77069757 A1 I L0 0 00O RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization “f A
International Bureau

(43) International Publication Date
21 June 2007 (21.06.2007)

(10) International Publication Number

WO 2007/069757 Al

(51) International Patent Classification:
GOGF 9/45 (2006.01) GOG6F 3/12 (2006.01)
B41] 29/38 (2006.01)

(21) International Application Number:
PCT/IP2006/325139

(22) International Filing Date:
12 December 2006 (12.12.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
2005-360836 14 December 2005 (14.12.2005) JP
(71) Applicant (for all designated States except US): CANON
KABUSHIKI KAISHA [JP/JP]; 3-30-2, Shimomaruko,

Ohta-ku, Tokyo, 1468501 (JP).

(72) Inventor; and

(75) Inventor/Applicant (for US only): TANEDA, Masakazu
[JP/IP]; c/o CANON KABUSHIKI KAISHA, 3-30-2 Shi-
momaruko, Ohta-ku, Tokyo, 1468501 (JP).

(74) Agent: OHTSUKA, Yasunori; 7th FL.., SHUWA KIOI-
CHO PARK BLDG., 3-6, KIOICHO, CHIYODA-KU,
Tokyo, 1020094 (JP).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,

KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,

LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,

NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,

SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: INFORMATION PROCESSING APPARATUS AND METHOD

220 ~—— J FILTER ' WEB APPLICATIONS AND
2214 OTHER APPLICATIONS
201 2%8 212
il
{ { |l J0B || sTANDARD
202 DATA TRANSMISSION/ |] FRAER [CONTROL || LIBRARY AND
RECEPTION MODULE EXTERNAL | ||] LIBRARY | |FRAMEWORK
LAYER
203 INTERFACE
1{ EMBEDDED APPLICATION j—— oxra staeam 219 ’ 518 217
ATTRIBUTE 216
204 I MANA(\)GE!\CENT 213
MODU! INTERPRETER _
‘{ GONTROL API | TR ITERPRETER —INTEHPHETER
LAYER |-
205i* JOB CONTROL MODULE |~ [H{INTERFACE 215
211

208 208

ME IMAGE DATA

TRANSLATOR| {RENDERER | { CONTROL | | PROCESSING | |MANAGEMENT
MODULE MODULE MODULE

207 209 210

214

RTOS |

PROTOCOL 223
STACK

EXTERNAL |-224

INTERFACE
DRIVER

RENDERER ME
DRIVER DRIVER
225 226

OPERATING
PANEL DRIVER

227

(57) Abstract: A data processing apparatus has an interpreter environment which dynamically executes programs configured based
on a command set defined independently from a native command group, in a native environment. In the native environment input
&= data streams are divided into multiple stages and intermediate data streams are generated for each of the states. In the interpreter
& environment the intermediate data streams are subjected to filtering processing and filtered data streams are generated. The inter-
mediate data streams are handed to a filter via a layer interface. A data stream management attribute module extracts information
of items specified beforehand from the intermediate data streams, and controls handing over of the intermediate data streams to
the filter, based on the contents of the information. Thus, whether or not to apply filtering processing can be controlled based on
description in the data streams, thereby realizing efficient data stream processing.

WO 2007/069757 A1 | NI DI 000 0T 0000 00 0000 0

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/069757 PCT/JP2006/325139

DESCRIPTION

INFORMATION PROCESSING APPARATUS AND METHOD

TECHNICAL FIELD
[0001] The present invention relates to information
processing technology using a native environment under
~which firmware and the like operates, and an
'intefpreter environment -operating unaerithe hative
environment.
BACKGROUND ART
[0002] Conventionally, software for executing image
processing in image pnoceésing devices such as
phdtocopiers or Multi Function Printers (MFPs), for
example, has most often been configured as what is
‘known}as firmware, in a static and fixed manner on the
operating system (0S). Even if such firmware is
constituted internally of multiple modules, the
firmware as a whole is stored in non—volatile memory in
the device, with the entirety thereof being statically
linked to a single ioad module. When the system is
activated, the firmware is either loaded from the non-
volatile memory, such as a hard disk or the like, to
RAM, and executed, or is directly executed in the non-
volatile memory, such as ROM in which the firmware is
stored. With low-cost image processing devices in
particular, firmware making up a built-in system is

generally configured such that dynamic loading or

WO 2007/069757 PCT/JP2006/325139

linking of partial modules is not performed, for
economic and safety reasons, among others. That is to
say, the memory capacity for storing symbol tables
necessary for échieving dynamic linking and overhead
relating to processing of access addresses for symbols,
" causes declines in the device’s cost—effectiveness.
Another reason is that additional loading énd linking
of sﬁb-modules could imperil tHe quaiity‘and‘security
of the overall system, which would have been
sufficient before linking to such Sﬁb—modules.
[0003) In érder to solve the above problems, image
processing devices have been developed which have
'anéther software operating en%ironment layer above the
.realtime operating system on which the embedded system
‘firmware runs. This additional software operating
environment layer supports‘dynamicvsoftware properties,
inciuding but'not liﬁited to dynamic loading, dynamic
linking,idynamic memory operations. The additional
software operating environment constitutes an
interpreter and an'application programming interface
(API) group or framework group, thereby providing a
class of operating system or computing platform for the
software running thereupon. The interpreter
continuously reads out, interprets, and executes a
series of command strings, made up of commands included
in a predetermined command set. If this command set is

viewed as being equivalent to a command set for the CPU,

WO 2007/069757 PCT/JP2006/325139

the interpreter may also be called a virtual machine.
The set of API group and framework group provides the
softyare running under the software operating
environment with access to various types of resource
groups, which ‘are actual resources and hardware
resources provided in abstract form by‘the‘realtime
operating system in a layer below this software
operating environment. Thése resources incluae, but are
not limited'to, command execution contéxt carried out
by processors, memory, filing systems, and various
types of input/output (I/0), including network
interfaces. In particular, with command execution
coﬁtexts, the software operating environment is capable
of proprietarily managing command execution contexts on
" the interpreter independeﬁtly from multi-tasking
functions provided by thé CPU and the real time
opefating systemp Also, with regard to memory
manageméﬁt,'the software operating environment can
provide its own memory management.

[0004] Software which runs on such a software
execution environment is sequentially read in and
interpreted by the interpreter, and, accordingly, it
may be possible to eliminate operations which adversely
affect the system by monitoring the command stream
during this process. Also, access to the various
resources by the software running on the software

execution environment is performed indirectly via the

WO 2007/069757 PCT/JP2006/325139

- API group and framework group provided by the software
execution environment.Accordingly, the approachfdf
providing the hierarchical layef of the software
execution envifonment made up of the interpreter, the
API group, and the framework group within the firmware,
may make it possible'to eliminate operations which
adversely affect the system in this accessing process.
Accordingly, such an apprbach is ektfemely effective in
partially ihtroducing dynamic propertiés of software
into firmware, in a iow—cost built-in system that
should be coﬁfigured in a static and fixed manner; e.g.,
see Japanese Patent Laid-Open No. 11-282684 and |

'Jaéanese Patent Laid-Open No.'2003—256216.

[0005] With the above approach, a Java (registered

"trademark) virtual machine canlbe employed as the
interpreter for achiéving the hierarchicai level of the
software executibn environment, and API groups and
frameworklgroups relating to Java can be employed. The
present assignee has, in the year 2003, commercialized
an MFP having a Java platform built into the firmwafe
of an image processing device.

[0006] Heretofore, there has been an arrangement
wherein an application-downloading printer comprising a
network computer is used to download, from a computer
network to the printer, a data file to be printed, and
an application corresponding to the data file.

Activating and executing the downloaded application

WO 2007/069757 PCT/JP2006/325139

-opens the data file, converts the data file into raster
images, and prints the images. The fact that the
appli;ation used in this case is.a Java applét ﬁas been
disclosed, as well as both cases of the application
being pushed from the client along with the printing

" data file and the applicatipn being pulled by the
printer from an application server or the iike, e.g.,
Japaﬁese Patent Laid-Open No. 11—53132. | |
[0007] Japanese Patent Laid-Open No. 11-306107
proposes a network communication system, wherein
multiple peripheral devices, multiple terminal devices
provided with software,fof operating the peripheral
de;iées, and a server device Héving a device relating
to software for operating the peripheral devices, at a
‘minimum, are connected to a transmission path. With
this network communication system, network
communication is performéd,‘based oﬁ a predetermined
éommunicéfion’protocol, between the periphgral devices,
the terminal devices, énd the service device, which are
connected to the transmission path. Here, the
peripheral devices have a client control unit and a
software distribution agent. The client control unit
requests and obtains, from the server device, either
software for operating the peripheral devices, in whole
or in part, or the newest module information
corresponding to modules used by the software. Also,

the software distribution agent distributes the

WO 2007/069757 PCT/JP2006/325139

.obtained newest modules to the terminal Qevices.
According to Japanese Patent Laid-Open No. 306107, Java
Applets and Java Applications can be supplied in this
case és client-side modules to be used by the software
to operate the peripheral devices.

" [0008] On the other hand, with,a’backbone service
system, the demand for mainfaining the stability of an
‘overéll system, once it is ruhning pfOpefly,‘is very
strong, and there are cases wherein changes or version
updates of printer drivers or applications and the iike
are not readily permitted. Given such real-world
printing environment restfictions, it is the
'respdnsibility of printer vendors to handle various
.types of customer demands oﬁ the printer, rather than
‘requiring the customer to do so. One method is to
revamp the firmware making up the printer/printer
controller and‘releaéé thislto each customer. HerVer,
dealing With.each customer by revamping firmware
requires long developmént periods and costé for the

" devices, and updatiﬁg firmware also reguires high-level
maintenance by field engineers and the like. Thus, it
can be said that this approach is problematic in cost-
effectiveness if prompt handling of the demands of each
customer is to be achieved.
[0009] With an MFP having a software operating
environment such as a Java platform, for example, built

into an embedded system'é firmware, new device-embedded

WO 2007/069757 PCT/JP2006/325139

“applications independent of the firmware, can be
developed on the software operating environment, and
the p;int functions of the device can be accéssed_from
Java applications via APIs. The Java platform, however,
is situated in the embedded application layer witﬁin
the firmware. Accordingly, it has not been possible to
adapt print data'reception functions or print server
functions achieved as native embeddea'applications in
the same lajer as the Javé platform to Java
applications. That is to say, print server functions
having the vérious types of print service protocols for
receiving print data via the network for example have
‘to bé provided to the Java side as well, which is an
inefficient arrangement from the perspectives of
\expehditure of resources for dévelopment, evaluation,
and memory capacity at the time of execution thereof.
[0010] On the‘othef hand, if there is no softQafe
operatinévenvironment layer within the firmware of an
embedded system, the ehtire embedded system possesses a
configuration capable of dynamic liﬁking and plug-ins,
and thus, the entire system possesses a dynamic
configuration. This is unsuitable for a low-cost,
small-scale system, taking into consideration the
concept that the only component for which dynamic
properties are required is the configuration for
flexibly and expandably adding pre-processing that is

executed prior to interpreting a received PDL data

WO 2007/069757 PCT/JP2006/325139

stream. The reason is that overhead costs and
difficulty aré increased with regard to ensuring:
quality when configuring the entire system as dynamic
software.

v[0011] Accordingly,,the present assigﬁee has
proposed in Japanese Patent Laid-Open No. 2004—093215
to provide a filter pprtion for performing.pre—
procéssing prior to interpreting a réCei?ed PDL data
stream as fléxible'and expandable software, separately
from the otﬁer components of the printer firmware. This
is a proposai for improving productivity in
customization of PDL p;infers,,by cleérly separating
‘the’implementation of the expéndable software of this
filter component from implementation of other
‘cbmponents of the printer firmware for which stability
is required.

[0012] With the abdve proposal, however, there.is
the need.to constantly perform filtering processing on
the whole of all print.request data streams, and,
accordingly, efficiént processing is not achieved
thereby. For example, a print request data stream which
an image processing device receives constitutes a
device control data stream portion and a rendering data
stream portion, and with this arrangement, filtering
processing is performed on the entire print request
data stream at all times, i.e., on both data stream

portions, so the overall processing is slow, resulting

WO 2007/069757 PCT/JP2006/325139

~in such problems as reduced throUghput, meaning that
efficient processing cannot be pe;formed. Furthermore,
consideration has not been given'to‘handling'vafious
print processing request data streams other than PDLs,
including but not limited to temporarily holding |

- processing of data in the image processing device, or
transmitting image data read with the image processihg
deviée via e-mail. | |

[0013] Acéordingly, in an effort to realize more
effective pfocessing; the present aésignee has filed
Japanese Patént Application No. 2004-231433. Japanese
Patent Application No. 2004-231433 préposes an assembly
whérein individual data étfeam components such as the -
.device contrQl data stream portion and the rendering
‘data stream portion can be filtered. The device control
stream component constitutes an instruction command
primarily relating to'control of the device, including
but not iimited to using Job Language (JL) to specify
the paper. feed cassetté'or discharge tray. Also, the
rendering data stream component, which may include, but
is not limited to, Page Description Language (PDL),
constitutes instruction commands relating to rendering.
[0014] Japanese Patent Application No. 2004-231433
proposes an assembly for performing optimal filtering
on various types of interhediate data streams such as
the device control data stream component and the

rendering data stream component within the image

WO 2007/069757 PCT/JP2006/325139

- 10 -

processing device, as derived from the p;int request
data stream. With Japanesé Patent Application No. 2004-
231433, however, each data stream is processed |
independently, and each filter independently determines
whether or not to apply filtering to a déta stream.
That is to say, consideration has‘nét been given to an
operation wherein application of filtering'processing
on oﬁe data stream is determined accofding to the
contents of another data stream. For example, control
cannot be performed wherein filtering processing is
applied to thé-renderihg.data stream (PDL) depending on
the job type and the PDL type describéd in the device
con£fol data stream (JL).

DISCLOSURE OF INVENTION
[0015] The present invention provides for allowing
contfol regarding whéﬁher or not to apply filtering
processiﬁg based on a description within a data stream,
thereby achieving efficient data stream processing.
[0016] With a data processing apparatué having an
interpreter environment for dynamically executing
programs that are built based on a command set
independently defined from a native command group
within a native environment, input data streams are
divided into multiple stages and interpreted within the
native environment, with intermediate data streams

being generated for each,state, and within the

WO 2007/069757 PCT/JP2006/325139

- 11 -

‘interpreter environment, the intermediate data streams
are subjected to filtering processing and filte;ed‘data
streams are generated. Handing o?er‘of the ihtefmediate
data streams' to fiiters is performed via a layer
‘interface. A data stream management attribute module
extracts information for items specified beforehand
from an intermediate data stream, and controls handing
over‘of the intermediate;data streamnto the filter,
based on the'coﬁtehts of this information.

[0017] Accérdingvto the first aépect of the-
present inveﬂtion, there is provided an information
processing apparatus having, in a native environment
coﬁfigured based on a first cdmmand group processed by
’a processor which constitutes hardware, an interpreter
‘environment for dynamically executing a program
configured based on a'second command group defined
independently from the first command group, the |
épparatus comprising: data stream reception means for
receiving an input data stream including a processing
request ffom auclieht in the native énvironment; data
processing means dividing the input data stream into a
plurality of stages and generating an intermediate data
stream at each stage in the native environment; filter
means for generating a filtered data stream by
filtering an intermediate data stream generated by the
data processing means in the interpreter environment;

'

interface means for extracting and writing back, from

WO 2007/069757 PCT/JP2006/325139

- 12 -

‘and to the filter means, an intermediate‘data stream
generated by the data processing means, in the native
environment; filter management means for handingroff an
intermediate'data stream génerated by the data
processing means to the filter means via the interface
‘means, and taking out the filtered data,stream via the
interface means, in the native environmentf and control
means for controlling exchtion'of handing over an
intermediate data stream by the filter management‘means
to the filter means based on the contents of
information of'an item specified beforehand contained
in the input data stream, in the natiVe environment.
V[OOiQ]‘ '‘According to‘the second aspect of the
present invention, there is provided a control method
‘of an information processing apparatus having, in a
native environment configured based on a first’command
group processed by a prooessor which constitutes
hardware;’an~interpreter environment for dynamically
executing a program configured based on a second
command group defined independently from the first
command group, the method comprising: a data stream
reception step of receiving an input data stream
including a processing reguest from a client in the
native environment; a data processing step of dividing
the input data stream into a plurality of stages and
generating an intermediate data stream at each stage

interpreted in the native environment; a filter step of

WO 2007/069757 PCT/JP2006/325139

- 138 -

geherating a filtered data stream by filtering an
intermediate data stream generated in the data
proce;sing step.in the interpreter environment; an
interface step éf‘extracting and writing back, from and
to the filter sfep, an intermediate data'stream
'generated in the data processing step, in the native
environment; a filter management step of handing off an
intermediate data stream generated indthé data
processing step to the filter step via the interface
step, and taking out the filtered dafa stream via the
interface stép, in the native environment; and a
control step of controlling execution of handing off an
'intefmediate data stream by the filter management step
to the filter step based on the contents of information
‘of an item specified beforehand contained in the input
data stream, in the native environment.

