发明名称 复合驱动装置及搭载该装置的汽车

摘要

第2电动马达(23)配置在第1电动马达(20)的前侧(靠近内燃发动机(5)侧)。在壳体部件(14)中，固定第2电动马达(23)的定子(28)的部分的内径大于固定第1电动马达(20)的定子(24)的部分的内径。第2电动马达(23)的径向尺寸可以增大，从而可以相应地抑制前后方向的长度，缩短复合驱动装置的前后方向的长度。
1. 一种复合驱动装置，装备有：
输入来自内燃发动机的动力的输入轴；
与上述输入轴在 1 轴上排列配置且与驱动车轮联动的输出轴；
配置在上述 1 轴上并具有定子和转子的第 1 电动马达；
配置在上述 1 轴上并具有与上述输入轴连接的第 1 旋转元件，与上述第 1 电动马达的转子连接的第 2 旋转元件，与上述输出轴连接的第 3 旋转元件的动力分配用行星齿轮；
配置在上述 1 轴上并具有定子和转子的第 2 电动马达；和
配置在上述 1 轴上并将上述第 2 电动马达的转子的旋转进行变速后传送到上述输出轴的变速装置，
其特征在于：

上述第 1 电动马达、上述动力分配用行星齿轮、上述第 2 电动马达、以及上述变速装置被收容在壳体部件内，并在上述 1 轴上排列配置，且上述壳体部件上固定有上述第 1 电动马达及上述第 2 电动马达的上述定子，
上述第 1 电动马达、上述动力分配用行星齿轮、上述第 2 电动马达、以及上述变速装置沿上述 1 轴配置，并使上述第 2 电动马达位于比上述第 1 电动马达更靠近上述内燃发动机侧的位置。

2. 根据权利要求 1 所述的复合驱动装置，其特征在于：沿上述壳体部件的上述 1 轴配置的上述第 1 电动马达、上述动力分配用行星齿轮、上述第 2 电动马达、以及上述变速装置中，上述第 2 电动马达配置在最前端部。

3. 根据权利要求 2 所述的复合驱动装置，其特征在于：上述变速装置与上述第 2 电动马达相邻设置。

4. 根据权利要求 2 所述的复合驱动装置，其特征在于：上述第 2 电动马达的转子的两侧通过轴承部件被支撑在从上述壳体部件延伸的支撑部件上，

上述支撑部件中的位于上述第 2 电动马达和上述变速装置之间的支撑部件上形成有上述变速装置的液压执行机构的液压室。
5. 根据权利要求4所述的复合驱动装置，其特征在于：上述液压室的至少一部分设置在上述第2电动马达的定子（线圈端）的内径侧。

6. 根据权利要求1所述的复合驱动装置，其特征在于：从靠近上述内燃发动机侧起，依次配置有上述第2电动马达、上述变速装置、上述动力分配用行星齿轮、上述第1电动马达。

7. 根据权利要求6所述的复合驱动装置，其特征在于：上述输入轴穿过上述第2电动马达、上述变速装置的内周侧与上述第1旋转元件连接，上述输出轴穿过上述动力分配用行星齿轮、上述第1电动马达的内周侧，同时上述变速装置的输出元件穿过上述动力分配用行星齿轮的外周侧与上述输出轴连接。

8. 根据权利要求7所述的复合驱动装置，其特征在于：上述动力分配用行星齿轮由双小齿轮行星齿轮构成，上述输入轴穿过上述变速装置和上述动力分配用行星齿轮之间，与上述双小齿轮行星齿轮的齿圈连接，上述输出轴穿过上述动力分配用行星齿轮的内周侧与上述双小齿轮行星齿轮的行星架的上述变速装置侧连接，上述第1电动马达的转子与上述双小齿轮行星齿轮的太阳轮连接，上述变速装置的输出元件穿过上述动力分配用行星齿轮的外周侧与上述双小齿轮行星齿轮的行星架的上述第1电动马达侧连接。

9. 根据权利要求7所述的复合驱动装置，其特征在于：上述第1电动马达的转子的两侧通过轴承部件被支撑在从上述壳体部件延伸的支撑部件上，上述输出轴的外周面设置有轴承部件，被上述第1电动马达的转子的内周面所支撑。

10. 根据权利要求9所述的复合驱动装置，其特征在于：上述第2电动马达的转子的两侧通过轴承部件被支撑在从上述壳体部件延伸的支撑部件上，上述输入轴的外周面设置有轴承部件，被上述第2电动马达的转子的内周面所支撑。

11. 根据权利要求1所述的复合驱动装置，其特征在于：从靠近上述
内燃发动机侧起，依次配置有上述第 2 电动马达、上述变速装置、上述第 1 电动马达、上述动力分配用行星齿轮。

12. 根据权利要求 11 所述的复合驱动装置，其特征在于：上述输入轴穿过上述第 2 电动马达、上述变速装置、上述第 1 电动马达、上述动力分配用行星齿轮的内周侧与上述第 1 旋转元件连接，上述输出轴穿过上述动力分配用行星齿轮的外周侧，同时上述变速装置的输出元件穿过上述第 1 电动马达、上述动力分配用行星齿轮的内周侧与上述输出轴连接。

13. 根据权利要求 12 所述的复合驱动装置，其特征在于：上述动力分配用行星齿轮由双小齿轮行星齿轮构成，上述输入轴穿过上述动力分配用行星齿轮的后侧与上述双小齿轮行星齿轮的齿轮啮合，上述输出轴穿过上述动力分配用行星齿轮的外周侧，与上述双小齿轮行星齿轮的行星架的上述第 1 电动马达侧连接，上述第 1 电动马达的转子与上述双小齿轮行星齿轮的太阳轮连接，上述变速装置的输出元件穿过上述动力分配用行星齿轮的内周侧与上述双小齿轮行星齿轮的行星架的后侧连接。

14. 根据权利要求 11 所述的复合驱动装置，其特征在于：上述第 1 电动马达的转子的两侧通过轴承部件被支撑在从上述壳体部件延伸的支撑部件上，上述变速装置的输出元件的外周面上设置有轴承部件，被上述第 1 电动马达的转子的内周面所支撑。

15. 根据权利要求 11 所述的复合驱动装置，其特征在于：上述第 2 电动马达的转子的两侧通过轴承部件被支撑在从上述壳体部件延伸的支撑部件上，上述输入轴的外周面设置有轴承部件，被上述第 2 电动马达的转子的内周面及上述变速装置的输出元件的内周面所支撑。

16. 根据权利要求 11 所述的复合驱动装置，其特征在于：上述支撑部件中的位于上述第 2 电动马达和上述变速装置之间的支撑部件上形成有上述变速装置的液压执行机构的液压室。

17. 根据权利要求 1 至 16 中任一项所述的复合驱动装置，其特征在
于：上述变速装置具有行星齿轮单元。

18. 根据权利要求17所述的复合驱动装置，其特征在于：上述变速装置至少具有4个变速元件，并且第1变速元件与上述第2电动马达的转子连接，第2变速元件与上述输出轴连接，第3、第4变速元件分别具有能够固定在壳体上的制动器元件。

19. 根据权利要求17所述的复合驱动装置，其特征在于：上述变速装置的行星齿轮单元由拉维诺式行星齿轮构成，上述拉维诺式行星齿轮的行星架与上述输出轴连接。

20. 一种汽车，其具有内燃发动机、复合驱动装置、作为接受从上述复合驱动装置传送过来的驱动力的驱动车轮的后轮，其特征在于：上述复合驱动装置为权利要求1至19中任一项所述的复合驱动装置，上述复合驱动装置中，上述内燃发动机的输出轴与上述输入轴连接，同时上述输出轴与传动轴连接，上述内燃发动机的输出轴、上述输入轴、上述输出轴、以及上述传动轴大致配置在同一轴线上。
复合驱动装置及搭载该装置的汽车

技术领域

本发明涉及一种搭载在汽车上的复合驱动装置及搭载该装置的汽车，特别是涉及壳体部件内的2个电动马达、动力分配用行星齿轮和变速装置的配置。

背景技术

过去的广为人知的搭载在汽车上的复合驱动装置中，在使发动机、发电机、驱动（辅助）用电动马达分别与行星齿轮的3个元件连接的同时，将驱动用电动马达与输出轴连接，控制发电机从而对上述行星齿轮的输出转矩进行无级控制，并且根据需要，将其他的驱动电动马达的转矩与行星齿轮的输出转矩合并在一起输出到输出轴，即为所谓的机械分配方式（分离型或2马达型）的复合驱动装置。

上述复合驱动装置中，有作为FF（前置发动机，前轮驱动）用的如日本特开平08-183347号公报所公开的类型，还有作为在电动马达和输出轴之间设置变速器的如日本特开2002-225578号公报所公开的类型。

但是，当将复合驱动装置搭载在FR（前置发动机，后轮驱动）型汽车时，其搭载位置、搭载方向和壳体部分的形状与FF用的驱动装置完全不同。

FR类型的汽车中，沿车身的前后方向，从前侧起在大致同一轴线上依次配置有内燃发动机、复合驱动装置、传动轴。在该复合驱动装置的筒状壳体部件的内侧，收容有在同一轴上的不同位置上配置的2个电动马达（发电用第1电动马达、驱动用第2电动马达）、动力分配机构及变速装置。

考虑到在车身的搭载性，该复合驱动装置的与内燃发动机连接的前侧端应该粗、作为传动轴的后端侧应该细。还有，比较上述2个电动马达，
驱动用的电动马达因为在汽车启动时要产生很大的转矩，因此倾向于具有比发电用的电动马达大的径向尺寸。另外，为了抑制该径向尺寸，确保启动时的高转矩，需要相应地增加驱动用的电动马达的前后方向的长度，因此增加了复合驱动装置整体的长度，损害了对车身的搭载性。

