(86) Date de dépôt PCT/PCT Filing Date: 2005/10/12
(87) Date publication PCT/PCT Publication Date: 2006/04/20
(85) Entrée phase nationale/National Entry: 2007/04/12
(86) N° demande PCT/PCT Application No.: US 2005/038702
(87) N° publication PCT/PCT Publication No.: 2006/042278
(30) Priorités/Priorities: 2004/10/12 (US60/617,911); 2005/03/23 (US60/664,835); 2005/03/23 (US60/664,919); 2005/06/23 (US60/693,463)

(51) Cl.Int./Int.Cl. A61K 31/513 (2006.01), A61K 31/42 (2006.01), A61K 31/421 (2006.01), A61K 31/426 (2006.01), A61K 31/44 (2006.01)
(71) Demandeur/Applicant: FORBES MEDI-TECH (RESEARCH) INC., US
(72) Inventeur/Inventor: NESTOR, JOHN, US
(74) Agent: BEN-OLIEL, SUSAN M. M.

(54) Titre: COMPOSES ET METHODES DE TRAITEMENT DE LA RESISTANCE INSULINIQUE ET DE LA MYOCARDIOPATHIE
(54) Title: COMPOUNDS AND METHODS OF TREATING INSULIN RESISTANCE AND CARDIOMYOPATHY

(57) Abrégé/Abstract:
Novel compounds, compositions comprising compounds, and methods for methods for preparing and using compounds are described herein. Methods of treating or ameliorating various conditions, including insulin resistance, pancreatic beta cell apoptosis, obesity, prothrombotic conditions, myocardial infarction, hypertension, dyslipidemia, manifestations of Syndrome X, congestive heart failure, inflammatory disease of the cardiovascular system, atherosclerosis, sepsis, type 1 diabetes, liver damage, and cachexia, by administering compounds described herein. Compounds presented herein may be used to modulate serine palmitoyl transferase activity.
(54) Title: COMPOUNDS AND METHODS OF TREATING INSULIN RESISTANCE AND CARDIOMYOPATHY

(57) Abstract: Novel compounds, compositions comprising compounds, and methods for methods for preparing and using compounds are described herein. Methods of treating or ameliorating various conditions, including insulin resistance, pancreatic beta cell apoptosis, obesity, prothrombotic conditions, myocardial infarction, hypertension, dyslipidemia, manifestations of Syndrome X, congestive heart failure, inflammatory disease of the cardiovascular system, atherosclerosis, sepsis, type 1 diabetes, liver damage, and cachexia, by administering compounds described herein. Compounds presented herein may be used to modulate serine palmitoyl transferase activity.
Compounds and Methods of Treating Insulin Resistance and Cardiomyopathy

BACKGROUND

[0001] All publications mentioned herein are cited for the purpose of familiarizing the reader with the background of the invention. Nothing herein is to be construed as an admission that these references are prior art in relation to the inventions described herein.

[0002] Although Type 2 Diabetes (i.e., T2D, diabetes mellitus, non-insulin dependent diabetes mellitus, adult onset diabetes) is frequently thought of as a disease caused by high blood sugar, modern thinking has regarded blood glucose levels as mainly a symptom of an underlying disease related to dysregulated fat metabolism. Thus high fatty acid levels lead to a range of lipotoxicities: insulin resistance, pancreatic beta cell apoptosis, and a disorder termed “metabolic syndrome.” Insulin resistance can be detected by the following indications: as an increased level of blood insulin, increased blood levels of glucose in response to oral glucose tolerance test (OGTT), decreased levels of phosphorylated protein kinase B (AKT) in response to insulin administration, and the like. Insulin resistance may be caused by decreased sensitivity of the insulin receptor-related signaling system in cells and/or by loss of beta cells in the pancreas through apoptosis. There is also evidence that insulin resistance can be characterized as having an underlying inflammatory component.

[0003] Sedentary lifestyle and obesity have contributed to the increased occurrence of T2D. Therapeutic intervention has been aimed at people with impaired glucose tolerance (IGT). IGT is defined as hyperglycaemia (with glucose values intermediate between normal and diabetes) following a glucose load, and affects at least 200 million people worldwide. People afflicted with IGT possess a higher future risk than the general population for developing diabetes. Approximately 40% of people with IGT progress to diabetes in 5–10 years, but some revert to normal or remain IGT.

[0004] Moreover, people with IGT also have a heightened risk of developing cardiovascular disease, such as hypertension, dyslipidaemia and central obesity. Thus, the diagnosis of IGT, particularly in apparently healthy and ambulatory individuals, has important prognostic implications. For a more detailed review, see Zimmet P, et al., Nature, 414:783-7 (2001), the disclosure of which is incorporated herein by reference.
[0005] Recently, impaired fasting glucose (IFG) was introduced as another category of abnormal glucose metabolism. IGF is defined on the basis of fasting glucose concentration and, like IGT, it is also associated with risk of cardiovascular disease and future diabetes.

[0006] T2D may be caused by a variety of factors. Additionally, the disease also manifests heterogeneous symptoms. Previously, T2D was regarded as a relatively distinct disease entity, but current understanding has revealed that T2D (and its associated hyperglycaemia or dysglycaemia) is often a manifestation of a much broader underlying disorder, which includes the metabolic syndrome. This syndrome is sometimes referred to as Syndrome X, and is a cluster of cardiovascular disease risk factors that, in addition to glucose intolerance, includes hyperinsulinaemia, dyslipidaemia, hypertension, visceral obesity, hypercoagulability, and microalbuminuria.

[0007] Recent understanding of the factors leading to T2D has influenced contemporary therapy for the disease. More aggressive approaches to treating hyperglycaemia as well as other risk factors such as hypertension, dyslipidaemia and central obesity in type 2 diabetics have been pursued. In addition, more simplistic and comprehensive screening of at-risk individuals has been advocated by health organizations, such as the American Diabetes Association.

[0008] Ceramide has been reported as showing activity in some of the factors relating to T2D, such as insulin resistance and beta cell apoptosis. For example, Schmitz-Pfiffer et al. report that feeding cells with palmitic acid or ceramide leads to insulin resistance (Schmitz-Pfiffer C., et al., J. Biol. Chem., 274: 24202-10 (1999)). Increased levels of palmitic acid in cells leads directly to increased levels of ceramide through an increase in levels of Palmitoyl-CoA which feeds into the de novo ceramide synthesis pathway. Studies suggest that de novo ceramide synthesis of ceramide is an important factor, since inhibition of ceramide synthase with fuminosin blocks beta cell apoptosis (Shimabukuro M., et al., Proc. Natl. Acad. Sci. USA, 95: 2498-2502 (1998)). Similarly, it has been recognized that the enzyme involved in the rate limiting step for the de novo pathway for ceramide synthase, serine palmitoyl transferase (SPT), may be a viable target for blockade of beta cell apoptosis. For example, Shimabukuro et al. report that inhibition of SPT with cycloserine has a partial beta cell protective effect (=50% activity) in the diabetic Zucker fatty rat model (Shimabukuro, et al., J. Biol. Chem., 273: 32487-90 (1998), the disclosure of which is incorporated herein by reference).
[0009] A well known proinflammatory signal, Tumor Necrosis Factor alpha (TNF), has been shown to raise ceramide levels in cells in culture (Sawada, M, et al., Cell Death Differ., 11:997-1008 (2004); Meyer, SG, et al., Biochim Biophys Acta. 1643(1-3):1-4(2003)). TNF administration reduces PPAR-gamma levels in adipocytes and this has been shown to implicate ceramide (Kajita, K, et al. Diabetes. Res. Clin. Pract., 66 Suppl 1:S79-83 (2004)). TNF also induces apoptosis in liver cells and has been implicated in injury due to viral hepatitis, alcoholism, ischemia, and fulminant hepatic failure (Ding, WX and Yin, XM, J. Cell. Mol. Med. 8:445-54 (2004); Kanzler S., et al. Semin Cancer Biol. 10(3):173-84 (2000)). Similarly, TNF and IL-6 are implicated in cachexia, another syndrome with strong evidence of an inflammatory component, implicating ceramide as an effector. It is known that atherosclerosis has an inflammatory component. Induction of oxidative stress by amyloid involves induction of a cascade that increases ceramide levels in neuronal cells (Ayasolla K., et al., Free Radic. Biol. Med., 37(3):325-38(2004)). Thus altered ceramide levels may be causative in dementias such as Alzheimer’s disease and HIV dementia and modulation of these levels with an SPT inhibitor is conceived as having promise as a treatment (Cutler RG, et al., Proc Natl. Acad. Sci., 101:2070-5 (2004)). TNF is known to be involved in sepsis and insulin has protective effects (Esmon, CT. Crosstalk between inflammation and thrombosis, Maturitas, 47:305-14 (2004)). De novo ceramide levels possibly serve as a central effector mechanism in the inflammatory processes central to many diseases and conditions. However, the potential for modulators of SPT to be used as therapeutic agents for diseases and conditions related to ceramide’s involvement, as an effector in inflammatory processes, has not previously been shown.