[0019] Further'features of the present inventibn
will becéme apparent from the following description of
exemplary embodiments,’with reference to the attached.

drawings.

BRIEF DESCRIPTION OF DRAWINGS
[0020] The accompanying drawings, which are
incorporated in and constitute a part of the
specification, illustrate embodiments of the invention
and, together with the description, serve to explain

the principles of the invention.

WO 2007/069757 PCT/JP2006/325139

- 14 -

‘[0021) Fig. 1 is a block diagram for describing the‘
hardware configuration of an image processing apparatus
accor@ing to a first embodiment of the present |
invention.

[0022] Fig. 2 is a hierarchical diagram for
‘describing the software configuration of a controller,<
according to the first embodiment.

[0023] Fig. 3 is a diagram iliustrétiné the basic
flow of data betﬁeen the software modules in the
controller, and.daté streams between the modules
thereof, acc&rding to the first embodiment.

[0024] Fig. 4 is a diagfam illustrating the basic
‘floQ‘of data between the software modules in the
controller, and data flow at the time of filter
processing, according to the first embodiment.

[0025] Fig. 5 is a diagram for describing classes in
a fiiter framework configured in the.interpreter4
environméﬁt aécording to the first embodiment.

[0026] Figs. 6A and éB illustrate an inétance of
objects managed by a filter framework 219 configured in
the interpreter environment of the first embodiment,
with Fig. 6A illustrating the relation between objects
managed by the filter framework runtime when one filter
is in a valid state, and Fig. 6B illustrating the
relation between objects managed by the filter
framework runtime when two filters are in a valid state.

[{0027] Figs. 7A to 7C'are diagrams for describing an

WO 2007/069757 PCT/JP2006/325139

- 15 -

‘example of a user interface for operating the filter
framework according to the first gmbodiment.

(0028] Fig. 8 is a flowchart iilustrating the
principal procedures in the filter processing according
to the first embodiment.

[0029] Fig. 9 is a flowchart illustrating another
example of filter processing according to ﬁhe first
embodiment. - |

[0030] Fig. 10 is a diagram for describing a process
request data stfeam according to thé first embodiment.
[0031] Fig; 11 is a diagram for describing
processing which a filter performs with regard to a
'rendéring data stream accordiﬁg to the first embodiment.
[0032] Fig. 12 is a diagram for describing filter
‘processing which a filter berfdrms with regard to a
rendering data streaﬁ according to the first embodiment.
[0033] Fig. 13 is a diagram for describing filter
processiﬁé which an optimization filter pe;forms with
regard to a rendering data stream according to the
first embodiment.

[0034] Fig. 14 is a diagram for describing
processing which a function-adding filter performs with
regard to a device control instruction data stream
according to the first embodiment.

[0035] Fig. 15 is a diagram illustrating an example
of a user interface for operating a function extension

filter.

WO 2007/069757 PCT/JP2006/325139

- 16 -

-[0036] Fig. 16 is a diagram for describing a
transmission data stream according to a second
embod%ment of the present invention.

[0037] Fig. 17 is a flowchart illustrating
processing forfdetermining whether or not to apply
" filtering via a data stream attribute management module
according to the second embédiment.

'[0038] Fig. 18 is a diagram for illustrating an
example of a user interface for configuring filter

application conditions.

BEST MODE FOR CARRYING,OUT THE INVENTION.
[0639] Preferred embodiments of the present
.invention will now be described in detail in accordance
‘Qith the accompanying drawings.
[0040] First Embodiment |
Fig. 1 is a block diégram describing the hardware .
éonfigurétion of an image processing apparatus 1000
according to the preseht embodiment. Thisvimage
processing device iOOO has an image processing
apparatus controller 1600 (hereinafter, referred to as
controller 1600) and is constituted of a device which
governs a different control system. It is presumed that
the particular image processing apparatus 1000
according to the embodiment is a printing apparatus.
[0041] A CPU 1 executes control operations in

accordance with a control program stored in a

WO 2007/069757 PCT/JP2006/325139

- 17 -

‘rewritable flash memory 3 (hereinafter, referred to as
non-volatile memory 3). The CPU l.also centrally:
contr?ls various types of data transmission/récéption
requests, including but not limited to printing data or
printer control commands, which are transmitted from a
‘plurality of external devices (not shown), including
but not limited to a host computer, that afe connected
to a local area network (LAN 2000). Cémmﬁnicétion with
external devices connected to the LAN 2000 is preformed
via a network controller (LANC) 5 COﬁnected to a‘syétem
bus 4, usingia predetermined network communication
protocol. The CPU 1 centrélly controlé access to the
‘varidus devices connected to the system bus 4. This
.control is carried out according to either control
programs or the‘like stored in a ROM 9, or control

- programs or resource data or the like stofed in an
external memory 10, wﬁich is connected via a disk~
controlléf (DKC) 15. Acéordingly, image information is
generated by a raster controller 12, in accordance with
the received printing data, and the image information
is output to a marking engine (printer engine) 16.
[0042] A RAM 2 is used as a temporary storage region
such as main memory, work area, etc., for the CPU 1.
The flash memory 3 is rewritable non-volatile memory,
and stores control programs together with the ROM 9.
The system bus 4 is used for exchanging data among the

devices that make up the controller 1600.

WO 2007/069757 . PCT/JP2006/325139
- 18 -

[0043] The network controller (LANC) S connects the
controller 1600 to the LAN 2000. An LED 6 is used as a
display unit for indicating the operating status of the
controller 1600. For example, the LED 6 can be used to
represent varidus operating statuses, such as the -
electrical connection state (LINK) between the.LANC 5
and the LAN 2000, network communication mode, which may
include, but is not limited ts, 10Bass or IOOBase, full
duplex or haif duplex, by way of blinkihg patterns or
color, or the‘like,»of the LED 6. Thé external mémory
10 has control programs and various types of data, and
is’connected to the controller 1600 via the DKC 15.
‘Generally, hard drives, USB msmory, or the like, are
used as the external memory 10. The raster controller
12 generates image informstion'to be output, based on
the received printind data. The markinglehgine 16
recéives~imagé information from the raster contrsller
12, and performs printing.
[0044] An operating panel (operating unit) 18 has
arrayed thereupon buttons for setting operating modes
of the image processing device 1000, canceling printing
data, and so forth, and a display unit having a liquid
crystal panel, or LEDs, or the like, for indicating the
operating status of the image processing device 1000. A
touch panel is provided to the operating unit 18,
overlaid on the liquid crystal panel. An image reading

unit 19 inputs read (scanned) image information to the

WO 2007/069757 PCT/JP2006/325139

- 19 -

‘image processing device 1000 by an instruction for
reading image information being made thereto from the
operating panel 18 or the local area network 2000.
[0045] The marking engine 16 shown in Fig. 1 uses
known printing techniques, preferable examples thefeof
including, but not being limited to, electrophotography
(laser beam printing), ink jet printing, or sublimation
(thermal transfer) printing. |
[0046] Fig. 2 is a hierérchical diagram illustrating
the software structure of the controller 1600 according
to the embodiment. The'diagram illustrates how the
higher-level modules situéted'toward the top are
dependent on the lower-level modules situated toward
the bottom. Lines which connect modules indicate a
‘particular dependent relafionship.

[0047] A native code unit 201 is a standard
component that makes ﬁp the firmware of the imagé-
processiﬁé apparatus 1000, and is directly executed by
the CPU 1, i.e., 1is executed in the native environment.

The native code unit 201 is statically linked to a
single load module when the device is developed, and is
stored as a firmware in the non-volatile memory 3 of
the image processing apparatus 1000. When the image
processing apparatus 1000 is activated, the firmware is
loaded from the non-volatile memory 3 to the RAM 2, and.
the CPU 1 sequentially reads out code from the RAM 2

and interprets the code and executes the processing

WO 2007/069757 PCT/JP2006/325139

- 20 -

‘thereof, while the image processing apparatus 1000 is’
running. No dynamic linking is performed when executing
the p;ocessing,‘however.An arrangement may also'be made
wherein the firmwafe is stored in non-volatile memory
which the CPU 1 can directly access by reading, ashwith
the ROM 9, so that the CPU 1 can sequentially read out,
interpret, and execute the code from the ROM 9 without
rendering in the RAM 2.

[0048] A data transmission/reception'module 202
receives a proce531ng request data stream 350 (Fig. 3)
from a cllent as an 1nput data stream, and transmits a
transmission data stream 358 (Fig. 3), that is
geﬁerated within the controllér 1600, to the client.

The data transmission/reception module 202 is dependent
‘on a protocol stack 223 via a real-time operating
system (RTOS) 214. Transmission and reception of data
between the data transmission/reception module 202 and'
the cliéﬁt is phySically'performed via networks such asl
Ethernet, or various interfaces such as USB or IEEE1394.
Application protocéls for performing processing
requests according to each connection arrangement are
stipulated. The data transmission/reception module 202
is provided with application protocol server functions.
There are various specifications for service
application protocols, and network protocols alone
include various types such as LPR, SMB, PAP, and:

NetWare. The achievement thereof incurs massive costs

WO 2007/069757 PCT/JP2006/325139

- 21 -

in development and quality evaluation. The data
transmission/reception module 202 provides multi-
protocol support,ewhich derives from the varibusitypes
of service protocols. that exist for each of the
plurality of interfaces. The data
‘transmission/reception module 202 may be arrahged to
form a job queue in the RAM 2 of the image processing
apparatus 1000 for transmission/recepﬁioﬁ of data, such
that it is pfovided with a spooling function, as it
were, In such ah instance, the data
transmission/feCeption module 202 aecepts the job
request from the client, stores the job in the queue,
'and‘feleases the client, even if a job cannot be
.executed immediately, such as when executing another
job. Thus, the job is processed in order according to a
scheduling algorithm, when it becomes poséible.to
execute the job. | | '

[0049] 'An embedded application 203 is an embedded
application for providing the central funcfions of the
image proeeSSing apbaratus 1000, and provides service
in response to client requests. In the event that the
client is application and driver software on a host
connected via the LAN 2000, the client generates a
processing request data stream 350 (Fig. 3), which it
hands off to the embedded application 203 via the data
transmission/reception module 202. The embedded

application 203 divides fhe processing request data

WO 2007/069757 PCT/JP2006/325139

- 22 -

‘stream 350 into a device control instruction data
stream 351 (Fig. 3) and a rendering data stream 352
(Fig. 3), and hands each stream off to a job ConErol
module 205, via a control API 204. Alternatively, the
embedded application 203 interprets the device confrol
instruction data stream 351, directs the job control
module 205 to carry out the processing reqdested by the
client via the control API 204, and hands off the
rendering data stream 352 (Fig. 3) to the job control
module 205 via the control API 204.

[0050] Forlexample, if the client is an instruction
made by way of the operating panel 18.of the image
'précéssing apparatus 1000,'thé device control
instruction data stream 351'(Fig. 3) is generated by
‘the embedded application 203, and handed to the job
control module 205 via the control API 204.
Altefnatively, the instrﬁction requesﬁed from the .
client iéigiven to the job control module 205'by the
control API 204. This description,portion relating to
device control is fypically referred to as Job Language
(JL. The JL includes, but is not limited to,
environment data for interpreting rendering data and
specifying operation parameters for a rendering system,
specifying paper feed for transfer paper used for
printouts, configuring printing modes such as duplex
printing, specifying discharge trays, specifying

sorting (collating), and specifying finishing, such as

WO 2007/069757 PCT/JP2006/325139

- 923 -

stapling and bookbinding. On the other hand, the
rendering data stream is described in a PDL, which
mainlx describes ;endering in increments of pages.
[0051] The control API 204 is an application
programming interface for accessing services which the
image processing apparatus 1000 proQides. The‘following
are two primary interfaces that constitute the control
API 204. One is an interface for execﬁtiﬁg and
controlling prinf jobs, and the other is an interface
for handing the'device control instrﬁction‘data streams
351 (Fig. 3) énd rendering data streams 352 (Fig. 3)
off to the job control module 205. '

[0052] The Jjob control module 205 controls various
types of image processing jobs which the image
processing apparatus 1000 provides. Print job
processing, which is an example of an image précessing
job, will now be descfibed.

[0053] The job control module 205 performs épparatus
control according to instructions given via the control
API 204. Alternatively, the job contfol module 205
operates by interpreting a device control instruction
data stream 351 (Fig. 3) input thereto via the control
API 204. The job control module 205 controls a
translator 206, a renderer 207, an ME control module
208, an image processing module 209, and a data
management module 210, in response to an instruction

regarding control of the apparatus via the control API

WO 2007/069757 PCT/JP2006/325139

-~ 24 -

204, or according to the contents‘described in the
device control instruction data stream 351. In the
event/of a print jobL the renderihg’data stream 552
(Fig. 3) is converted into a display list 355 (Fig. 3)
by the translator 206;,The display list 355 (Fig. 3) is
further converted into an intermediate image data
stream 356 (Fig. 3) by the renderer 207. This
intermediate image data stream 356 is thén converted
into a final image data stream 357 (Fig. 3) by the
image processing module 209, and the final image data
stream 357 isvsent to the ME control module 208 and
scheduled for printing.

'[0054] As a further example; description will be
made regarding the image data reading and transmitting
operations provided by the embedded application 203. If
an instruction has been issued from the operating panel
18 to read and'transmit image data, the embedded
épplicatién 203 issues an image data read and
transmission instructién to the job control module 205,
via the control API 204. This transmission instruction
is executed by the embedded application 203 directly
instructing the job control module 205 via the control
API 204. Alternatively, this is executed by the
embedded application 203 generating a device control
instruction data stream 351, which the embedded
application 203 hands off to the job control module 205

via the control API 204; The job control module 205

WO 2007/069757 PCT/JP2006/325139

- 925 -

‘inputs the image data from the image rea@ing unit 19,
stores the image data in the RAM 2, and hands it .off to
the image processing module 209.'fhe scan image'data
stream 360 (Fig. 3) thus generated is scheduled to be
‘handed off to the embedded application 203. The
embedded application 203 converts the scan 'image data
stream 360 which has been hénded off thereto into a
'formét directed by the operating panél 18 so as tb
generate a tfanémission data stream 359 (Fig. 3), which
is transmitﬁed via the data transmission/reception
module 202. Alternativély, if the transmission
destihation directed by the operating panel 18 is the
'built—in external memory 10, the embedded application
203 instructs the job contrél module 205, via the
control API 204, to read and save the iﬁage data. The
instruction is executed by the embedded application 203
directly instructing“the job control module 205, via
the conﬁrol-API 204. Alternatively, the instruction is
executed by the embeddéd application 203 generating a
device cohtrol<insfruction data stream 351 and handing
it off to the job control module 205 via the control
API 204. The job control module 205 inputs the image
data from the image reading unit 19, stores it in the
RAM 2, and hands it off to the image processing module
209. The scan image data stream 360 (Fig. 3) generated
by the image processing module 209 is then scheduled

for storage in the external memory 10 via the data

WO 2007/069757 PCT/JP2006/325139

- 26 -

mahagement module 210.