发明内容

本发明的目的在于提供通过使第2电动马达配置在第1电动马达的前侧（靠近内燃发动机侧），确保高转矩，提高搭载性，解决上述问题的复合驱动装置及搭载该装置的汽车。

本发明之1的复合驱动装置（7A，7B）中，装备有输入来自内燃发动机（5）的动力的输入轴（10，与上述输入轴（10）在1轴（13）上排列配置且与驱动车轮（3，3）联动的输出轴（12），配置在上述1轴（13）上并具有定子（24）和转子（25）的第1电动马达（20），配置在上述1轴（13）上并具有与上述输入轴（10）连接的第1旋转元件（R0），与上述第1电动马达（20）的转子（25）连接的第2旋转元件（S0），与上述输出轴（12）连接的第3旋转元件（CR0）的动力分配用行星齿轮（21），配置在上述1轴（13）上并具有定子（28）和转子（29）的第2电动马达（23），配置在上述1轴（13）上并将上述第2电动马达（23）的转子（29）的旋转进行变速后传送到上述输出轴（12）的变速装置（22）。

其特征在于：上述第1电动马达（20），上述动力分配用行星齿轮（21），上述第2电动马达（23），以及上述变速装置（22）被收容在壳体部件（14）内，同时在上述1轴（13）上排列配置，且上述壳体部件（14）上固定有上述第1电动马达（20）及上述第2电动马达（23）的上述定子（24，28），上述第1电动马达（20），上述动力分配用行星齿轮（21），上述第2电动马达（23），以及上述变速装置（22）沿上述1轴（13）配置，并使上述第2电动马达（23）位于比第1电动马达（20）更靠近内燃发动机（5）侧的位置。

本发明之2为本发明之1所述的复合驱动装置（7A，7B），沿上述壳体部件（14）的上述1轴（13）配置的上述第1电动马达（20），上述动力分配用行星齿轮（21），上述第2电动马达（23），以及上述变速装置（22）
中，上述第 2 电动马达（23）配置在最前端部。

本发明之 3 为本发明之 2 所述的复合驱动装置（7A，7B），上述变速装置（22）与上述第 2 电动马达（23）相邻设置。

本发明之 4 为本发明之 2 所述的复合驱动装置（7A，7B），上述第 2 电动马达（23）的转子（29）的两侧通过轴承部件（a，b）被支撑在从上述壳体部件（14）延伸的支撑部件（A，B）上，上述支撑部件（A，B）中的位于上述第 2 电动马达（23）和上述变速装置（22）之间的支撑部件（B）上形成有上述变速装置（22）的液压执行机构（43）的液压室（45）。

本发明之 5 为本发明之 4 所述的复合驱动装置（7A，7B），上述液压室（45）的至少一部分设置在上述第 2 电动马达（23）的定子（线圈）（28）的内径侧。

本发明之 6 为本发明之 1 所述的复合驱动装置（7A），从靠近上述内燃发动机（5）侧起，依次配置有上述第 2 电动马达（23）、上述变速装置（22）、上述动力分配用行星齿轮（21）、上述第 1 电动马达（20）。

本发明之 7 为本发明之 6 所述的复合驱动装置（7A），上述输入轴（10）通过上述第 2 电动马达（23）、上述变速装置（22）的内周侧与上述第 1 旋转元件（R0）连接，上述输出轴（12）通过上述动力分配用行星齿轮（21）、上述第 1 电动马达（20）的内周侧，同时上述变速装置（22）的输出元件（CR1）通过上述动力分配用行星齿轮（21）的外周侧与上述输出轴（12）连接。

本发明之 8 为本发明之 7 所述的复合驱动装置（7A），上述动力分配用行星齿轮（21）由双小齿轮行星齿轮构成，上述输入轴（10）通过上述变速装置（22）和上述动力分配用行星齿轮（21）之间，与上述双小齿轮行星齿轮的齿圈（R0）连接，上述输出轴（12）通过上述动力分配用行星齿轮（21）的内周侧与上述双小齿轮行星齿轮的行星架（CR0）的上述变速装置（22）侧连接，上述第 1 电动马达（20）的转子（25）与上述双小齿轮行星齿轮的太阳轮（S0）连接，上述变速装置（22）的输出元件（CR1）通过上述动力分配用行星齿轮（21）的外周侧与上述双小齿轮行星齿轮的行星架（CR0）的上述第 1 电动马达（20）侧连接。

本发明之 9 为本发明之 7 所述的复合驱动装置（7A），上述第 1 电动
马达（20）的转子（25）的两侧通过轴承部件（t，u）被支撑在从上述壳体部件（14）延伸的支撑部件（D，E）上，上述输出轴（12）的外周面设置有轴承部件（s，v），被上述第1电动马达（20）的转子（25）的内周面所支撑。

本发明之10为本发明之9所述的复合驱动装置（7A），上述第2电动马达（23）的转子（29）的两侧通过轴承部件（a，b）被支撑在从上述壳体部件（14）延伸的支撑部件（A，B）上，上述输入轴（10）的外周面设置有轴承部件（c），被上述第2电动马达（23）的转子（29）的内周面所支撑。

本发明之11为本发明之1所述的复合驱动装置（7B），从靠近上述内燃发动机（5）侧起，依次配置有上述第2电动马达（23）、上述变速装置（22）、上述第1电动马达（20）、上述动力分配用行星齿轮（21）。

本发明之12为本发明之11所述的复合驱动装置（7B），上述输入轴（10）通过上述第2电动马达（23）、上述变速装置（22）、上述第1电动马达（20）、上述动力分配用行星齿轮（21）的内周侧与上述第1旋转元件（R0）连接，上述输出轴（12）通过上述动力分配用行星齿轮（21）的外周侧，同时上述变速装置（22）的输出元件（CR1）通过上述第1电动马达（20）、上述动力分配用行星齿轮（21）的内周侧与上述输出轴（12）连接。

本发明之13为本发明之12所述的复合驱动装置（7B），上述动力分配用行星齿轮（21）由双小齿轮行星齿轮构成，上述输入轴（10）通过上述动力分配用行星齿轮（21）的后侧与上述双小齿轮行星齿轮的齿轮（R0）连接，上述输出轴（12）通过上述动力分配用行星齿轮（21）的外周侧，与上述双小齿轮行星齿轮的行星架（CR0）的上述第1电动马达（20）侧连接。

上述第1电动马达（20）的转子（25）与上述双小齿轮行星齿轮的太阳轮（S0）连接，上述变速装置（22）的输出元件（CR1）通过上述动力分配用行星齿轮（21）的内周侧与上述双小齿轮行星齿轮的行星架（CR0）的后侧连接。

本发明之14为本发明之11所述的复合驱动装置（7B），上述第1电
动马达（20）的转子（25）的两侧通过轴承部件（o，p）被支撑在从上述壳体部件（14）延伸的支撑部件（C，D）上，上述变速装置（22）的输出元件（CR1）的外周面上设置有轴承部件（q，r），被上述第1电动马达（20）的转子（25）的内周面所支撑。

本发明之15为本发明之11所述的复合驱动装置（7B），上述第2电动马达（23）的转子（29）的两侧通过轴承部件（a，b）被支撑在从上述壳体部件（14）延伸的支撑部件（A，B）上，上述输入轴（10）的外周面设置有轴承部件（c，d，l），被上述第2电动马达（23）的转子（29）的内周面及上述变速装置（22）的输出元件（CR1）的内周面所支撑。

本发明之16为本发明之11所述的复合驱动装置（7B），上述支撑部件（A、B）中的位于上述第2电动马达（23）和上述变速装置（22）之间的支撑部件（B）上形成有上述变速装置（22）的液压执行机构（43）的液压室（45）。

本发明之17为本发明之1至16中任一项所述的复合驱动装置（7A，7B），上述变速装置（22）具有行星齿轮单元（27）。

本发明之18为本发明之17所述的复合驱动装置（7A，7B），上述变速装置（22）至少具有4个变速元件（S1，CR1，R1，S2），同时第1变速元件（S1）与上述第2电动马达（23）的转子（29）连接，第2变速元件（CR1）与上述输出轴（12）连接，第3、第4变速元件（R1，S2）分别具有能够固定在壳体上的制动器元件（B1，B2）。

本发明之19为本发明之17所述的复合驱动装置（7A，7B），上述变速装置（22）的行星齿轮单元（27）由拉维瑞式行星齿轮构成，上述拉维瑞式行星齿轮的行星架（CR1）与上述输出轴（12）连接。

本发明之20为一种汽车（1），具有内燃发动机（5）、复合驱动装置、作为接受从上述复合驱动装置传送过来的驱动力的驱动车轮的后轮（3，3），其特征在于：上述复合驱动装置为本发明之1至4中任一项所述的复合驱动装置（7A，7B），上述复合驱动装置（7A，7B）中，上述内燃发动机（5）的输出轴（12）与上述输入轴（10）连接，同时上述输出轴（12）与传动轴（16）连接，上述内燃发动机的输出轴（6）、上述输入轴（10）、上述输出轴（12）、以及上述传动轴（16）大致配置在同一轴线上。
还有，上述括号中的符号用于与附图进行对照，对本发明的保护范围的结构不产生任何影响。

根据本发明之 1 的发明，通过使第 2 电动马达位于第 1 电动马达前侧（靠近内燃发动机侧）的位置，可以增大（与第 1 电动马达相比）输出功率必须大于第 1 电动马达的第 2 电动马达的径向方向尺寸，可以相应地抑制前后方向的长度，从而可以缩短复合驱动装置整体的长度，提高对于车身的搭载性。

根据本发明之 2 的发明，沿壳体部件的 1 轴配置的第 1 电动马达、动力分配用行星齿轮、第 2 电动马达、以及变速装置中，第 2 电动马达配置在最前端部，可以将第 2 电动马达的直径设置得最大，从而可以进一步抑制前后方向的长度。

根据本发明之 3 的发明，变速装置与第 2 电动马达相邻设置，因此容易连接第 2 电动马达和变速装置。

根据本发明之 4 的发明，第 2 电动马达的转子的两侧通过轴承部件被支撑在从壳体部件延伸的支撑部件上，支撑部件中的位于第 2 电动马达和变速装置之间的支撑部件上形成有变速装置的液压执行机构的液压室，可以共用形成液压执行机构的液压室的壳体部件和支撑部件，从而可以缩短复合驱动装置整体的长度。