[00010] Elevated levels of fatty acids can induce a syndrome that mimics the pathology of cardiomyopathy (i.e., heart failure). The pathogenesis of this lethal condition is poorly understood, but appears to be related to lipotoxicities. Studies indicate that lipid overload in cardiac myocytes may well be an underlying cause for cardiomyopathy. In addition, recent studies have identified low levels of myocyte apoptosis (80-250 myocytes per 10^5 nuclei) in failing human hearts. It remains unclear, however, whether this cell death is a coincidental finding, a protective process, or a causal component in disease pathogenesis (See, e.g., Wencker D., et al., J. Clin. Invest., 111:1497–1504 (2003), the disclosure of which is incorporated herein by reference). Increases in fatty acid levels in cells directly lead to elevated rates of de novo ceramide synthesis. TNF has been implicated in CHF, and thereby ceramide, an associated
Effector for TNF signaling, is implicated through an independent direction (McTiernan, CF, et al., Curr Cardiol Rep. 2(3):189-97 (2000)). However, the utility of de novo ceramide synthesis modulators, as agents to block progression of and allow healing of heart muscles in cardiomypathy, has not been demonstrated.

Cachexia is a progressive wasting syndrome with loss of skeletal muscle mass (Frost RA and Lang CH.; Curr. Opin. Clin. Nutrit. Metab. Care., 255-263 (2005)) and adipose tissue. This syndrome is found in response to infection, inflammation, cancer (Tisdale MJ; Langenbecks Arch Surg., 389:299-305 (2004)) or some chronic diseases like rheumatoid arthritis (Rall LC and Roubenoff, R, Rheumatol 43:1219-23 (2004)). Release of various cytokines has been implicated in this syndrome and both TNF and IL-6 are recognized as central players. Thus cachexia can be looked at as a chronic inflammatory state. Ceramide is a well-known central effector of TNF signaling. In addition, ceramide is known to modulate the expression of IL-6 (Shinoda J, Kozawa O, Tokuda H, Uematsu, T. Cell Signal., 11:435-41 (1999)); Coroneos, E; Wang, Y; Panuska, JR; Templeton, DJ; Kester, M.; Biochem J; 316:13-7 (1996)). Existing data lead us to believe that de novo ceramide synthesis is playing a central role as a signal for this inflammatory state as well. We therefore believe that inhibition of TNF and/or IL-6 signaling through ceramide will provide a clinical benefit to patients with this wasting syndrome.

Beattie, et al have reported that various treatments (e.g. trehalose, removal of Arg from culture medium, and the like) may improve the yield of transplantable islets but substantial cell death remains (Beattie GM, Leibowitz G, Lopez AD, Levine F, Hayek A, Cell Transplant. 9:431-38 (2000)). Treatment of cells and tissues by caspase inhibitors leads to a partial block of apoptosis in response to various metabolic insults, but apoptosis may be driven by many mechanisms, and caspase inhibition may have useful or marginal effects depending on the
specific instance being studied. Study of caspase inhibitors for limiting death in mammalian cell

Studies of inhibition of de novo synthesis of ceramide have shown that such
inhibition appears to have anti-apoptotic effects in a number of important situations. Beta cell
apoptosis in response to treatment with free palmitic acid and/or in combination with high levels
of glucose can be blocked by treatment with fumonisin B1 (inhibitor of ceramide synthase), for
example (Maedler, K. Diabetes, 52:726-33 (2003). It is thus possible that the inhibition or de
novo ceramide synthesis can be applied to prevention of apoptotic events. However, treatment
with agents that inhibit ceramide synthase have been shown to result in toxic effects, as seen with
Inhibition of SPT provides an alternate method for preventing apoptosis of pancreatic beta cells,
however, modulators of SPT have not been shown to prevent the loss of pancreatic beta cells in
culture prior to transplant.

Thus, modulators of de novo ceramide synthesis could provide important new
therapeutic agents for a range of human and veterinary diseases that entail an inflammatory
component making use of ceramide as an effector agent. However, interference with the de novo
ceramide synthesis pathway at several points (e.g., as with Fumonisin B1) is known to lead to
toxicities. Inhibition at the level of Serine Palmitoyl Transferase, however, leads to the build up
of innocuous cellular components serine and Palmitoyl CoA.

Known inhibitors of SPT include cycloserine, D-serine, myriocin, sphingofungin B,
viridiofungin A, and lipoxamycin. A number of these natural products, such as myriocin, have
been shown to have unacceptable toxicities. Furthermore, these ceramides impart only partially
protective activity. In addition, some SPT inhibitors, such as cycloserine, show weak inhibition
and exhibit low specificity. Structural studies suggest that natural ceramides mimic the active
site bound form of the starting materials or products (Hanada K., et al., Biochem. Biophys. Acta,
1632:16-30 (2003)).

The SPT inhibitor myriocin is known to be a powerful immunosuppressive
molecule. A number of analogs have been designed based on its structure. Structures that have
the immunosuppressive activity of myriocin, such as those related to compound FTY720,
illustrated below, do not inhibit SPT. Additionally, the carboxylic derivative of FTY720, shown
below as compound 2, did not exhibit activity against SPT, as demonstrated in an
immunosuppressive assay for FTY720-like activity (Kiuchi M. et al., J. Med. Chem., 43:2946-61 (2000)) and was suggested to be inactive due to extremely low solubility if not lack of binding affinity, per se.

Modulation of SPT presents an attractive means to attenuate insulin resistance and prevent loss of pancreatic beta cells. Inhibitors of SPT, in particular, may offer new therapeutics for the treatment of T2D. These agents could be beneficial for the protection of tissue for transplantation such as in islet transplantation and liver transplantation. As outlined above, such inhibitors could also have beneficial uses in the treatment of cardiomyopathy, atherosclerosis, liver damage, reperfusion injury, Alzheimer’s Disease, Type 1 diabetes, in which apoptosis plays a role, and other inflammatory diseases. Bio-available agents that are highly potent and selective inhibitors of SPT were, heretofore, not available. Nontoxic, bioavailable, potent and selective modulators of SPT could prove to be important new agents for the treatment of the diseases and conditions as disclosed herein and other diseases and conditions involving apoptosis and in which TNF plays a role as known to those of skill in the art. The generation of such compounds and their usefulness for treating these indications has not been previously shown.

SUMMARY OF THE INVENTION

Presented herein are novel compounds and methods of use. In a preferred embodiment, compounds provided herein exhibit activity on the enzyme, serine palmitoyl transferase (SPT).

Compounds provided herein may be employed in the treatment of a variety of human diseases or conditions. In a preferred embodiment, compounds are used to treat diseases such as T2D, insulin resistance, pancreatic beta cell apoptosis, or obesity. In another preferred embodiment, compounds are used to treat pro-thrombotic conditions, congestive heart failure, myocardial infarction, hypertension, dyslipidemia, or other symptoms of Metabolic Syndrome.
(i.e., Syndrome X). In yet another preferred embodiment, compounds are used to treat inflammatory diseases, such as inflammatory diseases of the cardiovascular system, sepsis and cachexia. Exemplary inflammatory diseases of the cardiovascular system include atherosclerosis. In yet another preferred embodiment, these compounds are used to prevent liver damage from viral, alcohol related, reperfusion injuries as outlined above. In yet another preferred embodiment, these compounds are used to protect and enhance the yield for transplantation of pancreatic liver cells and or livers, either alone or in combination with the currently approved cocktails and/or caspase inhibitors.

[00021] Also provided are compositions comprising compounds presented herein, in combination with a therapeutically effective amount of another active agent. Exemplary agents include insulin, insulin analogs, incretin, incretin analogs, glucagon-like peptide, glucagon-like peptide analogs, exendin, exendin analogs, PACAP and VIP analogs, sulfonylureas, biguanides, α-glucosidase inhibitors, Acetyl-CoA Carboxylase inhibitors, caspase inhibitors, delta 3 unsaturated fatty acids, polyunsaturated fatty acids and PPAR ligands. Accordingly, embodiments of methods for treating various diseases include co-administering compounds presented herein and a therapeutically effective amount of another active agent, or administration of combination compositions provided herein.

DETAILED DESCRIPTION

[00022] As used in the specification, “a” or “an” means one or more. As used in the claim(s), when used in conjunction with the word “comprising,” the words “a” or “an” mean one or more. As used herein, “another” means at least a second or more.

[00023] Reference now will be made in detail to various embodiments and particular applications of the invention. While the invention will be described in conjunction with the various embodiments and applications, it will be understood that such embodiments and applications are not intended to limit the invention. On the contrary, the invention is intended to cover alternatives, modifications and equivalents that may be included within the spirit and scope of the invention. In addition, throughout this disclosure various patents, patent applications, websites and publications are referenced, and unless otherwise indicated, each is incorporated by reference in its entirety for all purposes. All publications mentioned herein are cited for the purpose of describing and disclosing reagents, methodologies and concepts with the present
invention. Nothing herein is to be construed as an admission that these references are prior art in relation to the inventions described herein.