[0055] The translator 206 interprets a rendering
data stream 352, such as PDL, and converts it'in£o an
intermediate ‘printing language suitable for rendering
processing. The description of print data by way of an
‘intermediate printing language suitable for rende;ing
processing is called a display list 355 (Fig. 3). The
translator 206 has various unique impieméntations for
each of the Variéus types of PDL specifications, and
each translator converts its respective PDL into-a
display list 355 that is unique to the renderer 207.
[0056] The renderer_207‘renders the—display list 355
intg an intermediate image data stream 356 (Fig. 3).
.The renderer 207 is dependent on a renderer driver 225
via the RTOS 214.

[0057] The marking engine (ME) control module 208
controls the marking engine 16 which performs imégé
formatioﬁ'onto a transfer paper 'in the image processing
apparatus 1000. The ME'control module 208 is dependent
on an ME driver 226'via the RTOS 214.

[0058] The image processing module 209 performs
various types of image processing on the intermediate
image data stream 356 of the image processing apparatus
1000, including but not limited to half-toning,
trapping, density correction, or color/monochrome
conversion.

[0059] The data managément moduie 210 saves and

WO 2007/069757 PCT/JP2006/325139

- 927 -

‘manages data streams, such as the intermediate image
data stream 356 (Fig. 3) of the image processing-

: 1
apparatus 1000 and the final image data stream 357 (Fig.
3), in the external memory 10. An arrangement may be
made wherein data streams other than image data stfeams
may be saved and managed. A layer interface 211
exchanges data streams with the'interpretef environment
215, within the image processing appagatﬁs 1000. The
layer interface éll is typically divided into the
internal layer interface 213 and the external layer
interface 212, in order to assign levels to data
streams pertaining to filfering processing.

'[0060] The external layer interface 212 hands off
.the processing request data stream 350, the device
‘control instruction data sf;eam 351, the rendering data
stream 352, and the tiansmission data streams 358 and
359, from the data trénsmission/reception module.202
and the éﬁbedded application 203, to the interpreter
environment 215. The external layer interface 212 hands
off each data stream processed at the filter 221 to the
data transmission/reception module 202, the embedded
application 203, and the job control module 205.

[0061] The internal layer interface 213 hands off
the display list 355, the intermediate image data
stream 356, the final image data stream 357, and the
scan image data stream 360, which are generated by the

job control module 205, to the interpreter environment

WO 2007/069757 PCT/JP2006/325139

- 28 -

'215. The job control module 205 generates the lists and
data streams by interacting with the translator 206,
the renderer 207, the ME control module 208, thé image
processing module 209, the data management module 210,
Iand the image reading unit 19. The interhal layer'
interface 213 hands off the job processed by the filter
221 to the job control module 205. It goes‘without
saying that the exchange of data stréams‘may‘be carried
out between the translator 206, the renderer 207, the
ME control module 208, the image processing module 209,
the data manégement module 210, the image reading unit
19, and the interpreter environment 215, as opposed to
'oniy the job control modﬁle 205.

[0062] The RTOS 214 is a platférm that provides an
‘execution environment for the image processing
apparatus 1000’s native code firmware. The RTOS 214
provides basic serviées to be used for the building of
softwaré,’together with services of abstracted
hardware resources of the apparatus 1000,‘for software
running ‘thereupon, as well as a device driver
architecture framework for abstracting the hardware of
the apparatus 1000 into interfaces that are readily
used by the software. The functions provided by the
RTOS 214 include, but are not limited to, task
management wherein a command execution context by the
CPU 1 is abstracted, and a multitasking mechanism for

achieving concurrent processing wherein multiple

WO 2007/069757 PCT/JP2006/325139

- 29 -

execution contexts are simultaneously operated in a
virtual manner. Further functions which the RTOS 214
provides include,cbut are not limited to, exchanoing
messages among tasks, inter-task communication, i.e.,
message queues, semaphore, etc. for synchronization,
‘managing various types of memory,,timers, and clocks,
interruption management, and DMA control. Note that a
semaphore is a mechanism whereby procéssés operating
concurrentlyfare synchronized and interruption
processing is controlled, among othef functions.

[0063] Thevinterpretér environment 215 is a software
platform configured by_adding API gronps and framework
gronpc unique to the image processing apparatus 1000
thereto, based on the varions types of interpreter
‘environments, in this case’ the Java platform runtime
environment. This software platform provides a‘dynamic
software operating environment for programs described
in interpfeter languages of interpreters running
thereupon. The interpreter environment includes a
portion tnat is'impiemented by native code, included in
the native code unit 201, and portions implemented as
programs described in the interpreter language,
included in interpreter code unit 220 shown in Fig. 2).
[0064] The interpreter 216 sequentially reads out
commands from a command string described with a
predetermined command set, which it then interprets and

executes. The interpretef 216 constitutes a Java

WO 2007/069757 PCT/JP2006/325139

- 30 -

virtual machine, and the command set is Java byte code.
[0065] The standard API library'and framework group
217 further abstracts various types'of abstraCte;‘
computing resoufcés provided by the RTOS 214, using a
module unique tb the interpreter environment, theréby
‘providing an execution environment for the programs
running on the RTOS 214. In this case, the'abstraction
is achieved by the standard Claés library grdup making
up the Java platform, and an Open Services Gateway
initiative (CSGi) frémework, used hefe to mean
compliance with 0SGi standards. The Java platform
provides abstracted functions equivalént to the RTOS
214. Functions provided might include, but would not be
limited to, thregd management wherein command execution
‘contexts are abstracted by the virtual machine,
multithreading mechanisms for simultaneouély running
multiple execution coﬁte#ts‘in a virtual manner fo
achieve ééncurrent processing, thread communication for
exchanging messages améng threads .and for
synchronization, management of various types of memory
that have been highly abstracted, such as collections,
as well as timers and clocks, exception management,
access to file systems and networks, and interfacing
with external input/output devices. The 0SGi framework
runs multiple Java applications, or services, on a
single Java virtual machine. The 0SGi framework also

provides such functions as application lifecycle

WO 2007/069757 PCT/JP2006/325139

- 31 -

management and communication functions between
applications. A plurality of system services are pre-
instal}ed on the QSGL framework. The system services
include:

service management services for adding new applicaﬁions
to the interpreter environment, and updating or
deleting existing applications;

applet view services for~enabliﬁg dpefations of a Java
class implementea by an applet interface from the
operating paﬁel 18, by displaying the Java class on the
operating panel'of the image processing apparatus; and
HTTP services for running e Java class implemented by a
servlet interface as a Web application operable from a
client browser.

'[0066] In particular, Java appiications implemented
by an applet interface can be interfaced indirectly
with the operating panel driver 227, via an API of the
Abstract Window Toolkit (AWT).

[0067] The job control library 218 is dependent on
the control API 204; and provides an application
programming interface enabling execution and control of
image processing jobs for programs running on the
interpreter environment.

[0068] The filter framework 219 communicates with
the embedded application 203 to enable interposition
vis-a-vis a plurality of data streams of the image

processing apparatus IOOb from the filter program

WO 2007/069757 PCT/JP2006/325139

- 32 -

‘implemented on the interpreter environment when a job'
is executed.

[00691 The interpreter code uni£ 220 1is impleﬁented
as software described in an interpreter language which
the interpretef 216 can interpret, and includes a part
of the API library group and framework group making up
the interpreter envirpnment; as well as prdgrams | |
running in the interpreter environmenf. The software
situated as stréddling the native code unit 201 and the
interpreter code unit 220 requires that modules
ihterfacing Between these spaces be coded in accordance
with a unique framework and a unique programming module
'that.are stipulated by the interpreter environment. In.
this case, the boundary portion programming is
performed in accordance with a Java Native Interface
(JNI) . | "

[0070] The filter 221‘is a program implemented in
the intérpreter environment, and is implementéd
according to the frame&ork of the filter framework 219,
so as to be capablé of processing the processing
request data streams processed by the embedded
application 203. The protocol stack 223 is embedded
into the framework of the RTOS 214, and is provided
with protocols at and beneath the transport layer on an
external interface controlled by an external interface
driver 224 at a lower level. For example, the foregoing

achieves protocols such as TCP/IP and UDP/IP when

WO 2007/069757 PCT/JP2006/325139

- 33 -

‘applied to a network interface. The protocol stack 223
also provides an interface to the embedded appli;ation
203 for application programming, such as the Befkley
sockets APTI, via the RTOS 214. Also, if the external
interface is, for example, USB, prqtocols such as IEEE
1284.4 and the like afe achieved.

[0071) ‘The external interface driver 224.drives
‘hardware providing connections to Varioué types of
interfaces, including but not limited to network
interfaces, IEEE1394, USB, RS232C, and Centronics. With
a.network, for'example(the device activates network
inperface hardware for. connecting to é network such as
‘Ethernet, thereby achieving a physical layer protocol. -
[0072] The renderer driver 225 drives the renderer
207. The renderer 207 is Hardware for rendering the
display list 355 shown in‘Fig. 3 into an intermediate
image data stream 356. The renderer 207 may be aéhieved.
in softwafe,'and the rendered data streamvmay.be a
final image data stream 357 (Fig. -3). The ME driver 226
drives a markinig engine which performs image formation
onto a transfer paper. The operating panel driver 227
processes output to the display unit of the operating
panel 18 of the image processing apparatus 1000, as
well as input events from keys, the touch panel and the
like.

[0073] The layer interface 211 has a data stream

attribute management module 228. The user can direct

WO 2007/069757 PCT/JP2006/325139

- 34 -

the processing content of the data streams in the image
processing apparatus 1000 to the data stream attribute
managepent module.228, via the opérating panel 15.
[0074] Specifically, if the data
transmission/reception module 202 receives a proceésing
‘request data stream 350, the data.sﬁream attribute
management module 228 starts data stream attribute
management corresponding-to thelproceésihg reQuest data
stream 350. Each‘ofvthe modules under the native
environment inquire‘of the data stream attribute-
management moaule 228 as necessary,.so as to determine
the processing content_fegarding the data stream.
'Exaﬁbles of modules within the native environment in
.this case include the data transmission/reception
module 202, the embedded application 203, and the job
control module 205, as well as the translator 206, the
renderer 207, the ME éontrol module 208, the'image
processiﬁg module 209, and the data management module
210. The modules also notify the data stréam attribute
management module 228, in the event that specified
information has been extracted. Upon receiving such
notification, the data stream attribute management
module 228 updates the data stream attributes. Upon
receiving a job notification from the job control
module 205 to the effect that all processing regarding
the processing request data stream 350 has ended, the

data stream attribute ménagement module 228 ends

WO 2007/069757 PCT/JP2006/325139

- 35 -

management of the data stream attributes for the
processing request data stream 350.
[0075] Alternatively} if a scan image data'stfeam
360 has been generated by the job control module 205,
the data stream attribute management module 228 stérts
“management of the daté stream attributes of the scan
image data stream 360, and the data stream.attributes
are managed in a manner similar to thé féregding. Upon
receiving a'job notification from the job control
module 205 to the effect that all précessing regarding
the scan image data stream 360 has ended, the data
stream attribute management module 223 ends management
jof the data stream attributes for the scan image data -
stream 360.
'[0076] As described above, if the data
transmission/receptioﬁ module. 202 receives a processing
requést data stream 350, the data stream attribufe |
managemen£ module 228 starts data stream attribute
management thereof. The data stream attribute
management module 228 discloses the data stream
attributes to the modules present in the interpreter
environment, via the control API. Doing so facilitates
processing regarding the data stream attributes similar
to the foregoing, i.e., commencement of management of
data stream attributes, inquiry from the modules to the
data stream management module, notification from the

modules to the data stream management module, updating

WO 2007/069757 PCT/JP2006/325139

- 36 -

‘of data stream attributes by the data Stream management'
module, and ending of data stream attributes management.
The dgta stream attributes also enable such Opefations
as not handing off to the interpreter environment
modules at all, for example.

- [0077] Fig. 3 is a diagram illusfrating the basic
data flow between the software modules in the
controller 1600, and data'stréams of'the'respective
modules, accbrding»to the embodiment. Modules shown in
Figsimilar fo the modules in Fig. 2.are denoted with
common referénce numerals, and description thereof will
be omitted.

'[0678] The data transmissioh/reception module 202
.sends a processing request data stream 350, received
‘from the client, to the embedded application 203 via a
path 301, if no filter 221 interposition is present.l
The.path 301 1is achieved by inter-task communication
functioﬁs including, but not limited to, message
queuing provided by the RTOS 214. Other déta is handed
off in similar fashion. A processing request data
stream 350 is made up of a device control instruction
data stream 351 and a rendering data stream 352.

[0079] If the client is application and driver
software on a host connected via the LAN 2000, the
client generates a processing request data stream 350.
The processing request data stream 350 is then handed

off to the embedded appiication 203 via the data

WO 2007/069757 PCT/JP2006/325139

- 37 -

transmission/reception module 202. The embedded
application 203 divides the processing request data
stream 350 into a device control’inStruction daté
stream 351 and a rendering data stream 352, and hands
off each to the job control module 205 via the control
"API 204. Alternatively, the’embedded application 203
interprets the device control instruction data stream
351, directs the processing requested by.the client to
the job contfol module 205, and hands off the rendering
data stream 352‘to the job control mbdule 205 via the
control API 204. |
[OQBO] On the other .hand, if the client is an
‘instruction made by the client by way of the operating-.
panel .18 of the image processing épparatus 1000, the
‘device control instruction data stream 351 is generated
by the embedded application 203, and handed off to the
job control module 205 via the control API 204. ’
Alternati&ely, the instruction requested from the
client is given to the job control module 205 by the
control API 204. This description portion relating to
device control is generally called Job Language (JL).
The JL includes, but is not limited to, environment
data for interpreting rendering data and specifying
operation parameters for a rendering system, specifying
paper feed cassette of transfer paper used for
printouts, configuring such printing modes as duplex

printing, specifying discharge trays, specifying'

WO 2007/069757 PCT/JP2006/325139

- 38 -

'softing (collating), and specifying finishing such as
stapling and bookbinding. On the cher hand, the '
rendering data stream is described in a PDL, Whiéh
mainly describes fendering‘in increments of pages.
[0681] The job control module 205 performs contrbl

‘.of the apparatus 1000 following instructionS‘déliyered
via the control API 204. Alternatively, the job control
module 205 interprets a device controi iﬁstrdction data
stream 351 input thereto via the control API 204, and
operates accordingly. In response to instructions
regarding control of the.apparatus 1000 that are issued
Via,the control API 204, or content listed in the
device control instruction dafa stream 351, the job
qontrol module 205 controls the translator 206, the
‘renderer 207, the ME contfol mddule 208, the image
processing module 209, and the data management module
210;'Via a control line 390. In the event of a pfiht
job, the job'control module 205 performs scheduling as
follows. That is to say, the translator 206 converts
the réndefing data stream 352 into é display list 355,
and the renderer 207 converts the display list 355 into
an intermediate image data stream 356. The intermediate
image data stream 356 is then converted by the image
processing module 209 into a final image data stream
357, and the final image data stream 357 is sent to the
ME control module 208 and is printed.

[0082] Operations when reading and transmitting

WO 2007/069757 PCT/JP2006/325139

- 39 -

image data provided from the embedded application 203 °
will be illustrated as a further example. If an image
data read and transmission instruction is issued'from
the operating panel 18, the embedded application 203
performs instruction for image data reading and

 transmission to the job control module 205, via the
control API 204. The instruction is transmifted
directly to the job control module 205 ffom the
embedded appiication 203 via the control API 204, and
is executed. Alternatively, this instruction is
achieved by the embedded application 203 generating a
device control instruction data streaﬁ 351 and handing
it off to the job control module 205, via the control .
API 204. The job control module 205 inputs the image
data read by the image reading'unit 19, maintains the
inputted image data in thé RAM- 2, and hands it off to
the image processing module 209. Thus, scheduliné'is
performed so as to hand off the scan image daté stream
360 generated by the image processing module 209 to the
embedded éppliCation 203. The embedded application 203
converts the scan image data stream 360 that has been
handed off, into the format instructed from the
operating panel 18, thereby generating a transmission
data stream 359. The transmission data stream 359 is
then transmitted as a transmission data stream 359 from
the data transmission/reception module 202.