根据本发明之 5 的发明，液压室的至少一部分设置在第 2 电动马达的定子、特别是线圈端的内径侧，可以进一步缩短前后方向的长度。

根据本发明之 6-8 的发明，从靠近内燃发动机侧起，依次配置有第 2 电动马达、变速装置、动力分配用行星齿轮、第 1 电动马达，可以在没有复杂配置的情况下，使第 2 电动马达配置在第 1 电动马达的前侧。

根据本发明之 9 的发明，第 1 电动马达的转子的两侧通过轴承部件被支撑在从壳体部件延伸的支撑部件上，可以确实支撑第 1 电动马达的转子，减小定子与转子之间的间隙，提高第 1 电动马达的输出。还有，输出轴通过设置在外周面的轴承，被第 1 电动马达的转子的内周面所支撑，因此提高了输出轴的支撑刚性，不需要过分使输出轴大径化。从而减小了复合驱动装置整体的直径。

根据本发明之 10 的发明，第 2 电动马达的转子的两侧通过轴承部件
被支撑在从壳体部件延伸的支撑部件上，可以可靠地支撑第 2 电动马达的转子，减小定子与转子之间的间隙，提高第 2 电动马达的输出。这样可以进一步缩短第 2 电动马达的前后方向的长度。还有，输入轴通过设置在外周面的轴承部件，被第 2 电动马达的转子的内侧面所支撑，因此不需要过分使输入轴大径化。从而减小了复合驱动装置整体的直径。

根据本发明之 11-13 的发明，通过从靠近内燃发动机侧起，依次配置有第 2 电动马达、变速装置、动力分配用行星齿轮、第 1 电动马达，可以在没有复杂配置的情况下，使第 2 电动马达配置在第 1 电动马达的前侧。

根据本发明之 14 的发明，第 1 电动马达的转子的两侧通过轴承部件被支撑在从壳体部件延伸的支撑部件上，可以确实支撑第 1 电动马达的转子，减小定子与转子之间的间隙，提高第 1 电动马达的输出。还有，变速装置的输出元件通过设置在外周面的轴承部件，被第 1 电动马达的转子的内侧面所支撑，因此提高了输出轴的支撑刚性，不需要过分使输出轴大径化。从而减小了复合驱动装置整体的直径。

根据本发明之 15 的发明，第 2 电动马达的转子的两侧通过轴承部件被支撑在从壳体部件延伸的支撑部件上，可以确实支撑第 2 电动马达的转子，减小定子与转子之间的间隙，提高第 2 电动马达的输出。这样可以进一步缩短第 2 电动马达的前后方向的长度。还有，输入轴即使延伸到设置于后端的动力分配用行星齿轮，由于输入轴通过设置在外周面的轴承部件，被第 2 电动马达的转子的内侧面及变速装置的输出元件的内侧面所支撑，因此不需要过分使输入轴大径化。从而减小了复合驱动装置整体的直径。

根据本发明之 16 的发明，支撑部件中的位于第 1 电动马达和变速装置之间的支撑部件上形成有变速装置的液压执行机构的液压室，可以共用形成液压执行机构的液压室的壳体部件和支撑部件，从而可以缩短复合驱动装置整体的长度。

根据本发明之 17 的发明，变速装置由行星齿轮单元构成，可以在 1 轴上设置变速装置，从而可以实现复合驱动装置的小径化。

根据本发明之 18 的发明，变速装置至少具有 4 个变速元件。第 1 变速元件与第 2 电动马达的转子连接，第 2 变速元件与输出轴连接，第 3、
第 4 变速元件分别具有能够固定在壳体上的制动器元件，因此通过只设置
制动器来使第 2 电动马达的转子的旋转速度至少进行 2 档减速。这里，采
用离合器进行变速时，由于要向离合器的液压伺服系统供应油，一般将离
合器的液压伺服系统设置在中心轴上，而且为了防止旋转部件之间出现漏
油，要采用多个密封圈。与此对应，由于可以在壳体上设置制动器的液压
伺服系统，从而不需要如离合器那样的密封圈，同时不需要设置在中心轴
上。因此，只通过制动器来实现 2 档的变速档，可以缩短复合驱动装置的
轴长，提高壳体的刚性，同时减少密封圈，提高效率。

根据本发明之 19 的发明，变速装置的行星齿轮由拉维瑟行星齿轮
构成，由于拉维瑟行星齿轮可以共用 2 个行星齿轮的行星架，从而可以
缩短变速装置的轴长。还有，虽然 2 个行星齿轮的行星架通过共有而导致
行星架的大型化，但由于行星架与输出轴连接，可以可靠地支承行星架，
从而可以抑制变速装置的振摆回转引起的振动。

本发明之 20 的发明为搭载有本发明的复合驱动装置的 FR 型汽车，利
用本汽车，可以提高复合驱动装置的搭载性。

附图说明

图 1 为示意性表示搭载有本发明的复合驱动装置的、本发明的汽车的
平面图。

图 2 是表示本发明的第 1 实施方式的复合驱动装置的骨架图。

图 3 是表示本发明的第 1 实施方式的复合驱动装置的结构的纵截面
图。

图 4 是表示本发明的第 2 实施方式的复合驱动装置的骨架图。

图 5 是表示本发明的第 2 实施方式的复合驱动装置的结构的纵截面
图。

具体实施方式

下面结合附图对本发明的实施方式进行说明。还有，各图中，同一符
号表示同一结构或功能，适当省略对这些符号的重复说明。

（第 1 实施方式）
图 1 表示有关本发明的汽车，即搭载有有关本发明的复合驱动装置的汽车 1 的一个例子。同图中所示的汽车 1 为 FR（前置发动机，后轮驱动）型汽车，同图为表示其大致结构的平面图。还有，实际的汽车中，同图中的箭头 F 方向为前侧，箭头 R 方向为后侧。

同图所示的汽车 1 具有被左右前轴 2、2 以及作为驱动轴的左右后轴 3、3 所支撑的车身 4。内燃发动机 5 通过橡胶垫架（图中未表示）被搭载在车身 4 的前部中，作为其输出轴的曲轴 6 朝着前后方向。还有，同图中，曲轴的后方突出部形成的输出轴作为图示的曲轴 6。内燃发动机 5 的后端与复合驱动装置 7 连接。

复合驱动装置 7 具有通过减震装置 8 与内燃发动机 5 的曲轴 5 连接的输入轴 10、第 1 电动马达 20、动力分配用行星齿轮 21、变速装置 22、第 2 电动马达 23（参照图 2）、输出驱动力的输出轴 12。这里，输入轴 10 和输出轴 12 配置在 1 轴 13 上，输入轴 10 配置在前侧，输出轴 12 配置在后侧。这些输入轴 10 和输出轴 12 相对于车身 4 朝着前后方向配置，与上述第 1 电动马达 20、动力分配用行星齿轮 21、变速装置 22、第 2 电动马达 23 一起，沿前后方向被收纳在长壳体部件 14 内。还有，对于复合驱动装置 7，后面将详细叙述。

复合驱动装置 7 的输出轴 12 从上述壳体部件 14 的后端突出，并向后方延伸，通过弹性联轴节 15 以及众所周知的传动轴 16（实际上具有万向节、中间轴承等，图中进行了省略）与差速装置 17 连接。还有，该差速装置 17 通过左驱动轴 18L、右驱动轴 18R 与上述左右后轮 3、3 连接。

上述结构的汽车 1 中，内燃发动机 5 产生的动力输入到复合驱动装置 7 的输入轴 10，通过后述的第 1 电动马达 20、动力分配用行星齿轮 21、变速装置 22、第 2 电动马达 23 进行调节，从输出轴 12 进行输出。然后，调节后的动力通过传动轴 16 等传送到作为驱动车轮的左右后轮 3、3。

接着，作为搭载在图 1 所示的汽车 1 上的与本发明有关的复合驱动装置 7 的一例，说明与本实施方式有关的复合驱动装置 7A。首先参照图 2 的骨架图，说明复合驱动装置 7A 的整体概览，然后参照图 3，详细叙述具体结构。还有，这些图中，箭头 F 方向为车身的前侧（内燃发动机侧），箭头 R 方向为车身后侧（差速装置侧）。
如图 2 所示，复合驱动装置 7A 从靠近图 1 的内燃发动机 5 前侧起，即前侧向后侧，依次配置有第 2 电动马达 23、变速装置 22、动力分配用行星齿轮 21、第 1 电动马达 20。这些均被收容在壳体部件 14（参照图 1）的内侧，同时在 1 轴 13 上（1 轴 13 的周围），沿该 1 轴 13 从前面起依次排列配置。以下，依次对第 2 电动马达 23、变速装置 22、动力分配用行星齿轮 21、第 1 电动马达 20 进行说明。

第 2 电动马达 23 具有固定在壳体部件（参照图 1）14 的定子 28、和被该定子 28 的内径侧（还有，在下面的说明中，对于壳体部件 14 的径方向的位置，靠近中心（1 轴 13）的一侧称为内径侧，远离的一侧称为外径侧）支撑并可自由旋转的转子 29。该第 2 电动马达 23 的转子 29 与后述的变速装置 22 的太阳轮 S1 连接。这种第 2 电动马达 23 与后述第 1 电动马达 20 一样，通过变换器（图中未表示）与 HV 电池（复合驱动用电池：未图示）连接。但是其主要功能不同。即第 1 电动马达 20 主要用于发电，而第 2 电动马达 23 主要作为驱动马达，辅助汽车 1 的动力（驱动力）。但是，在制动时作为发电机，将车辆惯性力再生成电能。

变速装置 22 具有由 1 个双小齿轮行星齿轮、和共用其中 1 个小齿轮的单小齿轮行星齿轮组成的、所谓的换到形式的行星齿轮单元 27，还具有第 1 制动器 B1、第 2 制动器 B2。