I. Compounds

[00024] Presented herein are novel compounds, and pharmaceutically acceptable salts thereof, corresponding to Formula (I):

![Chemical Structure](image)

(I)

wherein:

R₁ is H or optionally substituted lower alkyl, aryl, aralkyl, or alkylxyalkyl;

each R₂ is independently H, protecting group, or -C(=O)-CHR₃-NHR₄ where:

R₃ is selected from the group consisting of alkyl, aryl, acyl, keto, azido, hydroxyl, hydrazine, cyano, halo, hydrazide, alkenyl, alkylnl, ether, thiol, seleno, sulfonyl, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, ester, thioacid, hydroxylamme, amino group, and combinations thereof; and

R₄ is H or amino protecting group;

each V and Z is independently (CR₅R₆)ₚ, O, NR₇, S, Ar, CR₅R₆Ar, OAr, NR₇Ar, SAR, or Ar where:

each R₅ and R₆ is independently H, lower alkyl, OH, O-lower alkyl, or

R₅ and R₆, taken together, is =O, =N-OH, =N-O-lower alkyl, or =N-O-CH₂CH₃-CH₃;

R₇ is H, lower alkyl, or -CH₂CH₂-O-CH₃; and

n is 1 to 7;

q is 0 to 3;

Ar is an optionally substituted aryl or heteroaryl;

u is 0 or 1;
each X is independently H or halogen; and

m is 4 to 12.

[00025] In some embodiments of the invention, compounds of Formula (I) do not include:

![Chemical structures](image)

[00026] Preferred compounds of Formula (I) include those where R_1 is lower alkyl, such as methyl, ethyl, isopropyl, and the like. Additionally preferred embodiments include those compounds where R_1 is alkylxoyalkyl, such as $\text{CH}_3\text{-O-CH}_2\text{-CH}_2\text{-}$, $\text{HO-CH}_2\text{-CH}_2\text{-O-}$, $\text{HO-(CH}_2\text{-CH}_2\text{-O-)}_p\text{-}$, hydroxyethyl alcohol, hydroxypropyl alcohol, hydroxyethoxyethyl alcohol, and polyethylene glycol or derivatives there. Other preferred compounds of Formula (I) include those where X is halogen, such as fluorine. Additional preferred compounds of Formula (I) include those where Z is NR_4, O, or S. Another preferred embodiment includes compounds of Formula (I) where Ar is an optionally substituted heteroaryl. Another preferred embodiment includes compounds of Formula (I) where Ar is an optionally substituted fused ring system, such as a 5-5, 5-6, or 6-6 ring system.

[00027] In an embodiment, compounds of Formula (I) correspond to Formula (II):

![Chemical structures](image)

(II)

wherein:

L is CH_2, CHR_2, CR_2R_2, O, NR_4, S, Ar, CH_2Ar, CHR_2Ar, $\text{CR}_2\text{R}_2\text{Ar}$, OAr, NR_4Ar, SAr, or ArAr, where

R_1 is H, lower alkyl, OH, O-lower alkyl,

R_2 is H, or
R₁ and R₂, taken together, is =O, =N-OH, =N-O-lower alkyl, or =N-O-CH₂CH₂-O-CH₃, and
R₃ is H, lower alkyl, or -CH₂CH₂-O-CH₃.

[00028] In an embodiment, compounds of Formula (I) correspond to Formula (IIA):

![Formula (IIA)]

wherein each Y is independently C, CH, O, S, N, or NH.

[00029] In another embodiment, compounds of Formula (I) correspond to Formula (IIB):

![Formula (IIB)]

wherein each W is independently C, CH, N, or NH.

[00030] In yet another embodiment, compounds of Formula (I) correspond to Formula (IIC):

![Formula (IIC)]

wherein each Y is independently C, CH, O, S, N, or NH.

[00031] In another embodiment, compounds of Formula (I) correspond to Formula (IID):

![Formula (IID)]
[00032] In another embodiment, compounds of Formula (I) correspond to Formula (IIE):

(IIE).

[00033] In another embodiment, compounds of Formula (I) correspond to Formula (IIF):

(IIF).

[00034] In an additional embodiment, compounds of Formula (I) correspond to Formula (III):

(III).

[00035] In another embodiment, compounds of Formula (I) correspond to Formula (IIIA):

(IIIA).

[00036] In another embodiment, compounds of Formula (I) correspond to Formula (IIIB):
In another embodiment, compounds of Formula (I) correspond to Formula (IIIB):

wherein each Y is independently C, CH, O, S, N, or NH.

In another embodiment, compounds of Formula (I) correspond to Formula (IIIC):

wherein each Y is independently C, CH, O, S, N, or NH.

In another embodiment, compounds of Formula (I) correspond to Formula (IIID):

wherein each Y is independently C, CH, O, S, N, or NH.

In another embodiment, compounds of Formula (I) correspond to Formula (IIIE):

wherein each Y is independently C, CH, O, S, N, or NH.

In another embodiment, compounds of Formula (I) correspond to Formula (IIIF):
wherein each W is independently C, CH, N, or NH.

[00041] In another embodiment, compounds of Formula (I) correspond to Formula (IIIG):

wherein each W is independently C, CH, N, or NH.

[00042] In another embodiment, compounds of Formula (I) correspond to Formula (IIIH):

wherein each W is independently C, CH, N, or NH.

[00043] In another embodiment, compounds of Formula (I) correspond to Formula (IIIJ):

wherein each Y is independently C, CH, O, S, N, or NH.

[00044] In another embodiment, compounds of Formula (I) correspond to Formula (IIIK):
wherein each Y is independently C, CH, O, S, N, or NH.

[00045] In another embodiment, compounds of Formula (I) correspond to Formula (IIIL):

(IIIL)

wherein each Y is independently C, CH, O, S, N, or NH.

[00046] In yet another embodiment, prodrug forms of compounds of Formula (I) are presented. Prodrug forms of compounds are optimal for oral administration, and typically correspond to the ester of the acid active species. Active species of the prodrugs can be used to prepare active drug compounds.

[00047] In an embodiment, prodrug compounds correspond to Formula (IIIM):

(IIIM)

wherein R₃ is the side chain of alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, pyrolysine and selenocysteine.

[00048] Representative prodrug compounds corresponding to Formula (IIIM) include compounds corresponding to Formula (IIIN):
In another embodiment, prodrug compounds correspond to Formula (IIIP):

wherein \(R_a \) is the side chain of alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, pyrolysine and selenocysteine.

Representative prodrug compounds corresponding to Formula (IIIP) include compounds corresponding to Formula (IIIQ):

Exemplary compounds provided herein are listed below in Table 1.

TABLE 1-Representative Compounds

<p>| 3 | | 8 | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II. Definitions

Compounds presented herein embrace isotopically-labelled compounds, which are identical to those recited in Formula I, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into the present compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, fluorine and chlorine, such as 2H, 3H, 12C, 13C, 14N, 16O, 17O, 34S, 18F, 35Cl, respectively. Compounds presented herein,
prodrugs thereof, and pharmaceutically acceptable salts of said compounds or of said prodrugs which contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention. Certain isotopically-labelled compounds of the present invention, for example those into which radioactive isotopes such as 3H and 14C are incorporated, are useful in drug and/or substrate tissue distribution assays. 3H and 14C isotopes are preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium, i.e., 2H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased \textit{in vivo} half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labeled compounds herein and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the Schemes and/or in the Examples below, by substituting a readily available isotopically labelled reagent for a non-isotopically labelled reagent.

[00053] Some of the compounds herein have asymmetric carbon atoms and can therefore exist as enantiomers or diastereomers. Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods known, for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., alcohol), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Enantiomers can also be synthesized using asymmetric reagents, for example to prepare the alpha alkyl amino acid head group of myriocin and its analogs (e.g., Seebach, D., \textit{et al.} Helv. Chim. Acta., 70:1194-1216 (1987)); Hale, JJ, \textit{et al.} Bio-org. Med.Chem. Lett., 12:4803-07 (2004)); Kobayashi, S., \textit{et al.}, J. Am. Chem. Soc., 120:908-19 (1998)). Alternatively, chiral synthesis of enantiomeric centers using chiral synthons from natural products is a facile approach to such syntheses, for example the synthesis of myriocin from d-mannose (Oishi, T., \textit{et al.} Chemical Commun. 1932-33 (2001)); and references to myriocin synthesis therein) and of myriocin analogs from isolated, natural myriocin (Chen, JK, \textit{et al.} Chem Biol. 6, 221-35 (1999)); Fujita, T, \textit{et al.} J. Med. Chem. 39, 4451-59 (1996)). In addition, use of enzymes (free or supported) to preferentially modify one of the enantiomeric centers and thus allow separation or interconversion of enantiomers is well-known to the art (for example Wang, Y.-F., \textit{et al.} (1988). J. Am. Chem. Soc. 110, 7200-5) and has great usefulness in production of pharmaceuticals. All
such isomers, including diastereomers, enantiomers, and mixtures thereof are considered as part of this invention.

[00054] Those skilled in the art will recognize that some of the compounds herein can exist in several tautomeric forms. All such tautomeric forms are considered as part of this invention. Also, for example all enol-keto forms of any compounds herein are included in this invention.