Alternatively, if the destination directed from the

WO 2007/069757 PCT/JP2006/325139

- 40 -

‘opérating panel 18 is the built-in external memory 10,
the embedded application 203 instructs the job cpntrol
module 205, via the control API 204, to read énd saVe
the image data. This: instruction is executed by the
embedded application 203 directly instructing the job
'.control module 205, via thelcontrol API 204 .
Alternaivtely, the execution is carried ouf by the
embedded application 203‘générating a‘deQice control
instruction aata stream 351, and handing off the device
control instruction data stream 351 to the job contfol
module 205, via the control API 204. The job control
modple 205 inputs the image data from.the image reading
unit 19, via the control line 390, stores it in the RAM
2, and hands it off to the image processing module 209.
The scan image data stream 360 thus generated is
scheduled for storagé in fhe external memory 10, via
the data'management module 210. All of the proceésing
described.so far is implemented in the native code unit
201.
[0083] Fig. 4 is a diagram for describing the basic
flow of data between software modules in the controller
1600, and data flows at the time of filter processing,
according to the embodiment. The data streams in the
modules shown in Fig. 4 are similar to the
corresponding elements shown in Fig. 3, and the
portions which are in common with the preceding

drawings are denoted with identical reference numerals.

WO 2007/069757 PCT/JP2006/325139

- 4] -

10084] If a data stream is subjected to filtering
processing, the data transmission/reception module 202
sends a processed data stream to tﬁe external la&er
interface 212, via the path 306. The handoff is
achieved by inter-task communication functions which
may include, but are not limited to; message queuing
and the like provided by thé RTOS 214, although oﬁher
data handoff procedures may be used to this end as well.
The external layer interface 212 within the layer
interface 211 hands. off the various data streams.to the
interpreter ehvironment 215. Examples of data streams
include the processing,reQuest data stream 350 which is
a déta stream received externally from the image
processing apparatus 1000 via the LAN 2000 or the like,
the device control instruction data stream 351 and the
rendering data stream 352 which are obtained by
dividing the processing‘request data stream 350 within
the imagé‘processing apparatus 1000, the transmission
data stream 359 which is obtained by convérsion and
generation executed by the embedded application 203,
and the transmission data stream 358 which is subjected
to final transmission processing by the data
transmission/reception module 202, and so forth. The
data streams may have been retrieved from the external
memory 10 by the data management module 210.

[0085] The external layer interface 212 sends the

received data stream to the filter framework 219 via a

WO 2007/069757 PCT/JP2006/325139

- 42 -

path 307. The runtime module of the filtgr framework
219 manages the filter 221, which is a filer program
group, provided within the interpreter environmeﬁt 215.
The filter framework 219 sends the data stream to the
filter 221 via a path 308. The handoff is achieved.on
the path 308 by inter—thread communication functions
thatAare'provided by the interpreter environment 215,
for example. The‘same applies to the éxchange of data
within the interpreter environment 215. If multiple
filters 221 are provided, the data streams flow between
each of the filters, with the handoff achieved by
inter—thread communication functions provided by the
interpreter environment 215. A runtime module refers to
a software module that is required when a program is
executed.

[0086] The filter 221 éubjects a data_stream
received as input to predetermined processing, ahd
outputs the result. The data stream that is outputted
by the filter 221 is sent to the filter framework 219
via a‘path 309. The filter framework 219 hands off the
data stream received from the filter 221 to the
external layer interface 212, via a path 310. Thus, the
external layer interface 212 sends the data stream to
the embedded application 203 via a path 311.
Alternatively, an arrangement may be made wherein the
external layer interface 212 sends the data stream to

the data transmission/reception module 202 via a path

WO 2007/069757 PCT/JP2006/325139

- 43 -

370, from which the data stream is sent to the embedded
application 203 via the path 301, as described above.
[0087] Control paths 312 and 372 are paths fof.
controlling data streams from the data
transmission/reception module 202 to the embedded
application 203, depending on the state of the filter
framework 219. If the filter 221 which the filter
framework 219 manages is installed in’a valid state,
the paths 306 and 307 are valid, and pre-processing by
the filter 221 is performed. If the filter framework
219 does not have a valid filter 221 installed, the
path 301 is wvalid, and. the data streaﬁ flows directly
from the data transmission/reception module 202 to the
embedded application 203. In this case, the overhead
due to interposition of tHe'filter framework 219 can be
avoided, and the daté processing capabilities of the
image processing apparatus 1000 are manifested ihré
standard state wherein no customization by the filter
221 1is performed at all.

‘[00881 If thé embedded application 203 subjects the
data stream to filtering processing, the data stream
flows to the external layer interface 212 via the path
314. over the handoff is achieved by inter-task
communication functions which may include, but are not
limited to, message queuing and the like provided by
the RTOS 214, which also applies to other data handoffs.

As described above, in the layer interface 211, the

WO 2007/069757 PCT/JP2006/325139

- 44 -

external layer interface 212 in particular hands off,
to the interpreter environment 215, the processing
request data stream 350 which is essentially a déta
stream received externally from the image processing
apparatus 1000 Via the. LAN 2000 or the like, the dévice
control instruction data stream 351 and the rendering
data.stréam 352 which are obtained by dividing the
processing request data stream 350 wifhin the image
processing apparatus 1000; the transmission data stream
359 which is obtained by conversion and generation by
the embedded applicatiqn 203, and the transmission data
stream 358 which is subjected to finai transmission
processing from the data transmission/reception module
202. The data streams may have been retrieved from the
‘external memory 10 by the‘data management module 210,
The external layer iﬁterface 212 sends the received
data stream to the filter framework 219 via the path
307. The filter framework 219 runtime module manages
the filter 221, which is installed in the interpreter
envirdnmeht 215, and the filter framework 219 sends the
received data stream to the filter 221 via the path 308.
The handoff is achieved on the path 308 by inter-thread
communication functions provided by the interpreter
environment 215, for example. The same applies to the
exchange of data within the interpreter environment 215.
If multiple filters 221 are provided, data streams flow

between each of the filters, with the handoff achieved

WO 2007/069757 PCT/JP2006/325139

- 45 -

by inter-thread communication functions provided by the
interpreter environment 215.
[0089l The filter 221 subjects é data stream
received as input to predetermined processing, and
outputs the result. The data stream which the filer 221
~ outputs is sent to the filter framework 219 via a path
309. The filter framework 219 hands off the data étream
received from the filter 221 to the external layer
interface 212 via the path 310, and the external layer
interface 212 sends the data stream to the job control
module 205 via a path 315. Alternatively, an
arrangement may be made wﬁerein the external layer
ingerface 212 sends the data stream to the embedded
application 203 via a path 371, from where the data
‘stream is sent to the job 'control module 205 via the
path 313 as described above.
[0090] The control paﬁhs 316 and 372 are paths for
controliing-data streams from the embedded application
203 to the job control‘module 205, depending on the
state of the filter framework 219. If the filter 221
which the filter framework 219 manages is installed in
a valid state, the paths 314 and 307 are valid, and
pre-processing by the filter 221 is performed. On the
other hand, if the filter framework 219 does not have a
valid filter 221 installed, the path 313 is valid, and'
the data stream flows directly to the job control

module 205. In this casé, the overhead due to

WO 2007/069757 PCT/JP2006/325139

- 46 -

interposition of the filter framework 219 can be
avoided, and the data processing capabilities of the
image processing apparatus 1000 are manifested in a
standard state wherein no customization by the filter
221 is performed at all.

[0091] Following is a descriptionregarding a case of
the job control module 205 that subjects the data
étream to filte:ing processing. In this éase, the data
stream flows to the internal layer interface 213 via a
path 318. The handoff is achieved by inter-task
cdmmunication functioné, which may include, but are not
limited to, message queuing provided by the RTOS 214,
and which also applies to other data handoffs. In the
layer interface 211, the internal layer interface 213
‘in particular hands over,'tQ the interpreter
environment 215, the'display lists and data streams
generated by the image processing apparatus 1000;»
Examples éf data handed over by the internal layer
interface 213 include a display list 355 which the
translator 206 'generates by processing a rendering data
stream 352, an intermediate image data stream 356 which
the renderer 207 generates by processing a display list
355, the final image data stream 357 which the image
processing module 209 generates by processing an
intermediate image data stream 356, and a scan image
data stream 360 that is read in from the image reading

unit 19, and so forth. The data streams may have been

WO 2007/069757 PCT/JP2006/325139

- 47 -

retrieved from the external memory 10 by the data
management module 210. The internal layer interface 213
sends the data stream received via the path 318 £o the
filter framework 219. The runtime module of the filter
framework 219 ménages the filter 221 that is installed
'in the interpreter environment 215. The.filtering
processing in the interpreter code unit 220 is the same
as the above-described processing, and description
thereof will be bmitted accordingly.

[0092] Thé filter framework 219 hands off the data
stream recei?ed from the filter 221 to the internal
layer interface 213 via the path 310.'The internal
layer interface 213 sends the data stream to the job
control module 205 via a path 319. An arrangement may
‘be made wherein the internal layer interface 213
directly hands off the data stream to the translator
206, the renderer 207, the image procéséing module 209,
the ME control module 208, and the data management
module 210. | |

[0093] The control paths 320 and 372 are paths for
controlling the data streams, depending on the‘state of
the filter framework 219. If the filter 221 which the
filter framework 219 manages is installed in a valid
state, the paths 318 and 307 are valid, and pre-
processing by the filter 221 is performed. On the other
hand, if the filter framework 219 does not have a valid

filter 221 installed, the path 317 is valid, and the

WO 2007/069757 PCT/JP2006/325139

- 48 -

data stream flows directly to the next module which the
job control module 205 has scheduled. In this case, the
overhead due to interposition of the filter framéwork
219 can be avoided, and the data processing
capabilities of the image processing apparatus 1000 are
manifested in a standard state wherein no customization
by the filter 221 is performed at all. |

[0094] According to the'assembly, the data stream
attribute management module 228 exists in the native
environment of the image processing apparatus,
according to the embodiment. The data stream attribute
management module 228 executes processing such as that
shown in Fig. 17. |

[0095] In step S21, the data stream attribute
.management module 228 commences management of the
attributes of the received processing request data
stream 350, upon a processing request data streamr350
being input from the data transmission/reception module
202. In step S22, the processing request data stream
350 received in step S21 is analyzed, and the job type
and the PDL type of the processing request data stream
350 is determined, based on the device control
instruction data stream 351 thereof. The determination
is performed based on the "job type" and "PDL used", as
described in the device control instruction data stream
351 in the processing request data stream 801, which is

described hereinafter with reference to Fig. 10.

WO 2007/069757 PCT/JP2006/325139

- 49 -

"[0096] On the other hand, a plurality of filters are
registered in the filter 221 according to the
embod%ment, wherein filters or filter combinatians to
be applied to processing request data streams or
desired intermediate image data streams are set
(configured), as described hereinafter withvreference
to Fig. 7. Moreover, as des¢ribed hereinafter with
reference to Fig. 18, applicatién coﬁditions‘are set
for the filtérs‘or the filter combinations. The example
shown in Fig. 18 illﬁstrates the way that the PDL type
and job typevcan be configured as conditions for filter
application, with regard to a filter or filter
combination for rendering ﬁhe data streams. That is,
according to the embodiment, the filters or filter
‘combinations are registered for application to the
various types of intermediate data, and the PDL type,
the job type, and the like are registered for purpbses
of deterﬁining whether or not to actually appiy the
filtering processing. |

[0097] ‘Accordingly, in step S23, the filters or
filter combinations to be checked are selected. In step
S24, the PDL type and job type described in the input
processing request data stream, and the PDL type and
the job type set for the registered filters or filter
combinations are compared. If the comparison results
show a match, then, in step S25, either the embedded

application 203 or the job control module 205 is

WO 2007/069757 PCT/JP2006/325139

- 50 -

configured such that the filter is appligd to the
intermediate image data stream. On the other hand, if
the comparison results in step S24 show a mismat;h, the
process proceeds to step S26, and either the embedded
application 203 or the job control module 205 is -
configured such that the transfer of the intermediate
image data stream is forbidden. The above processing of
steps S23 through S26 is performed fof all registered
filters (step S27). :

[0098] In the preceding processing, while the daté
stream attriﬁute management module 228 has been
described as analyzing. a processing request data stream
and checking for compatibiiity with the filter
application conditions, the embodiment is not
‘restricted to this arrangément; An arrangement may be
made wherein an intermediate data stream, e.g., the
device control instruction data stream 351, is ihput,
and the data stream is analyzed so as to check for
compatibility with the application conditions. With
this arrangement, a configuration can be made wherein,
for example, a determination as to whether or not the
filter functions are to be applied to a rendering data
stream 352 is made using the device control instruction
data stream 351.

[0099] Once such configurations are made to the
embedded application 203 or the job control module 205,

the émbedded application 203 or the job control module

WO 2007/069757 PCT/JP2006/325139

- 51 -

205 operate so as to send to the layer interface 211
only intermediate data streams that are configured for
application of filter processing from among thez
generated intermediate data streams, i.e., the
rendering data streams 352 or the display lists 355.
l‘Such control prevents unnecessary filtering processing
of the intermediate daté streams, thereby improving
processing efficiency. |
[0100] Fig. 5 is a diagram for describing the
classes in the filter framework 219 as configured in
the interprefer environment 215 according to the
empodiment.
[0101] A filter manager (FiiterManager) class 401 is
an object class for achieving the runtime environment
of the filter framework 219. The FilterManager class
401 has an object of a single connector (Connector)
class 405 as a'composition. The FilterManager class 401
also has an ordered list made up of referenceé to a
plurality (n) of Filter abstract class 402 objects and
a plurality (n-1) of pipe (Pipe) class 406 objects. The
FilterManager class 401 further has an installedFilters
attribute 410 in the runtime of the filter framework
219 for managing the specific classes of the plurality
of Filter abstract classes 402 that have been installed.
[0102] The Filter abstract class 402 is an abstract
class whereby various types of filter classes are

abstracted. The Filter abstract class 402 has such

WO 2007/069757 PCT/JP2006/325139

- 52 -

attributes as a name attribute that indicetes a file
name, as well as references to objects of classes. that
have inherited an inpuﬁ stream (InputStream) abséract
class 403 as input attributes. The Filter abstract
class 402 also has references to objects of classes
that have inherited an outpqt stream (OutputStream) as
output attributes. Specific classes of the Filter
abstract class 402 have implemented aARunnable
interface 411 to have a run method. Objects of the
FilterManager class 401 are placed for filtering-
processing of a data stream with instances being
generated of the various Filter abstract classes 402
that are managed. When this happens, the threads are
generated corresponding to the filter objects being
~placed, and the run method of the filter objects is
executed in the execution context of the threads
running concurrently. That is, a filter object is
handed off to a constructor’s parameters, and a
Java.lang.Thread object is generated and initiated.
Thus,.each of the filter objects operates autonomously.
[0103] The InputStream abstract class 403 is an
abstract class of the input source of the data stream,
and has a read method which can sequentially read out
data.

[0104] The OutputStream abstract class 404 is an
abstract class of the output destination of the data

stream, and has a write method which can sequentially

WO 2007/069757 PCT/JP2006/325139

- 53 -

write data.

[0105] The Connector class 405 is a class of objects
representing connection for exchanging the data étreams
between the interpreter environment objects and the
native code. Thé Connector class 405 has, as a
composition thereof, objects of a ConnectorInputStream
class 412, which is a specific class inheriting the
InputStream abstract class 403. The Cénnector class 405
can sequentially read out‘the data stream 350 sent from
the data transmission/reception module 202 of the
native code unit 201, using the read method thereof.
The Connector class 405 has, as a combosition thereof,
'objects of a ConnectorOutputStream class 413 inheriting
the OutputStream abstract class 404. The data streams
’sequentially written with the write method of the
Connector class 405 are sét to the job control module
205 of the native code unit 201 as data streams.v

[0106] 'The Pipe class 406 is an object class used
for linking among a series of objects of a Filter
abstract class 402 when performing a plurality of
filtering processes on a data stream. The pipe class
has, as compositions thereof, objects of a
PipedOutputStream class 414 inheriting the OutputStream
abstract class 404, and a PipedInputStream class 415
inheriting the InputStream abstract class 403. The
PipedOutputStream object 414 and the PipedInputStream

object 415 are connected, thereby achieving inter-

WO 2007/069757 PCT/JP2006/325139

- 54 -

thread communication:. That is, the filte; object writes
the data stream sequentially to the PipedOutputStream
object of a pipe object using the write method. boing
so allows a separate filter object to sequentially read
out the data stream which has been written, using ﬁhe
read method, from the PipedInputStream of the pipe
object. ‘ ‘

[0107] Figs. 6A and 6B are diagramé illustrating
instances of objects managed by the filter framework
219 configured in the interpreter environment 215. Fig.
6A illustrateé the relation between objects managed by
the runtime of the filter framework 219 in a state
wherein one filter is in a valid state.