其中，行星齿轮单元 27 由 2 个太阳轮 S1、S2、支撑小齿轮 P1 及小齿轮（共用长齿轮）P2 的行星架 CR1、齿圈 R1 组成。2 个小齿轮 P1、P2 中，小齿轮 P1 与太阳轮 S1 和齿圈 R1 咬合，作为共用长齿轮的小齿轮 P2 与太阳轮 S2 和小齿轮 P1 咬合。该行星齿轮单元 27 的齿圈 R1 与第 1 制动器 B1 连接，太阳轮 S2 与第 2 制动器 B2 连接。变速装置 22 作为整体，作为输入部件的太阳轮 S1 与上述第 2 电动马达 23 的转子 29 连接，作为输出部件（输出元件）的行星架 CR1 通过后述动力分配用行星齿轮 21 的行星架 CR0，与输出轴 12 连接。该变速装置 22 如后所述，通过使第 1、第 2 制动器 B1、B2 中的一方结合，另一方开放，或者相反一方开放，另一方结合，从而可以切换不同减速比的 2 档的减速器。即，变速装置 22 对从上述第 2 电动马达 23 通过太阳轮 S1 输入的动力的大小进行改变，通过行星架 CR1 传送到输出轴 12。
动力分配用行星齿轮 21 由相对于输出轴 12 同轴配置的双小齿轮行星齿轮构成。动力分配用行星齿轮 21 具有支撑多个小齿轮 P0 (P01 和 P02) 的行星架（第 3 旋转元件）CR0，与该小齿轮 P01 咬合的太阳轮（第 2 旋转元件）S0，与小齿轮 P02 咬合的齿圈（第 1 旋转元件）R0。该动力分配用行星齿轮 21 的齿圈 R0 与输入轴 10 连接，太阳轮 S0 与第 1 电动马达 20 的转子 25 连接，还有行星架 CR0 与输出轴 12 连接。这种动力分配用行星齿轮 21 根据第 1 电动马达 20 的旋转控制，将通过输入轴 10 输入到齿圈 R0 的动力，通过太阳轮 S0 分配到第 1 电动马达 20 侧，并通过行星架 CR0 分配到输出轴 12 侧。还有，分配到第 1 电动马达 20 的动力用于发电，另一方面，分配到输出轴 12 的动力用于驱动汽车 1。

第 1 电动马达 20 具有固定在壳体部件（参照图 1）14 的定子 24、和被支撑在该定子 24 的内径侧且可自由旋转的转子 25。该第 1 电动马达 20 的转子 25 与上述的动力分配用行星齿轮 21 的太阳轮 S0 连接。这种第 1 电动马达 20 主要根据通过太阳轮 S0 输入的动力进行发电，通过变换器对 HV 电池进行充电。

图 2 所示的复合驱动装置 7A 中，第 2 电动马达 23、变速装置 22、动力分配用行星齿轮 21、第 1 电动马达 20 中，前 2 个部件配置在输入轴 10 上，剩余的 2 个部件配置在输出轴 12 上。这些连接关系中，输入轴 10 通过第 2 电动马达 23、变速装置 22 的内侧侧向后侧延伸，经由变速装置 22 的侧且经由动力分配用行星齿轮 21 的前侧，与动力分配用行星齿轮 21 的齿圈 R0 连接。还有，第 2 电动马达 23 的转子 29 通过输入轴 10 的外周侧和变速装置 22 的太阳轮 S2 的内周侧向后侧延伸，与变速装置 22 的太阳轮 S1 连接，变速装置 22 的行星架 CR1 向外侧侧延伸，通过动力分配用行星齿轮 21 的齿圈 R0 的外侧，从外侧（第 1 电动马达 20 侧）与动力分配用行星齿轮 21 的行星架 CR0 连接。另外，第 1 电动马达 20 的转子 25 通过输出轴 12 的外周侧向侧延伸，与动力分配用行星齿轮 21 的太阳轮 S0 连接。因此如上所述，齿圈 R0 与输入轴 10 连接、行星架 CR0 与变速装置 22 的行星架 CR1 连接、太阳轮 S0 与第 1 电动马达 20 的转子 25 连接的动力分配用行星齿轮 21 的行星架 CR0 的前侧（变速装置 22 侧）与输出轴 12 的后端连接。该输出轴 12 通过动力分配用行星齿轮 21 及第 1
电动马达 20 的内周侧向后方延伸。

这里，关于上述第 2 电动马达 23、变速装置 22、动力分配用行星齿轮 21、第一电动马达 20 的前前方向的配置位置，即沿 1 轴 13 的配置位置，在本发明中，至少第 2 电动马达 23 配置在第 1 电动马达 20 的前侧。还有，在本实施方式中，第 2 电动马达 23 配置在最前侧（靠近内燃发动机 5 侧）。这样，复合驱动装置 7A 对于车身 4 具有良好的搭载性。

还有，对于参照图 2 的骨架图说明的复合驱动装置 7A 的作用和效果，在参照图 3 说明复合驱动装置 7A 的具体结构后再进行说明。

图 3 表示包括复合驱动装置 7A 的 1 轴 13 的纵截面的上半部。

如同图所示的复合驱动装置 7A 具有配置在 1 轴 13 上的输入轴 10 和输出轴 12、沿该 1 轴 13 的周（1 轴 13 上）排列配置的第 2 电动马达 23、变速装置 22、动力分配用行星齿轮 21、第一电动马达 20。这些均被收容在壳体部件 14 内。但是，输出轴 12 的后端侧的一部分从壳体部件 14 向后方突出。

考虑到组装性等，壳体部件 14 沿 1 轴 13 在前后方向分割成多个部分，并分别在结合面将这些分割壳体结合起来构成一个整体。图 3 所示的本实施方式中，前侧的分割壳体 14A 和后侧的分割壳体 14B 在结合面 H 结合为一体，构成壳体 14。还有，在本实施方式中，结合面 H 位于动力分配用行星齿轮 21 的后端附近，即下面说明的隔壁 D 的稍前位置。该壳体部件 14 在前后方向的不同位置出，形成有多个隔壁（支撑部件），即从前侧起依次形成隔壁 A、B、C、D、E。这些隔壁 A-E 中，隔壁 A 和 E 分别设置在壳体部件 14 的前端及后端附近，隔壁 A-E 之间的壳体内空间被隔壁 B、C、D 沿 1 轴 13 分割成前后方向的 4 个空间。这些隔壁 A-E 作为壳体部件 14 的强度构件，并用于支撑各轴承（轴承部件）a-x（后述），及形成液压室 40、45（后述）。这里，隔壁 A-E 中，隔壁 A、D 通过将其他材料的大致圆板状的隔壁材料安装（例如利用螺栓固定）在同图所示位置而成。还有，分割壳体 14A 的隔壁 A、B 间的马达收容部 14A1 的径方向尺寸大于分割壳体 14B 的马达收容部 14B1 的径方向尺寸。因此，提高了复合驱动装置 7A 搭载在 FR 型汽车 1 的搭载性。

上述第 2 电动马达 23、变速装置 22、动力分配用行星齿轮 21、第 1
电动马达 20 分别收容在被隔壁 A-E 所分割的 4 个空间内，即第 2 电动马达 23 被收容在隔壁 A、B 之间，变速装置 22 被收容在隔壁 B、C 之间、
动力分配用行星齿轮 21 被收容在隔壁 C、D 之间，第 1 电动马达 20 被收容在隔壁 D、E 之间。下面，从第 2 电动马达 23 开始依次进行说明。

第 2 电动马达 23 由例如交流永久磁铁同步型（无刷 DC 马达）构成，
在输入轴 10 的外径侧，与其呈同轴状配置。第 2 电动马达 23 具有固定在
壳体部件 14 的内周面的定子 28，和设置在该定子 28 的内径侧并隔开一定
气隙 G2 且可自由旋转的转子 29。转子 29 的内径侧为圆筒状，该圆筒状
的前部外周面和后部外周面分别形成有台阶部 48、50。转子 29 通过在这
些台阶部 48、50 和隔壁 A、B 之间以在前后方向定位的状态嵌合的轴承 a、
b，被壳体部件 14 支撑并可自由旋转。还有，圆筒状部分的后端通过嵌合
在输入轴 10 的外周面的套管 63，与后述的变速装置 22 的太阳轮 S1 连接。
相互一体形成的转子 29 和太阳轮 S1 通过固定在输入轴 10 的外周面的轴
承 d、e，被输入轴 10 支撑并可相对自由旋转。这样，第 2 电动马达 23 的
转子 29 被固定在隔壁 A、B 上的轴承 a、b 支撑并可自由旋转，因此可以
很好地确保转子 29 的前后方向及径向方向的位置精度，从而即使当出现例
如使壳体部件 14 沿上下方向或左右方向弯曲的作用力，定子 28 和转子 29 之
间也能够很好地维持规定的气隙 G2 的精度。还有，如上所述，第 2 电
动马达 23 与第 1 电动马达 20 一样，通过变换器与 HV 电池连接。

还有，输入轴 10 通过在轴方向与轴承 a 重合的位置上设置的轴承 c、
在输入轴 10 的后端面的外周面和输出轴 12 的前端的筒状部的内周面之间
设置的轴承 q、在动力分配用行星齿轮 21 的太阳轮 S0 和输出轴 12 之间设
置的轴承 r、s，以及第 1 电动马达 20 的转子 25 和隔壁 D 之间的轴承 t，
被分别支撑在壳体部件 14 上，并能够自由旋转。

变速装置 22 配置在壳体部件 14 的隔壁 B、C 之间，即壳体部件 14
的长度方向（沿 1 轴 13 方向）的大致中间处。变速装置 22 具有配置在内
径侧的拉维那式行星齿轮单元 27，和分别配置在其外径侧的前侧和后侧的
第 1 制动器 B1、第 2 制动器 B2。

其中，行星齿轮单元 27 具有第 1 太阳轮 S1（以下简称“太阳轮 S1”）、
在该太阳轮 S1 的前方稍微外径侧配置的第 2 太阳轮 S2（以下简称“太阳
轮 S2’), 配置在太阳轮 S1 的外径侧的齿轮 R1，与太阳轮 S1 和齿轮 R1
啮合的小齿轮 P1，构成共用的长小齿轮并与太阳轮 S2 和小齿轮 P1 啮合
的小齿轮 P2，支撑这些小齿轮 P1、P2 的行星架 CR1。以下，从太阳轮 S1
开始依次说明。