[00055] Some of the compounds of this invention are acidic and may form a salt with a pharmaceutically acceptable cation. Some of the compounds of this invention can be basic and accordingly, may form a salt with a pharmaceutically acceptable anion. All such salts, including di-salts are within the scope of this invention and they can be prepared by conventional methods. For example, salts can be prepared simply by contacting the acidic and basic entities, in either an aqueous, non-aqueous or partially aqueous medium. The salts are recovered either by filtration, by precipitation with a non-solvent followed by filtration, by evaporation of the solvent, or, in the case of aqueous solutions, by lyophilization, as appropriate.

[00056] In addition, compounds herein embrace metabolites, hydrates, or solvates thereof and all of which are within the scope of the invention.

[00057] The term “substituted” refers to substitution on any carbon or heteroatom with any chemically feasible substituent. Representative substitutions include halogen substitution or substitution with any heteroatom containing group, e.g., alkoxy, phophoryl, sulphydryl, etc.

[00058] The term “alkyl” refers to straight chain, branched, or cyclic hydrocarbons. Exemplary of such alkyl groups (assuming the designated length encompasses the particular example) are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary butyl, penty1, isopentyl, neopentyl, tertiary pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, hexyl, isohexyl, heptyl and octyl. The term “lower alkyl” refers to alkyl as defined above comprising C1-C20. Substituted alkyl refers to alkyl groups which are substituted as defined above and are exemplified by haloalkyl, e.g., CF3, CHF2, CH2F, etc.

[00059] The term “aryl” refers to any aromatic group comprising C3-C20. Aryl groups also embrace fused ring systems, such as 5-5, 5-6, and 6-6 ring systems. Representative aryl groups include phenyl, biphenyl, anthracyl, norbornyl, and the like. Aryl groups may be substituted according to the definition provided above.
The term “heteroaryl” refers to any aryl group comprising at least one heteroatom within the aromatic ring. Heteroaryl groups also embrace fused ring systems, such as 5-5, 5-6, and 6-6 ring systems. Representative heteroaryl groups include imidazole, thiazole, oxazole, phenyl, pyridinyl, pyrimidyl, imidazolyl, benzimidazolyl, thiazolyl, oxazolyl, isoxazolyl, benzothiazolyl, or benzoaxazolyl. Heteroaryl groups may be substituted according to the definition provided above.

The term “aralkyl” or “arylalkyl” refers to an aryl group comprising an alkyl group as defined above. Aralkyl or arylalkyl groups may be appended from the aryl or the alkyl moiety.

The term “alkoxy” refers to alkyl groups bonded through an oxygen. Exemplary alkoxy groups (assuming the designated length encompasses the particular example) are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy, isopentoxy, neopentoxy, tertiary pentoxy, hexoxy, isohexoxy, heptoxy and octoxy. Alkoxy may be substituted according to the definition provided above.

The term “alkoxyalkyl” refers to an alkoxy group comprising an alkyl group as defined above. Alkoxyalkyl groups may be substituted according to the definition provided above.

The term “halogen” refers to chloro, bromo, iodo, or fluoro.

The term “modulator” means a molecule that interacts with a target either directly or indirectly. The interactions include, but are not limited to, agonist, antagonist, and the like.

The term “agonist” means a molecule such as a compound, a drug, an enzyme activator or a hormone that enhances the activity of another molecule or the activity of a receptor site.

The term “antagonist” means a molecule such as a compound, a drug, an enzyme inhibitor, or a hormone, that diminishes or prevents the action of another molecule or the activity of a receptor site.

The terms “effective amount” or “therapeutically effective amount” refer to a sufficient amount of the agent to provide the desired biological result. That result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an “effective amount” for therapeutic use is the amount of the composition comprising a compound as disclosed herein required to provide a
clinically significant decrease in a disease. An appropriate "effective" amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.

As used herein, the terms "treat" or "treatment" are used interchangeably and are meant to indicate a postponement of development of diseases and/or a reduction in the severity of such symptoms that will or are expected to develop. The terms further include ameliorating existing disease symptoms, preventing additional symptoms, and ameliorating or preventing the underlying metabolic causes of symptoms.

By "pharmaceutically acceptable" or "pharmacologically acceptable" is meant a material which is not biologically or otherwise undesirable, i.e., the material may be administered to an individual without causing any undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.

III. Preparation of Compounds

Kiuchi et al. (Kiuchi M, et al., J. Med. Chem., 43:2946-61 (2000)) discusses procedures for the synthesis of compound 2. Representative methods for preparing compounds herein may include synthetic precursors reported therein. The general sequence (Scheme 1) for preparing Cα-substituted serine moieties from alkyl halides (or from the corresponding hydroxyl or aldehyde structures by conversion to alkyl halides) can be used broadly to prepare the present
compounds. Illustrated in the synthetic schemes below are exemplary methods for preparing the present compounds.

Scheme 1 below illustrates a preparative route reported in Kiuchi et al. for preparing compound 2.

![Scheme 1](image)

SCHEME 1

Scheme 2 illustrates a similar synthetic procedure for preparing of an analog having increased water solubility.
As illustrated in Scheme 3 below, analogs of myricin which contain two hydroxyl functional groups alpha and beta to the head group, can be prepared from native myricin using a variation of the approach reported by Chen, JK, et al. (1999). Shown below is an exemplary synthetic procedure using starting material reported in Chen et al. to obtain a range of analogs having various functionalities in R’ by employing a Wittig-type reaction with iodoalkyl compounds. For example, R’ can be alkyl, haloalkyl, aryl, aralkyl, and the like. Scheme 3 is a chiral preparation and corresponding enantiomers can be produced using this procedure by protecting the primary OH and NH/CO₂H functional groups, followed by inversion chemistry on the secondary OH groups. Exemplary compounds 13, 17, 18, and 19 are readily prepared from the corresponding iodoalkyl compounds using the procedure illustrated below.
Compounds having a single hydroxyl function alpha to the serine head group can be prepared in the synthetic method illustrated below in Scheme 4. Similar reagents may be used to carry out these synthetic steps with greater or lesser yields, depending on the actual substrates used. Exemplary compounds 14, 19, and 20 are readily prepared using Scheme 4.
Similarly, compounds with a single hydroxyl function, beta to the serine like head group (e.g. compound 20) are prepared through a route starting from the corresponding, readily available alpha-haloketones or alpha-hydroxyketones according to Scheme 5.

![Scheme 5](image_url)

SCHEME 5

IV. Pharmaceutical Compositions

[00079] Compositions presented herein include compounds provided herein and a pharmaceutically acceptable carrier.

A. Formulations

[00080] Pharmaceutically useful compositions comprising the compounds of the present invention may be formulated according to known methods such as by the admixture of a pharmaceutically acceptable carrier. Examples of such carriers and methods of formulation may be found in Remington's Pharmaceutical Sciences. To form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of the compound, e.g., a prodrug or an active species (e.g., the corresponding acid of the ester or prodrug), of the present invention.

[00081] Suitable formulations for administering the present compounds include topical, transdermal, oral, systemic, and parenteral pharmaceutical formulations. Compositions containing compounds herein can be administered in a wide variety of therapeutic dosage forms in conventional vehicles for administration. For example, the compounds or modulators can be
administered in such oral dosage forms as tablets, capsules (each including timed release and sustained release formulations), pills, powders, granules, elixirs, tinctures, solutions, suspensions, syrups and emulsions, or by transdermal delivery or injection. Likewise, they may also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous, topical with or without occlusion, transdermal, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts. The present compounds may be delivered by a wide variety of mechanisms, including but not limited to, transdermal delivery, or injection by needle or needle-less injection means.

B. Dosages

[00082] Embodiments include pharmaceutical compositions comprising an effective amount of compounds presented herein. Effective dosages of compounds disclosed herein may be defined by routine testing in order to obtain optimal inhibition of serine palmitoyl transferase while minimizing any potential toxicity.

[00083] As is well known to one of skill in the art, effective amounts can be routinely determined and vary according to a variety of factors such as the individual's condition, weight, sex, age, medical condition of the patient, severity of the condition to be treated, route of administration, renal and hepatic function of the patient, and the particular compound thereof employed. A physician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition. Optimal precision in achieving concentrations of drug within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a drug.

[00084] An effective but non-toxic amount of the compound desired can be employed as a serine palmitoyl transferase-modulating agent. Dosages contemplated for administration of the present compounds range from 0.01 to 1,000 mg per patient, per day. For oral administration, the compositions are preferably provided in the form of scored or un-scored tablets containing 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, and 50.0 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. Dosage amounts may also vary by body weight and can range, for example, from about 0.0001 mg/kg to about 100 mg/kg of body weight per day, preferably from about 0.001 mg/kg to 10 mg/kg of body weight per day.
Compounds may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily. To be administered in the form of a transdermal delivery system, the dosage administration will be continuous rather than intermittent throughout the dosage regimen.

The dosages of the compounds of the present invention are adjusted when combined with other therapeutic agents. Dosages of these various agents may be independently optimized and combined to achieve a synergistic result wherein the pathology is reduced more than it would be if either agent were used alone. In addition, co-administration or sequential administration of other agents may be desirable.