[0108] A connector (Connector) object 501 is a
‘Connector ¢lass 405 object. A Filter object 502 is an
object of a specific class, a specific form of the
Filtér abstract class 402. Reference to the
ConnectorInputStream object of the Connector object 501
is maintained in the iﬁput attributes of the Filter
object 502. Attributes of the ConnectorOutputStream of
the Connector object 501 are maintained in the output
attributes. The Filter object 502 applies filtering
processing to a data stream that is read from the
ConnectorInputStream object to which "input" points.
Thus, a data stream to which filtering processing has
been applied is written to the ConnectorOutputStream

object to which "output" points. Thus, the handoff of a

WO 2007/069757 PCT/JP2006/325139

- 55 -

print data stream (large arrows in the diagram) between
objects is achieved. .

[0109] Fig. 6B illustrates the relation betweén'
objects managed by the running of the filter framework
219 in a state wherein two filters are in a valid étate.
[0110] A Filter 1 object 503 is an object of a |
specific class, a specific form of the Filter abstract
class 402. Reference to the ConnectorInputStream object
of the Connector object 501 is maintained in the input
attributes of the Filter 1 object 503. The Filter 1
object 503 applies filtering processing to a data
stream that is read from the ConnectorInputStream
object to which "input" pointé. Reference to the
PipedOutputStream object of a Pipe object 504 is
‘maintained in the output attributes of the Filter 1
object 503. The Filter 1 object 503 writes the data
stream to which the filtering processing has beeh«'
applied t§ the PipedOutputStream object to which
"output" points.

[0111] The Pipe object 504 is a Pipe class 406
object. The Pipe object 504 holds a PipedOutputStream
object and a PipedInputStream object in a connected
state. The data stream is handed off to the
PipedOutputStream object by being called up by the
write method of the PipedOutputStream object of the
Pipe object 504. The data stream can then be read out

from the PipedInputStream object by being called up by

WO 2007/069757 PCT/JP2006/325139

- 56 -

thé read method of thé PipedInputStream iject of the‘
Pipe object 504.

[0112] A Filter 2 object 505 is an object of a
specific class, a specific form of the Filter abstract
class 402. Reference to the PipedInputStream object of
the Pipe object 504 is maintained in the input
attributes of the Filter 2 object 505. The Filter 2
object 505 applies filtering precessiﬁg to a data
stream read from the Pipe'object 504 to which "input"
points. Reference to the ConnectorQutputStream object
of the Connecfor object 501 is maintained in the output
attributes of the Filter 2’object 505. The data stream
to thch the filtering processing has been applied is_
written to the ConnectorOutputStream object of the
Connector object 501 to which "output" points.

[0113] Thus, the handoffoff of a print data stream_
(large arrows in the diagram) is achieved between .
objects.4A greater number of filter objects can be
placed for data stream processing by placing the Pipe
object 504 therebetween, in similar fashion.

[0114] Figs. 7A through 7C are diagrams for
describing a user interface for operating the filter
framework 219 according to the embodiment. The user
interface for operating the filter framework 219 is
implemented as a Web application (Servlet) by the http
service included in the standard library and framework

217 (Fig. 2). The user interface is operated from a

WO 2007/069757 PCT/JP2006/325139

- 57 -

Web browser running at the client. Alternatively, it
may be implemented as an Applet-type service so as to
be ope;ated from the operating panel 18 of the iﬁage
processing apparatus 1000.

[0115] Fig. 7A illustrates a user interface for
'installing and adding a new filter 221 to the filter
framework 219 of the ;mage brocessing apparatus 1000 of
the embodiment. A filter-installation screen 601
comprises a file.name input field 602, a browse button
603, and an install. button 604.

[0116] Theluser inputs a file path to the class file
of the Filter abstract class 402 that‘stored in the
file'system'of the client computer beforehand, and
which the user wishes to install, into the file name
input field 602.

[0117] When the user clicks on the browse button 603,
a file selection dialog box provided by the Web browser
of the ciient computer is opened. The user can browse
through the file system of the client computer using
the file selection‘dialog box, so as to select the
class file of the filter abstract class 402 which the
user wishes to install. The file path to the file which
the user has selected via the file selection dialog box
is automatically input into the file name input field
602.

[0118] Upon detection of the user clicking on the

install button 604, the'specified filter is transmitted

WO 2007/069757 PCT/JP2006/325139

- h8 -

to the Web application to be installed as a new filter.
That is, the class file located at the file path that
is inputted into the file name input field 602 is
transmitted by the Web browser of the client computer
to the Web application for new filter installation for
which the image processing apparatus 1OQO is standing
by. The Web application which has thus received tﬁe
class file stores the received élass file in the non-
volatile memory 3_of the image processing apparatus
1000. The class file is dynamically 1oaded into the
interpreter énvironment 215 in order to generate an
object instance. The generated file object is situated
fartﬁest downstream in the valid filter list which the
filter framework runtime manages. If a valid filter |
object already exists in the filter list at this time,
a new pipe object for linkiﬁg the new filter object is
generated.

[0119] | When the user interface is implemented as a
Web application, uploading of the_implemeﬁtation class
of the filter to the image processing apparatus 1000
uses a file uploading specification, based on the HTML
form, and that is stipulated by the RFC standard.
Accordingly, the file name input field 602 and the
browse button 603 are displayed in the Web browser of
the client computer, and the install button 604
corresponds to “submit” in the form.

[0120] If the user iﬁterface is implemented as an

WO 2007/069757 PCT/JP2006/325139

- 59 -

Applet-type service, the screen 601 is displayed on the
operating panel 18 of the image processing apparatus
1000. If the image processing device 1000 has a ﬂ
removable storage medium, a file path in the removable
storage medium may be specified for the file specified
 in the file name input field 602. Alternatively, an
arrangement may be made whe:ein a shared fiie, which is
accessible by the image processing apbaratus 1000 via
network by a file transfer protocol such as http or FTP,
is specified by a URL or the like.
[0121] Fig: 7B is a diagram for describing a user
interface for placing a filter,installed in the filter
framework 219 of the image‘probessing apparatus 1000
according to the embodiment.
[0122] In a filter placement screen 605, a table 606
shows a list of filter groups installed in the runtime
of the filter framework 219. Each row in the table 606
correspoﬁds to a filter that has been installed. There
are checkboxes in the '"select" column of fhe table 606,
with filters in checked rows being selected for later-
described operations. An "order" column in the table
606 shows "invalid" in the event that a filter is in an
invalid state. If the filter is in a valid state, the
"order" column indicates the order thereof, with a
number allocated in ascending order from the upstream
to the downstream direction in data stream processing.

The filter name describéd in the name attribute of the

WO 2007/069757 PCT/JP2006/325139

- 60 -

filter object is displayed on a "name" column in the
table 606.

[0123L The reference numerals 607 through 611 aenote
buttons for directing operations regarding the selected
filter, which has been indicated by checking in the
table 606. Upon the user clicking on the display
details button 607, the detailed information relating
to the filter selected in the table 606 is displayed.
Examples of the detailed information include, but are
not limited to, filter name, version number,
déscription, Elass name, installation source class file
name, i.e., file path or URL, and date and time of
installation.

[0124] When the up button 608 is clicked, the order
of the selected filter in the filter column is
incremented by one in the'upstream direction of data
stream processing. When the down button 609 is clicked,
the order'of the selected filter in the filter column
is decremented by one in the downstream direction of
data stream processing. Each click of the valid/invalid
button 610 toggles between the valid/invalid state of
the selected filter, so that if the selected filter is
in a valid state, clicking the valid/invalid button 610
places it in an invalid state, and if the selected
filter is in an invalid state, the wvalid/invalid button
610 places it in a valid state. While a filter object

in an invalid state is deleted, the Filter abstract

WO 2007/069757 PCT/JP2006/325139

- 61 -

class 402 remains in an installed state, under
management of the filter framework runtime. When the
uninstall button 611 is clicked, the class file éf the
selected filter is deleted from the interpreter
environment 215'of the image processing apparatus 1000.
‘When the OK button 621 is clicked, the filter placement,
as configured via the settiﬁg screen, i.e., the.filter
placement screen 605, is-settled on.
[0125] Fig; 7C is a diagram illustrating an example
of a user interface,fbr selecting whether a filtef is
applicable to‘handling‘a data stream.
[0126] The user interface shown in Fig. 7C is a
seléction screen 612 that is abplicable to select a
data stream, which is displayed to the user before
'displaying_the filter installation screen 601 and the
filter placement screen 605, thereby enabling_the user
to determine a data stream regarding which the user
desires iﬁstallation or settings to be made régarding
filtering processing.
[0127] A list 613 provides a user interface whereby
data streams existing within the image processing
apparatus 1000 may be selected in list format. A field
614 displays the data streams selected from the list
613. An OK button 615 is a button for settling on the
installation and management of filters regarding the
data streams specified in the field 614. When the OK

button 615 is pressed, ﬁhe filter installation screen

WO 2007/069757 PCT/JP2006/325139

- 62 -

601 and the filter placement screen 605 for the related
data streams are displayed.

[0128] The method for selecting data streams for
filtering prdcessing is not restricted to the foregoing.
For example, an arrangement may be made wherein fiiter
attributes are provided to the Filter abstract class
402, such that data streams to be filtered are
identified by making reference to the'filter'attributes
when the filter is installed or managed.

[0129] With user interfaces such as the foregoing,
one or more filters can be placed with regard to input
data étreams, i.e., processing request data streams, or
desired intermediate data streams. Note that filters,
or filter combinations, thus placed have been placed in
‘the data path of the intermediate data stream via the
layer interface 211, as shown in Fig. 4.

[0130] Also) as described above with reference'to
Fig. 17, éccording to the present embodiment,
applicable "PDL type" and "job type" can be set with
regard to.the filters, or the filter combinations,
placed vis-a-vis an intermediate data stream, according
to the embodiment. For example, when an application
conditions button 620 shown in Fig. 7B is pressed, the
user interface shown in Fig. 18 comes up. In Fig. 18,
the data stream to be handled is a "rendering data
stream"”, illustrating a display example of a case

wherein the rendering data stream has been selected in

WO 2007/069757 PCT/JP2006/325139

- 63 -

the selection of the data stream (See 614, frame with
square heavy line) in Fig. 7C, and the application
conditions button 620 has been preésed in Fig. 7é. In
Fig. 18, the PDL type or the job type to which the‘
filter, or the combination of filters, should be‘
‘applied is determined with a PDL type setting list box
1501 and a job type setting‘list box 1502. Clicking on
the OK button 1503 finalizes the configuration. In this
case, 1if the processing réquest data stream has the job
type and a PDL type set herein, the rendering data
stream includéd in the processing request data stream
is subjected to processing by the filter that was
assigned in Fig. 7B.

[0131] Whether or not to apply filtering processing
'has been described per the foregoing as being
determined by the PDL type or the job type, bgt these
are merely examples, and the embodiment is not
restricted théreto.

[0132] Fig. 8 is a flowchart illustrating the
‘primary filtering processing procedure according to the
embodiment.

[0133] The process is implemented as a run method of
a specific filter class. The filter framework 219
generates a valid filter class object, and following
setting up the input stream and output stream thereof,
appropriates a thread (Thread object) for executing the

run method of the object. Accordingly, the procedure is

WO 2007/069757 PCT/JP2006/325139

- 64 -

autonomously and concurrently executed in each of the
filter objects that is managed by the filter framework
219.

[0134] Necessary pre-processing is performed in step
S1. The pre-processing includes, but is not limited to,
initialization of attributes which the filter 221 uses
internally, pre—processing fegarding pattern
descriptions used for pattern matching, and processing
for wrapping'streams with a qualification class for
adding functions that facilitate use of input/output
streams. Examples of functions facilitating use of
input/output streams include, but are not limited to,
enagling read-ahead of input streams, and expanding
buffering for effectively using system resources. The
'specific classes of Java.io.FilterInputStream and
Java.io.FilterOutputStream are examples of
qualification classes‘for adding such functions.

[0135] 'in~step S2, data of an amount necessary for
pattern matching processing is read out from an input
stream set in the input attributes. In step S$3, pattern
matching for discovering data patterns to be operated
on by the filter is performed. The data patterns to be
operated on by the filter may be a fixed data string
itself, or may be a description in a format language
such as a regular expression. Various types of
deployment for discovering data matching a pattern

description from a data stream are widely known, with

WO 2007/069757 PCT/JP2006/325139
- 65 -

grep, sed, AWK, and Perl being particularly well-known.
[0136] Algorithms for efficiently performing pattern
matching have been intensively studied. Known fixed
pattern description methods include, but are not
limited to, i) a method wherein the hash functions of
‘the pattern description and a partial data stream are
each compared, and a complefe match is determined'to
exist only if the hash values agree, ii)‘the Knuth-
Morris-Pratt algorithm, and iii) the Boyer-Moore
algorithm. With pattern descriptions that use regular
expressions, Qarious types of algorithms are also known,
which are based on format language théory, such as
finite automatons. On the relatively recent Java
platform, a class library for handling regular
‘expressions, Java.util.redgex, is included in the
standard installation. There are cases wherein, for
example, the state changes according to an upstream
pattern ih the data stream, and the interpretation of
the lower stream pattern must be changed éccording to
the changéd state, and furthermore, the more difficult
the description is with regular expressions and so
forth, the more complicated the pattern matching
required becomes. In such cases, an algorithm for
evaluating the features itself of the pattern may be
newly written as a Java program. Thus, straightforward
implementation may be achieved, regardless of how

complicated the pattern'matching is,

WO 2007/069757 PCT/JP2006/325139
- 66 -

[0137] In step S4, the results of the pattern
matching are assessed, and if data matching the pattern
description is discovered in the déta stream, thé
process proceeds to step S5, and otherwise proceeds to
step S6. In step S5, the operation according to ﬁhé
object of the filter is applied to the partial data
string of the data stream métching the pattern
description, and substituted wiﬁh the results thereof.
[0138] Invstep S6, the processed partial data string,
i.e., either the data string regarding which the
pattern being’monitored for did not appear, or a data
string which has been subjected to the processing in
step S5, regarding the data string including the
pattern being monitored, is written to the output
‘stream.

[0139] In step S7, an assessment is made regarding
whether or not the input stream has ended, and if,thé
input stféam-has ended, the process ends. Otherwise,
the process returns to step S2, and the pfocedures are
repeated.

[0140] Fig. 9 is a flowchart illustrating a further
example of filtering processing according to the
embodiment.

[0141] The process is implemented as a run method of
a specific filter class. The filter framework 219
generates a valid filter class object, and, following

setting up the input stream and output stream thereof,

WO 2007/069757 PCT/JP2006/325139

- 67 -

appropriates a thread (Thread object) for executing the
run method of this object. Accordingly, the process is
autonomously and concurrently executed in each df the
filter objects managed by the filter framework 219.
[0142] In step S11, necessary pre-processing is~
performed. The pre—processing includes, but is not
limited to, initialization of attributes which the
filter 221 uses internally} pre—proceésing regarding
pattern descriptions used for pattern matching, and
processing for wrapping streams with a qualification
ciass for adding functions that facilitate use of
input/output streams. Examples of functions
facilitating use of input/output streams include, but
are not limited to, enabling read-ahead of input
streams, and expanding bufferihg for effectively using
system resources. The specific classes of
Java.io.EilterInputStream and
Java.io.FilterOutputStream are examples of a
qualification class for adding such functions.