太阳轮 S1 通过上述套管 63，与上述的第 2 电动马达 23 的转子 29 的
后端连接。该太阳轮 S1 如上所述，与套管 63 一起，通过嵌入在输入轴 10
的外周面的轴承 d、e 被输入轴 10 支撑，并能够相对自由旋转。

太阳轮 S2 上一体化形成从其前端侧起沿行星架 CR1 的前侧行星架板
CR1b 向外径侧延伸的法兰部 34，和从该法兰部 34 的外径侧端部向后方延
伸的鼓部 35。该鼓部 35 的外周面和壳体部件 14 的内周面的内周花键 14a
之间插装有前述的第 2 制动器 B2。太阳轮 S2 被嵌合在与上述太阳轮 S1
一体的套管 63 的外周面上的轴承 f、g 和分别嵌合在法兰部 34 的内径侧
（基端侧）的前面和后面的轴承 h、i 所支撑并能够自由旋转。还有，轴承
h 插装在与隔壁 B 的内径侧后面之间，还有，轴承 i 插装在与前述的行星
架 CR1 的前侧行星架板 CR1b 的内径侧前面之间，限制太阳轮 S2 的轴方
向的移动。

齿轮 R1 的后端部上固定有沿行星架 CR1 的后侧行星架板 CR1a 向内
径侧延伸的法兰部 36，齿轮 R1 被嵌合在该法兰部 36 的内径侧的前面和
后面的轴承 j、k 支撑并能够自由旋转。该轴承 j 插装在与行星架 CR1 的
后侧行星架板 CR1a 之间，轴承 k 插装在与隔壁 C 的内径侧前面之间。齿
圈 R1 的外周面和壳体部件 14 的内周面的内周花键 14a 之间插装有第 1 制
动器 B1，限制齿圈 R1 的轴方向的移动。

小齿轮 P1 被行星架 CR1 支撑并能够自由旋转，同时在内径侧与上述
太阳轮 S1 啮合，在外径侧与上述齿轮 R1 啮合。

小齿轮 P2 为在前侧形成的大径齿轮 P2a，和后侧形成的小径齿轮 P2b
一体形成的共用长小齿轮。小齿轮 P2 的大径齿轮 P2a 与上述太阳轮 S2 啮
合，小齿轮 P2 的小径齿轮 P2b 与上述小齿轮 P1 啮合。

行星架 CR1 利用前侧行星架板 CR1b 和后侧行星架板 CR1a 支撑小齿
轮 P1、P2 并使其能够自由旋转，同时后侧行星架板 CR1a 通过连接部件
64 与后述的动力分配用行星齿轮 21 的行星架 CR0 的后侧行星架板 CR0a
连接。该连接部件 64 与行星架 CR1 的后侧行星架板 CR1a 的内径侧后端
连接，由向后方延伸的套管部、从该套管部的后端向外径侧延伸的法兰部、
从该法兰部的外径侧端部向后方延伸的鼓部所形成，被嵌合在套管部的内
周面和输入轴 10 的外周面之间的轴承 m 所支撑，并相对自由旋转。行星
架 CR1 被分别嵌合在前侧行星架板 CR1b 的内径侧的前面的上述轴承 i、
嵌合在后侧行星架板 CR1a 的内径侧的后面的轴承 j 所支撑，并相对自由
旋转。还有，行星架 CR1 被分别嵌合在从太阳轮 S2 延伸的法兰部 34 的
内径侧（基端侧）的前面的轴承 h、嵌合在从齿圈 R1 延伸的法兰部 36 的
内径侧的后面的轴承 k，被隔壁 B、C 支撑并自由旋转，且限制轴方向的
移动。

第 1 制动器 B1 具有多片的圆盘和摩擦片（制动板），在上述齿圈 R1
的外周面上形成外周花键与在壳体部件 14 的内周面上形成的花键 14a
通过花键结合在一起。第 1 制动器 B1 的后面配置有第 1 制动器用的液压
执行机构 37。液压执行机构 37 具有在第 1 制动器 B1 的后面能够沿前后
方向移动地配置的活塞 38，设置在隔壁 C 的外径侧前面并与活塞 38 的后
端侧油密封状嵌合的第 1 油压室 40，插装在固定于隔壁 C 的挡板 41 和活
塞 38 的内径侧前面之间从而使活塞 38 向后方受压的复位弹簧（压缩弹簧）
42。

第 2 制动器 B2 在上述第 1 制动器 B1 的紧接前方处配置。第 2 制动
器 B2 具有多片的圆盘和摩擦片（制动板），在与上述太阳轮 S2 一体的鼓
部 35 的外周面上形成外周花键与壳体部件 14 的内周面上形成的花键
14a 之间通过花键结合在一起。第 2 制动器 B2 的前侧配置有第 2 制动器
用的液压执行机构 43。液压执行机构 43 具有在第 2 制动器 B2 的前面能
够沿前后方向移动地配置的活塞 44，设置在隔壁 B 的外径侧前面并与活
塞 44 的前端侧油密封状嵌合的第 2 油压室 45，插装在固定于隔壁 B 的挡
板 46 和活塞 44 的内径侧后面之间从而使活塞 44 向前方受压的复位弹簧
（压缩弹簧）47。

上述结构的变数装置 22 将第 2 电动马达 23 的输出通过套管 63 传送到太阳轮 S1。在低状态下，第 1 制动器 B1 结合，第 2 制动器 B2 释放。
因此，齿圈 R1 为固定状态，太阳轮 S2 为自由旋转状态，上述第 1 太阳轮
S1 的旋转通过小齿轮 P1 大幅度减速，并传送到行星架 CR1，该行星架 CR1 的旋转被传送到输出轴 12。

还有，变速装置 22 在高状态下，第 1 制动器 B1 释放，第 2 制动器 B2 制动。因此，太阳轮 S2 为固定状态，齿圈 R1 为自由旋转状态。在此状态下，第 1 太阳轮 S1 的旋转传送到小齿轮 P1，同时小齿轮 P2 与停止状态的太阳轮 S2 啮合，行星架 CR1 以受到限制的规定转速进行公转，此时，行星架 CR1 的较小减速的旋转被传送到输出轴 12。

这样，变速装置 22 在低状态下，由于第 1、第 2 制动器 B1、B2 分别结合，释放，大幅度减速的旋转被输出到输出轴 12。另一方面，在高状态下，由于第 1、第 2 制动器 B1、B2 分别释放、结合，较小幅度减速的旋转被输出到输出轴 12。这样，变速装置 22 可以进行 2 档变速，第 2 电动马达 23 能够实现小型化。即，使用小型电动马达、并在需要例如高转矩的汽车 1 发动的情况下，在低状态下输出轴 12 传送足够的驱动转矩，而在输出轴 12 的高旋转时，作为高状态，可以防止转子 29 出现高速旋转。

动力分配用行星齿轮 21 配置在壳体部件 14 的隔壁 C、D 之间。如上所述，动力分配用行星齿轮 21 由相对于输入轴 10 同轴配置的双小齿轮行星齿轮构成，具有齿圈（第 1 旋转元件）R0、太阳轮（第 2 旋转元件）S0、支撑小齿轮 P01、P02（图 3 中这些小齿轮统一表示为小齿轮 P0）的行星架（第 3 旋转元件）CR0。其中，齿圈 R0 向前方延伸，固定在从输入轴 10 的后端附近的外周面沿行星架 CR0 向外径侧延伸的法兰部 61 的外径侧端侧。另外，行星架 CR0 的前侧行星架板 CR0b 与输出轴 12 的前端连接。太阳轮 S0 向后方延伸，与第 1 电动马达 20 的转子 25 连接。

相对于该动力分配用行星齿轮 21 的以下位置处嵌合有轴承 n-s。轴承 n 嵌合在上述连接部件 64 的法兰部的内径侧后侧和法兰部 61 的内径侧前面之间，轴承 o 嵌合在法兰部 61 的内径侧后面和前侧行星架板 CR0b 的内径侧前面之间，轴承 p 嵌合在前侧行星架板 CR0b 的内径侧后面和太阳轮 S0 的前端面之间。还有，轴承 q 嵌合在输入轴 10 的后端部的外周面和输出轴 12 的前端的筒状部的内周面之间，轴承 r、s 嵌合在该筒状部的外周面和太阳轮 S0 的内周面之间。通过这些轴承 n-s，齿圈 R0 与输入轴 10 成为一体、相对于壳体部件 14 自由旋转，还有，行星架 CR0 及太阳轮 S0
相对于输出轴 12 自由旋转。这样，动力分配用行星齿轮 21 的作为输入部的齿轮 R0 固定在输入轴 10 上，作为输出部（动力分配处）的太阳轮 S0 及行星架 CR0 分别与第 1 电动马达 20 的转子 25 的前端、输出轴 12 的前端连接。这种动力分配用行星齿轮 21 将通过输入轴 10 输入到齿轮 R0 的内燃发动机 5（参照图 1）的动力，通过太阳轮 S0 分配到第 1 电动马达 20 前侧，通过行星架 CR0 分配到输出轴 12 前侧。此时动力分配的比例根据第 1 电动马达 20 的旋转状态来确定。即由第 1 电动马达 20 的转子 25 经大功率时，增加第 1 电动马达 20 的发电量，同时相应减少输出到输出轴 12 的动力。相反，第 1 电动马达 20 的转子 25 产生较小的功率时，则减少第 1 电动马达 20 的发电量，同时相应增加输出到输出轴 12 的动力。