C. Derivatives

Embodiments of compounds presented herein include "chemical derivatives." Chemical derivatives comprise compounds herein and additional moieties that improve the solubility, half-life, absorption, etc. of the compound. Chemical derivatives may also comprise moieties that attenuate undesirable side effects or decrease toxicity. Examples of such moieties are described in a variety of texts, such as Remington's Pharmaceutical Sciences, and are well known to one of skill in the art.

D. Carriers and Excipients

Compounds herein can be administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as "carrier" materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

For oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture. Suitable binders include, without limitation, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes and the like. Lubricants used in these dosage forms include, without limitation, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.
Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum and the like.

[00090] For liquid forms the active drug component can be combined in suitably flavored suspending or dispersing agents such as the synthetic and natural gums, for example, tragacanth, acacia, methyl-cellulose and the like. Other dispersing agents which may be employed include glycerin and the like.

[00091] For parenteral administration, sterile suspensions and solutions are desired. Isotonic preparations which generally contain suitable preservatives are employed when intravenous administration is desired.

[00092] Topical preparations comprising the present compounds can be admixed with a variety of carrier materials well known in the art, such as alcohols, aloe vera gel, allantoin, glycerine, vitamin A and E oils, mineral oil, PPG2 myristyl propionate, and the like, to form, for example, alcoholic solutions, topical cleansers, cleansing creams, skin gels, skin lotions, and shampoos in cream or gel formulations.

[00093] Compounds can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylicholines.

[00094] Compounds presented herein may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled. Compounds may be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinyl-pyrrolidone, pyran copolymer, polyhydroxypropylmethacryl-amidephenol, polyhydroxy-ethylaspartamidephenol, or polyethyl-eneoxidepolylysine substituted with palmitoyl residues. Furthermore, compounds may be coupled to biodegradable polymers useful in achieving controlled release of a drug, such as polylactic acid, polyeplison caprolactone, polyhydroxy butyric acid, polyoorthoesters, polyacetals, polydihydro-pyran, polycyanoacrylates, cross-linked or amphipathic block copolymers of hydrogels, and other suitable polymers known to those skilled in the art.

[00095] For oral administration, compounds may be administered in capsule, tablet, or bolus form. The capsules, tablets, and boluses comprise an appropriate carrier vehicle, such as starch, talc, magnesium stearate, or di-calcium phosphate.
[00096] Unit dosage forms are prepared by intimately mixing compounds with suitable finely-powdered inert ingredients including diluents, fillers, disintegrating agents, and/or binders such that a uniform mixture is obtained. An inert ingredient is one that will not adversely react with the compounds. Suitable inert ingredients include starch, lactose, talc, magnesium stearate, vegetable gums and oils, and the like. Compounds can be intimately mixed with inert carriers by grinding, stirring, milling, or tumbling.

[00097] Injectable formulations comprise compounds herein mixed with an appropriate inert liquid carrier. Acceptable liquid carriers include the vegetable oils such as peanut oil, cottonseed oil, sesame oil and the like as well as organic solvents such as solketal, glycerol formal and the like. As an alternative, aqueous parenteral formulations may also be used. The vegetable oils are the preferred liquid carriers. The formulations are prepared by dissolving or suspending the compound in a liquid carrier.

[00098] Topical application of compounds is possible through the use of, for example, a liquid drench or a shampoo containing the instant compounds or in modulators as an aqueous solution or suspension. These formulations may comprise a suspending agent such as bentonite and optionally, an antifoaming agent.

E. Modes of Administration

[00099] Other factors affecting dosage amounts are the modes of administration. The pharmaceutical compositions of the present invention may be provided to the individual by a variety of routes including, but not limited to subcutaneous, intramuscular, intra-venous, topical, transdermal, oral and any other parenteral or non-parenteral route. Furthermore, compounds can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art.

[00100] The compounds or modulators may alternatively be administered parenterally via injection of a formulation consisting of the active ingredient dissolved in an inert liquid carrier. Injection may be either intramuscular, intraruminal, intratracheal, or subcutaneous, either by needle or needle-less means.

F. Pharmacologically Acceptable Salts

[00101] Embodiments include compounds presented herein in the form of a free base or as a pharmaceutically acceptable salt. Exemplary pharmaceutically acceptable salts include
hydrobromic, hydroiodic, hydrochloric, perchloric, sulfuric, maleic, fumaric, malic, tartaric, citric, benzoic, mandelic, methanesulfonic, hydroethanesulfonic, benzenesulfonic, oxalic, pamoic, 2-naphthalenesulfonic, p-toluenesulfonic, cyclohexanesulfamic and saccharic. Ion exchange, metathesis or neutralization steps may be used to form the desired salt form.

G. Combinations

[000102] Embodiments include compositions comprising compounds presented herein in combination with another active agent. Exemplary active agents which may be employed include insulin, insulin analogs, incretin, incretin analogs, glucagon-like peptide, glucagon-like peptide analogs, exendin, exendin analogs, PACAP and VIP analogs, sulfonylureas, biguanides, α-glucosidase inhibitors, and ligands for the Peroxisome Proliferator-Activated Receptors (PPARs) of all classes.

[000103] For combination treatment with more than one active agent, where the active agents are in separate dosage formulations, the active agents can be administered concurrently, or they each can be administered at separately staggered times.

[000104] The dosages of the compounds of the present invention are adjusted when combined with other therapeutic agents. Dosages of these various agents may be independently optimized and combined to achieve a synergistic result wherein the pathology is reduced more than it would be if either agent were used alone. In addition, co-administration or sequential administration of other agents may be desirable.

H. Kits

[000105] In a preferred embodiment, compounds herein are packaged in a kit. An example of such a kit is a so-called blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process recesses are formed in the plastic foil. The recesses have the size and shape of the tablets or capsules to be packed. Next, the tablets or capsules are placed in the recesses and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are sealed in the recesses between the plastic foil and the sheet. Preferably the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying
pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.

[000106] It may be desirable to provide a memory aid on the kit, e.g., in the form of numbers next to the tablets or capsules whereby the numbers correspond with the days of the regimen which the tablets or capsules so specified should be ingested. Another example of such a memory aid is a calendar printed on the card, e.g., as follows "First Week, Monday, Tuesday, . . . etc . . . Second Week, Monday, Tuesday, . . . " etc. Other variations of memory aids will be readily apparent. A "daily dose" can be a single tablet or capsule or several pills or capsules to be taken on a given day. Also, a daily dose of Formula I compound can consist of one tablet or capsule while a daily dose of the second compound can consist of several tablets or capsules and vice versa. The memory aid should reflect this.

[000107] In another specific embodiment of the invention, a dispenser designed to dispense the daily doses one at a time in the order of their intended use is provided. Preferably, the dispenser is equipped with a memory aid, so as to further facilitate compliance with the regimen. An example of such a memory aid is a mechanical counter which indicates the number of daily doses that has been dispensed. Another example of such a memory aid is a battery powered microchip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.

V. Methods of Treatment

[000108] An important feature of the present invention relates to the involvement of ceramide as a signaling molecule in inflammatory processes. In addition to its effect on the apoptosis of beta cells relevant to T2D, de novo ceramide can have broader apoptotic effects in human health. Influencing the levels of ceramide can lead to novel treatments of human islets, or islets from other commercially or medicinally important sources, in culture during isolation for transplant with the intent of improving survival of islets in vitro and post transplant. SPT inhibitors can be added to currently used or accepted treatment protocols in order to inhibit, either alone and/or in a synergistic fashion, the loss of islets and beta cells due to apoptotic and/or necrotic processes.

Blockade of de novo ceramide synthesis shows a synergistic improvement in cell survival when comprising addition of compounds of the present invention, e.g., SPT inhibitors, to the protocols enumerated above, and their like. Loss of pancreatic islets in Type 1 Diabetes also shows evidence of inflammatory processes leading to apoptosis and necrosis.

Embodyments of the invention include methods for treating developing Type 1 Diabetes and / or the further loss of islets following transplantation (human or xenobiotic islet
cell transplantation) comprising the addition of compounds of the present invention, e.g., SPT inhibitors, to current treatment protocols (IUBMB Life. 2004 Jul, 56:387-94. Protecting pancreatic beta-cells. Pileggi A, Fenjves ES, Klein D, Ricordi C, Pastori RL.). Xenobiotic cells contemplated for use in the methods of the present invention include, but are not limited to, porcine, bovine, murine, and other mammalian cell types. The inhibition of de novo ceramide synthesis shows beneficial effects when used alone or as an addition to existing protocols. Such treatment may commence immediately upon detection of loss of beta cell mass or function, and be used alone or in conjunction with immunosuppressive regimens (cyclosporine, mycophenolic acid agents, FTY720, and the like, for example). This is a broadly based mechanism to protect beta cells from a wide array of insults that result in apoptosis and necrosis.

[000112] In additional embodiments of this invention, the compounds of the invention are used for the blockade of apoptosis of neuronal cells following spinal injury, and in loss of CNS neurons, e.g. in Alzheimer’s disease or stroke. This treatment with an inhibitor of SPT may be used effectively alone or in combination with other treatments such as antioxidants, caspase inhibitors (Neurochem Res., 28:143-52 (2003). Protection of mature oligodendrocytes by inhibitors of caspases and calpains. Benjamins JA, Nedelkoska L, George EB) and/or other treatments for protection from the late effects of stroke that are well known to those skilled in the art.