[0143] in step S12, a new partial data stream is
generated. In step S13, data of a pre-determined amount
necessary for pattern matching processing is read out
from an input stream set in the input attributes. In
step S14, the partial data string generated in step S12
is added to the data stream that has been read in. In
step S15, the processed partial data string is written

into the output stream. In step S16, the remaining data

WO 2007/069757 PCT/JP2006/325139

- 68 -

in the input stream is written to the output stream.
[0144] Fig. 10 is a diagram for describing a
proces;ing request data stream accbrding to the
embodiment.

[0145] Reference numeral 801 denotes a processing
request data stream. The processing request from the
client to the image processing apparatus 1000 1is
performed by the client creating a prbceésing request
data stream 801 and transmitting it to the image
processing apparatus 1000. Execution of the requested
processing islcarried out by the image processing
apparatus 1000 processinglthe processing request data
stréam 801. The processing request data stream 801 can
be generally divided into a device control instruction
‘data stream 802 (equivalent to 351 in Fig. 3) and a
rendering data stream 803 (équivalent to 352 in Fig. 3).
[0146] Described in the device control instruction
data stréam 802 are instructions to the image
prdcessing apparatus 1000 regarding processing requeSts
other than rendering. Specifically, issuing the
following instructions are commonly known, and are
stipulated by functions of the image processing
apparatus 1000. The "job type" attribute in line 1
represents the various types of jobs which the image
processing apparatus 1000 can handle, and can take
values that include, but are not limited to, "printing",

"secure printing", and "image acquisition". With a

WO 2007/069757 PCT/JP2006/325139
- 69 -

processing request such as "image acquisition”, wherein
rendering instructions are not made, the rendering data
stream 803 is generally not includéd in such a
processing request data stream 801. The "number of
copies" attribute in line 2 represents how many sets of
'printed articles are to be produced; The "page layout"
attribute in line 3 represeﬁts page layout
specifications. The page-layout specifications include
specifications for imposition of a plurality of pages
on a single sheet, inbluding but not limited to "1
page/sheet", h2 pages/sheet", or "4 pages/sheet". The
page layout specifications include specifications for
enlarging one page and printing on multiple sheets,
including but not limited to "poster (2 X 2)", or
"poster (3 X 3)". The "placement order" attribute in
line 4 represents the placement specifications at the
time of page layout, and can take values that include,
but are ﬁbt limited to, "from upper left to right",
"from upper left down"; "from upper right to left", or
"from'upper right down". The "printing method"
attribute in line 5 represents the printing method, and
can take values that include, but are not limited to,
"single-side printing", "duplex printing", or "binding
printing”. The "binding side" attribute in line 6
represents the side of which a plurality of sheets are
to be bound in the finishing processing, and can take

values that include, but are not limited to, "long side

WO 2007/069757 PCT/JP2006/325139

- 70 -

(left)", "long side (right)", "short side (top)", and’
"short side (bottom)". The "discharge method" attribute:
in line 7 represents the finishing method, and cén take
values that include, but are not limited to,
"unspecified", "sorting", "stapling", and "hole puﬁch".
The "paper feed" attribute in line 8 represents the
paper, i;e., transfer paper, for image formation, and
‘can take values that include, but are.not limited to,
"automatic",'"manual feed'tray", "cassette", "deck", or
"plain paper", "heavy paper", "color paper", or "OHP".
The "PDL used" attribute in line 9 is used when the
prqcessing request contents are rendering instructions,
and represents the type of PDL used for the rendering
data stream.

‘[0147] The rendering dafa stteam portion 803 is used
when the processing fequest contents are rendering
instructions. A rendering data stream is generaliy
configured with PDL.

[0148] Fig. 11 is a diagram illustrating processing
performed by a filter on a rendering data stream 803
according to the embodiment.

[0149] A compatibility filter 901 is a Filter class
object of the rendering data stream 803, which
implements processing for solving compatibility
problems in the rendering data stream 803 within the
input data stream, and writes out to the output stream.

As a compatibility problem in the rendering data stream

WO 2007/069757 PCT/JP2006/325139

- 71 -

803, description will be made regarding problems
arising from differences in the interpretation of the
Adobe PostScript specifications, which is a
representative PDL, among vendors of image processing
apparatuses,‘in‘their implementation thereof, and a
solution thereof. |

[0150] ‘For example, the PostScript setpagedevicé in
a given vendor’s image processihg appératus is
interpreted and implementéd as follows. If the value
of the /DeferredMediaSelection parameter in
setpagedevice.is True, a printing paper request is
displéyed on a panel as a‘custom printing paper
treétment. On the other hand, if the wvalue is False,
search for a standard paper size within a range of #5
from the specified size, or follow PostScript Policy if
there is no standard paper size. With , the PostScript
setpagedevice in another vendor’s image processing
apparatué is interpreted and implemented as follows: if
the value of the /DeferredMediaSelection parameter in
‘setpagedevice is True, search for a standard sheet size
that is exactly the specified size (no range) and if
there is no standard printing paper size, treat as
custom printing paper. On the other hand, if the value
is False, search for a standard printing paper size
within a range of 5 from the specified size, or follow
PostScript Policy if there is no standard printing

paper size.

WO 2007/069757 PCT/JP2006/325139

- 72 -

[0151] The embodiment presumes that an
infrastructure environment for a backbone system -
provided by still another vendor has been built,i
assuming the behavior based on the latter of the two
preceding interpretations. In this case, the formet
.image processing appafatus will treat a printing
request as a custom paper job, and thus, “nc printing
paper present” will be displayed on the operating panel,
and the job will not be printed. Accordingly, the
vendor of the fcrmer image processing apparatus needs
to solve this compatibility problem, as inexpensively
and speedily as possible. Such a demand can be handled,
at least provisionally, by converting the
/DeferredMediaSelection parameter in setpagedevice
.appearing in the printing'requést data stream from True
to False. The compatibility filter 901 is a filter
object acting to solve such problems. That is, the
compatibility filter 901.performs pattern matching for
setpagedevice with /DeferredMediaSelection having a
value‘of True,’and in the event of a match, a data
stream wherein the True has been replaced with False is
output.

[0152] Reference numeral 902 denotes PostScript
print data, which is an example of a data stream
inputted into the filter. The partial data that matches
the pattern appears in line 2. Reference numeral 903

denotes an example of the output data stream wherein

WO 2007/069757 PCT/JP2006/325139

- 13 -

the input data stream 902 has been subjected to
processing by the.compatibility filter 901 and
outputted in the form of filtered PostScript priﬁt data.
The text string True in line 2 has been changed to

False in the output data stream 903.

[0153] Fig. 12 is a diagram for describing filtering
processing performed by a filter on a rendering data
stream according to the embodiment. |

[0154] In fhe foregoing.example with reference to
Fig. 11, data stream pattern matching and replacement
techniques are used to solve compatibility problems
based on differences in specifications'between image
processing apparatuses. In the example shown in Fig. 12,
similar technology is used for emergency avoidance of
yimplementation defects, iﬁcluding but not limited to,
bugs in firmware, in an ihage,formation apparatus. For
example,lassume that in a certain version releasé of a
certain image processing apparatus, there is a bug
wherein a rendering error occurs when the image width
specified by a secure image region command VDM

(Virtual Device Metafile) in the LIPS language (LIPS is
a kind of Page Description Language) is not a multiple
of eight.

[0155] Reference numeral 1001 denotes a fault
avoidance filter, which detects a pattern in a LIPS

data stream 1002 which would elicit a fault, and

converts the data stream 1002 into a data stream 1003

WO 2007/069757 PCT/JP2006/325139

- 74 -

whereby the functions thereof would be achieved without
manifesting the fault. For example, the fault avoidance
filter 1001 detects a pattern in tﬁe data stream 1002
which would elicit a fault, i.e., the VDM‘image width
is 225, which is not a multiple of eight, and converts
the VDM image width in the detected pattern into a
multiple of eight, in this éase, 232, which 1is a value
greater than 225.

[0156] Fig. 13 is a diagram for describing filtering
processing pe;formed by an optimization filter on a
réndering daté stream according to the embodiment.
[0157] The optimization filter 1101 represents an
optimization filter class object pertaining to a
rendering data stream. The optimization filter 1101
‘reads out an input stream, detects PDL data described
redundantly which appears'in the data stream,. converts
the detected PDL data into data of the same function
but with‘éreater efficiency, and writés it to the
output stream. The PDL data stream generaﬁed by an
image processing apparatus driver tends to include
redundant patterns, such as repetition, due to
circumstances of the print request system or the
applications. The optimization filter 1101 recognizes
such redundant description patterns as a type of idiom,
and replaces them with equivalent expressions which are
more efficient.

[0158] Reference numefal 1102 illustrates an example

WO 2007/069757 PCT/JP2006/325139

- 75 -

of an input data stream that is inputted into the
optimization filter 1101. A description is made in the
input stream 1102 to repeat filling three squareé in
order to fill a horizontal rectangle, as depicted in No.
1103. Reference numeral 1104 illustrates an examplé of
’.an output data stream from the optimization'filter 1101.
The thimization filter 1101 has detected the redundant
repetition pattern, and has rewritten‘it as én
equivalent fill 1105 of a single horizontal rectangle.
[0159] Fig. 14 is a diagram for describing
processing performed by a function adding filter with
regard to a device control instruction data stream
according to the embodiment.
[0160] Reference numeral 1201 illustrates an example
‘of a function extension filter class object, to be
applied to a device control instruction'data stream 351.
The funqtion extension filter 1201 reads out an input
data stream 1202, performs processing such as data
conversion and adding data to add new functions
according'to the input data stream, and writes to an
output data stream. The following is an example of
function extension under these circumstances. Suppose
that a customer system has a dedicated PDL driver, and
that the PDL driver does not support new capabilities
of a new image processing apparatus, including but not
limited to duplex printing or various types of

finishing. In such an instance, the new function of the

WO 2007/069757 PCT/JP2006/325139

- 76 -

apparatus can be had by providing filter support on the
image processing apparatus, without changing the driver.
[01611 As attributes, the function extension filter
1201 has apparatus control instruction configurations
for achieving new capabilities of the image proceséing
'apparatus whereon the filter is runﬁingﬂ The. filter
object attribute values are saved in the non—volafile
memory of the apparatus as well, and the state of the
objects are saved even in the event that the power of
the apparatus is turned off and restarted. Specifically,
the values aré stipulated by the functions which the
image processing apparatus has.

[0162] The input data stream 1202 is a data stream

of the printing data stream that is inputted into the
‘function extension filter 1201. The data stream 1202 is
a device control instruction data stream 351 that is
derived from a processing request data stream, that has
in turn béen-generated by a conventional application
and divided within the image processing apparatus 1000
lby which it was received. Alternatively, the data
stream 1202 is an device control instruction data
stream 351 that is obtained by a processing request
data stream that is generated by a driver of the image
processing apparatus 1000, and that is divided in turn
within the image processing apparatus.

[0163)]) The output data stream 1203 represents a data

stream of the device control instruction data stream

WO 2007/069757 PCT/JP2006/325139

- 77 -

which the function extension filter 1201 sequentially
processes and outputs. In addition to the simple
processing request data stream in the input data;
various types of print job description data are
inserted, in order to make best use of the new
functions of the image processing apparatus 1000.‘A
print jobvdescription can express nested structures,
énd various attributes, such as the attributes of the
function extension filter 1201, can be specified at
each of the hierarchical levels on a'per job basis, a
per process basis, such as finishing performed on a
plurality of documents, and a per individual document
basis.

[0164] In the output data stream 1203, JobStart in
line 1 represents starting.the job. SetJob in line 2
means the commencement of settings jobs on a per job
basis. Job configuration data in line 3 indicates the
presence of setting data for individual jobs of various
types. BinderStart in line 4 represents starting
bindiﬁg a plurality of documents into one. SetBinder in
line 5 signifies commencing settings on a per bound
document basis. Document bundle setting data in line 6
signifies the presence of setting data on a per bound
document basis. DocumentStart in line 7 is data
representing starting of a document. SetDocument in
line 8 represents starting of settings on a per

document basis. Document setting data in line 9

WO 2007/069757 PCT/JP2006/325139

-8 -

indicates the presence of setting data on a per
document basis here.

[0165] Fig. 15 is a diagram illustrating an egample
of a user interface for operating the function
extension filtéf 1201.

[0166] The user interface for filter operations is
deployed as a Web application (Servlet) by the HTTP
service included in the standard libréry and‘framework
217. The user interface is operated from a Web browser
running on thg client. Alternatively, the user
interface may be implemented as an Applet-type service
so as to be operated from the operating panel 18 of the
image proceésing apparatus 1000.

[0167] Reference numeral 1301 illustrates a basic
‘operation screen of the function extension filter 1201.
The user can make vafious operations using this screen,
such as confirming and changing filter object .
attributes. Reference numeral 1302 denotes a job type
section, which is used for operating the job type
attribute. Reference numeral 1312 denotes a number of
copies section, which is used for operating the number
of copies attribute. Reference numeral 1303 denotes a
page layout section, which is used for operating the
page layout attribute. Reference numeral 1304 denotes a
placement order section, which is used for operating
the placement attribute. Reference numeral 1305 denotes

a printing method section, which is used for operating

WO 2007/069757 PCT/JP2006/325139

- 179 -

the printing method attribute. Reference numeral 1306
denotes a binding side section, which is used for
operating the binding side attribute. Reference numeral
1307 denotes a discharge method section, which is used
for operating the discharge method attribute. Reference
"numeral 1308 denotes a paper feed section, which is
used_for‘operating the paper feed attribute. A help
button 1309 is used for displaying deécriptions
including, but not limited to how to use the filters,
functions thereof, and meanings of the attributes. A
revert to default button 1310 is used in the event of
restoring the configurations to their‘defaults. An
apply button 1311 is used when attribute value changing
operations are to be applied, so that the new values
‘are actually set as the attributes of the filter object.
Reference numeral 1313 denotes a preview icon, which.
displays a model view corresponding to the state of the
values of several important attributes for confirming
the various attributes on the screen.
[0168] The first embodiment, as described, has the
following advantages:
[0169] (1) A print request reception server is
statically implemented as firmware, and an interface is
provided for handing off a data stream received by the
reception server to filtering software, which is
capable of dynamic loading and dynamic linking, and

installed in an embedded Java environment. Acéordingly,

WO 2007/069757 PCT/JP2006/325139

- 80 -

the stable components and the dynamic components can be
clearly separated, facilitating avoiding inefficient
processing, such as replacing the entire device
firmware with dynamic and redundant software, or the
inefficiency of implementing duplicate software in the
‘Javé environment. Thus, a filter framework may be
achieved which is reasonablé in both cost and |
development load terms. Furthermore, the dynamic
addition and substitution of filters for devices
already delivered can be easily achieved, allowing
customer needé to be met more inexpensively and rapidly.
[0170] (2) Filters are implemented in a more refined
Javé énvironment. This allowsa‘sophisticated pattern
matching algorithm, wherein dynamic memory management,
which is difficult with embedded systems, is necessary,
to be achieved with ease. The software also has an
advanced modular design, allowing strong reusability;
facilitafing ease of employment of a design pattern
based on an object-oriented paradigm. Consequently, a
highly productive filter implementation may be achieved.
[0171] (3) Using pattern matching, a filter may be
used to discover PDL data within the input data stream
which would be problematic with regard to compatibility
with another implementation, and the PDL data may be
altered as appropriate. Accordingly, it has been
possible to resolve compatibility problems and faults -

inexpensively. Particulérly, such resolutions may be

WO 2007/069757 PCT/JP2006/325139

- 81 -

achieved with é solution restricted to the image ‘
processing apparatus,; without affecting ghe systems,
the applications, or the image proéessing apparaﬁus
drivers, in the customer environment. Moreover, if a
filter is not ihstalled, it is possible to avoid‘
overhead due to interposition of the filter framework, .
‘and the standard data proceésing performance of tﬁe
‘imagé processing apparatus may be maintained, even if
no filter is insfalled.