第 1 电动马达 20 由例如交流永久磁铁同步型（无刷 DC 马达）构成，被收容在隔板 D、E 之间，同时在输出轴 12 的外径侧，与其呈同轴状配置。第 1 电动马达 20 具有固定在壳体部件 14 的内周面的定子 24 和设置在该定子 24 的内径侧并隔开一定气隙 G1 且可自由旋转的转子 25。转子 25 的内径侧为圆筒状，该圆筒状的前端外周面和后部外周面分别形成有台阶部 30、31。转子 25 通过在这些台阶部 30、31 和隔板 D、E 之间在前后方向定位的状态嵌合的轴承 t、u，被壳体部件 14 支撑并可自由旋转。还有，在圆筒状部分的前端上固定有上述动力分配用行星齿轮 21 的太阳轮 S0。相互一体化形成的转子 25 和太阳轮 S0 通过固定在输出轴 12 的前端侧的外周面的轴承 r、s、u，被输出轴 12 支撑并相对自由旋转。还有，对于前后方向的配置位置，轴承 s、v 配置在分别与轴承 t、u 对应的位置。这样，第 1 电动马达 20 的转子 25 通过固定在隔板 D、E 轴承 t、u 被支撑并能够自由旋转，可以很好地确保转子 25 的前后方向及径向方向的位置精度，从而即使当出现例如使壳体部件 14 沿上下方向或左右方向弯曲的作用力，定子 24 和转子 25 之间也能够很好地维持规定的气隙 G1 的精度。还有，如上所述，第 1 电动马达 20 通过变换器与 HV 电池连接。这种结构的第 1 电动马达 20 的主要功能为根据分配到上述动力分配用行星齿轮 21 的太阳轮 S0 的动力进行发电，通过变换器驱动第 2 电动马达，或对 HV 电池进行充电。

还有，输入轴 10 通过在轴方向与轴承 a 重合的位置上设置的轴承 c
及在输入轴 10 的后端面的外周面、和输出轴 12 的前端的筒状部的内周面之间设置的轴承 q、在动力分配用行星齿轮 21 的太阳轮 S0 和输出轴 12 之间设置的轴承 r、s、以及在第 1 电动马达 20 的转子 25 和隔壁 D 之间的轴承 t，被支撑在壳体部件 14 上，并自由旋转。

如上所述，收容有第 2 电动马达 23、变速装置 22、动力分配用行星齿轮 21、第 1 电动马达 20 的壳体部件 14 在最后部的隔壁 E 的内径侧具有向后方延伸的轮毂部 14b。利用该轮毂部 14b，通过轴承 w、x 支撑输出轴 12 并使其自由旋转。

壳体部件 14 中，隔壁 E 的外径侧厚度较大，形成安装部（装配部）14c。还有，壳体部件 14 的前端侧的连接部 14d 与通过橡胶垫架装在车身 4（参照图 1）上的内燃发动机 5 连接，后端侧利用安装部 14e 并通过橡胶垫架装在车身的一部分 4a 上。即车身的一部分 4a 上设置有橡胶底座 51，通过螺栓 52、垫圈 53、螺母 54 将支柱 55 固定在该橡胶底座 51 上。壳体部件 14 通过螺丝结合在其后端部附近的安装部 14c 的螺栓 56，固定在上述支柱 55 上。还有，安装完后，车身的一部分 4a 侧的螺栓 52 和壳体部件 14 侧的螺栓 56 的间隙 G3 短于该螺栓 56 的拧入长度（螺合长度），即使在螺栓 56 万一出现松动的情况，螺栓 56 也不会从安装部 14c 中拔出，从而壳体部件 14 的后端部不会从车身的一部分 4a 脱出。

如图 2 的骨架图所示，上述结构的复合驱动装置 7A 中，输入到输入轴 10 的动力被输入到动力分配用行星齿轮 21 的齿圈 R0，并被分配（分割）到太阳轮 S0 和行星架 CR0。其中，分配到太阳轮 S0 的动力被输入到第 1 电动马达 20 的转子 25，用作发电。所发出的电力通过变换器驱动第 2 电动马达，或对 HV 电池进行充电。另外，从 HV 电池通过变换器向第 2 电动马达 23 供应电力，通过变速装置 22、行星架 CR0 驱动输出轴 12。即来自内燃发动机 5 的动力和来自第 2 电动马达 23 的动力合成后输入到输出轴 12。还有，由于变速装置 22 如前所述可以切换到高状态和低状态时，因此会随着高状态和低状态，将动力输出到输出轴 12。

如图 3 所示，本实施方式中，第 2 电动马达 23 位于第 1 电动马达 20 的前侧（靠近内燃发动机 5 侧）。壳体部件 14 中，固定第 2 电动马达 23 的定子 28 的部分的内径大于固定第 1 电动马达 20 的定子 24 的部分的内
径。这样，例如在汽车启动等加速时要产生很大的转矩的第2电动马达23的径方向尺寸可以增加（与第1电动马达相比），从而可以相应地抑制前后方向的长度，缩短复合驱动装置7A整体的长度，提高对车身4的搭载性。

（第2实施方式）

接着，作为搭载在图1所示的汽车1上的与本发明有关的复合驱动装置7的其他例，说明与本实施方式有关的复合驱动装置7B。首先，参照图4的骨架图，说明复合驱动装置7B整体的大概情况，然后参照图5，详细叙述具体结构。还有，这些图中，箭头F方向为车身的前侧（内燃发动机侧），箭头R方向为车身侧（差速装置侧）。

如图4所示，复合驱动装置7B从靠近图1的内燃发动机5侧起，即前侧向后侧，依次配置有第2电动马达23、变速装置22、第1电动马达20、动力分配用行星齿轮21。这些均被收容在壳体部件14（参照图1）的内侧，同时在1轴13上（1轴13的周围）沿该1轴13依次排列配置。下面依次说明第2电动马达23、变速装置22、第1电动马达20、动力分配用行星齿轮21。

第2电动马达23具有固定在壳体部件（参照图1）14的定子28、和被该定子28的内径侧（还有，在下面的说明中，对于壳体部件14的径方向的位置，靠近中心（1轴13）的一侧称为内径侧，远离的一侧称为外径侧）支撑并可自由旋转的转子29。该第2电动马达23的转子29与后述变速装置22的太阳轮S1连接。这种第2电动马达23与后述第1电动马达20一样，通过变换器（未图示）与HV电池（复合驱动用电池：未图示）连接。但是其主要功能不同。即第1电动马达20主要用于发电，而第2电动马达23主要作为驱动马达，辅助汽车1的动力（驱动力）。但是，在制动时作为发电机，将车辆惯性力再生成电能。

变速装置22具有由1个双小齿轮行星齿轮、和共用其中1个小齿轮的单小齿轮行星齿轮组成的、所谓的拉维瑞式的行星齿轮单元27，还具有第1制动器B1、第2制动器B2。

其中，行星齿轮单元27由2个太阳轮S1、S2、支撑小齿轮P1及小齿轮（共用长齿轮）P2的行星架CR1、齿圈R1组成。2个小齿轮P1、P2
中，小齿轮 P1 与太阳轮 S1 和齿圈 R1 咬合，作为共用长齿轮的小齿轮 P2 与太阳轮 S2 和小齿轮 P1 咬合。该行星齿轮单元 27 的齿圈 R1 与第 1 制动机 B1 连接，太阳轮 S2 与第 2 制动机 B2 连接。变速装置 22 作为整体，作为输入部件（输入元件）的太阳轮 S1 与上述第 2 电动马达 23 的转子 29 连接，作为输出部件（输出元件）的行星架 CR1 通过后述的动力分配用行星齿轮 21 的行星架 CR0 与输出轴 12 连接。该变速装置 22 如后所述，通过使第 1、第 2 制动机 B1、B2 中的一方结合，另一方开放，或者相反一方开放，另一方结合，从而可以切换不同减速比的 2 档的减速档。即，变速装置 22 对从上述第 2 电动马达 23 通过太阳轮 S1 输入的动力的大小进行改变，通过行星架 CR1 传送到输出轴 12。

第 1 电动马达 20 具有固定在壳体部件（参照图 1）14 的定子 24，和被该定子 24 的内径侧支撑且可自由旋转的转子 25。该第 1 电动马达 20 的转子 25 与后述的动力分配用行星齿轮 21 的太阳轮 S0 连接。这种第 1 电动马达 20 的主要功能为根据通过太阳轮 S0 输入的动力进行发电，通过变换器对 HV 电池进行充电。

动力分配用行星齿轮 21 由相对于输入轴 10 同轴配置的双小齿轮行星齿轮构成。动力分配用行星齿轮 21 具有支撑多个小齿轮 P0（P01 及 P02）的行星架（第 3 旋转元件）CR0，与该小齿轮 P01 咬合的太阳轮（第 2 旋转元件）S0，与小齿轮 P02 咬合的齿圈（第 1 旋转元件）R0。该动力分配用行星齿轮 21 的齿圈 R0 与输入轴 10 连接，太阳轮 S0 与第 1 电动马达 20 的转子 25 连接，还有行星架 CR0 与输出轴 12 连接。这种动力分配用行星齿轮 21 根据第 1 电动马达 20 的旋转控制，将通过输入轴 10 输入到齿圈 R0 的动力，通过太阳轮 S0 分配到第 1 电动马达 20 侧，并通过行星架 CR0 分配到输出轴 12。还有，分配到第 1 电动马达 20 的动力用于发电，另一方面，分配到输出轴 12 的动力用于驱动车 1。

图 4 所示的复合驱动装置 7B 中，第 2 电动马达 23、变速装置 22、第 1 电动马达 20、变速装置 21 中，4 个全部配置在输入轴 10 上，这些部件具有如下的连接关系。输入轴 10 通过第 2 电动马达 23、变速装置 22、第 1 电动马达 20、动力分配用行星齿轮 21 的内周侧向后方延伸，从动力分配用行星齿轮 21 的后侧与其齿圈 R0 连接。还有，第 2 电动马达 23 的转
子 29 通过输入轴 10 的外周侧、变速装置 22 的太阳轮 S2 的内周侧之间向后方延伸，与变速装置 22 的太阳轮 S1 连接。变速装置 22 的行星架 CR1 通过输入轴 10 的外周面，第一电动马达 20 及动力分配用行星齿轮 21 的内周侧之间向后方延伸，从动力分配用行星齿轮 21 的后侧与其行星架 CR0 连接。还有，第一电动马达 20 的转子 25 向后方延伸，与动力分配用行星齿轮 21 的太阳轮 S0 连接。如上所述，齿圈 R0 与输入轴 10 连接，行星架 CR0 与变速装置 22 的行星架 CR1 连接，太阳轮 S0 与第一电动马达 20 的转子 25 连接的力分配用行星齿轮 21 的行星架 CR0 前侧（第一电动马达 20 侧）通过齿圈 R0 的外周侧和动力分配用行星齿轮 21 的后侧，与输出轴 12 的前端连接。该输出轴 12 向后方延伸。