[000113] Compounds and compositions presented herein may be administered to patients in the treatment of a variety of diseases. Preferably, methods of treatment presented herein are directed to patients (i.e., humans and other mammals) with disorders or conditions associated with the activity or hyperactivity of serine palmitoyl transferase (SPT). Accordingly, methods of treating insulin resistance and cardiomyopathy are provided. Compounds effective in treating cardiomyopathy may interfere with the process of cardiomyopathy development. Compounds of the invention may also be used to treat cachexia and sepsis.

[000114] Preferred compounds employed in methods of treatment possess desirable bioavailability characteristics. Exemplary compounds are esters which can function as a pro-drug form having improved solubility, duration of action, and in vivo potency. Preferred compounds employed in treatment methods exhibit improved solubility in water and less potential to cross the blood brain barrier to cause side effects, such as altered feeding behavior.
[000115] Pharmaceutical compositions are administered to an individual in amounts sufficient to treat or diagnose disorders in which modulation of serine palmitoyl transferase activity is indicated. Examples of diseases or conditions known to be, or suspected of being mediated by serine palmitoyl transferase include, but are not limited to, insulin resistance, type 2 diabetes and its complications, obesity, pro thrombotic conditions, myocardial infarction, congestive heart failure, hypertension, dyslipidemia, and other manifestations of the commonly accepted “Metabolic Syndrome” and “Syndrome X.” Compounds effective in treatment methods herein potently and specifically modulate the enzyme Serine Palmitoyl Transferase.

[000116] It is to be understood that the above description is intended to be illustrative and not restrictive. The scope of the invention should, therefore, be determined not with reference to the above description, but instead with reference to the appended claims along with the full scope of equivalents thereto.

EXAMPLES

[000117] In order to illustrate the invention the following examples are included. These examples do not limit the invention. They are meant to illustrate only exemplary methods and compounds presented herein. Those knowledgeable in chemical synthesis and the treatment of serine palmitoyl transferase related disorders may find other methods of practicing the invention. However those methods are deemed to be within the scope of this invention.

Example 1

Synthesis of Methyl Ester of Compound 2

[000118] In a round-bottomed flask, 500mL of MeOH is cooled to −5 °C and treated with 0.11 mol of SOCl₂ in a dropwise fashion with stirring. Powdered compound 2 (0.1 mol) is added immediately with cooling and stirring. The solution is allowed to warm slowly to room temperature over a period of 2 hrs. Evaporation of the excess MeOH provides the desired compound (R₁ = Me) as the HCl salt in high yield as a white powder. Recrystallization from a suitable solvent (MeOH/Et₂O) provides the desired compound in high purity as a white, waxy solid. In a like manner, additional ester forms of compound herein can be prepared. Synthesis of compound 2 is described in Kiuchi *et al. 2000* (*supra*).
Example 2

Synthesis of Ethyl Ester of Compound 2

[000119] In a round-bottomed flask, 500mL of EtOH is treated with 0.01 mol of HCl in EtOAc and powdered compound 2 (0.1 mol) is added immediately with cooling and stirring. The solution is warmed to reflux and heated for a period of 24 hrs. Evaporation of the excess EtOH provides the desired compound (R₁= Me) as the HCl salt in high yield as a white powder. Recrystallization from a suitable solvent (EtOH/Et₂O) provides the desired compound in high purity as a colorless oil which slowly forms a waxy solid. In a like manner, additional ester forms of compound herein can be prepared. Alternatively, addition of an equivalent amount of HCl and H₂SO₄ in EtOH and refluxing for 2 days provides a high yield of product.

Example 3

Synthesis of Compound 23

[000120] Compound 23 was prepared using the route outlined in Scheme 2, starting with 4-(3-hydroxypropyl)phenol (Aldrich Chemical Company). Yields obtained are reported in Scheme 2. Compound 23 was obtained as an off white solid and melting point was broad.

[000121] (M-1) molecular ion is 322.3 a.m.u. ¹H NMR (CD₃OD) δ: 0.95 (3H, tr), 1.37 (4H, m), 1.45 (2H, m), 1.75 (6H, m), 2.55 (2H, m), 3.7 (2H, dd), 3.9 (2H, t), 6.9 (4H, dd).

Example 4

Synthesis of Compound 24

[000122] Compound 24 was prepared using the route outlined in Scheme 2 starting with 4-(4-hydroxybutyl)phenol. Compound 24 was obtained as an off white solid and melting point was broad.

[000123] (M-1) molecular ion is 336.3 a.m.u. ¹H NMR (D₆-DMSO) δ: 0.93 (3H, t), 1.4 (12H, broad m), 2.45 (2H, d), 3.5 (2H, q), 3.9 (2H, t), 6.9 (4H, dd).

Example 5

Beta Cell Apoptosis Assay

Rat Pancreatic Islets.
Biological assays are performed as according to Shimabukuro et al., J. Biol. Chem., 273:32487-90 (1998)) with certain modifications. Zucker Diabetic Fatty rats are treated for 2 weeks by i.p. injection with compounds presented herein. Pancreatic islets are isolated and the degree of apoptosis is evaluated by electrophoresis. A significant degree of protection is noted for the treated rats in comparison to the control rats. This protection demonstrates that de novo synthesis of ceramide through the SPT pathway is inhibited specifically and results in protection of beta cells from apoptosis.

Human Pancreatic Islets.

An alternative assay for the detection of beta cell apoptosis is performed according to Maedler, K, et al. (2003). Diabetes 52, 726-33). In this assay, incubation with elevated palmitic acid or elevated glucose causes increased apoptosis and protective effects of inhibitors of ceramide synthase exhibit beneficial effects. Results from this assay demonstrate the beneficial effects of the present compounds to inhibit de novo ceramide synthesis at a different, earlier point in the enzymatic pathway, such as inhibition of SPT.

Islet isolation and culture--

Ilets are isolated from pancreata of organ donors, as described in Oberholzer J, et al. Transplantation 69:1115–23 (2000)). The islet purity is >95% which is determined by dithizone staining. When this degree of purity is not primarily achieved by routine isolation, islets are handpicked. The donors are typically heart-beating cadaver organ donors without a previous history of diabetes or metabolic disorders.

As reported by Maedler et al. (2003), for long-term in vitro studies, the islets are cultured on extracellular matrix-coated plates derived from bovine corneal endothelial cells (Novamed, Jerusalem, Israel), and the cells are allowed to attach to the dishes and spread, to preserve their functional integrity. The contamination by ductal cells after 4 days in culture is estimated to be between 5 and 15%, but almost all ductal cells are found in the periphery of the islets and do not co-localize with β-cells. Islets are cultured in CMRL 1066 medium containing 100 units/ml penicillin, 100 µg/ml streptomycin, and 10% FCS (Gibco, Gaithersburg, MD), hereafter referred to as culture medium.

Two days after plating, when most islets are attached and begin to flatten, the medium is changed to culture medium containing 5.5 or 33.3 mmol/l glucose supplemented with or without fatty acids (Sigma Chemical, St. Louis, MO; palmitic acid [16:0], palmitoleic acid
[16:1], oleic acid [18:1], or a mixture of fatty acids [16:0/16:1, 16:0/18:1]). Fatty acids are dissolved at 10 mmol/L in culture medium containing 11% fatty acid–free BSA (Sigma) under nitrogen atmosphere, are shaken overnight at 37°C, are sonicated for 15 min, and are sterile filtered (stock solution). For control experiments, BSA in the absence of fatty acids is prepared, as described above. The effective FFA concentration may be determined after sterile filtration with a commercially available kit (Wako chemicals, Neuss, Germany). The calculated concentrations of non–albumin-bound FFA is derived from the molar ratio of total FFA (0.5 mmol/l) and albumin (0.15 mmol/l) using a stepwise equilibrium model reported in Spector AA, et al., Biochemistry, 10:3226-32 (1971). Unbound concentration of palmitic, palmitoleic, and oleic acids are of 0.832, 0.575, and 2.089 micromol/L, respectively, for a final concentration of 0.5 mmol/L FFA. In some experiments, islets are cultured with or without 15 micromol/L C2-ceramide, 15micromol/L C2-Dihydroceramide (Biomol, Plymouth Meeting, PA), 15 micromol/L fumonisin B1 (Sigma), or tested compounds at various concentrations from 10nmol/L to 100micromol/L. All of them are first dissolved in prewarmed 37°C DMSO (Fluka, Buchs, Switzerland) at 5 mmol/L. For control experiments, islets are exposed to solvent alone (0.3% DMSO).