[0172] (4) A filter that may be extended in a
flexible fasﬂion in a Java environment may be used to
recoghize a redundant desériptibn pattern as a type of
'idioﬁ, which may in turn be replaced with a more
efficient equivalent expreSsion. Accordingly, it is
‘éossible to improve the printing processing performance
without affecting the principal componenf'of the PDL
processing system at all. Additionally, as optimization'
is perfofmed-with a solution restricted to the image
prbcessing apparatus, there is no need to-revamp the
systems, the applications, or the image processing
apparatus drivers in the customer environment. Strong
filter productivity and ease of maintenance such as
installation allow achievement of optimization that is
suited to each customer’s usage circumstances.

[0173] (5) A filter that may be extended in a
flexible fashion in a Java environment may allow the

use of a new function of the image processing apparatus,

WO 2007/069757 PCT/JP2006/325139

- 82 -

by adding data necessary to take advantage of the new
function. The new function may thus be fully used, even:
when combined with customer systems,’ application;,-br
image processing apparatus drivers that do not support
thé new functioﬁ of the image processing apparatus;

- [0174] (6) A user ihterfa;e for operating the
configurafion of.additional functions has'béen provided
for the filter operatihg'in the firmwéref with the Java
environment‘éerving»as yet another software platform
layer for the firmwéré. Accordingly, function expanéion
corresponding to individual user usage circumstances
can’bé promptly provided. |
' [0175] (7) It is possible td perform optimal
filtering processing for each of: device control
instruction data streams that are constituted of
instruction commands Eelating to device controi; and.
rendering data streams that are consﬁituted of
instructién commands relating to rendering, such as4PDL;
[0176] (8) Interposiﬁg a data stream attribute
.management module 228 when processing a given data
stream allows the module that performs the data stream
processing to determine application of filtering
processing by using information extracted from another
data stream. Specifically, application of filtering
processing to rendering data can be performed in
accordance with job type and PDL type, as described in

the device control instruction data stream, which is

WO 2007/069757 PCT/JP2006/325139

- 83 -

called JL (Job Language).

[0177] Second Embodiment

Fig. 16 is a diagram for describihg a transmission data
stream 1401 according to a second embodiment of the
present invention. The hardware configuration and
software configuration of the second embodiment are the
same as those in Figs. 1 thfough 4 described abové, Yo
description thereof will bé omitted. |

[0178] In response to a processing request from a
client, the image‘proéessing apparatus 1000 transmits
image data and so forth to the destination which the
client has specified. At this time, thé<image
'procéssing apparatus 1000 generates this transmission
data stream 1401, which. is transmitted by the data
'tfansmission/reception module 202. The transmission
data stream 1401 can be genérally divided ‘into a data
stream portion‘1402 describing the job type of the |
transmiséion.data stream, and the image data stream
1403. Described in the.data stream portioﬁ 1402 is
information other tﬁan the image data itself. The
format of the data stream portion 1402 is stipulated by
the functions of the image processing apparatus 1000.
At the time of performing data transmission, the data
stream portion 1402 is added to the image data by the
job control module 205 or the embedded application 203,
and is transmitted from the data transmission/reception

module 202 as a transmission data stream. The image

WO 2007/069757 PCT/JP2006/325139

- 84 -

‘data stream 1403 is generated by the scan image data
stream 360 (Fig. 3) input from the image feading unit 19
being‘processed,at the image procéssing module 2b9.
Note that filtering processing can be performed
regarding the tfansmission data stream 1401, data
stream portion 1402, and image data stream 1403, the
same as described above. | |
[017§] According to the second embddimént described
above, optimél filtering processing can be performed
for each of.the'scan'image data stream 360, image data
stream, and transmission data stream 359, present
within the image proceésihg apparatus.
'[0186] Other Embodimenté

Data streams other than those described above which
"exist within the image processing apparatus inélude the -
display list 355 generated due to PDL processing, the
final image data stréam 357 finally‘generated in thé
image pfdcessing apparatus, the iﬁtermediate image data
stream 356 generated for generating the final image
data stream 357, ahd so forth. Each of the data streaﬁs
has the format thereof stipulated by the functions of
the image processing apparatus. Due to the
configuration being the same as the above-described
configuration, optimal filtering processing can be
performed for each of the data streams.

[0181] Also, a configuration may be made of the

filters so as to handle text data strings to be printed,

WO 2007/069757 PCT/JP2006/325139

- 85 -

instead of control data within the printing data stream.
For example, an arrangement may be made with‘function
extending filters wherein occurrehpes of particuiar
text string patterns are detected in a text data srring
to be printed, and in the event that these match
particular text string patterns, coﬁtrol data
equivalent to the text striﬁg is generated and
substituted or inserted. For example,‘an'arrangement
may be made wheréin a customer performs‘input as text
using an application Such as a word processor, and
particular text strings are converted into vector
rendering commands at the time of printing via a\normél
'driQer of the image processing apparatus. In this case,
a configuration can be made for the filter at the imagé
'processing device side to convert particular text
strings for example, into command strings such as’
vector rendering commands in order to render
correspoﬁding images (logos,'marks, watermarks, etc.).
[0182] While a Java virtual machine environment has
been used as the interpreter environment within the
firmware in the above-described embodiments, the
present invention is not restricted to this. The same
advantages, such as addition of dynamic filters and
separation of the firmware portion can be obtained even
in cases of assembling an interpreter environment of
another script language or the like into the firmware.

[0183] Also, many other interpreter environments

WO 2007/069757 PCT/JP2006/325139

- 86 -

enabling highly efficient development, such as object-
oriented interpreter environments, exist,’and the same
advantages, such as filter productivity can be ogtained
using these as well. Particularly, with regard to data
stream processihg based on pattern matching, optiohs
such as sed, AWK, Perl, and so forth, are also suitable.
[0184] While embodiments éf the present inventién
have been described above, the present invention may be
applied to a‘sysfem configured of multiple devices, or
may be applied to a'dévice formed by.a<single unit.
[0185] The present invention inclﬁdes a case wherein
a software program is directly, or remdtely supplied to
a sysfem or ‘device, with the functions of the above-
described embodiment being realized by the system or
device reading out and exetuting the~program code
supplied thereto. In this cése, the supplied program
does not have to'assﬁme the‘from of a program, as'loﬁg
as posseééing the functionality‘of‘a program.
Accordingly, in order to achieve the funcfidn
processing of the pfesent invention with a computer,
the program code to be installed in the computer itself
also realizes the present invention. That is to say, a
computer program for realizing the function processing
of the present invention is itself also included in the
present invention. In this case, the program may be in
any form, such as object code, a program executed by an

interpreter, script data supplied to an operating

WO 2007/069757 PCT/JP2006/325139

- 87 -

system, or the like, as long as the program has the
functions of a program.

[0186{ Examples of storage media for supplyiné the
program include the following: floppy disks, hard disks,
optical disks, magnetofoptical (MO) disks, CD-ROM, CD-R,
'CD-RW, magnetic tape, non-volatile memory cards, ROM,
DVD (DVD-ROM, DVD—R),:and so forth. Further, examples
of methods for supplying. the program include accessing
a homepage on thé Internet using a browser from a
client.computer; and downloading the‘computer program
according to fhe present invention itself, or a file
thereof which has been compressed and has automatic
'insﬁéllation functions, frdm the homepage to a
recording medium such as a hard disk or the like. Also,
‘tﬁis'may be realized by dividihg'the program code
making up the program accoraing to the present
invention into multiéle files, and downloading the
files from different homepages. That is to say, a WWW
sefver, enabling multiple users to downloéd the program’
file for realizing’the function processing of the
present invention on a computer, is itself included in
the present invention.

[0187] Also, the program according to the present
invention may be encrypted and stored in a recording
medium such as a CD-ROM for distribution, with users
who have cleared certain conditions being enabled to

download key information for decryption from a homepage

WO 2007/069757 PCT/JP2006/325139

- 88 -

on the Internet, execute the encrypted program using
the key information, and install the program on a-
computer. y

[0188] Alsd, besides the functions of the above
embodiment beiné realized by executing the program»that
 has been read out, the functions of the above
embodiment may be realized in cooperation with the
operating system or the like fuﬁning 6n the_computef
based on insﬁructions of the program. In this case, the
operating sySteh or:tﬁe like performs part or all of
the actual pfocessing,'and the functions of the above
embodiment are realized by.the,processing théreof.
1[0189] Further, the programvread out from the
recording medium may be written tb memory of a function
'expansion board inserted to the computer or a function
expansion unit conneqfed to the computer,'whereby part
or all of the functions of the above émbodimént is
realized.,In'this case, following the program being
written to the functioﬁJexpansion.board or the function
expanéion unit, a CPU br the like prbvided to the
function expansion board or the function expansion unit
performs part or all of the actual processing, based on
instructions of the program.

[0190] While the present invention has been
described with reference to exemplary embodiments, it
is to be understood that the invention is not limited

to the disclosed exemplary embodiments. The scope of

WO 2007/069757 PCT/JP2006/325139
- 89 - '

the following claims is to be accorded the broadest
interpretation so as to encompass all modifications,
equivalent structures and functiohé.f

[0191] This application claims the benefit of
Japanese Application No. 2005-360836 filed December 14,
2005, which is hereby incorporated by reference herein |

in its entirety.

WO 2007/069757 PCT/JP2006/325139
- 90 -

CLAIMS
1. An information processing‘abparatus having, in -
a native environment configured based on a firSt
‘command group'pfocessed by a processor which
constitutes hardware, an interpreter environment for
 dynamically executing a program configured based on a
second command gfoup defined independently from said
first command group, said apparétus cémprising:
data stream receptioh means for receiving an
input data st:eém‘iﬁciuding a proceséing request from a
client in saia native environment;
data processing means dividing said input data
‘stream into a plurality of stages and generating an
intermediate ‘data stream at each stage in said native
‘environment;
filter means foﬁ generating a filtered data
stream by filtering an intermediate data stream
generated by said data processing means in said
interpreter environmenﬁ;
interface means for extracting and writing back,
from and to said filter means, an intermediate data
stream generated by said data processing means, in said
native environment;
filter management means for handing off an
intermediate data stream generated by said data
processing means to said filter means via said

interface means, and taking out the filtered data

WO 2007/069757 PCT/JP2006/325139

- 91 -

stream via said interface means, in said native
environment; and

control means for controlling execution of
handing over an intermediate data stream by said filter
management means to said filter means based on tﬁe
contents of information of an item épecified\beforehand
contained in said input daté stream, in said native

environment.

2. Thelinformation processing apparatus according
to Claim 1, fﬁrther comprising transmission means for
transmitting an intermediate data stream processed by
'said filter"means to an information processing

apparatus.

3. Thé information processing apparatus éccording

to Claim 1, further ébmprising: |
: sefting means for setting, of items contained in

an input data stream, én item to be used és said item
specified‘beforehaﬁd for determining whether or not to
hand off intermediate data to said filter means, and
setting conditions for deciding whether or not to hand
off the intermediate data to said filter means based on
said items;

wherein said control means controls execution of
handing over of said intermediate data stream to said

filter means by said filter management means, based on

WO 2007/069757 PCT/JP2006/325139

- 92 -

information of said item specified beforehand contained
in said input data stream, and determining conditions

set by said setting means.

4. The'information processing apparatus according
to Claim 1, wherein said input data stream is divided
into a plurality‘of intermediate streams inéluding a
first intermediate stream and a second ihte;médiate
stream by said data processing means;

and wherein said control means;extract
information of said item specified beforehand from said
first intermediate stream,‘and;controls execution of
handing off said second intermediate stream to said
filer means by said filter management means, based on

the contents of said information.

5. The information processing apparatus according
to Claim 1, wherein said client is an information
processing apparatus connected via a network, or is

built into said information processing apparatus.

6. The information processing apparatus according
to Claim 1, wherein said intermediate data stream
generated by said data processing means includes a
device control instruction data stream for giving
device control instructions to said information

processing apparatus, a'rendering data stream for

WO 2007/069757 PCT/JP2006/325139

- 93 -

giving rendering instructions to said information
processing apparatus, an intermediate image data stream .
generated by processing said device control instfuction
data stream and said rendering data stream, and a final
image data stream generated by processing said

intermediate image data stream.

7. The information processing apparatus according
to Claim 1, wherein said filtering processing by said
filter means includes processing for adding a new data

stream to an intermediate data stream.

8. The information processing apparatus according
to Claim 1, wherein said filtering processing by said
filter means includes processing for substituting a
particular data stream of an intermediate data‘stream

with another data stream.

9. The information- processing apparatus according
to Claim 1, further comprising means for operating
processing parameters at said filter means, using a

user interface in said interpreter environment.

10. The information processing apparatus:
according to Claim 1, wherein said interpreter
environment provides a thread mechanism for programs

running on said interpreter environment, and wherein

WO 2007/069757 PCT/JP2006/325139
- 94 -

said filter means autonomously execute filtering
processing under independent execution contexts with

said thread mechanism.
/ .

11. The information processing apparatus
according to Claim 1, wherein said interpreter

environment is based on a Java platform.

12. The information processing apparatus
according to Claim 1,4wherein said filter management
means place a'filer function selected from one or a
pluraiity of filter functions possessed by said filter
'meauslin an'intermediate data stream path formed

through said interface means.

13. The information processing apparatus
according to Claim 12; further comprising filter |
piacementioperating meaus for providing a user
interface for instructing placement of fiiter functions
selected from a plurality of filter functions managed

by said filter management means.

14. The information processing apparatus
according to Claim 12, wherein, in the event that no
filter function is placed in said intermediate data
stream path, said filter management means does not hand

off said intermediate data stream to said filter means.

WO 2007/069757 PCT/JP2006/325139
- 95 -

15. The information processing apparatus
according to Claim 12, further comcrising filter
introduction means for externally introducing a program
file for realizing said filter functions into said

gapparatus and placing under the manégement of said

filter management means.

l6. A control method of an information processing
apparatus having, in a native environment configured
based on a first command group processed by a processor
which constitutes hardwere, an,interpreter environment
for gynamically executing a prcgram configured based on
a second command group defined independently from said
‘first command group, said method comprising:

a data stream recepticn.step of receiving an
input data stream inciuding‘a processing request from a
client in‘saig native environment;

a data processing'step of dividing eaid input
‘data stream into a plurality of stages and generating
an intermediate data stream at each stage interpreted
in said native environment;

a filter step of generating a filtered data
stream by filtering an intermediate data stream
generated in said data processing step in said
interpreter environment;

an interface stepvof extracting and writing back,

WO 2007/069757 PCT/JP2006/325139

- 96 -

from and to said filter step, an intermediate data
stream generated in said data processing step, in said
native environment;
a filter management step of handing off an
intermediate data stream generated in said data
.‘processing step to said filter step vialsaid-interface
step, and taking out the filtered data stream via said
interface step, in said native envirohment; and
a control step of centrolling execution of
handing off an intefmediate data stream by said filter
management sﬁep to said filter step based on the
contents of information of an item specified beforehand
‘contained in said input data stream, in said native

environment. -

17. A computer—executable program, Stored in a
computer readable medium, for implementing a control
method of'an'information‘processing apparatus having,
in a native environment "configured based en a first
command group processed by a processor which
constitutes hardware, an interpreter environment for
dynamically executing a program configured based on a
second command group defined independently from said
first command group, said program comprising:

a data stream reception step of receiving an
input data stream including a processing request from a

client in said native environment;

WO 2007/069757 PCT/JP2006/325139

- 97 -

a data processing step of dividing said input
data stream into a plurality of stages and generating
an intermediate data stream at each stage interpfeted
in said native environment;

a filter step of generating a filtered data

 stream by filtering an intermediate data stream
generated in said data processing step in said
interpreter environment;

an interface step of‘extracting and writing back,
from and to Said filtér step, an intérmediate data
stream generafed in said data processing step, in said
nativé environment; | |

a filter management sﬁep'of handing off an
intermediate data stream génerated in said data
processing step to said filter step via said interface
step, and taking out the filtered data sfream yia said
interface step, in said native environment; and

a édntrol step of controlling execution of
handing off an intermediate data stream by said filtep
management step to said filter step based on the
contents of information of an item specified beforehand
contained in said input data stream, in said native

environment.