这里，关于上述第二电动马达 23、变速装置 22、动力分配用行星齿轮 21、第一电动马达 20 的前后方向的配置位置、即沿一轴 13 的配置位置，在本发明中，至少第二电动马达 23 配置在第一电动马达 20 前侧。还有，在本实施方式中，第二电动马达 23 配置在最前侧（靠近内燃发动机 5 侧）。

这样，如后所述，复合驱动装置 7B 可以实现对车身 4 的良好的搭载性。

还有，对于参照图 4 的骨架图说明的复合驱动装置 7B 的作用和效果，在参照图 5 说明复合驱动装置 7B 的具体结构后进行说明。

图 5 表示包括复合驱动装置 7B 的一轴 13 的纵截面的上半部。

如同图所示的复合驱动装置 7B 具有配置在一轴 13 上的输入轴 10 和输出轴 12，沿该一轴 13 的周围（一轴 13 上）排列配置的第二电动马达 23、变速装置 22、第一电动马达 20、动力分配用行星齿轮 21。这些均被收纳在壳体部件 14 内。但是，输出轴 12 的后端侧的一部分从壳体部件 14 向后方突出。

考虑到组装性等，壳体部件 14 沿一轴 13 在前后方向分割成多个部分，并分别在结合面将这些分割壳体结合起来构成一个整体。图 5 所示的本实施方式中，前侧的分割壳体 14A 和后侧的分割壳体 14B 在结合面 H 结合成一体，构成壳体 14。还有，本实施方式中，结合面 H 位于动力分配用行星齿轮 21 的前端附近，即后面说明的隔壁 D 的稍后位置。该壳体部件 14 在前后方向的不同位置处，形成有多个隔壁（支撑部件），即从其侧起依次形成有作为支撑部件的隔壁 A、B、C、D、E。这些隔壁 A-E 中，隔
壁 A 和 E 分别设置在壳体部件 14 的前端及端部附近。隔壁 A-E 之间的壳体内空间被隔壁 B、C、D 沿 1 轴 13 分割成前后方向的 4 个空间。这些隔壁 A-E 作为壳体部件 14 的强度构件，用于支撑各轴承 a-x（后述），形成液压室 40、45（后述）。这里，隔壁 A-E 中，隔壁 A、B 通过将其他材料的大致圆板状的隔壁材料安装（例如用螺栓固定）在同图所示位置而成。还有，分割壳体 14A 的隔壁 A、B 间的马达收容部 14A1 的径向尺寸大于隔壁 C、D 间的马达收容部 14A2 的径向尺寸。因此，提高了复合驱动装置 7B 搭载在 FR 型汽车 1 的搭载性。

上述第 2 电动马达 23、变速装置 22、第 1 电动马达 20、动力分配用行星齿轮 21 分别收容在被隔壁 A-E 所分割的 4 个空间内，即第 2 电动马达 23 被收容在隔壁 A、B 之间，变速装置 22 被收容在隔壁 B、C 之间，第 1 电动马达 20 被收容在隔壁 C、D 之间，动力分配用行星齿轮 21 被收容在隔壁 D、E 之间。下面，从第 2 电动马达 23 开始依次进行说明。

第 2 电动马达 23 由例如交流永久磁铁同步型（无刷 DC 马达）构成，在输入轴 10 的外径侧，与其呈同轴状配置。第 2 电动马达 23 具有固定在壳体部件 14 的内周面的定子 28、和设置在该定子 28 的内径侧并隔开一定气隙 G2 可自由旋转的转子 29。转子 29 的内径侧为圆筒状，该圆筒状的前外部周面和后部外部周面分别形成有台阶部 48、50。转子 29 通过在这些台阶部 48、50 和隔壁 A、B 之间以在前后方向定位的状态嵌合的轴承 a、b，被壳体部件 14 支撑并可自由旋转。还有，圆筒状部分的后端通过嵌合在输入轴 10 的外周面上的套管 63，与后述的变速装置 22 的太阳轮 S1 连接。相互一体形成的转子 29 和太阳轮 S1 通过固定在输入轴 10 的外周面的轴承 c、d、e、f，被输入轴 10 支撑并可相对自由旋转。还有，轴承 c、d 的前后方向配置位置分别为与轴承 a、b 对应的位置。这样，第 2 电动马达 23 的转子 29 被固定在隔壁 A、B 上的轴承 a、b 支撑并可自由旋转，因此可以很好地确保转子 29 的前后方向及径向方向的位置精度，从而使即出现例如使壳体部件 14 沿上下方向或左右方向弯曲的作用力，定子 28 和转子 29 之间也能够很好地维持规定的气隙 G2 的精度。还有，第 2 电动马达 23 与后述的第 1 电动马达 20 一样，通过变换器与 HV 电池连接。

还有，输入轴 10 通过与轴承 a 在轴方向重合的位置上设置的轴承 c、
在输入轴 10 的后端面的外周面和输出轴 12 的前端的筒状部的内周面之间设置的轴承 y，在输出轴 12 和从壳体部件 14 的最后部的隔壁 E 的内径侧后方延伸的轮毂部 14b 的内周面之间的轴承 w，被支撑在壳体部件 14 上，并能够自由旋转。

变速装置 22 配置在壳体部件 14 的隔壁 B、C 之间，即壳体部件 14 的长度方向（沿 1 轴 13 方向）的大致中间处。变速装置 22 具有配置在内径侧的拉维瑞式行星齿轮单元 27，和分别配置在其外径侧的前侧和后侧的第 1 制动器 B1、第 2 制动器 B2。

其中，行星齿轮单元 27 具有第 1 太阳轮 S1（以下简称 “太阳轮 S1”）、在该太阳轮 S1 的前方稍微外径侧配置的第 2 太阳轮 S2 （以下简称“太阳轮 S2”）、配置在太阳轮 S1 的外径侧的齿圈 R1、与太阳轮 S1 和齿圈 R1 啮合的小齿轮 P1、构成共用的长小齿轮并与太阳轮 S2 和小齿轮 P1 啮合的小齿轮 P2、支撑这些小齿轮 P1、P2 的行星架 CR1。以下，从太阳轮 S1 开始依次说明。

太阳轮 S1 通过上述套管 63，与上述的第 2 电动马达 23 的转子 29 的后端连接。该太阳轮 S1 如上所述，与套管 63 一起，通过嵌入在输入轴 10 的外周面的轴承 c、d、e 被输入轴 10 支撑，并能够相对自由旋转。

太阳轮 S2 上一体化形成从其前端侧起沿行星架 CR1 的前侧行星架板 CR1b 向外径侧延伸的法兰部 34、和从该法兰部 34 的外径侧端部向后方延伸的鼓部 35。该鼓部 35 的外周面和壳体部件 14 的内周面的内周花键 14a 之间插装有上述的第 2 制动器 B2。太阳轮 S2 被嵌合在与上述太阳轮 S1 一体的套管 63 的外周面上的轴承 f、g，和分别嵌合在法兰部 34 的内径侧（前端侧）的前面和后面的轴承 h、i 所支撑并能够自由旋转。还有，轴承 h 插装在与隔壁 B 的内径侧后部之间，还有，轴承 i 插装在与后述的行星架 CR1 的前侧行星架板 CR1b 的内径侧前部之间。

齿圈 R1 的后端部上固定有沿行星架 CR1 的后侧行星架板 CR1a 向内径侧延伸的法兰部 36，齿圈 R1 被嵌合在该法兰部 36 的内径侧的前面和后面的轴承 j、k 支撑并能够自由旋转。该轴承 j 插装在与行星架 CR1 的后侧行星架板 CR1a 之间，轴承 k 插装在与隔壁 C 的内径侧前部之间。齿圈 R1 的外周面和壳体部件 14 的内周面的内周花键 14a 之间插装有第 1 制
动器 B1。

小齿轮 P1 被行星架 CR1 支撑并能够自由旋转，同时在内径侧与上述太阳轮 S1 对合，在外径侧与上述齿圈 R1 对合。

小齿轮 P2 为在前侧形成的大径齿轮 P2a、和后侧形成的小径齿轮 P2b 一体形成的共用长小齿轮。小齿轮 P2 的大径齿轮 P2a 与上述太阳轮 S2 对合，小齿轮 P2 的小径齿轮 P2b 与上述小齿轮 P1 对合。

行星架 CR1 利用前侧行星架板 CR1b 和后侧行星架板 CR1a 支撑小齿轮 P1、P2 并使其能够自由旋转，同时后侧行星架板 CR1a 通过向后方延伸的套管 65 与后述的动力分配用行星齿轮 21 的行星架 CR0 的后侧行星架板 CR0a 连接。该套管 65 的前端部与后侧行星架板 CR1a 连接，中间部通过后述的第 1 电动马达 20 的转子 25 的内侧，后端部与动力分配用行星齿轮 21 的后侧行星架板 CR0a 连接。该套管 65 被嵌合在输入轴 10 的外周面之间的轴承 l、m 所支撑，并相对自由旋转。行星架 CR1 被分别嵌合在前侧行星架板 CR1b 的内径侧的前侧的上述轴承 i、嵌合在后侧行星架板 CR1a 的内径侧的前侧与后面的轴承 n、j 所支撑，并相对自由旋转。还有，轴承 n 插装在与上述太阳轮 S1 的后端面之间。

第 1 制动器 B1 具有多片的圆盘和摩擦片（制动板），在上述齿圈 R1 的外周面上形成的外周花键与在壳体部件 14 的内周面上形成的花键 14a 通过花键结合在一起。第 1 制动器 B1 的后面配置有第 1 制动器用的液压执行机构 37。液压执行机构 37 具有在第 1 制动器 B1 的后面能够沿前后方向移动地配置的活塞 38、设置在隔壁 C 的外径侧前面并与活塞 38 的后端侧油密封状嵌合的第 1 油压室 40、插装在固定于隔壁 C 的挡板 41 和活塞 38 的内径侧前面之间从而使活塞 38 向后方受压的复位弹簧（压缩弹簧）42。