Cell apoptosis

As reported by Maedler, et al. (2003), the free 3-OH strand breaks resulting from DNA degradation are detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) technique (Gavrieli Y, et al., J. Cell Biol. 119:493–501 (1992)). Islet cultures are washed with PBS, fixed in 4% paraformaldehyde (30 min, room temperature) followed by permeabilization with 0.5% Triton X-100 (4 min, room temperature), followed by the TUNEL assay, performed according to the manufacturer’s instructions (In Situ Cell Death Detection Kit, AP; Boehringer Mannheim, Germany). The preparations are then rinsed with Tris-buffered saline and is incubated (10 min, room temperature) with 5-bromo-4-chloro-indolyl phosphate/nitro blue tetrazolium liquid substrate system (Sigma). For staining of the activated caspase 3, after fixation and permeabilization, islets are incubated for 2 h at 37°C with a rabbit anti-cleaved caspase-3 antibody (1:50 dilution, D 175; Cell Signaling, Beverly, MA), followed by incubation (30 min, 37°C) with a Cy3-conjugated donkey anti-rabbit antibody (1:100 dilution; Jackson ImmunoResearch Laboratories, West Grove, PA). Thereafter, islets are incubated with a guinea pig anti-insulin antibody as described above, followed by detection using the streptavidin-
biotin-peroxidase complex (Zymed) or by a 30-min incubation with a 1:20 dilution of fluorescein-conjugated rabbit anti-guinea pig antibody (Dako). The TUNEL assay detects DNA fragmentation associated with both apoptotic and necrotic cell death; therefore, islets are also treated with a fluorescent annexin V probe (Annexin-V-FLUOS staining kit, Boehringer Mannheim) according to the manufacturer's instructions. Double staining of cells with propidium iodide and annexin V enables the differentiation of apoptotic from necrotic cells.

Example 7
Anti-Inflammatory Applications

[000130] Zucker diabetic fatty rats are sacrificed and pancreatic islets are harvested as according to Shimabukuro et al. In culture, these islets are treated with an effective amount of Tumor Necrosis Factor alpha. De novo synthesis of ceramides is evaluated by incorporation of tritiated serine, as described in Example 8. Treatment with an effective concentration of compounds presented herein results in a significantly decreased concentration of ceramide in contrast to the control group. This demonstrates the efficacy of the compounds and specific inhibition activity against SPT in general, in anti-inflammatory applications.

Example 8
Serine Palmitoyltransferase activity

Assay A.

[000132] Frozen rat or other mammalian livers are homogenized in a standard HEPES buffer system containing DTT (5 mM), sucrose (0.25 M) and EDTA at pH 7.4. The homogenate is spun at 30 kg for 0.5 hr. and the supernatant is removed. The assay is performed using the supernatant (sufficient for 50-150 µg protein) above but with the addition of 50 µM pyridoxal, 200 µM palmitoyl-CoA, and 1 mM 3H-L-serine in a buffer similar to the homogenization buffer, but at pH 8.3. The radiolabeled product, 3-ketosphinganine, is extracted in CHCl₃/CH₃OH and the radioactivity is counted in a liquid scintillation counter.

[000133] Inhibition of serine palmitoyl transferase is evaluated by incorporation of tritium label into the lipid product. Further demonstration of the activity of compounds in a CTLL-2 cell

Assay B.

[000134] An alternative assay for evaluating inhibition of SPT, the enzyme present in commonly cultured cells, is performed with CHO cells or a human cell line. Cells are washed three times with ice-cold phosphate-buffered saline (PBS). A total of 0.5 mL of lysis buffer [50 mM Hepes (pH 8.0) containing 5 mM ethylenediaminetetraacetic acid (EDTA) and 5 mM dithiothreitol (DTT)] is added to each dish. The cells are scraped using a rubber policeman, and are then transferred to a test tube on ice. The cell suspension is sonicated three times for 5 s at 1-2 min intervals on ice. Protein concentrations in cell homogenates are measured using a Bradford protein assay kit (Bio-Rad). To measure the SPT activity, 0.1 mL of cell homogenates are added to 0.1 mL of reaction buffer [20 mM Hepes (pH 8.0) containing 5 mM EDTA, 10 mM DTT, 50 µM pyridoxal-5′-phosphate, 0.4 mM palmitoyl CoA, 2 mM L-serine, 10 µCi of [3H]serine, and test compound or standard inhibitor (myriocin). After incubation at 37 °C for 20 min with shaking, the reaction is terminated with 0.5 mL of 0.5 N NH₄OH containing 10 mM L-serine. The lipid products are extracted using the solvent system: 3 mL of chloroform/methanol (1:2), 25 µg of sphingosine (1 mg/mL in ethanol) as a carrier, 2 mL of chloroform, and 3.8 mL of 0.5 N NH₄OH. After vigorous mixing, the phases are separated by centrifugation at 2500 rpm for 5 min. The aqueous layer is removed by aspiration, and the lower chloroform layer is washed 3 times with 4.5 mL of water. The chloroform layer is transferred to a scintillation vial, and the solvent is evaporated under N₂ gas. The radioactivity is measured with a LS6000TA liquid scintillation counter (Beckman). Nonspecific conversion of [3H] serine to chloroform-soluble species is determined by performing the assay in the absence of palmitoyl CoA. The count of the background is about one-sixth of the count of 100% activity.

Assay C.

[000135] An alternative assay using a non-chlorinated solvent modification of the Blye and Dyer lipid extraction method reported in Smedes (Smedes, F., Analyst 124:1711-18 (1999)) was employed to evaluate exemplary compounds. In this approach, the cells were washed three times with ice-cold phosphate-buffered saline and 0.5 mL of lysis buffer was added to each dish. The cells were scraped using a rubber policeman and transfer to a test tube on ice. The cell suspension was sonicated three times for 5 s at 1-2 min intervals on ice. A 0.1 mL sample of cell
homogenates were added to 0.1 mL of reaction buffer in a test tube containing the appropriate concentration of test substance and 10 μCi of \(^{3}H\) serine. The reaction mixture was incubated at 37 °C for 20 min with shaking, and the reaction was terminated with 0.5 mL of 0.05N NH₄OH stop solution containing 10mM unlabeled L-serine. Total lipids are extracted by transferring the contents of the test tube into a 15 ml centrifuge tube containing: 4.5 mL of isopropanol/cyclohexane (4:5) containing 25 μg of sphingosine (1 mg/mL in ethanol and diluted into the isopropanol/cyclohexane mixture) as a carrier. The contents were mixed vigorously and 4 mL of 0.5 N NH₄OH was added. The phases were separated by centrifugation at 2500 rpm for 5 min. An accurately measured portion of the organic layer (4.0ml) was added to a scintillation vial with 1ml of water. Ultima Gold F (5ml) was added, the vial was vortexed and allowed to settle into separate layers. The amount of \(^{3}H\) serine radioactivity incorporated into lipids was quantified in a scintillation counter. Non-specific counts were determined by carrying out the assay with control samples containing no palmitoyl CoA. As shown in Table 2 below, the positive control, ISP-1 (i.e., myriocin) exhibited potent but non-selective inhibition of SPT. Exemplary compound 12 was evaluated in this assay and, as shown in Table 2, exhibited moderate activity at the doses indicated.

Table 3 provides data for exemplary compounds 23 and 24 tested in this assay at 10nM and at 100nM.

TABLE 2.

<table>
<thead>
<tr>
<th>Test group</th>
<th>Counts</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>no CoA (blank)</td>
<td>305</td>
<td>5</td>
</tr>
<tr>
<td>No Inhibitor, t=0</td>
<td>244</td>
<td>7</td>
</tr>
<tr>
<td>No Inhibitor</td>
<td>4443</td>
<td>108</td>
</tr>
<tr>
<td>ISP (standard), 1 nM</td>
<td>2509</td>
<td>69</td>
</tr>
<tr>
<td>ISP, 10 nM</td>
<td>535</td>
<td>5</td>
</tr>
<tr>
<td>Compound 12, 1nM</td>
<td>4215</td>
<td>43</td>
</tr>
<tr>
<td>Compound 12, 10nM</td>
<td>4118</td>
<td>69</td>
</tr>
<tr>
<td>Compound 12, 100nM</td>
<td>4258</td>
<td>25</td>
</tr>
<tr>
<td>Compound 12, 1μM</td>
<td>4169</td>
<td>73</td>
</tr>
<tr>
<td>Compound 12, 10μM</td>
<td>4608</td>
<td>158</td>
</tr>
<tr>
<td>No Inhibitor</td>
<td>4483</td>
<td>153</td>
</tr>
</tbody>
</table>
TABLE 3.

<table>
<thead>
<tr>
<th>Test Group</th>
<th>Counts</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cells</td>
<td>598</td>
<td>18</td>
</tr>
<tr>
<td>No Palm CoA</td>
<td>611</td>
<td>32</td>
</tr>
<tr>
<td>Control</td>
<td>5816</td>
<td>348</td>
</tr>
<tr>
<td>ISP 10 nM</td>
<td>959</td>
<td>31</td>
</tr>
<tr>
<td>10 nM Compound 23</td>
<td>5601</td>
<td>268</td>
</tr>
<tr>
<td>100 nM Compound 23</td>
<td>5073</td>
<td>257</td>
</tr>
<tr>
<td>10 nM Compound 24</td>
<td>5763</td>
<td>131</td>
</tr>
<tr>
<td>100 nM Compound 24</td>
<td>5163</td>
<td>263</td>
</tr>
</tbody>
</table>

Example 9

Protection of Islets by an SPT Inhibitor

[000137] Islet protection by an exemplary compound was evaluated in an assay according to Eitel, K., *et al.* (2002), and results obtained in this assay are reported below in Table 4. Rat pancreatic islets were cultured with control medium (RPMI 1640 supplemented with 10% fetal bovine serum, antibiotics and made 8% in glucose) or in medium supplemented with 1 millimolar sodium palmitate (Fatty Acid Medium) during a period of 3 days. The culture medium was changed after 2 days to an identical composition culture medium with fresh inhibitor in the appropriate wells. Cells were stained with propidium iodide (PI), washed and propidium staining of cells (as a measure of cellular DNA content) was assessed by flow cytometry. The percentage of cells having less than the normal amount of PI staining was considered to be apoptotic cells (Eitel, K., *et al.* (2002)).