WO 2007/069757 PCT/JP2006/325139

1/18
1000
\—\ .
IMAGE PROCESSING APPARATUS |
1600
» ~
IMAGE PROCESSING ‘
APPARATUS CONTROLLER . | | 2000
| LAN S
1 5 A
~ | ~
CPU || |=—=| LANC
) 6
~ ~
RAM | |~ D
3 12 16
o ~ ‘
CRASH ool ol master Ll | maARKiNG
MEMORY CONTROLLER ENGINE
18
/\/
9 . _| opERATING
~ ~ | PANEL
ROM | 15 10
~ ~
. | | EXTERNAL
=~ DKC =—T7"| MEmORY
19
/\/
IMAGE
- ~| READING
UNIT

PCT/JP2006/325139

WO 2007/069757

2/18

ENE
e _ | 30V4H3INI
122 922 Gee bz~ | TYNYILX3
~ . ~
SETTRENZ HIAEA EEN MOVLS
DNILYH3dO I HIYIANIY £22-11000104d
SOLH . — b 12
Olz__ 60c_ 802_ Z02_ 902
TINGON TINGOW _|[31NGON
INFWIDYNYI| | DNISSIO0H || TOHLNGD | |HIHIANIH | | HOLYISNYHL
v1va " 3oV N
e —
siz | |aovgmam b TNGON TOIINODEOT |
o AV
™ TYNHILNI
Y3L3HdU3LN T | GON 1d¥ TOHLNOD oz
~ L €le— | INFWIOYNY _
Tl A
L2 812 612 1 | | WY3E .
2 < | |50vauan | NOILYOMddY 30038N3 1y o
1 | | HIAY] _
MHOMIWVHL || AHvHa | TYNH31X3 37NAOW NOILd3034
aONY AHVHEM| | TOHINOD .éw\w\,m.___,_“_,\m“_ N /NOISSINSNYHL V.Lva N 202
QHVONYLS || gor]] . :
ﬂ , (o
: . ¢lc 8¢¢ 102
SNOILYOI1ddV H3HL0 L —122 .
aNv SNOULYOMddv a3m| | B [T ¢ Ol

WO 2007/069757

3/18

PCT/JP2006/325139

201
e FIG. 3 |
DATA | [Processing requesT | 320
TRANSMISSION/ DATA STREAI
RECEPTION | »
MODULE | DEVICE |- 351 358
\é\oé | INgONTgOBN |
TRUCTI
| DATA STREAM i
301 ~ _—
203 RENDERING | 522
r~ . DATA
EMBEDDED STREAM
APPLICATION]
DEVICE
: CONTI(R;OL RENDERING TRANSMISSION
313 | DATA DATA STREAM
INSTRUCTION STREAM
DATA STREAM
| JoBcoNTROL [.
) MODULE =0 355 356 360
DISPLAY "‘f&%@é%%}f SCAN IMAGE
~317 LsT - STREAM DATA STREAM
NS FINAL IMAGE |~ 357
: | DATASTREAM
> TRANSLATOR N
1206
~390 ~ -
- RENDERER |~ 207
IMAGE | -209
- PROCESSING
MODULE
ME 208
L CONTROL
MODULE

WO 2007/069757

4/18

PCT/JP2006/325139

201)
N
DATA 202 211
TRANSMISSION/ [- e =
RECEPTION ' |306 | NTERFACE
MODULE 370 ,
| “Q 212
301 .
203 312 EXTER-| 228
= NAL | §
EMBEDDED :_I\?TYEEF?
APPLICATION | :
" Q 3l FACE 230
) 307
- | STDSEQM - 219 308 221
316 ATTRIB- } S
315 VIE
MANAGE-| [—|| FILTER FILTER
JOB CONTROL MENT |51 || FRAMEWORK
"1 MODULE | MODULE
318 Cf
‘ } INTER- || |
NAL 372 309
317 ﬁ , H LAYER
S INTER-
(FACE | 310
320 319 213
~| TRANSLATOR |-206 |
—390 < & |
= RENDERER | 207
IMAGE
~| PROCESSING |~ 209
MODULE
ME
= CONTROL | 208
MODULE

PCT/JP2006/325139

WO 2007/069757
5/18
401 '
1 ¢ ' <NTERFACE> | 411
Runnable .
.’I FILTER MANAGER | |)
(FilterManager) |y ENABLED | run
installedFilters (OFFI;LDT&?ESD) ?
\410 * <ABSTRACT> 402
. > FILTER 1
1<> name
L , 1
INPUT y 1 : OUTPUT y 1
: 404
<ABSTRACT> 403 <ABSTRACT> |
InputStream : OutputStream
=
read <P write

A | . ‘ .
| 415 | . 414
| (9

PipedinputStream 1 PipedOutputStream

412 413 1
C {
Connectorinput ConnectorOutput
Stream Stream
1 405 1
K
CONNECTOR o PIPE L 406

i) 3

CONNECTOR PIPES (ORDERED)

WO 2007/069757

6/18

FlG.

6A

PCT/JP2006/325139

—

InpdtStream

l 501
o

:Connector

L

:ConnectorinputStream

J

g INPUT

FILTER

? OUTPUT

:ConnectorOutputStream

S

€

FIG.

6B

l

501
r~

:Connector

1

504
\.,\
‘Pipe

:ConnectorinputStream Q
g INPUT B
FILTER 1 —— 503
? OUTPUT ' 4
~
:PipedOutputStream
"
‘PipedinputStream
g INPUT
~"
FILTER 2 —~— 505
—
? ouTPUT
~_"

:ConnectorQutputStream

WO 2007/069757

PCT/JP2006/325139
718
601 | 603 604
~ 602 / .
FILTER INSTALLATION -
FILE: | | "] (BROWSE) ((INSTALL)

.. FIG. 7B

P 606
FILTER PLACEMENT ‘ \
SELECT | ORDER | - NAME
O 1 NORMALIZE
N 2 COMPATIBILITY PATCH ,
O [INVALID Y RECTANGULAR REPEAT OPTIMIZATION 77777

620 —~—{(__APPLICATION CONDITIONS)

- PROCESSING FOR SELECTED FILTER:-
DISPLAY

DETAILS C up) (DOWN) (VALID/ANVALID) ((UNINSTALL)
7/ . 7 4 7 7 T
607 608 609 610 611 621
612 613 614 615
§ /7 /
SELECT DATA STREAM
DATA STREAM
PROCESSING REQUEST DATA STREAM
DEVICE CONTROL INSTRUCTION DATA STREAM /
RENDERING DATA STREAM K4
FINAL IMAGE DATA STREAM
TRANSMISSION DATA STREAM

WO 2007/069757 PCT/JP2006/325139

8/18
(_ FILTERPROCESSING)
5 St
PRE-PROCESSING
- I3 S2
READ DATA FROM INPUT STREAM

!

" PATTERN MATCHING' PROCESSING

583

LSE
MATCHES PATTERN? FALS

~ SUBSTITUTE MATCHING
DATA WITH SUBSTITUTE DATA

l«

WRITE PROCESSED DATA S S6
TO OUTPUT STREAM

END OF INPUT STREAM?

WO 2007/069757

9/18

FIG. 9

(_ FILTERPROCESSING)

PRE-PROCESSING

l

PCT/JP2006/325139

5811

GENERATE NEW PARTIAL DATA STREAM

5812'

l

READ OUT DATA FROM INPUT STREAM

5813

l

ADD PARTIAL DATA STREAM
TO DATA READ OUT

3814

]

WRITE PROCESSED DATA
TO OUTPUT STREAM

5815

l

WRITE REMAINING DATA IN INPUT
STREAM TO OUTPUT STREAM

5816

END

WO 2007/069757 PCT/JP2006/325139

10/18

FIG. 10

801

* PROCESSING REQUEST DATA STREAM ,

-—h

JOB TYPE

NUMBER OF COPIES
PAGE LAYOUT
PLACEMENT ORDER
PRINTING METHOD
BINDING SIDE
DISCHARGE METHOD
PAPER FEED

PDL USED

T~ 802

© O ~N O O AW N

—
o

-—
—

RENDERING COMMAND
' — ~{ —803

— ek —
S W N

PCT/JP2006/325139

WO 2007/069757

11/18

£06 ™

. abedmoys

‘moys (Jgy) o1dAoW 00¥ 05

" JUOJ}8|8S 2 UBWIOY-SaWI|/

yredmau axyouis Aeibyas g yyeddio

ao1napabedias<<[zyg 565]azISabed/as|e} uoios|aSRIPaNPaLIf)B(Q/>>
. 0'€-990PY-Sd i %

106 1 H3L714 ALMGILYdNOD .

206 ™

abedmoys

moys (Dgy) olsAow Q0¥ 0

JUO[108|3S $Z UBWOY-SaW!]/

yredmau ayous Aeibyes g yieddio

9oInspabedias<<(zyg 566]azISabed/ani) uoosjageIpaypaliaaq/>>
0°€-240pY-Sd i %

~ N D T W W

- QNN T W0 O

L D14

PCT/JP2006/325139

WO 2007/069757

12/18

€001

Am.: {o} {1} A: {0} {0} {1} {zee} {9t} {00051} {00051} {066} {0EL} d {

ik

1001~ Y3174 3ONVAIOAY 11NV

{

12001

{s1} 3:_:.: {0} {0} {1} {szz} {9c1} {000S +} a.oom 1} {066} {0€1} d {

gk D14

WO 2007/069757 PCT/JP2006/325139

13/18
FIG. 13
1102
/\/
1| 1280 0} s} - SPECIFY FILL PATTERN
2|} : {50} {80} {100} {130} {rs) {) .- RECTANGULAR RENDERING
3|1{-24) (0} (0} {rs} { } - SPECIFY FILL PATTERN
4|} : (80} {110} {100) (130} {rs) { } - -+ RECTANGULAR RENDERING
5| 1{-24) {0} 0} {rs} {) -+ SPECIFY FILL PATTERN
6] }: (110} {140} {100} {130} {rs}{ } -~ RECTANGULAR RENDERING
5 80 110 140
100 ‘
| — 1103
130
OPTIMZATIONFILTER |~ 1101
- {} 1104
-' _ r
1] 124} (0} O} (rs} { } -+ SPECIFY FILL PATTERN
2| }: (50} (140} {100} {130} {rs}{) -+ RECTANGULAR RENDERING
50 80 110 140
| |
100 1105
130

WO 2007/069757

14/18

FIG. 14

PCT/JP2006/325139

© 00 N O O & W N =

1202

DEVICE CONTROL INSTRUCTION DATA STREAM

FUNCTION EXTENSION FILTER

- ~—1201

JOB TYPE

NUMBER OF COPIES
PAGE LAYOUT
PLACEMENT ORDER
PRINTING METHOD
BINDING SIDE
DISCHARGE METHOD -

SHEET SUPPLY

1203

JobStart

SetJob

JOB SETTING DATA

BinderStart

SetBinder

DOCUMENT BUNDLE SETTING DATA
DocumentStart

SetDocument

DOCUMENT SETTING DATA

LLEL | . oLelL - ~ B0EL
)) , :)

((o (

PCT/JP2006/325139

15/18

ST) (Lnvd3coLlyanzy) (0 d13H)
23L13SSYD O 13LISSYD O AVHL QI VANV O JILYWOLNY @ :0334 43dvd |+ 80€EL
ONIdYISO (3L40S ® | QIHI03ISNN O :QOHLIN IDHVHOSIO |~ 20E L
| B | -) (1437) 3QIS HNO1 | - 30IS ONIONIS J— 90€
ONILNIHJ BNIGNIE O DNLLNIHA X31dNa @ ONLINIHd J0ISTIONIS O :QOHL3W ONIINIHd |~ gpe

g S

M w X }w - 1HOIY OL 1437 H3ddN WOy ‘43050 INIW3OYd {— v0C L
¢ :

F .

WO 2007/069757

[a) 133HS/STOVd ¥ | :INOAV13DVd |~ €0€l
) I | ‘531400 40 438WNN {— 2 L€}
wn_ =55 ONIINIHd 3HNJ3S @ ONIINIEd @ 13dALEOM L~ 20og!L
o SONILLIS 90r ONILNIHd
4 .
|
J)
eLe

S S 'O 14

WO 2007/069757 PCT/JP2006/325139

16/18
1401
 TRANSMISSION DATA STREAM
1| | JoBTYPE
2 | | JoBSETTING INFORMATION |
» _ T ~—1__-1402
3
4
5
6
7
8
9
10
11 IMAGE DATA
N | L — 1403
13
14

WO 2007/069757 PCT/JP2006/325139

17/18

FIG. 17

START

INPUT DATA STREAM FOR WHICH
PROCESSING IS REQUESTED

!

ANALYZE DATA STREAM TO OBTAIN
JOB TYPE AND PDL TYPE

3

SELECT FILTERS TO CHECK

5821

5 S22

5 S23

S24

DO JOB
TYPE AND PDL TYPE
MATCH?

YES

SET SO AS TO APPLY

525
FILTER PROCESSING ‘

Y
S26 5| SETSOAS TONOT APPLY
FILTER PROCESSING

L -

ALL
REGISTERED FILTERS
CHECKED?

PCT/JP2006/325139

WO 2007/069757

18/18

€051

A0

A

3dA1 80r

——+ 2051

A

3dA110d

-—————— L0G 1

SNOILIGNOD NOILYOIddY 43174

WV3HLS V1VQ ONIH3AN3Y “WY3HLS V1vd

8L OI4

INTERNATIONALSEARCHREPORT

International application No.

PCT/JP2006/325139

A

CLASSIFICATION OF SUBJECT MATTER

Int.Cl. GO6F9/45(2006.01)1i, B41J29/38(2006.01)1i, GO6F3/12(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. GO6F9/45, B41J29/38, GO6F3/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Published examined utility model applications of Japan 1922-1996
Published unexamined utility model applications of Japan 1971-2007
Registered utility model specifications of Japan 1996-2007
Published registered utility model applications of Japan 1994-2007

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

JP 6-110627 A(NISSHINDENKI KABUSHIKI KATISHA) 1-17
1994.04.22, See the 2nd sentence of section
[0016]. (Family None)

>

Further documents are listed in the continuation of Box C. {" Seepatent family annex.

®

Special categories of cited documents: «T» later , document published after the international filing date or

“A” document defining the general state of the art which is not priority date and not in conflict with the application but cited to
considered to be of particular relevance understand the principle or theory underlying the invention
“E” earlier application or patent but published on or after the inter- .,
- - X” document of particular relevance; the claimed invention cannot
national filing date : : :
o . L . . be considered novel or cannot be considered to involve an
L” document which may throw doubts on priority claim(s) or which inventive step when the document is taken alone
is cited to establish the publication date of another citation or other P
special reason (as specified) “Y” document of particular relevance; the claimed invention cannot
“0” document referring to an oral disclosure, use, exhibition or other be COI}SldEWd_ to involve an inventive step when the document is
means combined with one or more other such documents, such
“P” document published prior to the international filing date but later combination being obvious to a person skilled in the art
than the priority date claimed “&” document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
30.01.2007 06.02.2007
Name and mailing address of the ISA/JP Authorized officer 5891809
Japan Patent Office Kubo Mitsuhiro
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan | Telephone No. +81-3-3581-1101 Ext. 3545

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONALSEARCHREPORT

International application No.

PCT/JP2006/325139

C (Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y WO 2005/093560
2005.10.0¢6,

See from page
page 26,
from page 30,
page 33,
page 34,
from page 35,
line 11.
line 14-19.
line 22.
line 22-25.
line 20. Fig.3,

24,
line 24.
7-12.
13-21.

line
line

prage3b,
page 37,
page 55,
page 57,
page 63,

& JP 2005-284384 A

Al (CANON KABUSHIKI

line 21 to page 25,
page 27,
line 15 to page 31,
page 34,

line 22 to page 36,
page 36,
page 54,
page 56,
page6l,

KAISHA)

line 27.
line 10.

line 9.
line 3-9.

line 2.

line 3-15.

line 19.

line 18-19.

line 26.

Fig.6A, Fig.6B, Fig.12

1-17

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - wo-search-report
	Page 119 - wo-search-report