第 2 制动器 B2 在上述第 1 制动器 B1 的紧接前方处配置。第 2 制动器 B2 具有多片的圆盘和摩擦片（制动板），在与上述太阳轮 S2 一体的鼓部 35 的外周面上形成的外周花键与壳体部件 14 的内周面上形成的花键 14a 之间通过花键结合在一起。第 2 制动器 B2 的前侧配置有第 2 制动器用的液压执行机构 43。液压执行机构 43 具有在第 2 制动器 B2 的前面能够沿前后方向移动地配置的活塞 44、设置在隔壁 B 的外径侧后面并与活
塞 44 的前端侧油密封状嵌合的第 2 油压室 45、插装在固定于隔壁 B 的挡板 46 和活塞 44 的内径侧后面之间从而使活塞 44 向前方受压的复位弹簧（压缩弹簧）47。

上述结构的变速装置 22 将第 2 电动马达 23 的输出通过套管 63 传送到太阳轮 S1。在低状态下，第 1 制动器 B1 结合，第 2 制动器 B2 释放。因此，齿圈 R1 为固定状态，太阳轮 S2 为自由旋转状态，上述第 1 太阳轮 S1 的旋转通过小齿轮 P1 大幅度减速，并传送到行星架 CR1，该行星架 CR1 的旋转被传送到输出轴 12。

还有，变速装置 22 在高状态下，第 1 制动器 B1 释放，第 2 制动器 B2 制动。因此，太阳轮 S2 为固定状态，齿圈 R1 为自由旋转状态。在此状态下，第 1 太阳轮 S1 的旋转传送到小齿轮 P1，同时小齿轮 P2 与停止状态的太阳轮 S2 咬合，行星架 CR1 以受到限制的规定转速进行公转，此时，行星架 CR1 的较小减速的旋转被传送到输出轴 12。

这样，变速装置 22 在低状态下，由于第 1、第 2 制动器 B1、B2 分别结合、释放，大幅度减速的旋转被输出到输出轴 12。另一方面，在高状态下，由于第 1、第 2 制动器 B1、B2 分别释放、结合，较小幅度减速的旋转被输出到输出轴 12。这样，变速装置 22 可以进行 2 档变速，第 2 电动马达 23 能够实现小型化。即，使用小型电动马达，并在需要例如高转矩的汽车 1 发动的情况下，在低状态下向输出轴 12 传送足够的驱动转矩，而在输出轴 12 的高旋转时，作为高状态，可以防止转子 29 出现高速旋转。

第 1 电动马达 20 由例如交流永久磁铁同步型（无刷 DC 马达）构成，被收容在隔壁 C、D 之间，同时在输入轴 10 的外径侧，与其呈同轴状配置。第 1 电动马达 20 具有固定在壳体部件 14 的内周面的定子 24、和设置在该定子 24 的内径侧并隔开一定气隙 G1 且可自由旋转的转子 25。转子 25 的内径侧为圆筒状，该圆筒状的前部外周面和后部外周面分别形成有台阶部 30、31。转子 25 通过在这些台阶部 30、31 和隔壁 C、D 之间以在前后方向定位的状态嵌合的轴承 o、p，被壳体部件 14 支撑并可自由旋转。还有，在圆筒状部分的后端上固定有上述的动力分配用行星齿轮 21 的太阳轮 S0。相互一体化形成的转子 25 和太阳轮 S0 通过固定在嵌合于输入轴 10 的外周面的轴承 q、r、s，被套管 65 支撑并相对自由旋转。
对于前后方向的配置位置，轴承 q、r 配置在分别与轴承 o、p 对应的位置。这样，第 1 电动马达 20 的转子 25 被固定在隔壁 C、D 的轴承 o、p、和固定在套管 65 的外周面的轴承 q、r 所夹持，被壳体部件 14 及套管 65 支撑并能够自由旋转，可以很好地确保转子 25 的前后方向及径向的置精度，从而即使当出现例如使壳体部件 14 沿上下方向或左右方向弯曲的作用力，定子 24 和转子 25 之间也能够很好地维持规定的气隙 G1 的精度。还有，如上所述，第 1 电动马达 20 通过变换器与 HV 电池连接。这种结构的第 1 电动马达 20 的主要功能为根据分配到上述动力分配用行星齿轮 21 的太阳轮 S0 的动力进行发电，通过变换器驱动第 2 电动马达 23，或对 HV 电池进行充电。

动力分配用行星齿轮 21 配置在壳体部件 14 的隔壁 D、E 之间。如上所述，动力分配用行星齿轮 21 由相对于输入轴 10 同轴配置的双小齿轮行星齿轮构成，具有齿圈（第 1 旋转元件）R0、太阳轮（第 2 旋转元件）S0、支撑小齿轮 P01、P02（图 5 中这些小齿轮统一表示为小齿轮 P0）的行星架（第 3 旋转元件）CR0。其中，齿圈 R0 向后方延伸，固定在从输入轴 10 的后端附近的外周面沿行星架 CR0 向外径侧延伸的法兰部 61 的外径侧端侧。另外，行星架 CR0 的后侧行星架板 CR0a 在其内径侧与上述的套管 65 的后端连接。行星架 CR0 的前侧行星架板 CR0b 通过连接部件 66 与输出轴 12 的前端连接。该连接部件 66 具有与上述前侧行星架板 CR0b 的外径侧端部连接并向前方延伸的鼓部、与该鼓部的后端连接并沿上述法兰部 61 的后侧向内径侧延伸的法兰部，该法兰部的内径侧与输出轴 12 连接。

相对于该动力分配用行星齿轮 21 的以下位置处嵌合有轴承。上述轴承 r、s 嵌合在与后侧行星架板 CR0a 一体化的套管 65 的后端侧外周面和太阳轮 S0 的内周面之间，轴承 m 嵌合在该套管 65 的后端侧内周面和输入轴 10 的后端侧外周面之间。还有，在后侧行星架板 CR0a 的内径侧前端和后面上，在与太阳轮 S0 的后端面之间和与法兰部 61 的内径侧前端之间，分别嵌合有轴承 t、u。还有，轴承 v 嵌合在法兰部 61 的内径侧后面对连接部件 66 的法兰部的内径侧前端之间。通过这些轴承，齿圈 R0 通过法兰部 61 与输入轴 10 成为一体、相对于壳体部件 14 自由旋转，还有，行星架 CR0 及太阳轮 S0 被输出轴 12 和套管 65 支撑并相对自由旋转。这样，
动力分配用行星齿轮 21 的作为输入部的齿圈 R0 通过法兰部 61 固定在输入轴 10 上，作为输出部（动力分配处）的太阳轮 S0 及行星架 CR0 分别与第 1 电动马达 20 的转子 25 的后端、输出轴 12 的前端连接。这种动力分配用行星齿轮 21 将通过输入轴 10 输入到齿圈 R0 内燃发动机 5（参照图 1）的动力，通过太阳轮 S0 分配到第 1 电动马达 20 侧，通过行星架 CR0 分配到输出轴 12 侧。此时动力分配的比例根据第 1 电动马达 20 的旋转状态来确定。即由第 1 电动马达 20 的转子 25 产生较大的功率时，增加第 1 电动马达 20 的发电量，同时相应减少输出到输出轴 12 的动力。相反，第 1 电动马达 20 的转子 25 产生较小的功率时，则减少第 1 电动马达 20 的发电量，同时相应增加输出到输出轴 12 的动力。

如上所述，收容有第 2 电动马达 23、变速装置 22、第 1 电动马达 20 动力分配用行星齿轮 21 的壳体部件 14 在最后部的隔壁 E 的内径侧具有向后方延伸的轮毂部 14b。利用该轮毂部 14b，通过轴承 w、x 支撑输出轴 12 并使其自由旋转。

还有，壳体部件 14 的前端侧的连接部 14d 与通过橡胶垫架装在车身 4（参照图 1）上的内燃发动机 5 连接，后侧利用设置在隔壁 D 的外径部的安装部（图中未表示）并通过橡胶垫架装在车身的一部分上。

如图 4 的骨架图所示，上述结构的复合驱动装置 7B 中，输入到输入轴 10 的动力被输入到动力分配用行星齿轮 21 的齿圈 R0，并被分配（分割）到太阳轮 S0 和行星架 CR0。其中，分配到太阳轮 S0 的动力被输入到第 1 电动马达 20 的转子 25，用作发电。所发出的电力通过变换器驱动第 2 电动马达 23，或对 HV 电池进行充电。另外，从 HV 电池通过变换器向第 2 电动马达 23 供应电力，通过变速装置 22，行星架 CR0 驱动输出轴 12。即来自内燃发动机 5 的动力和来自第 2 电动马达 23 的动力合成后输入到输出轴 12。还有，由于变速装置 22 如前所述可以切换到高状态和低状态，因此会随着高状态和低状态，将动力输出到输出轴 12。

如图 5 所示，本实施方式中，第 2 电动马达 23 位于第 1 电动马达 20 的前侧（靠近内燃发动机 5 侧）。壳体部件 14 中，固定第 2 电动马达 23 的定子 28 的部分的内径大于固定第 1 电动马达 20 的定子 24 的部分的内径。这样，例如在汽车启动等加速时要产生很大的转矩的第 2 电动马达 23
的径方向尺寸可以增加（与第1电动马达相比），从而可以相应地抑制前后方向的长度，缩短复合驱动装置7B整体的长度，提高对车身的搭载性。

还有，上述第1实施方式-第2实施方式中说明的第1、第2制动器B1、B2除了液压执行机构，也可以采用利用滚珠丝杠机构及电动马达的电动执行机构，或者其他的执行机构。还有，除了摩擦结合元件，也可以是例如啮合式的元件。

还有，上述变速装置22除了上述实施方式，当然也可以采用其他的2档、3档或者更多档的自动变速装置、或具有增速挡（O/D）的自动变速装置，还可以采用无级变速装置（CVT）。另外，变速装置22的输出除了输出轴12，还可以与从该输出轴12到驱动车轮的动力传送系的任何位置连接。

产业上的利用可能性

上述本发明的复合驱动装置可以适用于汽车，特别是适用于FR用的汽车。