged relative to one another with a predetermined taper angle, with a view to using the windscreen as a reflector in a HUD system, irrespective of the taper angle already presented by the thermoplastic sheet with the incorporated tinted filtering strip.

It is also possible for the laminated glass windscreen to have a straight edge at the filtering strip. In this case, the sheet comprising the filtering strip does not need to be stretched, and consequently no longer has a wedge-shaped cross-section. The required taper angle is then produced only by the other sheet.

According to a further advantageous embodiment of the invention, a support sheet comprising a functional layer is placed between the thermoplastic sheets which together form the defined taper angle. This support sheet may, for example, be made of polyethylene terephthalate (PET) and be provided with a coating which reflects infrared wavelengths, but is transparent to other wavelengths.

The taper angles required of the thermoplastic sheets may be obtained by stretching with plastic deformation, but it is also possible to use sheets originally extruded with a wedge-shaped cross-section. The sheet provided with the tinted filtering strip may itself also be extruded with a wedge-shaped cross-section.

When the sheets are being drawn to give them the necessary radii of curvature, which may be as little as 2 m, it is clearly necessary to take care that the two sheets together have a minimum thickness in order to retain a safety functions and adhesion properties. A person of ordinary skill in the art can easily select a suitable thickness for the sheets.
[0018] A variety of commercially available polymer sheets may be used as thermoplastic sheets which together are to form the determined taper angle. In particular, polyvinyl butyral and polyurethane sheets are suitable.

[0019] Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.

[0020] Referring to FIG. 1, the windshield 1 is provided along its upper edge with a tinted filtering strip 2. As illustrated in FIG. 2, this windshield may be produced with a taper angle θ in order to ensure superimposed reflection of an image by the exterior surfaces 33 and 61 of the panes 3 and 6. In this example, the taper angle θ is selected to be 0.5 mrad.

[0021] At its upper edge, the laminated glass windshield 1 has a radius R₁ of 3.30 m, and its height h is 0.80 m. The thermoplastic sheet 4 comprising the tinted filtering strip 2 is made of polyvinyl butyral (PVB). Initially, it has an overall thickness and, after drawing on its upper edge, of 0.76 mm (d₁). From the geometrical ratios and prescribed data, it is possible to deduce the taper angle k₁, which is obtained by stretching the PVB sheet 4 with the desired radius of curvature R₁, using the formula:

\[k₁ = \frac{d₁}{R₁ + h} \]

[0022] where d₁ is the initial thickness of the sheet, R₁ is the radius of curvature at the upper edge, and h is the height of the sheet, which gives k₁ = 0.185 mrad.

[0023] In order to obtain the required taper angle θ of 0.5 mrad, it is necessary to add a second thermoplastic sheet 5, also made of PVB, having a taper angle k₂ of 0.315 mrad, such that 0.5 mrad = k₁ + k₂. For an initial thickness d₂ = 1.52 mm of the second sheet, the relation:

\[R₂ = \frac{d₂}{k₂ + h} \]

[0024] gives, for this sheet, a required stretching radius of 4.025 m.

[0025] The two stretched thermoplastic sheets 4 and 5 are arranged in such a way that the taper angles k₁ and k₂ are added to give the stipulated angle of 0.5 mrad. The sheets are then assembled in the conventional way with the curved panes 3 and 6 to form a laminated glass windshield which exhibits the required taper angle of 0.5 mrad.

[0026] The specific values R₁, h, and d₁ are easily selected by those of ordinary skill in the art, and in part depend on dimensions of the specific vehicle in which the windshield is intended to be used. As an example, R₁ may be 2-4 m, h may be 0.40-1.6 m, and d₁ may be 0.10-2.50 mm. Similarly, d₂ may be 0.10-2.50 mm.

[0027] A third sheet may be included, such as a support sheet comprising a functional layer between the thermoplastic sheets. Such an embodiment is illustrated in FIG. 3, where the support sheet 7, is between the thermoplastic sheets 4 and 5.

[0028] Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

1. A laminated glass windshield having a taper angle for a reflector in a HUD system, comprising:
 (i) a first pane,
 (ii) a second pane, and
 (iii) a intermediate layer having a wedge-shaped cross-section, between said first and second panes, comprising
 (a) a first thermoplastic sheet comprising a tinted filtering strip at an upper edge of said first thermoplastic sheet,
 (b) a second thermoplastic sheet, on said first thermoplastic sheet having a wedge-shaped cross-section;

 wherein
 said first thermoplastic sheet has a taper angle k₁, and
 said second thermoplastic sheet has a taper angle k₂, wherein the taper angle of said combined sheets (k₁ + k₂) is 0.5 mrad, and wherein at least one of either the first thermoplastic sheet or the second thermoplastic sheet has a wedge-shaped cross-section.

2. The laminated glass windshield of claim 1, wherein said first thermoplastic sheet has a taper angle of 0.

3. The laminated glass windshield of claim 1, wherein said first thermoplastic sheet has a wedge-shaped cross-section.

4. The laminated glass windshield of claim 1, wherein said intermediate layer further comprises a support sheet comprising a functional layer, between said first thermoplastic sheet and said second thermoplastic sheet.

5. The laminated glass windshield of claim 1, wherein said first thermoplastic sheet comprises a polymer selected from the group consisting of polyvinyl butyral and polyurethane.

6. The laminated glass windshield of claim 1, wherein said second thermoplastic sheet comprises a polymer selected from the group consisting of polyvinyl butyral and polyurethane.

7. The laminated glass windshield of claim 5, wherein said second thermoplastic sheet comprises a polymer selected from the group consisting of polyvinyl butyral and polyurethane.

8. The laminated glass windshield of claim 1, wherein said first thermoplastic sheet comprises polyvinyl butyral, and said second thermoplastic sheet comprises polyvinyl butyral.

9. The laminated glass windshield of claim 4, wherein said support sheet comprises polyethylene terephthalate.
10. A method of making the laminated glass windscreen of claim 1, comprising:
 laminating said first pane, said intermediate layer and said second pane.
11. The method of claim 10, further comprising, prior to said laminating, stretching to form said first thermoplastic sheet with a wedge-shaped cross-section.
12. The method of claim 10, further comprising, prior to said laminating, extruding to form said second thermoplastic sheet in a wedge shape.
13. The method of claim 11, further comprising, prior to said laminating, extruding to form said second thermoplastic sheet in a wedge shape.
14. The method of claim 10, further comprising, prior to said laminating, stretching to form said second thermoplastic sheet with a wedge-shaped cross-section.
15. The method of claim 11, further comprising, prior to said laminating, stretching to form said second thermoplastic sheet with a wedge-shaped cross-section.
16. A method of making the laminated glass windscreen of claim 4, comprising:
 laminating said first pane, said intermediate layer and said second pane.

17. A method of displaying an image, comprising:
 projecting an image on the laminated glass windscreen of claim 1.
19. A vehicle, including the laminated glass windscreen of claim 1.
20. A method of displaying an image, comprising:
 projecting an image on a windshield of a vehicle, wherein said windshield is the laminated glass windscreen of claim 1, and
 reflections of said image from said first pane and said second pane appear superimposed to a driver of said vehicle.
21. The laminated glass windscreen of claim 1, wherein said second thermoplastic sheet (b) is untinted.
22. The laminated glass windscreen of claim 1, wherein k_1 is 0.185 mrad and k_2 is 0.315 mrad.

* * * * *