[000138] In this assay, treatment with exemplary compound 12 appeared to fully protect cells from the fatty acid treatment in this assay and surprisingly imparts a benefit in comparison to treatment with the control medium.
TABLE 4

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Apoptosis</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control medium</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>Fatty Acid medium</td>
<td>17.60</td>
<td>5.52</td>
</tr>
<tr>
<td>FA plus Compound 12</td>
<td>2.33</td>
<td>0.40</td>
</tr>
<tr>
<td>myriocin -1</td>
<td>14.65</td>
<td>7.00</td>
</tr>
</tbody>
</table>
REFERENCES

Rall LC and Roubenoff R Rheumatol 2004: 43, 1219-23.

Rother KI, Harlan DM ; J Clin Invest. 2004; 114: 877-83

WHAT IS CLAIMED IS:

1. A compound, and pharmaceutically acceptable salts thereof, corresponding to Formula (I):

 \[
 \begin{align*}
 \text{R}_1 O & \quad \text{R}_2 H N \quad \text{O} \quad \text{R}_2 \\
 & \quad \text{V}_q \quad \text{(Ar)}_u \quad \text{Z} \quad \text{C} \quad \text{CH}_2 X \\
 \end{align*}
 \]

 (I)

 wherein:

 - \(\text{R}_1 \) is H or optionally substituted lower alkyl, aryl, aralkyl, or alkylxyalkyl;
 - each \(\text{R}_2 \) is independently H, protecting group, or \(-C(=O)-\text{CHR}_a-\text{NHR}_b\) where:
 - \(\text{R}_a \) is selected from the group consisting of alkyl, aryl, acyl, keto, azido, hydroxyl, hydrazine, cyano, halo, hydrazide, alkenyl, alkynyl, ether, thiol, seleno, sulfonyl, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, ester, thioacid, hydroxylamine, amino group, and combinations thereof; and
 - \(\text{R}_b \) is H or amino protecting group;
 - each \(\text{V} \) and \(\text{Z} \) is independently \((\text{CR}_c\text{R}_d)_n\), O, NR, S, Ar, CR, Ar, OAr, NRAr, SAR, or Ar where:
 - each \(\text{R}_c \) and \(\text{R}_d \) is independently H, lower alkyl, OH, O-lower alkyl, or \(\text{R}_c \) and \(\text{R}_d \), taken together, is =O, =N-OH, =N-O-lower alkyl, or =N-O-CH\text{CH}_2\text{CH}_2\text{-O-CH}_3;
 - \(\text{R}_c \) is H, lower alkyl, or -CH\text{CH}_2\text{-O-CH}_3; and
 - \(n \) is 1 to 7;
 - \(q \) is 0 to 3;
 - \(\text{Ar} \) is an optionally substituted aryl or heteroaryl;
 - \(u \) is 0 or 1;
 - each \(X \) is independently H or halogen; and
 - \(m \) is 4 to 12.
2. The compound of claim 1, corresponding to Formula (II):

\[
\begin{align*}
R_f, O & \quad \text{OH} \\
\text{NH}_2 & \quad \text{Ar} \\
\text{C} & \quad \text{CH}_3 \\
\text{L} & \quad \text{X} \\
\text{X} & \quad \text{m}
\end{align*}
\]

(II)

wherein:

L is CH\(_2\), CHR\(_f\), CR\(_f\)R\(_g\), O, NR\(_h\), S, Ar, CH\(_2\)Ar, CHR\(_f\)Ar, CR\(_f\)R\(_g\)Ar, OAr, NR\(_h\)Ar, SAr, or ArAr, where

- R\(_f\) is H, lower alkyl, OH, O-lower alkyl,
- R\(_g\) is H, or
- R\(_f\) and R\(_g\), taken together, is =O, =N-OH, =N-O-lower alkyl, or =N-O-CH\(_2\)CH\(_2\)-O-CH\(_3\), and
- R\(_h\) is H, lower alkyl, or -CH\(_2\)CH\(_2\)-O-CH\(_3\).

3. The compound of claim 1, corresponding to Formula (III):

\[
\begin{align*}
R_1, O & \quad \text{OR}_2 \\
R_2^1 & \quad \text{HN} \\
\text{OH} & \quad \text{(CH\(_2\))\(_n\)-(Ar)}_u \\
\text{Z} & \quad \text{X} \\
\text{H}_2 & \quad \text{C} \\
\text{X} & \quad \text{m}
\end{align*}
\]

(III).

4. The compound of claim 1, corresponding to Formula (IIIA):

\[
\begin{align*}
R_1, O & \quad \text{OR}_2 \\
R_2^1 & \quad \text{HN} \\
\text{OH} & \quad \text{(CH\(_2\))\(_n\)-(Ar)}_u \\
\text{Z} & \quad \text{X} \\
\text{CH\(_2\)X} & \quad \text{C} \\
\text{X} & \quad \text{m}
\end{align*}
\]
(III A).

5. The compound of claim 1, corresponding to Formula (III B):

![Chemical Structure](image)

(III B).

6. The compound of claim 1, wherein Ar is an optionally-substituted phenyl, pyridinyl, pyrimidyl, imidazolyl, benzimidazolyl, thiazolyl, oxazolyl, isoxazolyl, benzthiazolyl, or benzoxyazolyl.

7. The compound of claim 6, wherein Ar is phenyl, pyridinyl, or oxazolyl.

8. The compound of claim 1, wherein X is a halogen.

9. The compound of claim 8, wherein each X is fluorine.

10. The compound of claim 1, wherein R₁ is C₂-C₃.

11. The compound of claim 1, wherein R₁ is CH₃-O-CH₂-CH₂⁻, HO-CH₂-CH₂⁻, HO-CH₂-CH₂-O-CH₂-CH₂⁻, or CH₃-O-CH₂-CH₂-O-CH₂-CH₂⁻.

12. The compound of claim 1, wherein n is 2.

13. The compound of claim 1, wherein m is 7.

14. The compound of claim 1, wherein said compound modulates Serine Palmitoyl Transferase (SPT).

15. The compound of claim 14, wherein said compound inhibits Serine Palmitoyl Transferase (SPT).

16. A composition comprising the compound of claim 1 and a pharmaceutically acceptable
carrier.

17. A composition comprising the compound of claim 1 and a therapeutically effective amount of at least one active agent selected from the group consisting of insulin, insulin analogs, incretin, incretin analogs, glucagon-like peptide, glucagon-like peptide analogs, exendin, exendin analogs, PACAP and VIP analogs, sulfonylureas, biguanides, \(\alpha\)-glucosidase inhibitors, Acetyl-CoA Carboxylase inhibitors, caspase inhibitors, and PPAR ligands.

18. A method of treating insulin resistance, said method comprising administering the compound of claim 1 to a patient in need thereof.

19. A method of treating pancreatic beta cell apoptosis, said method comprising administering the compound of claim 1 to a patient in need thereof.

20. A method of treating obesity, said method comprising administering the compound of claim 1 to a patient in need thereof.

21. A method of treating pro-thrombotic conditions, myocardial infarction, hypertension, dyslipidemia, or other manifestations of Syndrome X, said method comprising administering the compound of claim 1 to a patient in need thereof.

22. A method of treating congestive heart failure, said method comprising administering the compound of claim 1 to a patient in need thereof.

23. A method of treating an inflammatory disease, said method comprising administering the compound of claim 1 to a patient in need thereof, wherein said inflammatory disease is a disease of the cardiovascular system, atherosclerosis, or sepsis.

24. A method of preventing loss or death of human or xenobiotic islet cells in culture fluid, said method comprising adding a compound of claim 1 to the culture fluid.

25. A method for preserving liver tissue in culture fluid, said method comprising adding a compound of claim 1 to the culture fluid.

26. A method for treatment or prevention of type 1 diabetes, said method comprising
administering the compound of claim 1 to a patient in need thereof.

27. A method for treatment or prevention of liver damage, said method comprising administering the compound of claim 1 to a patient in need thereof.

28. A method for treatment or prevention of cachexia, said method comprising administering the compound of claim 1 to a patient in need thereof.

29. A method according to claim 18, further comprising co-administering a therapeutically effective amount of at least one active agent selected from the group consisting of insulin, insulin analogs, incretin, incretin analogs, glucagon-like peptide, glucagon-like peptide analogs, exendin, exendin analogs, PACAP and VIP analogs, sulfonylureas, biguanides, α-glucosidase inhibitors, Acetyl-CoA Carboxylase inhibitors, caspase inhibitors, unsaturated fatty acids, polyunsaturated fatty acids, and PPAR ligands.